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All results are based on an idealized climate with conventional resolution
(resolved Rossby waves and thermal tides, parameterized gravity waves),

Including explicit computation of radiation, moisture cycle, and the surface
budget (Becker et al., 2015, JASTP).
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Generation of thermal tides:
Absorption of short-wave (SW) radiation by tropospheric water vapor
(mean daily cycle in January, 550 hPa ~ 4 km height)

SW heating (K/d) & water vapor (2&4 g/kg contours)
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Generation of thermal tides:
Absorption of short-wave (SW) radiation by stratospheric ozone
(mean daily cycle January, 1 hPa ~ 50 km height)

SW heating (K/d) & ozone (849 mg/kg conto'wrs)
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Resulting thermal tides in austral summer at 60°S
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Wave driving of the general circulation
of the lower and middle atmophere during January
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pressure (hPa)

Wave driving of the general circulation
of the lower and middle atmophere during January

radiatively determined temperature (K) &
temperatu're (K) res. mass streamf. (Mts™)
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In the extratropics, waves drives the observed state of the atmosphere away from

radiative-convective "equilibriuum™: 0 = T v ..

+ Div (EPF)



Wave driving of the general circulation
of the lower and middle atmophere during January

radiatively determined temperature (K) & zonal wind (ms™) &
temperatu're (K) res. mass streamf. (Mts™) D'w (E‘PF) (ms"d")
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* In the extratropics, waves drives the observed state of the atmosphere away from
radiative-convective "equilibriuum™: 0 = 1 v... + Div (EPF)

» The extratropical wave drag (or EPF divergence) is due synoptic and planetary
Rossby waves and orographic gravity waves (from the troposphere to the
lower mesosphere), ...



Wave driving of the general circulation
of the lower and middle atmophere during January
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* In the extratropics, waves drives the observed state of the atmosphere away from
radiative-convective "equilibriuum™: 0 = 1 v... + Div (EPF)

» The extratropical wave drag (or EPF divergence) is due synoptic and planetary
Rossby waves and orographic gravity waves (from the troposphere to the
lower mesosphere), as well as due to a combination of non-orographic
gravity waves (mainly forced in the troposphere), planetary waves (forced
in situ by dynamic instability), and thermal tides.



Wave driving of the general circulation
of the lower and middle atmophere during January

radiatively determined temperature (K) & zonal wind (ms™) &
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* In the extratropics, waves drives the observed state of the atmosphere away from
radiative-convective "equilibriuum™: 0 = © v __ + Div (EPF)

« The extratropical wave drag (or EPF divergence) is due synoptic and planetary
Rossby waves and orographic gravity waves (from the troposphere to the
lower mesosphere), as well as due to a combination of non-orographic
gravity waves (mainly forced in the troposphere), planetary waves (forced
in situ by dynamic instability), and thermal tides.



Wave driving in the TEM picture
(Andrews & Mclntyre, 1976, JAS; Dunkerton, 1978, JAS)

[X] = zonal mean of X = [X] + X*
[T v™]
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) = [w] — g (vert. Stokes drift)

zonal momentum equation in the transformed Eulerian mean (TEM):

O¢[u] (f+[&]) vres — wres Oplu] + Div (EPF) 4+ (mom. diff.)

Div (EPF) ~ Div (QqgEPF) + (GW drag)

. . _; 2 k k .
Div (qgEPF) = acosz¢a¢(cos ¢ [u*v*]) 8pi[T] = o7

GW drag = — Op[u w"]




Wave driving and causality in the temporal mean

e Turbulent diffusion is essential to induce Div (EPF) # 0
(non-acceleration theorem).

e [ he residual circulation is driven by waves:
0 ~ (f4+1[&])vres — wresap[u] + Div (EPF)

1
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@ COS & ) ( vares) + D Wres

e Thinking of the radiative heating in terms of —(7T'— Tg)/T and
neglecting all small-scale thermal effects, the residual circulation
induces deviations from the radiatively determined state Ty via
the balance between adiabatic and radiative heating:

0 ~ (Cpp)_lwres — ([Tl = Tg) /7

e [ hermal wind balance determines the zonal wind from the thermal

Sstructure:
R O
Op[u] ~ — 21
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Wave driving and causality in the temporal mean

e Turbulent diffusion is essential to induce Div (EPF) #= 0
(non-acceleration theorem).

e T he residual circulation is driven by waves:
0 =~ (f+[&])vres — wresOplu] + Div (EPF)
8¢(COS¢UT€S) + apCUr@s

a COS ¢

e Thinking of the radiative heating in terms of —(7 —Tg)/T and
neglecting all small-scale thermal effects, the residual circulation
induces deviations from the radiatively determined state T'p via
the balance between adiabatic and radiative heating:

0~ (Cpp)_lwres - ([T = Tg) /7 — ?

e T hermal wind balance determines the zonal wind from the thermal

structure: R
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The TEM picture does not include the direct contributions
of the waves to the sensible heat budget. For example,
the turbulent dissipative heating due to breaking gravity is a
frist-order effect on the mean flow in the mesopause region.



Reynolds average of the primitive equations (PE):
subgrid-scale turbulence represented by anisotropic diffusion
iN quasi-stationary approximation
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(hydrostatic approximation and continuity equation as usual)



Reynolds average of the primitive equations (PE):
Subgrid-scale waves in prognostic single-column approximation,
small-scale turbulence represented by anisotropic diffusion

in quasi-stationary approximation (Becker, 2004, JASTP)
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Reynolds average of the primitive equations (PE):
Subgrid-scale waves in quasi-stationary single-column approximation,
small-scale turbulence represented by anisotropic diffusion

in quasi-stationary approximation (Becker, 2004, JASTP)
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Wave-mean flow interaction theorems (quasi-stationary)

e ideal and quasi-linear gravity waves:

F = const

Fo = O
v-F + F, = const
—pY(0:F, £ F-0:v) = E = 0

e Wwave damping of upward propagating gravity waves:

Fo 0
—pY(0.F, + F-0v) = E >0

A

Extension to inertial gravity waves

F — F(1l-w/?/f?)



Implications

« Two forms of the direct contribution of vertically propagating waves to
the large-scale sensible heat budget, i.e., the energy deposition:

Sl K, (an,)2 + Kh‘S;?»‘Q B g?@

E = —ZF-0.,v —
p p

« The first identity may be used for parameterized waves.

* Only the second identity applies when the waves are resolved. Hence,
In order to account for the energy deposition (in addition to the EPF
divergence), the waves must be damped by (harmonic and anisotropic)
momentum diffusion and the associated frictional heating (shear
production) must be included in the thermodynamic equation of motion.

« Since the frictional heating is generally incomplete or flawed in
atmospheric circulation models, also the energy deposition of resolved
waves propagating from lower to higher altitudes (e.g., thermal tides,
Rossby waves) is basically ignored.

The Kuhlungsborn Mechanistic general Circulation Model (KMCM)
Includes subgrid-scale parameterization with consistent energetics.



Control simulation
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Simulation without tides: Qrag = [Qrad]

GW drag (ms'd"') & w (ms™) PW drag (ms'd’) & u (ms™)
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Model response to forcing of thermal tides by short-wave radiation

A GW drag (ms'd') & A u (ms™)
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« downward shift of the mesospheric GW drag and GW energy deposition

» westward acceleration, substanital energy desposition, and poleward circulation
cells (maximum heating at high latitudes) in the lower thermosphere




Conclusions and speculation

The periodic Doppler-shifting of zonally propagating GWs due to thermal
tides results in a significant downward shift (and reduction per unit mass)
of the GW drag and GW energy desposition in the upper mesosphere.

Thermal tides exert a westward drag in the thermosphere, inducing
poleward flow and adiabatic heating in the polar lower thermosphere.

The energy deposition of thermal tides is substantial, but basically ignored
iIn GCMs extending into the thermosphere. In the present model it is
dominated by frictional heating due to horizontal momentum diffusion.

The relevance of energy (and momentum) deposition in atmospheric flow
results from the exponential decrease of density with altitude while the
momentum and energy extracted from lower altitudes due to wave
generation is negligible. Energy (and momentum) deposition may
nevertheless be relevant also in oceanic flow when the wave generation
represents a significant wave-mean flow interaction.



