ACTA HYDROPHYSICA

Herausgegeben von Prof. Dr. H. ERTEL und Ing. J. FISCHER

1967 erschien Band XI, Heft 3

74 Seiten — 4 Seiten Bandinhalt — 4 Abbildungen, davon 1 auf einer Falttafel — 11 Tafeln 8° — MDN 10,50

In diesem Heft werden drei Arbeiten veröffentlicht.

BRAUCKHOFF und GRIESSEIER berichten über zwei Farbsandversuche, die im Jahre 1963 vor dem Ostseebad Zingst für die dort vorgesehene Strandaufspülung vorgenommen wurden.

Im zweiten Aufsatz von MAUERSBERGER wird eine erste Näherung für den Grundwasserspiegel und das Strömungsfeld eines stationären Brunnens mit Hilfe der Treffz'schen Variationsmethode hergeleitet.

Ein Beitrag von WEIKINN gibt einen Überblick über Unwetterkatastrophen aus vier Jahrhunderten in zahlreichen Gegenden Europas.

Einzel- bzw. Fortsetzungsbestellungen durch eine Buchhandlung erbeten

AKADEMIE-VERLAG · BERLIN

DEUTSCHE AKADEMIE DER WISSENSCHAFTEN ZU BERLIN INSTITUT FÜR MEERESKUNDE

HERAUSGEGEBEN VON ERICH BRUNS UNTER MITWIRKUNG VON OTTO KOLP, GÜNTHER SAGER, KLAUS VOIGT

HEFT 21

AKADEMIE-VERLAG · BERLIN

1967

DEUTSCHE AKADEMIE DER WISSENSCHAFTEN ZU BERLIN INSTITUT FÜR MEERESKUNDE

BEITRÄGE ZUR MEERESKUNDE

HERAUSGEGEBEN VON ERICH BRUNS UNTER MITWIRKUNG VON OTTO KOLP, GÜNTHER SAGER, KLAUS VOIGT

HEFT 21

AKADEMIE-VERLAG · BERLIN 1967

INHALT

Seite

SELIM A. MORCOS: Sigma-T (σ_t) Tables for Sea Water of High Salinity (from $38\%_0$ to $48^{\circ}/_{00}$)	5
GÜNTHER SAGER: Die Übergangsformen von ebenen Schwere- wellen	15
Ludwig Goнs: Beziehungen zwischen hydrooptischen und hydro- graphischen Parametern in den Mulden der Ostsee	36
DIETRICH BÖHL: Untersuchungen über die Korrekturformel für Tiefsee-Kippthermometer	62
EDGAR BENGELSDORFF: Ein neues hochfestes Seilkabel für ozeano- graphische "in-situ-Geräte"	72
HANS-JÜRGEN BROSIN und DIETWART NEHRING: Ozeanologische Beobachtungen an einer Stromgrenze auf dem pata- gonischen Schelf	76

1968.3

Erschienen im Akademie-Verlag GmbH, 108 Berlin, Leipziger Straße 3-4 Copyright 1967 by Akademie-Verlag GmbH Lizenznummer: 202 · 100/537/67 Kartengenehmigung: Nr. 516/67 Gesamtherstellung: VEB Druckerei "Thomas Müntzer", 582 Bad Langensalza Bestellnummer: 2105/21 · ES 18 E 4 18,50

Sigma-T (σ_t) Tables for Sea Water of High Salinity (from $38^{\circ}/_{00}$ to $48^{\circ}/_{00}$)

By SELIM A. MORCOS

KNUDSEN'S Hydrographical Tables (1901) provide means for calculating Sigma-T up to Chlorinity values of $23^{\circ}/_{00}$ (=41.5 S^{\operatormathcolor}). Two stages are required for calculation; salinity to sigma-0, then sigma-0 and temperature to sigma-t. Likewise, ZUBOV and CZIHIRIN Oceanographical Tables (1940) give sigma-t in two steps; salinity to $g_{17,5}$ then $g_{17,5}$ and temperature to σ_t . Many oceanographers prefer LA FOND'S Tables (1951), which give sigma-t directly as function of temperature and salinity. However, LA FOND'S Tables do not cover salinities above $38^{\circ}/_{00}$ which are normally encountered in the Mediterranean and Red Seas. The present tables can be regarded as an extension of LA FOND'S Tables. They were particularly prepared to cover the highly saline water of the Suez Canal and Gulf of Suez (MORCOS, 1960) as well as the waters of the Mediterranean and Red Seas. These tables were in use since few years in our Department, but they were requested repeatedly by many colleagues in Egypt and abroad. It is believed that their publication will help in further investigations of these waters and will make sigma-t results from this region more uniform.

For the high salinity waters, special Hydrographical Tables are prepared by MORCOS (1960) to determine the chlorinity, salinity and σ_0 . The interrelations between the chlorinity, salinity, density and conductivity of these waters were investigated by MORCOS and RILEY (1966). A new relationship $S^{0}_{00} = 1.802 \text{ Cl}^{0}_{00}$, has been suggested to convert chlorinity values into salinity values for the highly saline waters (over 41.5 S^{0}_{00}) of the Suez Canal region.

Direct calculation of the σ values, and independent revision of the computations, show that the present tables are accurate to $+0.001 \sigma_{t}$.

The present tables for Sigma-T are prepared from the following formula:

$$\sigma_t = \Sigma_t + \left[(\sigma_0 + 0.1324) \right] \left[1 - A_t + B_t \left(\sigma_0 - 0.1324 \right) \right]$$

where,

$$\Sigma_t = -\left[\frac{(t-3.98)^2}{503.570}\right] \left[\frac{t+283}{t+67.26}\right].$$

 $egin{aligned} \sigma_0 &= -\ 0.069 + 1.4708 \ ext{Cl} - 0.001570 \ ext{Cl}^2 + 0.0000398 \ ext{Cl}^3 \ A_t &= t \ (4.7867 - 0.098185 \ t + 0.0010843 \ t^2) \ 10^{-3} \ , \end{aligned}$

Sigma-T (σ_t) Tables for Sea Water of high Salinities (from $38.00^{\circ}/_{00}$ to $48.00^{\circ}/_{00}$)

+ °C			Sº/00		
	38.00	39.00	40.00	41.00	42.00
13.0	28 734	29 510	30 286	31.063	31 849
13.1	.713	489	265	041	820
13.2	693	468	244	31.020	.020
13.3	.672	.100	223	30 998	.155
13.4	.651	426	201	977	755
13.5	629	404	179	955	733
13.6	608	383	158	933	.755
13.7	587	361	136	911	680
13.8	565	340	114	.911	.005
13.9	544	318	.114	867	645
14.0	28 522	20 206	30.070	20.945	21 699
14.1	501	23.230	048	00.040	500
14.9	.501	.274	.040	.023	.599
14.2	.115	.202	20.004	.000	.577
14.4	.407	208	20.004	.110	.000
14.5	99 412	203	29.931	20.722	21 500
14.6	20.415	29.180	29.909	50.755	31.509
14.7	.551	.104	.930	.710	.400
14.7	.309	.141	.914	.088	.405
14.0	.040	.118	.891	.000	.440
15.0	.024	.090	.809	.042	.417
15.0	20.302	29.075	29.840	30.019	01.094
15.9	.219	.050	.823	.590	.371
15.2	.200	.028	.800	.972	.347
15.0	.234	29.000	.777	.549	.324
15.4	.211	28.982	.704	.520	.300
15.6	20.100	28.909	29.731	30.502	31.277
15.0	.100	.930	.707	.479	.253
15.0	.142	.913	.085	.455	.229
15.0	.115	.889	.000	.431	.205
16.0	.095	.800	.030	.407	.181
10.0	28.012	28.842	29.613	30.384	31.157
16.1	.048	.818	.589	.300	.133
10.2	.025	.794	.965	.336	.109
10.5	28.001	.771	.041	.311	.084
10.4	21.911	.747	.517	.287	.060
10.5	27.994	28.723	29.492	30.263	31.035
10.0	.930	.699	.468	.238	31.011
10.7	.906	.675	.444	.214	30.986
10.8	.882	.650	.420	.189	.962
10.9	.807	.626	.395	.165	.937
17.0	21.833	28.602	29.371	30.140	30.912
17.1	.809	.577	.346	.115	.887
17.2	.785	.553	.321	.090	.862
17.3	.760	.528	.296	.065	.837
17.4	.736	.503	.271	.040	.811
17.5	27.711	28.478	29.246	30.015	30.786
17.0	.080	.453	.221	29.990	.761
17.7	.661	.428	.196	.964	.735

Sigma-T (σ_t) Tables for Sea Water of High Salinity

Sigma-T (σ_t) Tables for Sea Water of high Salinities (from $38.00^{\circ}/_{00}$ to $48.00^{\circ}/_{00}$)

1°1	S ⁰ / ₀₀						
10	38.00	39.00	40.00	41.00	42.00		
17.8	27.636	28 404	29.171	29 939	30 710		
17.9	611	378	.146	914	684		
18.0	27.586	28 353	29 120	29.888	30 658		
18.1	.561	.328	095	862	639		
18.2	.536	.302	.069	.836	607		
18.3	.511	.277	.043	.000	.001		
18.4	.485	.251	29.018	.785	.501		
18.5	27.460	28.226	28,992	29.759	30 529		
18.6	.434	.200	.966	.733	.509		
18.7	.408	.174	.940	.707	476		
18.8	.383	.148	.914	681	450		
18.9	.357	.122	888	654	425		
19.0	27.331	28.096	28 862	29 628	30 396		
19.1	305	070	835	601	37(
19.2	.279	.044	.809	575	345		
19.3	.253	28.018	783	548	31		
19.4	226	27 991	756	522	290		
19.5	27.200	27.965	28 729	29 495	30 263		
19.6	.174	938	703	468	236		
19.7	147	.000	676	441	201		
19.8	121	885	649	415	181		
19.9	.094	858	622	387	.10.		
20.0	27.067	27 831	28 595	29 360	30 120		
20.1	.040	804	568	332	099		
20.2	27 014	777	.500	305	.00		
20.3	26.987	750	513	278	04		
20.4	.960	723	486	250	30.01		
20.5	26.932	27 695	28 459	29 223	29.98		
20.6	.905	668	431	195	96		
20.7	.000	641	404	167	93		
20.8	850	613	376	134	90		
20.9	823	586	348	112	87		
21.0	26 795	27 558	28 320	29 084	29.84		
21.1	.768	530	292	0.56	.82		
21.2	.740	.502	264	29.027	.79		
21.3	.712	.474	236	28 999	.76		
21.4	.685	.446	208	971	.73		
21.5	26.657	27.418	28,180	28 942	29.70		
21.6	.629	.390	151	914	.67		
21.7	.600	.362	.123	.886	.65		
21.8	.572	.334	.095	.857	.62		
21.9	.544	.306	.066	.828	.59		
22.0	26.515	27.277	28.038	28.800	29.56		
22.1	.487	.248	28.009	.771	.53		
22.2	.459	.219	27.980	.742	.50		
22.3	.430	.190	.951	.713	.47		
22.4	.401	.161	.922	.684	.44		
22.5	26.373	27.133	27.893	28.655	29.41		

. .

6

7

Sigma-T (σ_t) Tables for Sea Water of high Salinities (from $38.00^{\circ}/_{00}$ to $48.00^{\circ}/_{00}$)

4 °C		Sº/00							
. 0	38.00	39.00	40.00	41.00	42.00				
99 <i>G</i>	96 944	97 104	07 064	90 696	20, 200				
22.0	20.344	27.104	27.804	28.626	29.389				
22.1	.515	.075	.000	.090	.360				
22.8	.280	.040	.800	.007	.330				
22.9	.407	27.017	.111	.031	.301				
23.0	20.228	20.988	21.141	28.508	29.271				
23.1	.199	.958	.718	.478	.241				
23.2	.109	.929	.088	.449	.212				
23.3	.140	.899	.059	.419	.182				
23.4	111.	.870	.629	.389	.152				
23.5	26.081	26.840	27.599	28.359	29.122				
23.6	.051	.810	.569	.329	.092				
23.7	26.022	.781	.540	.299	.062				
23.8	25.992	.751	.510	.269	29.031				
23.9	.962	.721	.480	.239	29.001				
24.0	25.932	26.691	27.449	28.209	28.971				
24.1	.902	.661	.419	.178	.940				
24.2	.872	.631	.389	.148	.910				
24.3	.842	.600	.359	.118	.880				
24.4	.812	.570	.328	.087	.849				
24.5	25.782	26.539	27.297	28.056	28.818				
24.6	.751	.509	.267	28.026	.787				
24.7	.721	.478	.236	27.995	.756				
24.8	.690	.448	.205	.964	.725				
24.9	.660	.417	.174	.933	.694				
25.0	25.629	26.386	27.144	27.902	28.663				
25.1	.598	.356	.113	.871	.632				
25.2	.567	.325	.082	.840	.600				
25.3	.536	.294	.051	.809	.569				
25.4	.505	.263	27.019	.777	.538				
25.5	25.474	26.232	26.988	27.746	28.506				
25.6	.443	.200	.957	.714	.475				
25.7	.412	.169	.925	.683	.443				
25.8	.381	.137	.894	.651	.411				
25.9	.349	.105	.862	.619	.379				
26.0	25.318	26.074	26.831	27.587	28.348				
26.1	.286	.043	.799	.556	.316				
26.2	.255	26.011	.767	.524	.284				
26.3	.223	25,979	.735	.492	.252				
26.4	.191	.947	.703	.460	.219				
26.5	25,160	25,915	26.671	27.438	28,187				
26.6	.128	.883	.639	.396	.155				
26.7	.096	.851	.607	.364	.123				
26.8	.064	.819	.575	.331	.090				
26.9	25 032	.787	.549	.999	.058				
27.0	24 999	25 755	26 510	27 266	28 025				
27.1	967	799	477	934	27 992				
27.2	935	690	445	201	960				
27.3	.902	.657	.412	.168	.927				
			• • • • •						

Sigma-T (σ_t) Tables for Sea Water of High Salinity

9

Sigma-T (σ_t) Tables for Sea Water of high Salinities (from $38.00^{\circ}/_{00}$ to $48.00^{\circ}/_{00}$)

t°C	Sº/_00								
10	38.00	39.00	40.00	41.00	42.00				
27.4	24.870	25.625	26.380	27.136	27.894				
27.5	24.837	25.592	26.347	27.103	.861				
27.6	.805	.559	.314	.070	.828				
27.7	.772	.527	.281	.037	.795				
27.8	.739	.494	.248	27.004	.762				
27.9	.706	.461	.215	26.970	.728				
28.0	24.673	25.427	26.182	26.937	27.695				
28.1	.640	.394	.149	.904	.662				
28.2	.607	.361	.115	.870	.628				
28.3	.574	.328	.082	.837	.595				
28.4	.541	.295	.049	.804	.561				
28.5	24.507	25.261	26.015	26.770	27.527				
28.6	.474	.228	25.981	.736	.494				
28.7	.441	.194	.948	.703	.460				
28.8	.407	.161	.914	.669	.426				
28.9	.373	.127	.881	.635	.392				
29.0	24.340	25.093	25.847	26.601	27.358				
29.1	.306	.059	.813	.567	.324				
29.2	.272	25.025	.779	.533	.290				
29.3	.238	24.991	.745	.499	.256				
29.4	.204	.957	.710	.464	.221				
29.5	24.170	24.923	25.676	26.430	27.187				
29.6	.136	.889	.642	.396	.153				
29.7	.102	.855	.607	.361	.118				
29.8	.067	.820	.573	.327	.083				
29.9	24.033	.786	.538	.293	.049				
30.0	23.999	24.751	25.504	26.258	27.014				
30.1	.963	.717	.469	.223	26.979				
30.2	.928	.682	.434	.188	.944				
30.3	.894	.647	.400	.153	.909				
30.4	.859	.613	.365	.118	.874				
30.5	23.824	24.578	25.330	26.083	26.839				
30.6	.789	.543	.295	.048	.804				
30.7	.754	.508	.260	26.013	.769				
30.8	.719	.478	.225	25.978	.734				
30.9	.684	.437	.189	.943	.698				
31.0	23.649	24.402	25.154	25.908	26.663				

Sigma-T (σ_t) Tables for Sea Water of high Salinities (from $38.00^{\circ}/_{00}$ to $48.00^{\circ}/_{00}$)

t °C		S ⁰ / ₀₀								
1.0	42.00	43.00	44.00	45.00	46.00	47.00				
13.0	31 849	29 691	22 401	94 109	94.004	05 540				
13.1	820	500	33.401	34.182	34.904	35.746				
13.2	799	577	.319	.100	.942	.724				
13.2	.135	.011	.007	.138	.919	.701				
13.5	755	.000	.000	.115	.897	.679				
19.4	.100	.000	.312	.093	.874	.656				
12.6	51.755	32.311	33.290	34.070	34.851	35.633				
19.0	.711	.489	.268	.048	.829	.610				
10.7	.089	.467	.245	.025	.806	.587				
13.8	.007	.445	.223	34.002	.783	.564				
13.9	.045	.422	.200	33.980	.760	.540				
14.0	31.622	32.399	33.177	.957	34.737	35.517				
14.1	.599	.377	.155	.934	.713	.494				
14.2	.577	.354	.132	.911	.690	.470				
14.3	.555	.331	.109	.887	.667	.447				
14.4	.532	.308	.086	.864	.644	.423				
14.5	31.509	32.285	33.062	33.841	34.620	35.399				
14.6	.486	.262	.039	.817	.596	.376				
14.7	.463	.239	33.016	.794	.573	.352				
14.8	.440	.216	32.993	.770	.549	.328				
14.9	.417	.193	.969	.747	.525	.304				
15.0	31.394	32.169	32.945	33.723	34.501	35.280				
15.1	.371	.146	.922	.699	.477	.255				
15.2	.347	.122	.898	.675	.453	.231				
15.3	.324	.099	.874	.651	.429	.207				
15.4	.300	.075	.850	.627	.404	.182				
15.5	31.277	32.051	32.826	33.603	34.380	35.158				
15.6	.253	.027	.802	.578	.356	.133				
15.7	.229	32.003	.778	.554	.331	.108				
15.8	.205	31.979	.754	.530	.306	.084				
15.9	.181	.955	.729	.505	.282	.059				
16.0	31.157	31.931	32.705	33.481	34.257	35.034				
16.1	.133	.906	.680	.456	.232	35.009				
16.2	.109	.882	.656	.431	207	34 984				
16.3	.084	.857	.631	.406	182	959				
16.4	.060	.833	.606	.381	157	933				
16.5	31.035	31,808	32,582	33 356	34 132	34 908				
16.6	31.011	.783	.557	331	107	882				
16.7	30.986	.759	532	306	081	857				
16.8	.962	734	507	281	056	.001				
16.9	.937	709	482	255	.030	806				
17.0	30.912	31 684	32 456	33 230	24 005	24 780				
17.1	887	658	431	205	34.003	34.100				
17.2	862	633	406	170	059	.104				
17.3	837	808	200	.178	.900	.120				
17.4	811	589	254	.100	.928	.102				
17.5	30 786	31 557	29 290	.128	.902	.070				
17.6	761	531	32.329	07e	33.870	34.050				
17 7	735	506	.303	.070	.850	.024				
			.411	.000	.824	.998				

Sigma-T (σ_t) Tables for Sea Water of High Salinity

Sigma-T (σ_l) Tables for Sea Water of high Salinities (from 38.00°/ $_{00}$ to 48.00°/ $_{00}$)

and the first strength and the											
+ °C		S ⁰ /00									
in in its	42.00	43.00	44.00	45.00	46.00	47.00					
17.8	30 710	31 480	29 951	22 0.94	99 707	0					
17.9	684	454	92.201	33.024	33.797	34.571					
18.0	30 658	31 498	22 100	32.998	.771	.545					
18.1	632	402	32.133	32.972	33.740	34.518					
18.2	.607	376	147	.945	.718	.492					
18.3	581	350	191	.919	.092	.465					
18.4	.555	324	.121	.095	.005	.438					
18.5	30.528	31,298	32 068	29 820	22 619	.411					
18.6	.502	271	041	92.009	50.012	34.384					
18.7	.476	245	32 015	.815	.000	.357					
18.8	.450	218	31 988	.180	.556	.330					
18.9	.423	192	961	.100	504	.303					
J.O	30.396	31,165	31 934	29 705	22 477	.270					
19.1	.370	138	008	679	450	34.249					
19.2	.343	.111	.300	.078	.430	.221					
19.3	.317	085	.001	694	205	.194					
19.4	.290	.058	826	506	367	.107					
19.5	30.263	31.031	31 799	29 569	33 340	24 111					
19.6	.236	31.003	772	549	319	094.111					
19.7	.209	30.976	745	.542	.912	.064					
19.8	.181	.949	717	.514	.200	.050					
19.9	.154	.921	690	450	.201	34 000					
20.0	30.126	30 893	31 662	29 421	22 201	34.000					
20.1	.099	.866	634	32.431	33.201	044					
20.2	.072	.839	606	375	145	015					
20.3	.044	.811	579	347	.145	.915					
20.4	30.017	.783	551	310	.117	.850					
20.5	29.989	30.755	31 523	39 901	33,060	33 830					
20.6	.961	.728	495	263	032	802					
20.7	.933	.699	466	235	33 004	.002					
20.8	.905	.671	438	206	32 975	745					
20.9	.877	.643	410	178	947	716					
21.0	29.849	30.615	31 382	39 149	32 918	33 687					
21.1	.821	.587	353	120	889	658					
21.2	.793	.558	.325	092	860	629					
21.3	.765	.530	.296	063	832	600					
21.4	.736	.501	.267	034	803	571					
21.5	29.708	30.473	31,238	32 005	32 774	33 542					
21.6	.679	.444	.210	31.976	744	513					
21.7	.650	.415	.181	948	715	484					
21.8	.622	.386	.152	.918	.686	.454					
21.9	.593	.357	.123	.889	.657	425					
22.0	29.564	30.328	31.094	31,860	32.627	33,395					
22.1	.535	.299	.064	.831	.598	.366					
22.2	.506	.270	.035	.801	.568	.336					
22.3	.477	.241	31.006	.772	.539	.306					
22.4	.448	.212	30.976	.742	.509	.276					
22.5	29.419	30.182	30.947	31,713	32.479	33,947					

Sigma-T (σ_t) Tables for Sea Water of High Salinity

SELIM A. MORCOS

+ °C			S'0/00									
	i	42.00	43.00	44.00	45.00	46.00	47.00					
	22.6	29.389	30.153	30.917	31.683	32.450	33.217					
	22.7	.360	.123	.888	.653	.420	.187					
	22.8	.330	.094	.858	.623	.390	.157					
	22.9	.301	.064	.828	.593	.360	.126					
	23.0	29.271	30.034	30.798	31.563	32.329	33.096					
	23.1	.241	30.004	.768	.533	.299	.066					
	23.2	.212	29.974	.738	.503	.269	.035					
	23.3	.182	.944	.708	.473	.239	33.005					
	23.4	.152	.914	.678	.443	.208	32.974					
	23.5	29.122	29.884	30.648	31.412	32.178	32.944					
	23.6	.092	.854	.617	.382	.147	.913					
	23.7	.062	.824	.587	.351	.117	.882					
	23.8	29.031	.793	.556	.321	.086	.852					
	23.9	29.001	.763	.526	.290	.055	.821					
	24.0	28.971	29.732	30.495	31.259	32.024	32.790					
	24.1	.940	.702	.465	.228	31.993	.759					
	24.2	.910	.671	.434	.198	.962	.728					
	24.3	.880	.641	.403	.167	.931	.696					
	24.4	.849	.610	.372	.136	.900	.665					
	24.5	28.818	29.579	30.341	31.105	31.869	32.634					
	24.6	.787	.548	.310	.074	.838	.603					
	24.7	.756	.517	.279	.042	.806	.571					
	24.8	.725	.486	.248	31.011	.775	.540					
	24.9	.694	.455	.217	30.980	.744	.508					
	25.0	28.663	29.423	30.185	30.948	31.712	32.476					

+ °C	S ⁰ /00								
<i>i</i> 0	42.00	43.00	44.00	45.00	46.00	47.00	48.00		
25.0	28.663	29.423	30.185	30.948	31.712	32.476	33.243		
25.1	.632	.392	.154	.917	.680	.445	.211		
25.2	.600	.361	.122	.885	.649	.413	.179		
25.3	.569	.329	.091	.853	.617	.381	.147		
25.4	.538	.298	.059	.822	.585	.349	.115		
25.5	28.506	29.266	30.027	30.790	31.553	32.317	33.083		
25.6	.475	.235	29.996	.758	.521	.285	.051		
25.7	.443	.203	.964	.726	.489	.253	33.018		
25.8	.411	.171	.932	694	.457	.221	32.986		
25.9	. 379	.139	.900	.662	.425	.188	.954		
26.0	28.348	29.107	29.868	30.630	31.393	32.156	32.921		
26.1	.316	.075	.836	.597	.360	.124	.889		
26.2	.284	.043	.804	.565	.328	.091	.856		
26.3	.252	29.011	.771	.533	.296	.059	.823		
26.4	.219	28.979	.739	.500	.263	32.026	.791		
26.5	28.187	28.946	29.707	30.468	31.230	31.993	32.758		
26.6	.155	.914	.674	.435	.198	.960	.725		

Sigmu-T (σ_t) Tables for Sea Water of high Salinities (from $38.00^{\circ}/_{00}$ to $48.00^{\circ}/_{00}$)

		S ⁰ /00									
t °C	42.00	43.00	44.00	45.00	46.00	47.00	48.00				
26.7	28,123	28,882	29.642	30,403	31,165	31,928	32 692				
26.8	.090	.849	.609	.370	.132	.895	659				
26.9	.058	.816	.576	337	.099	862	626				
27.0	28.025	28.784	29.543	30.304	31.066	31,829	32 593				
27.1	27,992	28.751	.511	.271	.033	796	560				
27 2	960	718	.478	238	31,000	762	527				
27.3	927	685	.445	205	30.967	729	403				
27.4	.894	.652	.412	.172	.934	.696	460				
27.5	27.861	28,619	29.378	30,139	30,900	31 662	32.426				
27.6	828	586	345	106	867	629	303				
27 7	795	553	312	072	834	596	350				
27.8	762	520	279	039	800	562	396				
27.9	728	486	245	30.005	767	528	909				
28.0	27 695	28 453	29 212	29 972	30 733	31 494	29 959				
20.0	662	411	178	038	600	461	994				
20.1	628	386	145	904	665	497	100				
20.2	595	352	111	.501	639	202	156				
20.0	561	310	077	.071	508	350	199				
20.4	97 597	99 995	20 042	20 802	20 564	21 295	29 000				
20.0	404	20.200	29.043	29.803	520	31.325	32.000				
20.0	.454	.201	29.009	.109	.000	.291	29 090				
20.1	.400	.217	20.975	.755	.490	.207	91 095				
20.0	.420	.105	.941	.701	.401	.222	051				
20.9	.094	.149	.907	.007	.427	.100	.901				
29.0	21.508	20.115	20.010	29.032	30.393	31.134	51.910				
29.1	.524	.081	.839	.598	.308	.119	.002				
29.2	.290	.047	.805	.304	.324	.085	.847				
29.0	.200	28.012	.770	.529	.289	.050	.813				
29.4	.221	27.978	.736	.495	.255	31.015	.778				
29.0	27.187	27.944	28.701	29.460	30.220	30.980	31.743				
29.0	.153	.909	.667	.425	.185	.946	.708				
29.7	.118	.874	.632	.391	.151	.911	.673				
29.8	.083	.840	.597	.356	.116	.876	.638				
29.9	.049	.805	.562	.321	.081	.841	.603				
30.0	27.014	27.770	28.527	29.286	30.046	30.806	31.568				
30.1	26.979	.735	.493	.251	30.011	.771	.533				
30.2	.944	.700	.458	.216	29.976	.736	.498				
30.3	.909	.665	.423	.181	.940	.700	.462				
30.4	.874	.630	.387	.146	.905	.665	.427				
30.5	26.839	27.595	28.352	29.110	29.870	30.630	31.391				
30.6	.804	.560	.317	.075	.834	.594	.356				
30.7	.769	.525	.282	.040	.799	.559	.320				
30.8	.734	.489	.246	29.004	.763	.523	.285				
30.9	.698	.454	.211	28.969	.728	.487	.249				
31.0	26.663	27.418	28.175	28.933	29,692	30.452	31.213				

13

 $B_t = t (18.030 - 0.8164 t + 0.01667 t^2) 10^{-6}$

S = 0.030 + 1.8050 Cl,

Cl: Chlorinity of Sea Water in $^{0}/_{00}$,

- S: Salinity of Sea Water in $^{0}/_{00}$,
- t: temperature of Sea Water in $^{\circ}$ C.

Example:

Given, S = $42^{\circ}/_{00}$ and t = 21.4 °C. From the table, $\sigma_t = 29.736$.

Acknowledgements

The author wishes to thank Professor Dr. E. BRUNS, for his interest in thi work, and Dr. K. Voigt, for helpful criticism.

References

- KALLE, K. and H. THORADE (1940). Tabellen und Tafeln für die Dichte des Seewassers (σ_t) . Aus dem Archiv der Deutschen Seewarte und des Marineobservatoriums, Bd. 60, Nr. 2, Hamburg, 1940.
- KUNDSEN, M., Hydrographical Tables Copenhagen, 1901.

LA FOND, E. C., Processing Oceanographic Data, H.O. Pub. No. 614, Washington, D.C., 1951.

MORCOS, S. A., Die Verteilung des Salzgehaltes im Suez Kanal. Kieler Meeresforschung., 16, H. 2., 1960a, 123-154.

Morcos, S. A., Hydrographical Tables for high salinities (from $41.5^{0}/_{00}$ to $47^{0}/_{00}$). Bull. Inst. Océanogr. Monaco, No. 1180, 1960 b.

Also in:

BRUNS, E., Ozeanologie, Bd. II, S. 164 u. S. 380, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962.

MORCOS, S. A. and J. P. RILEY, Chlorinity, salinity, density and conductivity of sea water from Suez Canal region, Deep-Sea Res., 13, 1966, pp. 741-749.

ZUBOV and CZIHIRIN, Oceanographical Tables, Moscow, 1940.

Die Übergangsformen von ebenen Schwerewellen

Von Günther Sager

In Heft 1/1961 "Schiffbautechnik" hat der Verfasser gelegentlich eines Ergänzungsbeitrages zum SMITH-Effekt die Aufmerksamkeit auf die Übergangsformen der ebenen Schwerewellen (1/2 > h/L > 1/20) gelenkt, für die dort ein numerisches Beispiel gegeben wurde. Da von einigen Autoren leider immer noch versucht wird, bei Abschätzungen oder gar Berechnungen ohne Übergangsformen auszukommen, sollen im folgenden die Bahnelemente näher untersucht und verwendungsbereit tabelliert werden, wobei auch die Grenzen der linearen Theorie gegen die Brecherzone hin abgesteckt werden.

Das Wellenspektrum

Die bereits von LAPLACE um 1780 vorbereitete und von AIRY 1842 präzisierte klassische Wellentheorie stellt eine Näherung dar für nicht zu große Amplituden. Unter dieser Einschränkung lautet die Parameterdarstellung der Orbitalbewegung bei vertikal nach unten gerichteter z-Achse

$$x = \xi - A(\zeta) \sin k \left(\xi - ct \right), \tag{1}$$

$$z = \zeta - B(\zeta) \cos k \, (\xi - c \, t) \,. \tag{2}$$

Darin bedeuten ξ und ζ das Zentrum der jeweiligen Orbitalbewegung und x, z die momentane Lage eines Wasserteilchens in dieser Bahn. Aus Elimination der Zeit durch Quadrieren und Addieren von (1) und (2) folgt als Gleichung der Orbitalbahnen

$$\frac{(x-\xi)^2}{A(\zeta)^2} + \frac{(z-\zeta)^2}{B(\zeta)^2} = 1.$$
 (3)

Es handelt sich um Ellipsen, für deren Halbachsen die Theorie

$$A(\zeta) = a \frac{\cosh k (h - \zeta)}{\sinh k h}$$
(4)

$$B(\zeta) = a \frac{\sinh k (h - \zeta)}{\sinh k h}$$
(5)

ergibt, wobei 2 a = H die Wellenhöhe an der Oberfläche ist, $k = 2 \pi/L$ bedeutet und h die Wassertiefe ist. Als Phasengeschwindigkeit c gehört zu diesem Komplex

$$=\sqrt{\frac{g}{k}\tanh k h}$$
(6)

Die Übergangsformen von ebenen Schwerewellen

GÜNTHER SAGER

und als Periode

$$T = \frac{2\pi}{\sqrt{g \, k \tanh k \, h}} \,. \tag{7}$$

Diese Formeln gestatten zwei Vereinfachungen, nämlich für h > L/2 wegen tanh $k h \to 1$ die Ausdrücke

$$c = \sqrt{\frac{g}{k}} = \sqrt{\frac{g}{2\pi}} = 1,250 \sqrt{L}$$
(6a)

und

$$T = \frac{2\pi}{\sqrt{g k}} = \sqrt{\frac{2\pi L}{g}} = 0,800 \,\sqrt{L}$$
(7a)

und zum anderen für $h \ll L$ wegen tanh $k h \rightarrow k h$ die Formeln

$$c = \sqrt{g h} = 3,132 \sqrt{h} \tag{6b}$$

und

$$T = \frac{2\pi}{k\sqrt{g\,h}} = \frac{L}{\sqrt{g\,h}} = 0.319\,\frac{L}{\sqrt{h}}\,. \tag{7b}$$

Für die eine Dispersion zeigenden Wellen, bei denen c von der Wellenlänge, nicht aber der Wassertiefe abhängt, haben sich wenigstens drei Bezeichnungen eingebürgert, nämlich Tiefwasserwellen, kurze Wellen und Oberflächenwellen. Für die in ihrer Ausbreitungsgeschwindigkeit nur von der Wassertiefe h abhängigen Wellen hat man ebenfalls drei Bezeichnungen bereit, nämlich Seichtwasserwellen, lange Wellen und sehr vereinzelt Grundwellen.

Im allgemeinen sind mehrere Bezeichnungen für denselben Begriff gelegentlich irreführend. Für die jeweils beiden ersten Bezeichnungen jeder Gruppe kommt hinzu, daß sie sachlich denkbar ungeeignet sind, wie das doppelt-logarithmische Diagramm der Abb. 1 zeigt. Nimmt man statt des Verhaltensausdrucks $h \ll L$ die konkrete Schranke h = L/20 an — einige Autoren gehen bis auf h = L/25 herunter, was sich später als durchaus gerechtfertigt zeigen wird —, so lassen sich zwischen dieser und der oberen Schranke h = L/2 die Perioden für die Windsee (1-12 sec), Dünung (12-30 sec), Brandungsschwebungen (1-4 min) und Tsunamis (10-25 min) den Wassertiefen zuordnen, wobei im ersten Fall $T = 1,134 \sqrt{h}$ und im zweiten Fall $T = 6,489 \sqrt{h}$ wird.

Alle in Abb. 1 links des Geradenpaars liegenden Funktionswerte gelten für h > L/2, die rechts des Paars liegenden für die Bedingung h < L/20. Zwischen beiden Parallelen befindet sich das Gebiet der Übergangsformen, für die sich die Formeln (6) und (7) nicht mehr vereinfachen lassen.

Man erkennt daraus, daß der Sonderfall $h \ge L/2$ für Windsee grundsätzlich vorliegt, sobald die Wassertiefe 100 m überschreitet. Bei geringeren Tiefen tritt dieser Fall allmählich zugunsten der Übergangsformen zwischen den beiden Parallelen der Abb. 1 zurück. Nur bei weniger als 3 m Wassertiefe kann der Sonderfall $h \le L/20$ bei Perioden über 6,5 sec eintreten.

Für Dünungswellen gilt der erste Sonderfall uneingeschränkt erst bei Tiefen von über 700 m, kann aber bei kürzeren Perioden bis zu 100 m Tiefe heraufgehen. Ein großer Teil der Dünungswellen fällt in das Gebiet der Übergangsformen. Erst oberhalb von 20 m Tiefe kann der Bereich $h \leq L/20$ wirksam werden, der bei weniger als $3^{1}/_{2}$ m Wassertiefe ausschließlich maßgebend ist.

Bei den Brandungsschwebungen oder surf beats, die durch Überlagerung von Dünungswellen mit praktisch gleicher Höhe und wenig voneinander verschiedener Frequenz entstehen, ist die Situation wie folgt: Der Fall $h \ge L/2$ kann

erst ab mindestens 3000 m Tiefe beschränkt wirksam werden, wogegen Übergangsformen zwischen 90 m und den Böden der Tiefseegräben möglich sind. Den breitesten Bereich nimmt der Fall $h \leq L/20$ ein, der schon ab reichlich 1000 m Tiefe möglich wird und bei weniger als 90 m Tiefe stets zutrifft.

Am einfachsten liegen die Verhältnisse bei den durch submarine Verwerfungen oder Rutschungen ausgelösten *Tsunamis* oder seismischen Seewellen, für die praktisch bis in die Tiefseegräben hinab die Bedingung $h \leq L/20$ und damit die Formel $\sqrt{g h}$ gilt. Für die in der Abb. 1 nicht mehr verzeichneten *Trägheits*ströme mit Perioden $> 12^{h}$ — sie gehen auf den Corioliseffekt zurück — sowie ² Meereskunde, Heft 21

GÜNTHER SAGER

die Gezeitenwellen mit Perioden zwischen ca. 2 Stunden bis zu 1 Jahr im weitesten und 12^h bis 25^h im engeren Sinne gilt dasselbe wie für die Tsunamis.

Überblickt man die drei Bereiche, so sieht man aus der Abb. 1 sofort, daß praktisch jeder in jeder Wassertiefe vorhanden ist, weshalb die Bezeichnungen Tiefwasserwellen für h > L/2 und Seichtwasserwellen für h < L/20 keinerlei Berechtigung besitzen.

Betrachtet man die Perioden der drei Bereiche, so reichen sie im Fall h > L/2bis zu 11 sec in 100 m Tiefe — das ist etwa die Grenze des Wirkungsbereiches der größten Windwellen — und bis reichlich 20 sec in 300 m Tiefe, wo die Wirkung der meisten Dünungswellen abgeklungen ist, wie anschließend gezeigt wird. Die Bezeichnung "kurze Wellen" ist daher für diesen Bereich nicht zutreffend. Andererseits greift der Fall h < L/20 auch in kürzere Perioden ein, wenn man sich Abb. 1 nach oben erweitert denkt, so daß hier ebenfalls die Bezeichnung "lange Wellen" nicht den Kern der Dinge trifft.

Brauchbar bleibt nur die Benennung "Oberflächenwellen" für h > L/2, wenn man damit die Erfassung der oberflächennahen Schichten durch den Wellenvorgang meint und die Bezeichnung "Grundwellen" für h < L/20, wenn damit zum Ausdruck gebracht werden soll, daß sich die Wirkungen diesmal bis zum Grund nahezu gleichmäßig stark — mindestens 95% der Horizontalkomponente der Orbitalbewegung (vgl. Tab. 2) — bemerkbar machen, also die gesamte Wassersäule erfassen, wie die ausführlichen Berechnungen zeigen werden.

Für die Übergangsformen der Wellen hat man keine gesonderten Bezeichnungen eingeführt, was an sich kein Mangel zu sein brauchte, wenn sich nicht allmählich selbst bei einigen namhaften Autoren der Brauch herausgebildet hätte, diese Formen, deren Bedeutung für Windsee und Dünung Abb. 1 klar erkennen läßt, entweder mit wenigen Worten abzutun oder gar nicht mehr zu erwähnen.

Schuld daran dürfte wohl in erster Linie die Tatsache sein, daß es bequem ist, mit den Formeln (6a) und (6b) zu arbeiten und der Formel (6) auszuweichen. Das kommt praktisch darauf hinaus, die beiden Parallelen der Abb. 1, zwischen denen in 100 m Tiefe ein Periodenintervall von 53,6 sec und in 1 m Tiefe immer noch von 5,4 sec liegt, einfach zusammenzuschieben. Die anschließenden Berechnungen werden zeigen, welche Verhältnisse gerade bei den Übergangsformen herrschen.

Besonders bedenklich ist die Tatsache, daß bei küstennahen Windwellen nicht selten mit der Formel $c = \sqrt{g \hbar}$ gerechnet wird, ohne sich zu überzeugen, ob man sich noch im Übergangsgebiet befindet oder bereits Brandungserscheinungen eine Rolle spielen. Es sei bereits an dieser Stelle gesagt, daß der Anwendungsbereich der Formel (6b), die gerne zitiert wird, bei Windwellen sehr schmal ist, wie Abb. 1 klarmacht und die Bedingungen der einsetzenden Brandung noch weiter einschränken werden.

Verhalten der Wellen in den verschiedenen Bereichen

Um die Formel (6) verwendungsbereiter zu machen, sind in Tab. 1 für 19 Verhältnisse von Wassertiefe h zu Wellenlänge L die Reduktionen auf einfache

TABELLE 1

Formeln für die Wellengeschwindigkeit und Periode als Funktion von h bzw. L bei gegebenem h/L

Wellentvp	Verhältnis	Wellengesch als Funktion	windigkeit c von L bzw. h	Wellenperiode T als Funktion von L bzw.		
	h/L	<i>k</i> ₁	k2	<i>f</i> 1	<i>f</i> 2	
	1,0	1,250	1,250	0,800	0,800	
$\left \frac{g L}{2} \right $ -Wellen	0,9	1,250	1,317	0,800	0,844	
$\sqrt{2\pi}$	0,8	1,249	1,397	0,801	0,895	
	0,7	1,249	1,493	0,801	0,957	
	0,6	1,249	1,612	0,801	1,034	
	0,50	1,247	1,764	0,802	1,134	
	0,45	1,245	1,856	0,803	1,197	
	0,40	1,241	1,963	0,806	1,274	
Übergangs-	0,35	1,234	2,086	0,810	1,370	
formen	0,30	1,221	2,229	0,819	1,495	
	0,25	1,197	2,393	0,835	1,672	
	0,20	1,151	2,576	0,869	1,941	
	0,15	1,072	2,768	0,933	2,408	
	0,10	0,932	2,949	1,073	3,391	
	0,05	0,689	3,082	1,451	6,489	
	0,04	0,620	3,100	1,613	8,065	
1/	0,03	0,539	3,114	1,855	10,704	
<i>yg n</i> -wellen	0,02	0,442	3,124	2,262	16,005	
	0,01	0,313	3,130	3,195	31,949	

Ausdrücke vorgenommen worden, die sich für die Abhängigkeit von beiden Größen dann darstellen als

 $c=k_1\sqrt{L}\;,\qquad c=k_2\sqrt{h}\;,\qquad T=f_1\sqrt{L}\;,\qquad T=f_2\sqrt{h}\;.$

Die Koeffizienten k_1 , k_2 , f_1 , f_2 sind Tab. 1 zu entnehmen und außerdem in den halblogarithmischen Darstellungender Abbildungen 2 und 3 als Funktionen aufgetragen.

Aus Abb. 2 sieht man gut, wie sich k_1 im Bereich der Oberflächenwellen mit h > L/2 und sogar noch etwas in das Übergangsgebiet hinein konstant hält, während k_2 selbst für h < L/20 noch nicht horizontal verläuft, ebenso für h < L/25 nicht, so daß h = L/20 als früheste Grenze für Grundwellen anzusehen ist, während Oberflächenwellen etwas breiter gefaßt werden können, was auch der Verlauf von f_1 in Abb. 3 ergibt. Graphisch bedeutet das, daß man die dicken vertikalen Trennlinien in den Abbildungen 2 und 3 ohne Beeinträchtigung der Resultate etwas nach rechts verschieben könnte.

In Abb. 1 wie auch den folgenden Tabellen und Abbildungen sind die Bezeichnungen Oberflächenwellen und Grundwellen nicht benutzt worden, weil sie nicht als allgemein übliche Bezeichnungen gelten können. Statt dessen sind zur Vermeidung möglicher Irrtümer bei erster Betrachtung grundsätzlich die Benennungen 2*

19

Günther Sager Abb. 2

 $\sqrt{g L/2 \pi}$ -Wellen und $\sqrt{g h}$ -Wellen gewählt worden, wovon die erste relativ umständlich ist, während sich die zweite bereits in den Vereinigten Staaten einzubürgern beginnt.

Einige charakteristische Daten der ebenen Schwerewellen sind in Tab. 2 berechnet worden. Dort findet man Angaben über die große und kleine Halbachse der Orbitalellipse, nämlich die Ausdrücke

$$A_{\text{Oberfl.}} = a \coth k h \tag{4a}$$

für die Oberfläche mit $\zeta = 0$ und

$$A_{\text{Boden}} = \frac{a}{\sinh k h} \tag{4b}$$

für den Boden mit $\zeta = h$ sowie das Verhältnis beider

$$\frac{A_{\text{Boden}}}{A_{\text{Oberfl.}}} = \frac{1}{\cosh k h}.$$
(8)

TABELLE 2 Einige charakteristische Daten der ebenen Schwerewellen

Wellentyp	h/L	h/L_0	$\frac{L}{L_0} = \frac{c}{c_0} = \frac{B_{\text{Oberfl.}}}{A_{\text{Oberfl.}}}$	$\frac{A_{0 \text{berfl.}}}{a}$	$\frac{A_{\mathrm{Boden}}}{a}$	$\frac{A_{\rm Boden}}{A_{\rm Oberfl.}}$	H/H _o
play i	1 0000	1 0000	1.0000	1.000	0.004	0.004	1 000
-la T	0,0000	0,0000	1,0000	1,000	0,004	0,004	1,000
$\left \frac{g L}{2} \right $ -Wellen	0,3000	0,9000	0.0000	1,000	0,007	0,007	1,000
V 2 π	0,3001	0,000	0,9997	1,000	0.025	0,015	0 999
	0,6006	0,6000	0,9990	1,000	0,025	0,025	0,997
	0.5018	0.5000	0.9964	1.004	0.086	0.085	0.991
	0.4050	0 4000	0.9877	1 012	0 158	0,156	0.976
	0.3121	0,3000	0.9611	1,040	0.287	0.276	0.949
	0.2679	0.2500	0.9332	1,072	0.385	0.359	0.932
Übergangs-	0.2251	0.2000	0.8884	1,126	0.517	0.459	0.918
formen	0.1833	0.1500	0.8183	1,222	0.702	0.575	0.913
CLC: CLC:	0.1624	0.1250	0,7700	1 299	0.829	0.638	0.919
	0.1410	0,1000	0.7093	1,410	0.994	0.705	0.933
	0.1232	0.0800	0.6493	1,540	1,171	0.761	0.955
	0.1043	0.0600	0.5753	1,738	1.422	0.818	0.993
	0.0942	0.0500	0.5310	1,883	1,596	0.847	1.023
	0.0833	0.0400	0.4802	2.082	1.826	0.877	1.064
	0.0714	0.0300	0.4205	2.378	2,158	0.907	1,125
	0.0648	0.0250	0.3860	2,591	2.390	0.923	1.168
	0,0576	0,0200	0,3470	2,881	2,702	0,938	1,226
Wernard P. Andrews	0,0496	0,0150	0,3022	3,309	3,155	0,953	1,307
	0.0403	0,0100	0,2480	4,032	3,906	0,969	1,435
Vg h-Wellen	0,0284	0,0050	0,1764	5,672	5,583	0,984	1,692
and the state of the state of the	0,0200	0,0025	0,1250	8,000	7,937	0,992	2,005
	0.0098	0.0006	0.0614	16.296	16.265	0.998	2.856

20

$$\frac{B_{\text{Oberfl.}}}{A_{\text{Oberfl.}}} = \tanh k h \tag{9}$$

ergibt, angegeben.

Bedeutet h die Wassertiefe und L die beobachtete Wellenlänge bei Übergangs- oder Grundwellen, so kann man die dazu gehörigen Oberflächenwellen mit der Wellenlänge L_0 , aus denen sie hervorgegangen sind, unmittelbar zuordnen. Zu diesem Zweck ersetzt man in der Formel

$$c^2 = \frac{g}{k} \tanh k \ h \tag{6}$$

einmal den Faktor c durch L/T und hat wegen $k = 2 \pi/L$

$$c = \frac{g T}{2 \pi} \tanh k h , \qquad (10)$$

woraus bei den sogenannten Oberflächenwellen mit h > L/2 sogleich

$$c_0 = \frac{g T}{2 \pi} \tag{11}$$

folgt. Da man bei Annäherung an die Küste keine Veränderung der Periode T beobachtet hat, sind die beiden T identisch und fallen bei der Quotientenbildung heraus. Gleichzeitig wird aus L = c T unter derselben Bedingung $L_0 = c_0 T$ und man hat

$$\frac{c}{c_0} = \frac{L}{L_0} = \tanh k \ h = \frac{B_{\text{Oberfl.}}}{A_{\text{Oberfl.}}} \,. \tag{12}$$

Schreibt man diese Gleichung in der Form

$$\frac{h}{L_0} = \frac{h}{L} \tanh 2\pi \frac{h}{L} , \qquad (12a)$$

so stellt sie eine transzendente Gleichung zwischen den Variablen h/L und h/L_0 dar, deren Auflösung nach h/L nur durch Näherungslösungen möglich ist.

In Abb. 4 ist der Verlauf von Gl. (12) eingetragen, der den Koeffizienten in der dritten Spalte von Tab. 2 entspricht. Sie bilden als eine ihrer Interpretationen das Verhältnis der kleinen und großen Halbachse der Orbitalellipse an der Oberfläche, das für Oberflächenwellen mit h > L/2 praktisch 1 (Kreis) ist, im Übergangsgebiet bei h = L/11 bis h = L/12 auf 50% und bei h = L/20bis auf 30% abfällt. Das bedeutet im Gegensatz zu manchen Darstellungen, daß die Orbitalbahnen beim Übergang zu Grundwellen immer noch Ellipsen sind und nicht gerade Strecken. Selbst bei h = L/65 ist das Achsenverhältnis an der Oberfläche noch 1:10, d. h. es liegen sehr langgestreckte Ellipsen vor, aber immer noch keine doppelt durchlaufenen Strecken.

Man kann dieselben Beispiele auch interpretieren als Anteil der bei der Tiefe h noch vorhandenen Wellenlänge bzw. Wellengeschwindigkeit (L bzw. c) zu den zugeordneten Werten, die Wellenlänge und Geschwindigkeit besaßen, bevor sich ein Bodeneinfluß fühlbar machte, also für h > L/2 (L_0 und c_0).

Das Verhältnis der großen Halbachsen am Boden und an der Oberfläche steigt nach Tab. 2 von $4^{0}/_{00}$ für h = L zunächst auf 9% für h = L/2 an, hat unter ständiger Zunahme beider Achsen etwa bei h = L/5 50% überschritten und erreicht für k = L/20 bereits 95%, so daß beide inzwischen merklich angewachsenen Halbachsen beinahe gleich groß sind. Bei h = L/50 hat das Achsenverhältnis bereits 99% überschritten, wobei die Länge der Halbachse für die Oberfläche den Sfachen Betrag erreicht hat.

In der letzten Spalte der Tab. 2 ist die Veränderung der Wellenhöhe von den Werten H_0 bei Oberflächenwellen zu den Momentanhöhen H eingetragen, wie sie bei WIEGEL (1964) zu finden ist. Diese Werte gelten unter der Einschränkung, daß keine Wellen reflektiert werden und keine Energie verlorengeht und basieren wieder auf der Annahme, daß die Wellenperiode T unverändert bleibt. Damit dürfen diese Werte nur bis zu einigen Wellenlängen außerhalb der Brandungszone benutzt werden. Der Anstieg der Wellenhöhen ab h < L/10 ist experimentell gut bestätigt, der vorübergehende Abfall mit einem Minimum zwischen h = L/6 dagegen noch nicht lückenlos belegt.

Die Übergangsformen von ebenen Schwerewellen

GÜNTHER SAGER

Die Orbitalbewegung unter wechselnden Bedingungen

In den Tabellen 3 und 4 ist das Verhältnis der großen und kleinen Halbachse zur halben Wellenhöhe a verzeichnet. Daraus gewinnt man einen sehr guten Einblick in die Abhängigkeit der Orbitalbewegung von dem Verhältnis h/Leinerseits und ζ/h andererseits. Im Gebiet der Oberflächenwellen, wo sich die Gleichungen (4) und (5) wegen

$$\begin{array}{l} \cosh \\ \sinh \\ \sinh \\ \end{array} k \left(h - \zeta \right) = \frac{1}{2} \left(e^{k \, h} \cdot e^{-k \, \zeta} \pm e^{-k \, h} \cdot e^{k \, \zeta} \right)$$

mit $k = 2 \pi / L$ und $h \gg L$ auf

$$A(\zeta) = B(\zeta) = a \ e^{-k\zeta} \tag{13}$$

reduzieren, haben die Orbitalbahnen Kreisform. In einer Tiefe von $\zeta = L/2$ reduziert sich der Radius bei $h \gg L$ bereits auf etwa 1/23, und für $\zeta = L$ ist die Ausschwingung der Teilchen mit 1/535 nahezu erloschen.

Für B/a geht der exponentielle Abfall mit der Tiefe im Bereich der Übergangsformen langsam in einen linearen über, der an der Grenze zu den Grundwellen praktisch realisiert ist. Bei A/a bestätigt die schon gegebene Aussage, daß A an der Oberfläche mit abnehmendem h/L zuerst langsam, dann aber zunehmend schneller ansteigt, wobei für h = L/50 der 8fache Ausgangswert erreicht ist. Ferner sieht man in Tab. 3 deutlich, wie eine zunehmend durchgreifende Wirkung bis zum Boden mit abnehmendem h/L eintritt, die bei h =L/20 die schon genannten 95% des Boden- vom Oberflächenwert erreicht.

In Tab. 5 ist schließlich der Quotient der Gleichungen (5) und (4)

$$\frac{B(\zeta)}{A(\zeta)} = \tanh k \ (h - \zeta) \tag{14}$$

und in Tab. 5a die Zuordnung eines vorgegebenen Verhältnisses B/A = constzu dem Quotienten h/L für verschiedene Verhältnisse ζ/h berechnet worden. Als bereits genanntes Beispiel findet man für B/A = 30% an der Oberfläche ein Verhältnis von etwa h/L = 1/20 (0,049), also gerade eine Bereichsgrenze vor. In der Nähe dieser Grenze liegt man ferner für B/A = 20% bei einem Verhältnis $\zeta/h = 0.3$ bis 0,4 und für B/A = 10% etwa bei $\zeta/h = 0.7$. Bei der Benutzung dieser Tabelle ist Vorsicht im Interpolieren geboten, wie Abb. 4 für Oberflächenquotienten zeigt, wo die Kurve nur für Werte 1/5 > h/L > 1/15annähernd linear verläuft, was aber in den einzelnen Tiefenstufen wiederum verschieden ist. Man muß daher eventuell graphisch oder parabolisch interpolieren.

In den Tabellen 6 bis 9 sind die Daten der maximalen horizontalen und vertikalen Geschwindigkeit und Beschleunigung der Teilchen in den Orbitalbahnen zusammengestellt, wobei dieselben Intervalle wie in den Tabellen 4 und 5benutzt wurden, um den unmittelbaren Anschluß zu gewinnen.

Aus den Ausgangsgleichungen (1) und (2) erhält man als zeitliche Ableitungen

$$\dot{c} = k c A(\zeta) \cos k (\xi - c t)$$
⁽¹⁵⁾

 $(\xi - ct)$.

$$\dot{z} = -k c B(\zeta) \sin k$$

And				Wert	$e f \ddot{u} r - \frac{A}{c}$	$\frac{(\zeta)}{a} = \frac{1}{2}$	cosh k (sinh	$\frac{h-\zeta}{k h}$	nach A.	rgumen	ten von	$\frac{1}{h}$ ur	$\frac{y}{2}$ pa						
ai 3									h/L										
c/n .	1.00	06.0	0.80	0.70	0.60	0.50	0.45	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	0.04	0.03 (.02	0.01
0.0	1.000	1.000	1.000	1.000	1.001	1.004	1.007	1.013	1.025	1.047	1.090	1.176	1.358	1.796	3.287	4.062	5.368 8	1 000.	5.936
0.1	0.533	0.568	0.605	0.644	0.687	0.734	0.761	0.791	0.828	0.876	0.946	1.060	1.270	1.736	3.257	4.038	5.350 7	1 886.	5.930
0.2	0.285	0.323	0.366	0.415	0.472	0.538	0.576	0.620	0.672	0.737	0.825	0.960	1.193	1.684	3.231	4.017	5.334 7	I 779.	5.925
0.3	0.152	0.183	0.222	0.268	0.325	0.395	0.438	0.488	0.548	0.623	0.725	0.875	1.126	1.638	3.207	3.998	5.320 7	.968 1	5.920
0.4	0.081	0.104	0.134	0.173	0.224	0.292	0.335	0.386	0.450	0.532	0.642	0.804	1.070	1.599 ;	3.187	3.982	5.308 7	.959 1	5.916
0.5	0.043	0.059	0.082	0.112	0.155	0.217	0.259	0.310	0.375	0.459	0.576	0.746	1.023	1.566	8.170	3.968	5.297 7	.953 1	5.913
0.6	0.023	0.034	0.050	0.074	0.109	0.164	0.203	0.253	0.317	0.403	0.523	0.699	0.985	1.539	3.156	3.957	5.289 7	.947 1	5.910
0.7	0.013	0.020	0.031	0.049	0.079	0.128	0.164	0.212	0.275	0.362	0.484	0.664	0.956	1.518	3.145	3.948	5.282 7	.943 1	5.908
0.8	0.007	0.012	0.020	0.035	0.060	0.104	0.138	0.184	0.247	0.333	0.456	0.639	0.935	1.503	3.138	3.942	5.278 7	.939 1	5.906
0.9	0.004	0.008	0.015	0.027	0.049	0.091	0.124	0.168	0.230	0.316	0.440	0.624	0.923	1.494	3.133	3.939	5.275 7	.937 1	5.905
1.0	0.004	0.007	0.013	0.025	0.046	0.087	0.119	0.163	0.225	0.311	0.435	0.619	0.919	1.491	3.131	3.937	5.274 7	.937 1	5.905
in and		$\sqrt{\frac{g L}{2\pi}}$	-Wellen						Üherg	angsfor	men					Ŋ	<u>g h -</u> W	ellen	

3

TABELLE

und

				Wen	te für	a	sinh	k h	nach A h/L	rgumen	ten von	<u>L</u> und	<u>h</u>						
¢/4	1.00	06.0	0.80	0.70	0.60	0.50	0.45	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	0.04	0.03	0.02	10.0
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	000.1	1.000
0.1	0.533	0.568	0.605	0.644	0.686	0.729	0.752	0.774	797.0	0.819	0.840	0.860	0.876	0.889	768.0	0.898	0.899 (0.900	006.0
0.2	0.285	0.323	0.366	0.415	0.470	0.531	0.564	0.598	0.633	0.668	0.702	0.733	0.760	0.782	0.795	797.0	0.798 0	662.0	0.800
0.3	0.152	0.183	0.221	0.267	0.321	0.386	0.421	0.460	0.499	0.540	0.580	0.618	0.651	0.677	0.694	0.696	0.698 (0.699	0.700
0.4	0.081	0.104	0.134	0.171	0.219	0.279	0.313	0.350	0.390	0.431	0.473	0.513	0.548	0.576	0.594	0.596	0.598 (0.599	0.600
0.5	0.043	0.059	0.080	0.110	0.148	0.199	0.230	0.263	0.300	0.338	0.377	0.415	0.449	0.476	0.494	0.496	0.498	0.499	0.500
0.6	0.023	0.033	0.048	0.069	0.099	0.140	0.165	0.193	0.224	0.257	0.291	0.325	0.355	0.379	0.395	0.396	0.398	0.399	0.400
. 7.0	0.012	0.018	0.028	0.043	0.064	0.094	0.113	0.135	0.159	0.185	0.212	0.239	0.263	0.283	0.296	0.297	0.298	0.299	0.300
0.8	0.006	0.010	0.016	0.025	0.038	0.058	0.071	0.085	0.102	0.120	0.139	0.157	0.174	0.188	0.197	0.198	0.199	0.199	0.200
0.9	0.003	0.004	0.007	0.011	0.018	0.028	0.034	0.041	0.050	0.059	0.069	0.078	0.087	0.094	860.0	0.099	0.099	0.100	0.100
1.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0
		1/23	$\frac{L}{r}$ -Welle	ue					Überg	angsfor	men		е. С			N	<u>g h</u> - W	/ellen	

TABELLE 4

GÜNTHER SAGER

0.304

0.736 0.690 0.638 0.578 0.578 0.512 0.439 0.439 0.439 0.275 0.186 0.186 0.094 0.000

0.850 0.811 0.764 0.764 0.567 0.577 0.464 0.557 0.464 0.246 0.246 0.246

0.800 0.656 0.557

> 0.811 0.736

 $\begin{array}{c} 0.976\\ 0.963\\ 0.942\\ 0.912\\ 0.867\\ 0.800\\ 0.706\end{array}$

0.850 0.917

0.955 0.935 0.907 0.867

0.304 0.275 0.2460.216 0.186 0.156

0.557 0.512 0.4130.360

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.60

0.70

0.80

06.00

1.00

2/12

1.000

 $\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 0.999\\ 0.998\\ 0.993\\ 0.979\\ 0.935\\ 0.935\\ 0.911\\ 0.512\\ 0.000\end{array}$

 $\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0.999\\ 0.987\\ 0.955\\ 0.850\\ 0.557\\ 0.000\\ 0.000\\ \end{array}$

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9

0.125 0.094 0.063 0.081 0.031

0.246 0.186 0.125 0.063 0.000

0.4390.3040.1560.000

0.638 0.512 0.360 0.186 0.186

0.578 0.413 0.216 0.000

0.987 0.979 0.965 0.942 0.942 0.964 0.963 0.764 0.764 0.764 0.764 0.464 0.246 0.993 0.988 0.979 0.963 0.935 0.935 0.935 0.935 0.935 0.935 0.512 0.512 0.275 0.000 0.9960.9930.9870.9760.9760.9170.8500.3570.5570.000 $\begin{array}{c} 0.999\\ 0.995\\ 0.995\\ 0.979\\ 0.955\\ 0.955\\ 0.957\\ 0.911\\ 0.811\\ 0.810\\ 0.360\\ 0.000\\ 0.000\\ 0\end{array}$ $\begin{array}{c} 1.000\\ 0.999\\ 0.998\\ 0.996\\ 0.996\\ 0.976\\ 0.942\\ 0.942\\ 0.867\\ 0.413\\ 0.706\\ 0.413\\ 0.000\end{array}$ -Wellen $\begin{array}{c} 1.000\\ 0.999\\ 0.998\\ 0.995\\ 0.987\\ 0.965\\ 0.907\\ 0.764\\ 0.764\\ 0.464\end{array}$

HE

2

Übergangsformen

TABELLE 5

.

20	h
F	nun
Ч	T
	non
	Argumenten
	nach
	C)
	I.
	y)
	8
	tanh
	II
-	-1-

$rac{(\zeta)}{(\zeta)}= anh \ k \ (h-\zeta) \ nach \ Argumenten \ von \ rac{h}{L} \ und \ rac{\delta}{h}$	h L
Werte für $\frac{B}{A}$	•

GÜNTHER SAGER

TABELLE 5a Werte von h/L bei gegebenem B/A und ζ/h

\mathcal{E}/h					B/A		14 10			-
\$7.0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	-
0,0	0,234	0,175	0,138	0,110	0,087	0,067	0,049	0.032	0.016	
0,1	0,260	0,194	0,153	0,122	0,097	0,074	0.054	0.036	0.019	
0,2	0,293	0,219	0,173	0,138	0,109	0.084	0.061	0.040	0,010	
0,3	0,334	0,250	0,197	0,157	0.124	0.096	0.070	0.046	0,020	
0,4	0,390	0,292	0.230	0.183	0.145	0 112	0,010	0,040	0,025	
0,5	0,468	0,350	0.276	0.220	0 174	0 134	0,082	0,053	0,027	
0,6	0,585	0,438	0,345	0,275	0.218	0.168	0,098	0,004	0,032	
0,7	0,780	0,583	0,460	0,367	0,290	0.223	0,125	0,080	0,040	
0,8	1,170	0,875	0,690	0,550	0.435	0.335	0,105	0,160	0,055	
0,9	2,340	1,750	1,380	1,110	0,870	0,670	0,490	0,320	0,080	
		$\sqrt{\frac{1}{2}}$	$\frac{T}{2\pi}$ -We	llen			Überg	gangs-		

Als Maxima folgen im Wellenberg und Tal $\dot{x}_{max} = k c A(\zeta)$ bzw. mit Gl. (6)

$$x_{\max} = \sqrt{g} \ k \tanh k \ h \cdot A(\zeta) \tag{17}$$

und in den Endpunkten der großen Achse $\dot{z}_{\rm max} = -\;k\;c\;B(\zeta)$ bzw.

$$z_{\max} = -\sqrt{g} k \tanh k h \cdot B(\zeta) . \tag{18}$$

In den Tabellen 6 und 7 sind von den Werten der horizontalen und vertikalen Maximalgeschwindigkeit

$$\dot{x}_{\max} = \sqrt{g \ k} \cdot a \cdot D = \frac{7,853 \ a}{\sqrt{L}} \cdot D$$
 (17a)

und

$$\dot{z}_{\max} = -\sqrt{g \, k} \cdot a \cdot E = -\frac{7,853 \, a}{\sqrt{L}} \cdot E$$
 (18a)

die Größen D und E eingetragen.

Der Faktor $\sqrt{2 \pi g} = 7,853$ ist deshalb belassen worden, um für D und E größenordnungsmäßig günstige Daten zu bekommen.

Entsprechend sind aus den zweiten zeitlichen Ableitungen

$$x = k^2 c^2 A(\zeta) \sin k (\xi - c t)$$
(19)

(21).

bzw.

$$\dot{z} = k^2 c^2 B(\zeta) \cos k (\xi - c t)$$
 (20)

in den Endpunkten der großen Achse

$$\ddot{x}_{
m max} = k^2 \, c^2 \, A(\zeta)$$

$$\ddot{x}_{\max} = g \ k \ anh \ k \ h \cdot A(\zeta)$$

und im Wellenberg und Tal

 $\ddot{z}_{
m max} = k^2 c^2 B(\zeta)$

gh-Wellen 0.02 0.03 0.04 0.05 0.10 0.15 0.20 $\cdot a \cdot D$ $=\sqrt{g k}$ 0.25 Übergangsformen 0.30 \dot{x}_{\max} •• h|L0.35 $\cdot \sqrt{\tanh k h}$ 162 0.40 $A(\zeta)$ 3 0.45 Werte für D 0.50 0.600.70 -Wellen 0.80 I 0 01 0.90 .533 1.00 .01 2/1

E

TABELLE 6

		10	251 225 225 200 175 175 1125 075 075 000					- 19
		02 0.	154 0. 118 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0. 112 0.	len				
		.03 0.	432 0.3 443 0.3 388 0.3 388 0.3 388 0.3 389 0.2 381 0.2 381 0.2 381 0.2 381 0.2 381 0.2 382 0.1 383 0.1 384 0.1 384 0.1 384 0.1	-Wel		1		•
		04 0.	496 0.4 446 0.3 335 0.3 3345 0.3 2246 0.2 247 0.1 197 0.1 197 0.1 0.147 0.1 0.298 0.0 0.197 0.1 0.197 0.1 0.197 0.1 0.197 0.1 0.197 0.1 0.198 0.1 0.199 0.1	Vg h				
		05 0.	552 0.6 552 0.6 195 0.0 195 0.0 100 0.0 163 0.0 160 0.		·			
		.10 0.	746 0.1 664 0.4 555 0.0 5555 0.0 355 0.0 355 0.0 355 0.0 211 0.0 140 0.0 010 0.0 000 0.0			and a second		
		.15 0	858 0. 752 0. 652 0. 655 0. 8559 0. 3385 0. 3385 0. 149 0. 074 0. 074 0. 000 0.					
-		20 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		
$a \cdot E$		0.7						t F
$\sqrt{g k}$.	a (0.25	0.958 0.807 0.677 0.655 0.455 0.369 0.369 0.277 0.207 0.066 0.138 0.006	nen				- <i>g k</i> a
max =		0.30	$\begin{array}{c} 0.977\\ 0.800\\ 0.652\\ 0.528\\ 0.422\\ 0.331\\ 0.331\\ 0.251\\ 0.181\\ 0.117\\ 0.008\end{array}$	ngsforn				ämax =
це 7 1 <i>k h</i> ; з	h/L	0.35	$\begin{array}{c} 0.988\\ 0.787\\ 0.625\\ 0.493\\ 0.385\\ 0.296\\ 0.296\\ 0.296\\ 0.157\\ 0.157\\ 0.161\\ 0.000\\ \end{array}$	Jbergaı				ыв 8 h k h;
TABEL] • /tanl		0.40	$\begin{array}{c} 0.994\\ 0.769\\ 0.594\\ 0.594\\ 0.594\\ 0.548\\ 0.348\\ 0.282\\ 0.192\\ 0.134\\ 0.085\\ 0.085\\ 0.041\\ 0.081\\ 0.000\\ 0\end{array}$	t				TABELJ
$= \frac{B(\zeta)}{a}$		0.45	$\begin{array}{c} 0.997\\ 0.749\\ 0.562\\ 0.562\\ 0.420\\ 0.312\\ 0.312\\ 0.312\\ 0.164\\ 0.113\\ 0.071\\ 0.034\\ 0.000\\ 0\end{array}$					$=\frac{A(a)}{a}$
für E =		0.50	$\begin{array}{c} 0.998\\ 0.728\\ 0.530\\ 0.530\\ 0.385\\ 0.199\\ 0.140\\ 0.140\\ 0.058\\ 0.058\\ 0.028\\ 0.028\\ 0.028\\ 0.000\\ 0\end{array}$					te für H
Werte		09.0	0.999 0.685 0.469 0.321 0.219 0.219 0.099 0.099 0.038 0.038					Wer
		0.70	$\begin{array}{c} 1.000\\ 0.644\\ 0.415\\ 0.415\\ 0.267\\ 0.171\\ 0.171\\ 0.110\\ 0.043\\ 0.043\\ 0.043\\ 0.043\\ 0.025\\ 0.011\\ 0.011\\ 0.000\\ \end{array}$	-				
		0.80	1.000 0.605 0.366 0.386 0.221 0.134 0.080 0.048 0.048 0.048 0.028 0.016 0.007 0.007	-Weller				
		0.90	1.000 0.568 0.323 0.183 0.104 0.059 0.018 0.018 0.018 0.018 0.018	$\left \frac{gL}{2\pi}\right $			×	
		1.00	1.000 0.533 0.285 0.152 0.152 0.081 0.043 0.043 0.012 0.003 0.003 0.003 0.003					
	214	<i>n/s</i>	0.0 0.1 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5					Sec. 1

12.5									h/L										Non-
¢/4	1.00	0.90	0.80	0.70	0.60	0.50	0.45	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	0.04	0.03	0.02	0.01
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000 1	1.000	1.000	1.000 1	000.1	1.000
0.1	0.533	0.568	0.605	0.644	0.686	0.732	0.756	0.781	0.808	0.837	0.868	0.901	0.935	0.967 (0.991 (0.994	0.997 0	666.0	1.000
0.2	0.285	0.323	0.366	0.415	0.471	0.536	0.572	0.612	0.655	0.703	0.757	0.816	0.878	0.938 (0.983 (0.989	0.994 0	266.0	0.999
0.3	0.152	0.183	0.222	0.268	0.324	0.394	0.435	0.481	0.534	0.595	0.665	0.744	0.829	0.912 (0.976	0.984	0.991 0	966.0	0.999
0.4	0.081	0.104	0.134	0.173	0.224	0.291	0.332	0.381	0.439	0.508	0.589	0.683	0.788	0.890	0.969 (0.980	0.989 (3995	0.999
0.5	0.043	0.059	0.082	0.112	0.155	0.216	0.257	0.306	0.365	0.439	0.528	0.634	0.753	0.872	0.964	779.0	0.987 0	0.994	0.999
0.6	0.023	0.034	0.050	0.074	0.109	0.164	0.202	0.249	0.309	0.385	0.480	0.594	0.725	0.857	0.960	476.0	0.985 (0.993	0.998
0.7	0.013	0.020	0.031	0.049	0.079	0.128	0.163	0.209	0.269	0.346	0.444	0.564	0.704	0.845	0.957	0.972	0.984 (0.993	0.998
0.8	0.007	0.012	0.020	0.035	090.0	0.104	0.137	0.182	0.241	0.318	0.418	0.543	0.689	0.837	0.954	0.970	0.983 (0.992	0.998
0.9	0.004	0.008	0.015	0.027	0.049	160.0	0.123	0.166	0.224	0.302	0.403	0.531	0.680	0.832	0.953	0.970	0.983 (0.992	0.998
1.0	0.004	0.007	0.013	0.025	0.046	0.086	0.118	0.161	0.219	0.297	0.399	0.527	0.677	0.831	0.953	0.969	0.982 (0.992	0.998
		1 27	$\frac{L}{\pi}$ -Well	en				Ę	Jbergan	gsforme	u					Vg	<u>h</u> -W	ellen	

Die Übergangsformen von ebenen Schwerewellen

GÜNTHER SAGER

714									h L										Í
ala	1.00	0.90	0.80	0.70	0.60	0.50	0.45	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	0.04	0.03 0	0.02 0	10.0
0.0	1.000	1.000	1.000	1.000	0.999	0.996	0.993	0.987	0.976	0.955	0.917	0.850	0.736	0.557	0.304	0.246	0.186	.125 (.063
0.1	0.533	0.568	0.605	0.644	0.685	0.726	0.746	0.764	0.778	0.782	0.771	0.731	0.645	0.495	0.273	0.221	0.167 0	.112 (.056
0.2	0.285	0.323	0.366	0.415	0.469	0.529	0.560	0.590	0.617	0.638	0.643	0.623	0.560	0.435	0.242	0.196	0.149 0	0.100	.050
0.3	0.152	0.183	0.221	0.267	0.321	0.384	0.419	0.454	0.487	0.516	0.532	0.525	0.479	0.377	0.211	0.171	0.130 0	087 0	.044
0.4	0.081	0.104	0.134	0.171	0.219	0.278	0.311	0.346	0.381	0.412	0.434	0.436	0.403	0.321	0.181	0.147	0.111 0	.075 0	0.38
0.5	0.043	0.059	0.080	0.110	0.148	0.199	0.228	0.260	0.292	0.323	0.346	0.353	0.331	0.265	0.150	0.122	0.093 0	0.062 0	.031
0.6	0.023	0.033	0.048	0.069	0.099	0.139	0.164	0.190	0.219	0.246	0.267	0.276	0.261	0.211	0.120	760.0	0.074 0	050 0	.025
0.7	0.012	0.018	0.028	0.043	0.064	0.094	0.112	0.133	0.155	0.177	0.195	0.203	0.194	0.157	060.0	0.073	0.056 0	0.037 0	019
0.8	0.006	0.010	0.016	0.025	0.038	0.058	0.070	0.084	0.100	0.115	0.127	0.134	0.128	0.105	0.060	0.049	0.037 0	.025 0	.013
0.9	0.003	0.004	0.007	0.011	0.018	0.028	0.034	0.041	0.049	0.056	0.063	0.066	0.064	0.052	0.030	0.024	0.019 0	.012 0	.006
1.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0	000.0	000
		r 6/L	L-Welle	en				Ģ	hergang	osforme	. 5					1/0	M	Ian	

:10

2 $\cdot \tanh k$

 $B(\zeta)$

Werte für G

TABELLE 9

GÜNTHER SAGER

Die Übergangsformen von ebenen Schwerewellen

bzw.

$$E_{\max} = g \ k \tanh k \ h \cdot B(\zeta)$$
 (22)

33

als maximale Beschleunigungen gewonnen worden. Sie sind in den Tabellen 8 und 9 als Faktoren F und G für die Schreibweise

$$x_{\max} = g \ k \ a \ F = 61,67 \frac{a}{L} \cdot F$$
 (21a)

und

$$\ddot{z}_{\max} = g \ k \ a \ G = 61,67 \ \frac{a}{L} \cdot G$$
 (22a)

wiedergegeben.

Für das Verhältnis der horizontalen Geschwindigkeit bzw. Beschleunigung zwischen Boden und Meeresoberfläche gilt

$$\frac{\dot{x}_{\text{Boden}}}{\dot{x}_{\text{Oberfl.}}} = \frac{\ddot{x}_{\text{Boden}}}{\ddot{x}_{\text{Oberfl.}}} = \frac{A_{\text{Boden}}}{A_{\text{Oberfl.}}} = \frac{1}{\cosh k h}, \quad (8a)$$

so daß man die diesbezüglichen Werte der Tab. 2 benutzen kann. Vergleicht man die Streuung von A und D in der Oberfläche, so ist sie für D nur ein Viertel so groß wie für A; dasselbe trifft für B und E zu. Ferner wird in der Oberflächenschicht wegen $A_{\text{Oberfl.}} = a \coth k h$ (4a) speziell $F_{\text{Oberfl.}} = 1$, so daß dort die maximale Horizontalbeschleunigung vom Verhältnis h/L unabhängig ist, sich also mit der Annäherung der Welle an die Küste nicht ändert.

Zur Prüfung der Gültigkeit der linearen Theorie sind die Geschwindigkeitskomponenten in der Natur und im Laboratorium getestet worden. Im Ergebnis hat sich eine gute Übereinstimmung auch für steile Wellen gezeigt, solange h/Lnicht zu klein wird. Dagegen sind Beschleunigungskomponenten erst wenig praktisch gemessen, so daß man hier noch keine aussagekräftigen Vergleiche zur Theorie ziehen kann.

Die Grenzen der linearen Theorie

Bildet man das Verhältnis der maximalen Horizontalgeschwindigkeit in den Orbitalbahnen zur Laufgeschwindigkeit der Wellen, so folgt aus (17) und (6)

$$rac{\dot{x}_{ ext{max}}}{c} = k A(\zeta) = rac{2 \pi \ a}{L} \cdot rac{A(\zeta)}{a} = \pi \ w \ rac{A(\zeta)}{a} \,, \qquad (23)$$

wobei w = 2 a/L die Wellensteilheit ist, die 1/7 erfahrungsgemäß nicht überschreitet. Da der Ausdruck $A(\zeta)/a$ in Tab. 3 für eine Reihe von Verhältnissen h/L und ζ/h berechnet worden ist, wird die Umrechnung trivial. Im Sonderfall $h \gg L$ folgt für Oberflächenwellen mit (13)

$$\frac{\dot{x}_{\max}}{c} = \pi \ w \ e^{-k\zeta} \ . \tag{23a}$$

An der Oberfläche erhält man in diesem Fall

$$\frac{\mathbf{ax}}{\mathbf{b}} = \pi \ w \quad . \tag{23 b}$$

3 Meereskunde, H. 21

Die Übergangsformen von ebenen Schwerewellen

GÜNTHER SAGER

Für w = 1/20 ist der Anteil der Geschwindigkeit im Wellenberg bzw. Tal zur Laufgeschwindigkeit 15,7%. Dieser Anteil wächst mit zunehmender Steilheit und abnehmendem h/L. Bei Dünungswellen mit beispielsweise w = 1/100 ist der Anteil dagegen auf 3,1% abgesunken.

Von dieser Seite her gelangt man am schnellsten zu der Einschätzung, daß die lineare Theorie mit abnehmendem h/L ungenauer und schließlich unbrauchbar wird. Im Falle des beginnenden Überbrechens müßte $\dot{x}_{\max} = c$ werden, was an der Oberfläche wegen Gl. (4a) auf $k a \coth k h = 1$ und für Grundwellen praktisch auf $a k \approx k h$, also $h \sim a$ führen würde, womit im Wellental kein Wasser mehr vorhanden wäre, was nicht möglich ist.

Hier scheint die Theorie der Einzelwelle bessere Resultate zu liefern, wobei die Unveränderlichkeit der Wellenperiode, die Erhaltung der Energie und das Fehlen der Refraktion vorausgesetzt sind. MUNK hat daraus als Beginn des Überbrechens die Bedingung

$$\frac{h_{\rm Tal}}{H_B} = 1,28\tag{24}$$

abgeleitet, worin h_{Tal} die Wassertiefe unter dem Wellental und H_B die Wellenhöhe beim Beginn des Überbrechens ist. Gl. (24) paßt sich den in der Natur beobachteten Grenzfällen

$$rac{5}{4}\!<\!rac{h_{
m Tal}}{H_B}\!<\!rac{4}{3}$$

gut an. Dazu gehört eine Geschwindigkeit von

$$c = \sqrt{g \left(h_{\text{Tal}} + H_B\right)} \quad . \tag{25}$$

Rechnet man h_{Tal} auf die Höhe h des bisher benutzten Wasserspiegels um, so wird $h/H_B = 1,78$ und nach Division durch L

$$h/L = 1,78 w_B$$
, (24a)

3*

wenn w_B die Steilheit vor Beginn des Überbrechens ist.

Als Sonderfälle folgen daraus unmittelbar für die steilste Wellenform $w_B = 1/7$ der Quotient h/L = 0.26, für $w_B = 1/14$ bereits h/L = 0.13 und speziell für h/L = 0.05 eine Steilheit von $w_B = 1/36$. Das bedeutet, daß die lineare Theorie für Windwellen je nach der Wellensteilheit bereits mehr oder minder im Gebiet der Übergangsformen versagt. Erst Düngungswellen können einen Gültigkeitsbereich jenseits h/L = 0.05 beanspruchen.

Die Theorie der Einzelwelle darf ihrerseits nach Schätzungen von MUNK nicht weiter als 1,4 h_{Tal} seewärts verwendet werden. Das Profil zeigt dabei Symmetrie mit Übergang von Wellenkuppen zu Wellenspitzen in dem genannten Bereich. Ferner ist ein Massentransport in Richtung auf die Küste enthalten.

Weitere Versuche haben zum Ziel gehabt, die in der Brandungszone auftretende Asymmetrie mathematisch zu erfassen, wobei BIESEL wohl der Wirklichkeit am nächsten gekommen sein dürfte. Seine Wellenprofile werden asymmetrisch ab h/L = 0.27, also gerade dort, wo die lineare Theorie bei den steilsten Wellen zu versagen beginnt. Eine allseitig befriedigende Theorie der Wellen in der Brandungszone steht dagegen noch aus.

Literatur

BIESEL, F., Study of wave propagation in water of gradually varying depth. U.S. National Bureau of Standards. Gravity Waves. NBS Circular 521 (1952).

MUNK, W. H. und TRAYLOR, M. A., Height of breakers and depth of breaking. Scripps Institution of Oceanography. Wave Report No. 47. (1945).

MUNK, W. H., The solitary wave theory and its application to surf problems. Annals of the New York Academy of Sciences, Vol. 51, Art. 3 (1949).

SAGER, G., Die charakteristischen Elemente der ebenen Schwerewellen und der Smith-Effekt bei verschiedenen Wassertiefen. Schiffbautechnik 1 (1961).

WIEGEL, R. L., Oceanographical Engineering. Prentice Hall, Inc./Englewood Cliffs, N.J. (1964).

Abschluß der Arbeit: 14. 2. 1967

Statistische Bearbeitung

Alle statistischen Kennziffern wurden mit dem Zeiss-Rechenautomaten ZRA 1, der im Rechenzentrum der Universität Rostock steht, berechnet. Es wurden die Koeffizienten des Polynoms

 $y = a_0 + a_1 x + a_2 x^2$

bestimmt. Weiterhin wurde berechnet: Die Streuung Sa_1 bzw. Sa_2 der Regressionskoeffizienten, die Testgrößen ta_1 bzw. ta_2 , die multiple Bestimmtheit B, die Korrelation r, die Mittelwerte \overline{x} , \overline{y} , die Varianz s^2 und die Streuung s um den Mittelwert. Den Schnittpunkt der Regressionskurve mit der y-Achse bei x = 0 gibt uns das Absolutglied a_0 an. Bei parallel verlaufenden Kurven ist die Differenz der Absolutglieder gleich dem Abstand der Regressionskurven. Nicht immer kann man dem Absolutglied eine physikalisch-ozeanographische Deutung geben.

Bei linearen Regressionsgleichungen gibt uns der Regressionskoeffizient an, um wieviel sich der Wert im Durchschnitt auf der y-Achse ändert, wenn der Wert auf der x-Achse um eins wächst. Mehrere Regressionskoeffizienten, je nach Grad der Ausgleichskurve, erhalten wir bei nichtlinearen Regressionen. Aus den vorliegenden empirischen Werten haben wir Kurven zweiten Grades erhalten. In der Parabelgleichung hat der Regressionskoeffizient a_1 Einfluß auf die Lage des Scheitels zu der x-Achse. Bei negativen Vorzeichen von a_1 befindet sich der Parabelscheitel auf der Seite der positiven x-Achse. Ganz allgemein können die Koordinaten des Scheitels durch

$$x = -rac{a_1}{2 \, a_2} \quad ext{und} \quad y = -rac{a_1^2}{4 \, a_2^2} + a_0$$

ausgedrückt werden, wenn die Parabelgleichung positive Vorzeichen besitzt, sonst vertauschen sich die Vorzeichen der Koordinaten des Scheitels.

Das Vorzeichen bei a_2 bestimmt, ob der Scheitelpunkt der Parabel ein Minimum oder ein Maximum angibt. Bei positiven Vorzeichen des a_2 -Koeffizienten treffen wir ein Minimum an, die Parabel ist in der Richtung der positiven y-Achse geöffnet.

Die Streuuung der Regressionskoeffizienten gibt uns die Grenzen an, in denen sich die Koeffizienten bewegen können und noch statistisch gesichert sind. Ist die Differenz der Regressionskoeffizienten gleich ihrer Streuung, dann dürfen wir diese Koeffizienten gleich groß ansehen. Genauere Abschätzung über ihre Gleichheit können wir mit Hilfe der statistischen Betrachtungen erhalten. In dieser Arbeit wurde der erste Weg beschritten.

Die Testgröße $t a_1$ bzw. $t a_2$ ermöglicht uns zu überprüfen, ob die Regressionskoeffizienten auch statistisch gesichert sind. Die berechnete Testgröße $t a_1$ bzw. $t a_2$ vergleichen wir mit der t-Verteilung in der Tafel, WEBER [3]. Darin finden wir angegeben, die Irrtumswahrscheinlichkeit α in Prozent für einseitige und zweiseitige Fragestellungen. Dabei entspricht $\alpha = 0,05$ für einseitige Fragestellung $\alpha = 0,1$ für zweiseitige Fragestellung. Für $\alpha = 5$ einseitig ist $\alpha = 10$ zweiseitig. Bei n = 10 (n = Freiheitsgrade) muß t a = 4,59 betragen.

Beziehungen zwischen hydrooptischen und hydrographischen Parametern in den Mulden der Ostsee

Von Ludwig Gohs

Zusammenfassung: Die Beziehungen zwischen den hydrooptischen und den hydrographischen Parametern wurden mit Hilfe der Regressionsrechnung bestimmt. In Tabellen wurden die statistischen Parameter eingetragen und ihre Änderung zwischen den Schnitten graphisch dargestellt. Es besteht zwischen der Temperatur in situ und den Extinktionswerten ein enger Zusammenhang, auch wenn sich die Temperatur nachträglich stark ändert.

Einleitung

Vom 29. September bis 9. Oktober 1965 fand eine Meßfahrt mit dem Forschungsschiff "Professor Albrecht Penck" des Instituts für Meereskunde in Warnemünde statt. Die besuchten Stationen sind in Abb. 1 eingezeichnet. Die genauen Positionen der Stationen haben NEHRING und ROHDE [1] veröffentlicht. Die Stationen westlich von Bornholm, 9 a bis Wa-1, wurden in dieser Arbeit nicht berücksichtigt. Die Schnitte sind laufend durchnumeriert. Die Stationen innerhalb der Schnitte sind mit kleinen lateinischen Buchstaben bezeichnet, wobei die erste und die letzte Station des Schnittes auf der Karte eingezeichnet sind.

Durch Titration nach MOHR-KNUDSEN wurde der Chlorgehalt bestimmt und daraus der Salzgehalt berechnet. Die Bestimmung der Extinktion erfolgte mit dem visuellen Pulfrich-Photometer von Carl Zeiss Jena in drei Spektralbereichen. Die Ermittlung der TYNDALL-Werte erfolgte mit dem Zusatz zum Pulfrich-Photometer, und die relativen Trübungswerte wurden in absolute Werte mit Hilfe eines Glasstandards umgerechnet, GOHS [2]. Die Dimension der Extinktionswerte ist (m⁻¹) und die der TYNDALL-Werte (cm⁻¹).

Die Extinktion, der TYNDALL-Werte und der Salzgehalt konnten aus der gleichen Meerwasserprobe bestimmt werden. Am Kippthermometer wurde die Temperatur abgelesen. Es ist gewährleistet, daß alle vier Parameter den gleichen Ort haben und in der Zeit nicht differieren.

Bis 100 m Wassertiefe wurde alle 10 m eine Wasserprobe in einer Serie entnommen. Über 100 m erfolgte die Entnahme in 25 m Abständen.

Infolge der gleichmäßigen Abstände der Wasserentnahme und der geringen Abstände der Stationen innerhalb eines Schnittes eignen sich diese Werte für statistische Auswertungen.

LUDWIG GOHS

Für $\alpha = 0.05$ einseitig und bei $n = \infty$ (d. h. n > 120) darf ta nicht kleiner als 3.29 sein. Für $\alpha = 5$ (einseitig) und n = 10 darf ta nicht kleiner als 1.81 sein und für $n = \infty$ nicht kleiner als 1.64.

Die multiple Bestimmtheit B ist ein Maß der Streuung der Punkte um die Regressionsgerade in einem bestimmten Anteil zur Gesamtstreuung der y-Werte. Liegen alle Punkte auf der Geraden so ist B = 1, wenn keine Abhängigkeit zwischen den x- und y-Werten besteht, dann ist B = 0. Es bedeutet für B == 0,947, daß 94,7% der Streuung der y-Achse durch lineare Änderungen auf der x-Achse erklärt werden.

Die beiden Maße B und r hängen auf folgende Weise zusammen: $r^2 = B \rightarrow r = = \sqrt{B}$. Die Korrelation r gibt uns den Grad des Zusammenhanges zwischen den beiden Veränderlichen x und y an. Die Korrelation r und der Regressionskoeffizient a_1 sind durch die Gleichung $r = a_1 \frac{s_x}{s_y}$ miteinander verbunden. Dabei ist s_x die Streuung auf der x-Achse und s_y die Streuung auf der y-Achse. y_{\max} und y_{\min} sowie x_{\max} und x_{\min} wurden in den Tabellen angegeben; sie gelten als Grenzen, in denen die Regressionskurven exakt gültig sind.

Auf die Darstellung der Varianz s^2 der Schnitte wurde verzichtet und nur die Streuung s berücksichtigt, weil sie die Wurzel der Varianz ist. Die Streuung gibt uns ein Bild über die Streubreite der gemessenen Werte in einem Schnitt an. Auf die Berechnung der Streuung zwischen den Stationen innerhalb der Schnitte ist hier noch verzichtet worden.

Die angegebenen Mittelwerte der einzelnen Schnitte können gut miteinander verglichen werden und geben uns dabei Auskunft über die mittleren Veränderungen der Parameter zwischen den einzelnen Schnitten.

Extinktionsspektral funktionen

Mit dem Symbol C bezeichnen wir die Extinktionsspektralfunktionen; sie geben uns die Beziehungen zwischen den Spektralbereichen der Extinktion an. Um die Extinktionsspektralfunktion näher zu bezeichnen, verwenden wir entsprechende Indizes. Der erste Index bezeichnet den Ort. In unserem Fall ist es die Ziffer des Schnittes aus Abb. 1. Der zweite Index gilt für die Benennung der y-Achse im cartesischen Koordinatensystem. Bei den Extinktionsspektralfunktionen wird auf der y-Achse die Extinktion des benutzten Spektralbereiches aufgetragen. Die Messungen erfolgten in drei Spektralbereichen, bei Anwendung der Schottischen Spektralfilter, für 420 nm ist die Ziffer 1, für 530 nm ist die Ziffer 2 und für 720 nm ist die Ziffer 3 gesetzt worden. Der dritte Index gilt für die Benennung der x-Achse. Auf der x-Achse wurde die Extinktion des Spektralbereiches 530 nm gleich Ziffer 2 eingetragen. Zum Beispiel: Das Symbol $C_{1.12}$ gilt für den Schnitt 1, auf der y-Achse ist die Extinktion bei 420 nm und auf der x-Achse ist die Extinktion bei 530 nm aufgetragen.

Die statistischen Parameter der Extinktionsspektralfunktionen $C_{(1-11),12}$ im blau/grünen Bereich des Schnitte 1 bis 11 sind in Tab. 1 eingetragen. In der Spalte *n* ist die Anzahl der benutzten Proben verzeichnet.

Die Absolutglieder a_0 der C_{(1-11),12}-Funktionen sind positiv. Dies bedeutet, daß die Extinktion bei den elf Schnitten im blauen Spektralbereich stets größer ist als die Extinktion im grünen Bereich, wenn die Grünextinktion Null ist.

In Tab. 2 sind die statistischen Parameter der $C_{(1-11)32}$ -Funktionen, also der Extinktionsbeziehung des rot/grünen-Bereiches, zu ersehen. Hier sind die Absolutglieder, bis auf zwei Ausnahmen, Schnitt 8 und 10 negativ. Die zwei positiven Absolutglieder deuten an, daß eine höhere Extinktion des roten Spektralbereiches existiert, wenn im grünen Spektralbereich keine Extinktion mehr anzutreffen ist.

Abb. 1. Lage der Schnitte während der Fahrt vom 29. 9. bis 9. 10. 1965

Die Absolutglieder der Extinktionsspektralfunktionen im blau/grünen und rot/grünen Spektralbereich variieren unbedeutend zwischen den Schnitten. Im rot/grünen Bereich Tab. 2 sind die Absolutglieder a_0 fast gleich.

Die Regressionskoeffizienten a_1^{12} (der Exponent benennt die Spektralbereiche der y- und x-Achse) der Schnitte 1, 2, 3, 4, 5, 7 und 10 weisen eine zunehmende Tendenz auf. Die Streubereiche deuten einen gewissen Zusammenhang zwischen den Schnitten an. Die optische Charakteristik der Wassermasse ändert sich im blau/grünen Bereich fast stetig. Bei den Schnitten 7 bis 11 wird die optische Verwandschaft durch die Streuungen Abb. 2 besonders deutlich hervorgehoben. Ohne Angabe der Streuung $S a^{12}$ wäre dieser Zusammenhang nicht sichtbar, und man würde diesen Schnitten völlig verschiedene optische Zustände zuschrei-

			_	_	_		-	-	-	-	-	0
	18	0,15	0,18	0,18	0,16	0,13	0,15	0,11	0,12	0,13	0.17	0,18
	x_{\min}	0,03	0,09	0,08	0,06	0,08	0,03	0,05	0,04	0,03	0.11	0,07
	x_{\max}	0,36	0,31	0,37	0,28	0,27	0,48	0,26	0,34	0,47	0.23	0,39
	8 y	0,08	0,06	0,08	0,08	0,06	0,12	0,11	0,13	0,10	0.07	0,05
	je M	0,28	0,32	0,32	0,28	0,23	0,27	0,24	0,25	0.26	0.33	0,34
	Y_{\min}	0,15	0,22	0,17	0,15	0,18	0,12	0,14	0,13	0,14	0.23	0,21
ionen	$Y_{\rm max}$	0,50	0,47	0,57	0,42	0,46	0,55	0,48	0,57	0,61	0.44	0,63
tralfunkt	r	0,868	0,937	0,957	0,908	0,924	0,774	0,973	0.968	0,930	0.832	0,953
tionsspek	В	0,753	0,879	0,916	0,824	0,854	0,600	0,947	0,937	0.865	0.693	0,908
Extink	$t a_1$	13,07	18,45	26,87	17,87	11,60	11,08	13,24	20,42	27,74	5.82	17,77
	$S a_1$	0,08	0,07	0,05	0,07	0,11	0,08	0,11	0,06	0,04	0,25	0,08
	a_i	1,09	1,23	1,30	1,25	1,30	0,97	1,47	1,34	1,27	1,46	0,13
	a	0,12	0,09	0,08	0,07	0,06	0,11	0,06	0,08	0,09	0,07	0,10
	u	58	49	68	70	25	84	12	30	122	28	34
	Schn.	н	67	ო	4	10	9	٢	œ	6	10	11
	Fkt.	1.12	2.12	3.12	4.12	5.12	6.12	7.12	8.12	9.12	10.12	11.12
	6 E	77	77	77	77	77	77	77	~	77		

LUDWIG GOHS

40,06 40,09 40,00 70,00 40,00 40,00 40,00

		S y	0,04	0,03	0,04	0,04	0,03	0,06	0,05	0,05	0,06	0,02	0,05
		\boldsymbol{y}^{-}	0,08	0,11	0,11	0,09	0,05	0,09	0,08	0,07	0,08	0,08	0,10
		$Y_{ m min}$	0,01	0,02	0,04	0,02	0,01	0,01	0,02	0,02	0,01	0,05	0,03
		$Y_{\rm max}$	0,21	0,20	0,25	0,18	0,15	0,35	0,16	0,21	0,44	0,14	0,31
		r	0,900	0,873	0,945	0,941	0,889	0,770	0,962	0,964	0,938	0,691	0,888
	ktionen	В	0,810	0,761	0,893	0,886	0,790	0,594	0,925	0,931	0,880	0,478	0,789
LE 2	tralfun	$t a_1$	15,44	12,26	23,49	22,95	9,30	10,95	11,13	19,45	29,73	3,70	10,93
TABEI	onsspek	$S a_1$	0,04	0,06	0,03	0,03	0,07	0,05	0,06	0,03	0,02	0,12	0,06
	lxtinkti	a_1	0,70	0,68	0,73	0,67	0,68	0.52	0,72	0,57	0,76	0,46	0,69
	Τ	a_0	-0.02	-0,01	-0,02	-0,01	-0,03	-0,01	-0,01	0,01	-0,02	0,01	-0,02
		n	58	49	68	70	25	84	12	30	122	18	34
		Schn.	1	61	eo	4	õ	9	2	œ	6	10	11
		Fkt.	C 1.32	C 2.32	C 3.32	C 4.32	C 5.32	C 6.32	C 7.32	C 8.32	C 9.32	C 10.32	C 11.32
	8	1											

ben. Der Schnitt 6 hebt sich durch seinen extrem kleinen Regressionskoeffizienten hervor, auch im rot/grünen Bereich ist seine Abweichung beträchtlich.

Die a_1^{32} -Koeffizienten ändern sich nur unbedeutend, auch ihre Streuung ist verhältnismäßig klein. Eine Abweichung vom allgemeinen Verlauf beobachten wir beim Schnitt 10.

Vergleichen wir die a_1^{12} - und a_1^{32} -Koeffizienten innerhalb des Schnittes, so können wir eine Differenz zwischen ihnen feststellen. Eine Differenz zwischen

den beiden Koeffizienten bedeutet, daß die Extinktionsspektralkurven divergent zueinander sind. Die kleinste Divergenz beobachten wir beim Schnitt 1 und die höchste beim Schnitt 10. Zwischen den Schnitten variiert die Divergenz recht bedeutend. Diese Variation weist auf gewisse voneinander unabhängige optische Eigenschaften hin. Der Grad der Unabhängigkeit bzw. der Abhängigkeit muß durch weitere Untersuchungen festgestellt werden.

Alle Regressionskoeffizienten in den Tab. 1 und 2 sind statistisch hoch gesichert. Dabei ist die statistische Sicherheit beim Schnitt 10 am geringsten, sie genügt aber der geforderten Irrtumswahrscheinlichkeit.

40

TABELLE 1

Sx

,06

Der enge Zusammenhang zwischen den Beziehungen wird auch durch die sehr gute Korrelation und die multiple Bestimmtheit dokumentiert. Über den quantitativen Verlauf der Extinktion erhalten wir Aufschluß in Abb. 3. Hier sind die Mittelwerte der Extinktionen des blauen, grünen und roten Spektralbereiches sowie ihre Streuungen aufgezeichnet. Die Streuung des blauen Spektralbereiches innerhalb der Schnitte variiert am meisten, hingegen ist sie im roten Spektralbereich sehr gering. Die ausgezogenen Kurven in Abb. 3 ver-

binden die Mittelwerte untereinander und zeigen somit die Veränderungen zwischen den Schnitten an, die recht beträchtlich sein können.

Auch im roten Bereich des Spektrums sind Änderungen der Extinktion zwischen den Schnitten vorhanden, die die Änderungen innerhalb der Schnitte weit überschreiten.

Die kleinsten Mittelwerte der Extinktion im blauen und roten Spektralbereich finden wir beim Schnitt 5. Im grünen Spektralbereich ist die kleinste mittlere Extinktion beim Schnitt 7 anzutreffen. Die Schnitte 5 bis 9 zeichnen sich durch verhältnismäßig kleine Extinktion im untersuchten Meeresgebiet aus.

	S y	00012	70000,	,00010	,00012	,00000	,00018	,00010	,00014	,00012	,00000	,00015
	y	,00022 0,	,00018 0	,00024 0	,00018 0	0 60000	,00018 0	,00015 0	,00012 0	,00018 0	,00034 0	,00024 0
	Y_{\min}	0,00006 0	0,00000 0	0,00005 0	,00002 0	,00004 0	0,00015 0	0,00001 0	0,00006 0	0,00002 0	0,00019 0),00004 0
	Y_{\max}	0,00067 (0,00033 (0,00052 (0,00053 -(0,00032 (0,00050 (0,00028 (0,00044 (0,00064 (0,00052 (0,00066
	s	0,771	0,702	0,772	0,636	0,644	0,852	0,818	0,921	0,918	0,394	0,763
tionen	B	0,595	0,492	0,596	0,405	0,416	0,727	0,669	0,848	0,843	0,155	0,582
ktralfunkt	$t a_1$	9,07	6,75	9,87	6,75	4,04	14,58	4,02	12,08	25,19	16,62	6,57
NDALL-Spe	$S a_1$	0,00013			0,00013	0,00022	0,00003	0,00017	0,00008	0,00004	0,00027	0,00020
T_{Y}	a_1	0,0012	0,0017	0,0014	0,0008	0,0008	0,0012	0,0006	0,0009	0,0010	0,0004	0,0013
	α_0	-0,000013	-0,000385	-0,000245	-0,000064	-0,000111	-0,000158	-0,000029	-0,000115	-0,000099	-0,000190	-0,000192
	u	58	49	68	69	25	82	10	28	120	17	33
	Schn.	1	67	eo	4	õ	9	2	8	6	.10	11
<u>}</u>	Fkt.	β 1.21	β 2.21	β 3.21	β 4.21	β 5.21	β 6.21	β 7.21	β 8.21	β 9.21	β 10.21	β 11.21

Lubwig Gons

Aus den Mittelwerten und den Regressionskoeffizienten der Extinktion sehen wir, daß bei einer Divergenz der Spektralfunktionen in allen drei Spektralbereichen Messungen der Extinktion notwendig sind, um ein Meeresgebiet optisch zu charakterisieren.

In Tab. 2 sind die Mittelwerte der Extinktion, der x-Achse, nicht eingetragen, weil die x-Werte die gleichen sind wie in Tab. 1.

TYNDALL-Spektralfunktionen

Die TYNDALL-Spektralfunktionen kennzeichnen wir mit dem Symbol β . Die Indizes haben die gleiche Bedeutung wie bei den Extinktionsspektralfunktionen. Es wurden drei TYNDALL-Spektralfunktionen bestimmt, indem der TYNDALL-Wert zu allen Extinktionswerten der drei Spektralbereiche in Beziehung gesetzt wurde.

Die statistischen Parameter der TYNDALL-Spektralfunktionen sind in Tab. 3 und 4 eingetragen. Die Absolutglieder der TYNDALL-Spektralfunktionen (TYN-DALL-Wert zu Blauextinktion) in Tab. 3 sind negativ. In Tab. 4 sind die Absolutwerte positiv sowie auch negativ. Bedeutenden Schwankungen sind die Absolutglieder zwischen den Schnitten unterworfen.

Die Änderungen der Regressionskoeffizienten aller TYNDALL-Spektralfunktionen sind in Abb. 4 dargestellt. Die Regressionskoeffizienten der drei Beziehungen lassen sich in folgende Reihe ordnen: $a_1^{12} < a_1^{22} < a_1^{32}$. Diese Reihen-

TABELLE 4

			TYNDA	LL-Spektre	alfunktionen	ı		
Fkt.	Schn	n	. a ₀	<i>a</i> ₁	$S a_1$	t a ₁		r
β 1.22	1	58	-0,000013	0,0015	0,00017	9,39	0,612	0,782
β 2.22	2	49	-0,000287	0,0025		5,67	0,407	0,638
β 3.22	3	68	-0,000116	0,0019		11,22	0,656	0,810
β 4.22	4	69	-0,000011	0,0012	0,00018	6,46	0,383	0,619
β 5.22	-5	25	-0,000085	0,0013	0,00028	4,74	0,494	0,703
β 7.22	7	10	0,000013	0,0011	0,00024	4,45	0,712	0,843
β 8.22	8	28	-0,000039	0,0013	0,00011	11,40	0,833	0,913
β 9.22	9	120	-0,000008	0,0014	0,00006	21,59	0,798	0,893
$\beta \ 10.22$	10	17	0,000204	0,0008	0,00047	15,98	0,145	0,381
β 11.22	11	33	-0,000063	0,0017	0,00028	6,22	0,555	0,745
β 1.23	1	58	-0,000067	0,0019	0,00024	7,70	0,514	0,717
β 2.23	2	49	-0,000171	0,0032		5,70	0,408	0,639
β 3.23	3	68	-0,000038	0,0025		11,56	0,669	0,818
β 4.23	4	69	0,000030	0,0016	0,00026	6,17	0,362	0,062
β 5.23	5	25	-0,000005	0,0017	0,00038	4,37	0,454	0,674
β 6.23	6	82	-0,000019	0,0022	0,00018	12,38	0,657	0,811
β 7.23	7	10	-0,000009	0,0016	0,00024	5,58	0,808	0,899
β 8.23	8	28	-0,000039	0,0021	0,00018	11,38	0,832	0,913
β 9.23	9	120	0,000045	0,0016	0,00009	16,81	0,705	0,840
$\beta \ 10.23$	10	17	0,000173	0,0019	0,00060	3,08	0,387	0,623
ß 11.23	11	33	0.000001	0.0024	0.00040	5.95	0,533	0,730

folge wird bei allen Schnitten eingehalten, wobei die Abstände zwischen den Koeffizienten variieren.

Die Streuung der Regressionskoeffizienten innerhalb der Schnitte ist unwesentlich. So konnte auf ihre Darstellung in Abb. 4 verzichtet werden, aber die Schwankung zwischen den Schnitten ist beträchtlich.

Vergleichen wir die Verteilung der Regressionskoeffizienten der TYNDALL-Spektralfunktionen mit den Koeffizienten der Extinktionsspektralfunktion bei den ersten fünf Schnitten, so müssen wir feststellen, daß sie sich unterscheiden.

Die Schnitte 1, 2 und 3 sind verschieden, die Schnitte 4 und 5 weisen einen engen Zusammenhang auf. Die Schnitte 6 und 10 sind auch durch die Regressionskoeffizienten der TYNDALL-Spektralfunktion ausgezeichnet. Während die Koeffizienten der Extinktionsspektralfunktionen eine deutliche Trennung zwischen den Schnitten teilweise nicht zuließen, wird mit Hilfe der TYNDALL-Spektralkoeffizienten eine Trennung möglich. Diese Koeffizienten gestatten uns, feinere optische Unterteilungen zu treffen.

Statistisch sind alle Regressionskoeffizienten gut gesichert mit einer Ausnahme bei der Funktion β 10.23 in Tab. 4. Die Korrelation und die multiple Bestimmtheit erfüllen unsere Erwartungen. Es zeigt sich, daß der Schnitt 10

 $\mathbf{45}$

LUDWIG GOHS

nicht genügend statistisch abgesichert werden konnte, aber vollständigkeitshalber überall mit aufgeführt wurde.

Die Mittelwerte, ihre Streuung und die Grenzen, in denen die Regressionskurven gelten, brauchen nur in Tab. 3 aufgeführt zu werden, weil in Tab. 4 wieder die gleichen Größen auftreten würden.

Abb. 5. Verteilung der mittleren TYNDALL-Werte und ihre Streuung über die Schnitte 1 bis 11

Die graphische Darstellung der TYNDALL-Mittelwerte und ihre Streuung ist in Abb. 5 erfolgt. Die Änderung der TYNDALL-Mittelwerte zwischen den Schnitten ist ähnlich der Änderung der Mittelwerte der Extinktion im roten Spektralbereich. Es treten Abweichungen auf bei den Schnitten 1 und 10. Auch bei den Mittelwerten der TYNDALL-Werte kann eine starke Differenzierung zwischen den Schnitten beobachtet werden, wobei auch die Schwankungen innerhalb der Schnitte teilweise hoch sind.

Extinktionstemperaturfunktionen

Diese Funktionen werden mit CT bezeichnet und mit den entsprechenden Indizes versehen. In den Tab. 5 und 6 sind die Parameter der Extinktionstemperaturfunktionen eingetragen.

Wie eingangs betont wurde, sind die Temperaturen in situ und die Extinktion bzw. TYNDALL-Werte im Schiffslabor bestimmt worden. Die hydrooptischen Messungen erfolgten, nachdem sich die Wasserprobe auf etwa 20 °C erwärmt

LAB	ELLE 9	
Extinktionstem	peratur	funktionen

	Fkt.	Schn.	n	a ₀	a1	Sa_1	t a ₁	B	r	x_{\max}	x_{\min}	\overline{x}	S x
\mathbf{CT}	1.1t	1	58	0,17	0,011	0,0028	3,94	0,217	0,466	13,7	4,5	10,1	3,3
\mathbf{CT}	2.1t	2	49	0,20	0,011	0,0015	7,27	0,530	0,728	17,3	3,8	11,2	4,0
\mathbf{CT}	3.1t	3	68	0,22	0,010	0,0017	6,05	0,357	0,597	14,8	2,7	10,3	4,9
\mathbf{CT}	4.1t	4	70	0,16	0,016	0,0014	11,66	0,667	0,817	14,0	2,6	7,3	4,5
\mathbf{CT}	5.1t	5	25	0,10	0,030	0,0029	10,18	0,818	0,905	12,5	2,7	4,8	2,0
\mathbf{CT}	6.1t	6	83	0,12	0,023	0,0016	14,04	0,709	0,842	14,6	2,3	6,8	4,6
\mathbf{CT}	7.1t	7	12	0,09	0,026	0,0029	9,15	0,893	0,945	14,0	2,7	5,7	3,9
\mathbf{CT}	8.1t	8	30	0,07	0,034	0,0026	13,00	0,857	0,926	13,4	2,3	5,4	3,7
\mathbf{CT}	9.1t	9	119	0,13	0,022	0,0014	14,86	0,654	0,808	13,4	2,2	6,0	3,9
\mathbf{CT}	10.1t	10	17	0,26	0,012	0,0034	3,48	0,447	0,669	13,7	2,5	6,4	4,3
\mathbf{CT}	11.1t	11	34	0,25	0,015	0,0040	3,77	0,307	0,554	13,2	2,9	5,8	3,7

TABELLE 6 Extinktionstemperaturfunktionen

Fkt.	Schn.	n	a_{0}	<i>a</i> ₁	Sa ₁	ta_1	В	r
CT 1.2t	1	58	0,06	0,009	0,0022	3,95	0,218	0,467
CT 2.2t	2	49	0,10	0,008	0,0012	6,15	0,446	0,668
CT 3.2t	3	68	0,11	0,007	0,0013	5,29	0,298	0,546
CT 4.2t	4	70	0,08	0,011	0,0009	12,69	0,703	0,849
CT 5.2t	5	25	0,05	0,019	0,0029	6,51	0,649	0,805
CT 6.2t	6	83	0,06	0,014	0,0018	7,70	0,422	0,650
CT 7.2t	7	12	0,02	0,016	0,0025	6,57	0,812	0,901
CT 8.2t	8	30	0,00	0,023	0,0020	11,90	0,835	0,914
CT 9.2t	9	119	0,06	0,013	0,0014	9.29	0,425	0,652
CT 10.2t	10	17	0,13	0,007	0,0020	3,27	0,416	0,645
CT 11.2t	11	34	0,12	0,010	0,0031	3,21	0,244	0,494
CT 1.3t	1	58	0,03	0,006	0,0018	3,05	0,143	0,378
CT 2.3t	2	49	0,05	0,006	0,0010	5,52	0,394	0,627
CT 3.3t	3	68	0,06	0,005	0,0010	5,02	0,276	0,526
CT 4.3t	4	70	0,03	0,008	0,0007	11,75	0,670	0,818
CT 5.3t	5	25	-0,01	0,015	0,0021	7,16	0,690	0,831
CT 6.3t	6	83	0,02	0,010	0,0012	8,50	0,472	0,687
CT 7.3t	7	12	0,02	0,011	0,0025	4,42	0,661	0,813
CT 8.3t	8	30	0,00	0,013	0,0015	8,86	0,737	0,858
CT 9.3t	9	119	0,04	0,008	0,0013	6,13	0,243	0,493
CT 10.3t	10	17	0,08	0,002	0,0017	0,88	0,049	0,222
CT 11.3t	11	34	0,08	0,004	0,0027	1,45	0,062	0,249

hatte. Bemerkenswert erscheint die Tatsache, wie auch JOSEPH [4] durch insitu-Messungen mit dem Durchsichtigkeitsmeßgerät festgestellt hatte, daß die vertikalen Extinktionskurven den vertikalen Temperaturkurven vollkommen ähnlich sind. Diese Tatsache kann aus den Abb. 11 bis 21 abgelesen werden. Die Wendepunkte dieser Kurven stimmen völlig überein, nur die Gradienten sind verschieden groß. Daraus dürfen wir den Schluß ziehen, daß die durch die Temperatur aufgeprägten hydrooptischen Eigenschaften im Meerwasser auch erhalten bleiben, wenn sich die Temperatur sehr schnell und sehr stark ändert. Die Extinktionstemperaturkoeffizienten sind statistisch gut gesichert. Es treten statistische Unsicherheiten bei den $CT_{10.3t}$ - und $CT_{11.3t}$ -Koeffizienten auf. Aber bei diesen Funktionen sind auch die multiplen Bestimmtheiten und die Korrelation unterhalb eines annehmbaren Wertes. Die Streuung der Regressionskoeffizienten, wie aus den Tab. 5 und 6 ersichtlich, ist innerhalb der Schnitte unbedeutend.

Die CT-Absolutglieder sind durchweg positiv mit einer Ausnahme bei dem $CT_{5.3t}$ -Absolutglied. Mit steigender Wellenlänge des Lichtes nehmen die Absolutglieder ab.

In Abb. 6 sind die Extinktionstemperaturkoeffizienten und in Abb. 7 die Mittelwerte der Temperatur eingetragen. Daß die Streuung der Temperatur innerhalb der Schnitte recht bedeutend sein kann, ersehen wir aus Tab. 5.

Die CT-Koeffizienten und die Temperaturmittelwerte entsprechen einander. Bei den Schnitten 3, 4 und 5 nehmen die Regressionskoeffizienten zu, die mittlere Temperatur nimmt ab und erreicht bei Schnitt 5 den kleinsten mittleren Wert des untersuchten Meeresgebietes. Bei den Schnitten 8, 9 und 10 nehmen die Regressionskoeffizienten ab, und die mittlere Temperatur weist eine steigende Tendenz auf.

Der Zahlenwert der Regressionskoeffizienten ist recht klein. Durch größere Temperaturänderungen, wobei der Zeitfaktor eine Rolle spielt, werden nur geringe Änderungen in der Extinktion hervorgerufen. Hierbei sind die höchsten Änderungen bei der Extinktion im blauen Spektralbereich zu beobachten, und es werden die kleinsten Änderungen im roten Spektralbereich angetroffen.

Die Korrelationen zwischen Extinktion und Temperatur schwanken zwischen den Spektralbereichen der Extinktion und zwischen den Schnitten. Die beste Korrelation besteht zwischen der Extinktion des blauen Spektralbereichs und der Temperatur. Bei den Schnitten 1, 3 und 11 sind die Korrelationen bei allen drei Spektralbereichen nicht ausreichend. Im roten Extinktionsbereich wird zusätzlich bei den Schnitten 9 und 10 ungenügende Korrelation beobachtet.

Vergleichen wir den Verlauf der Vertikalkurven Abb. 11, so würden wir aus dem Augenschein auch eine recht gute Korrelation zwischen Temperatur und Extinktion erwarten. Nur durch Rechnung konnten wir eine mangelnde Korrelation feststellen. In Abb. 13 würde man ohne Bedenken geringe Korrelation voraussagen, aber die Rechnung ergibt, daß sie etwas besser als beim Schnitt 1 war. Aber wenn wir auch alle Vertikalkurven eines Schnittes vor uns hätten, dann könnten wir zu keinem anderen Ergebnis kommen. Mit einem visuellen Vergleich der Temperatur zu der Extinktion kann man nicht die günstigste

Schnitt Nr.

Abb. 6. Verteilung der Regressionskoeffizienten a_1^{st} , a_1^{2t} und a_1^{1t} der Extinktionstemperaturfunktionen über die Schnitte 1 bis 11

Beziehung zu einem Spektralbereich herausfinden, wie es die Abb. 11 bis 21 uns demonstrieren.

Tyndall-Temperaturfunktionen

In Tab. 7 sind die statistischen Parameter der TYNDALL-Temperaturfunktionen β T eingetragen. Es mußten die Schnitte 1, 3, 4, 10 und 11 von den weiteren Betrachtungen ausgeschlossen werden, weil ihre statistische Sicherheit

	TABELLE 7
TYNDALL-	Temperaturfunktionen

Fkt.	Schn.	n	a ₀	a_1	$S a_1$	t a ₁	B	r
 βT 2.2t	2	49	· 0,00004	0,000011	0,000002	5,71	0,409	0,640
βT 5.2t	5	25	-0,00004	0,000031	0,000007	4,61	0,480	0,693
βT 6.2t	6	81	-0,00001	0,000026	0,000003	8,44	0,480	0,688
βT 7.2t	7	10	0,00005	0,000016	0,000005	2,93	0,518	0,720
βT 8.2t	8	28	-0,00004	0,000030	0,000004	8,13	0,718	0,847
βT 9.2t	9	117	0.00005	0.000021	0,000002	9,85	0,458	0,677

4 Meereskunde, H. 21

48

LUDWIG GOHS

sowie die Korrelationen die erforderlichen Größen nicht hatten. Es zeigte sich also, daß nur für wenige Schnitte die Beziehungen zwischen Temperatur und TYNDALL-Wert vorhanden waren.

Die verbliebenen β T-Funktionen ordnen sich um die Insel Gotland an. In diesem Meeresgebiet wurden die niedrigsten Extinktionswerte, Abb. 3, beobachtet. Aber auch die mittleren TYNDALL-Werte, Abb. 5, sind in diesem Gebiet recht klein im Verhältnis zu den anderen Beobachtungsorten. Der Schnitt 2 nimmt hier eine Sonderstellung ein.

Abb. 8. Verteilung der TYNDALL-Temperaturkoeffizienten a_1^{st} und ihrer Streuung über die Schnitte 1 bis 11

Die β T-Absolutglieder sind sowohl positiv als auch negativ. Ihre Größe schwankt zwischen den Schnitten nur wenig. Die Regressionskoeffizienten sind sehr klein auf Grund der Kleinheit der TYNDALL-Werte. Die Streuung der Regressionskoeffizienten innerhalb der Schnitte ist klein, aber zwischen den Schnitten groß.

Beim Schnitt 7 ist der Regressionskoeffizient statistisch nicht gesichert, obwohl die Korrelation recht gut ist. Wenn wir die β T-Koeffizienten ihrer Größe nach ordnen, dann erhalten wir folgende Reihe:

 $a_1^{22\mathrm{t}} < a_1^{72\mathrm{t}} < a_1^{92\mathrm{t}} < a_1^{62\mathrm{t}} < a_1^{62\mathrm{t}} < a_1^{82\mathrm{t}} < a_1^{52\mathrm{t}}$.

In gleicher Weise ordnen wir die mittlere Temperatur der betreffenden Schnitte; so finden wir beim Schnitt 2 die höchste und beim Schnitt 5 die klein-4* ste mittlere Temperatur, und wir erhalten folgende Reihe der Schnitte: 2 > 6 > > 9 > 7 > 8 > 5. Vergleichen wir die beiden Reihen, dann stellen wir fest, daß in der Temperaturanordnung die Schnitte 6 und 7 vertauscht sind. Berücksichtigen wir, daß a_1^{72t} nicht statistisch gesichert ist, so bleibt die Vertauschung zwischen den Schnitten 6 und 9 übrig. Ohne diese Vertauschung würden wir den steigenden β T-Koeffizienten eine fallende mittlere Temperatur ohne Bedenken zuordnen können.

Aus diesen Beobachtungen und der Tatsache, daß bei einer Reihe von Schnitten die TYNDALL-Temperatur-Beziehungen statistisch nicht gesichert waren, dürfen wir schlußfolgern: Es besteht kein eindeutiger Zusammenhang zwischen den beiden Werten. Diese Aussage trifft nur für das betrachtete Seegebiet und auch hier nur für diesen Zeitpunkt zu.

Extinktionssalzfunktionen

Die statistischen Parameter der Extinktionssalzfunktionen CS sind in den Tabellen 8 bis 10 eingetragen. Mit Hilfe eines Polynoms zweiten Grades konnten diese Beziehungen dargestellt werden. Alle Parabeln sind in Richtung der positiven y-Achse geöffnet, und der Scheitel liegt über der positiven x-Achse.

Weil die CS-Koeffizienten a_1 und a_2 sowie das CS-Absolutglied a_0 die gleichen Änderungstendenzen haben, wurde in Abb. 9 nur der a_2 -Koeffizient über die Schnitte aufgetragen.

In Tab. 8 war beim Schnitt 10 die statistische Sicherheit nicht gegeben, obwohl die Korrelation mit zu den höchsten Werten gehörte. Beim Schnitt 7 ist die statistische Sicherheit noch hinreichend. Betrachten wir die CS-Funktion, die aus der Beziehung der Extinktion des grünen Spektralbereiches und dem Salzgehalt gebildet wurde in Tab. 9, so hat sich die Zahl der Schnitte, die statistisch ungesicherte CS-Koeffizienten haben, gegenüber Tab. 8 um zwei erhöht. In Tab. 10 haben die Schnitte 2, 3 und 10 statistisch ungesicherte CS-Koeffizienten.

Aus den Tabellen ersehen wir, daß die CS-Funktionen der Extinktion im blauen Spektralbereich zum Salzgehalt am besten statistisch gesichert sind. Ein Vergleich der CS-Koeffizienten mit anderen Größen, die in dieser Arbeit betrachtet wurden, führt zu keinen weiteren eindeutigen Abhängigkeiten.

Tyndall-Salzfunktionen

Die Parameter der TYNDALL-Salzfunktionen β S sind in Tab. 11 eingetragen. Die Regressionskoeffizienten der Schnitte 2, 3, 10 und 11 waren statistisch nicht gesichert, und auch die Korrelationen waren unzureichend.

In Abb. 10 ist nur ein Regressionskoeffizient eingezeichnet, denn der andere Koeffizient sowie das Ablolutglied haben die gleiche Änderungstendenz.

Vergleichen wir die TYNDALL-Salzkoeffizienten mit dem Verlauf des mittleren Salzgehaltes, so beobachten wir beim ersten Schnitt höchsten mittleren Salzgehalt und den kleinsten Regressionskoeffizienten, aber beim niedrigsten mittleren Salzgehalt treffen wir nicht den größten β S-Koeffizienten an. Beim nied-

1 .											
<i>S x</i>	3,5	1,6	1,4	1,6	1,4	2,0	3,9	1,5	2,0	1,0	0,5
18	10,2	8,4	8,3	8,7	8,3	9,2	5,7	8,6	8,8	7,1	6,8
<i>x</i> min	7,6	7,6	7,2	7,3	6,6	7,2	2,7	6,7	6,1	5,9	6,0
xmax	16,8	13,1	12,3	12,1	10,5	12,9	14,0	10,8	11,4	9,4	7,5
r	0,664	0,651	0,513	0,592	0,772	0,705	0,714	0,824	0,795		0,668
В	0,441	0,423	0,263	0,350	0,595	0,497	0,595	0,671	0,632		0,446
t a2	6,54	4,33	3,84	5,86	4,71	5,92	2,65	5,81	11,72		4,23
t a1	- 6,47	-4,52	-3,99	-5,92	- 4,82	- 6,32	-2,75	-6,03	-12,23		- 4,31
Sa_2	0,001	0,004	0,006	0,006	0.010	0,004	0,010	0,012	0,002		0,070
$S a_1$	0,03	0,08	0,12	0,10	0,17	0,07	0,18	0,20	0,04		0,94
a_2	0,009	0,019	0,025	0,033	0,048	0.022	0,026	0,070	0,028		0,297
aı	-0.21	-0.40	-0.49	-0,62	-0.85	-0.46	-0.52	-1.26	-0.52		-4,07
a ₀	1.40	2,29	2.63	3.14	3.94	2.55	2.66	5.77	2.55		14,17
u	58	49	68	70	25	83	12	30	119	18	34
Schn.	-	0	e	4	20	9	-	- oc	6	10	Ξ
Fkt.	8 1.1S	3 2.1S	3 3.1S	3 4.1S	5 5.1S	S 6.1S	S 7.1S	S 8.18	S 9.1S	S 10.1S	S 11.1S

2 $t a_2$ 6 t a, 20 Extinktions salz funktionen2 TABELLE 9 a_2 a1 ao u Schn. Fkt. S S S S S S S S S S

rigsten mittleren Salzgehalt Schnitt 7 beobachten wir auch ein Minimum beim β S-Koeffizienten, der aber in der Gesamtreihe etwas größer ist als der kleinste. Ordnen wir die β S-Koeffizienten und die mittleren Salzgehalte der Größe nach, so erhalten wir keine übereinstimmenden Reihen. Aus den vorliegenden Werten können wir keine allgemeinen Aussagen treffen.

Abb. 10. Verteilung der TYNDALL-Salzkoeffizienten a_2^{23} über die Schnitte 1 bis 11

604

TABELLE 11

2

B

 $t a_2$

 $t a_1$

 $S a_2$

 $S a_1$

 a_2

a1

a₀

u

Schn.

Fkt.

0.623

33

00100-

8.3S 9.3S 11.3S

SSSSSSSSSSSSS

4

Extinktions salz funktion en

TABELLE 10

	r	$\begin{array}{c} 0,610\\ 0,629\\ 0,626\\ 0,546\\ 0,546\\ 0,539\\ 0,734\\ 0,645\end{array}$
	В	$\begin{array}{c} 0.372\\ 0.392\\ 0.392\\ 0.298\\ 0.408\\ 0.538\\ 0.416\\ 0.416\end{array}$
	$t a_2$	$\begin{array}{c} 4,889\\ 5,111\\ 3,433\\ 3,574\\ 2,175\\ 2,175\\ 7,366\end{array}$
	$t a_1$	$\begin{array}{r} -4,676\\ -4,895\\ -3,482\\ -3,482\\ -3,846\\ -2,145\\ -4,638\\ -7,698\end{array}$
	$S a_2$	$\begin{array}{c} 0,000002\\ 0,000007\\ 0,000090\\ 0,000006\\ 0,000004\\ 0,000016\\ 0,000016\end{array}$
unktionen	S a ₁	$\begin{array}{c} 0,00005\\ 0,00014\\ 0,00028\\ 0,00012\\ 0,00018\\ 0,00018\\ 0,00018\\ 0,00006\end{array}$
YNDALL-Salzfi	a_2	0,000011 0,000038 0,000056 0,000023 0,000022 0,000071 0,000026
T	aı	$\begin{array}{c} -0,00026\\ -0,00068\\ -0,00099\\ -0,00048\\ -0,00040\\ -0,00127\\ -0,00127\\ -0,00047\end{array}$
	ao	0,00154 0,00319 0,00438 0,00258 0,002661 0,00561
	u	58 69 81 12 30 117
	Schn.	1459786
	Fkt.	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 5 \\ 3 \\ 3 \\$

Bei den letzten beiden Funktionenarten CS und β S, konnten wir keine weitreichenden Schlußfolgerungen ziehen. Es scheint, daß diese Beziehungen nur für diese Orte und nur für diesen Zeitpunkt gültig sind.

Schlußbetrachtungen

Zur hydrooptischen Beschreibung eines Meeresgebietes wurde die Regressionsanalyse benutzt. Es hat sich als zweckmäßig erwiesen, sie zur Beschreibung der Beziehungen zwischen den hydrooptischen und den hydrographischen Größen anzuwenden. Die Angabe der Regressionskoeffizienten allein reicht nicht aus, ohne gleichzeitige Angabe der statistischen Sicherheit und der Korrelation. Erst durch die Betrachtung aller vorhandenen statistischen Parameter erhält

Hydrooptische und hydrographische Parameter in der Ostsee

man eine gesicherte Aussage. Wenn wir zur Berechnung der statistischen Parameter moderne Rechenautomaten benutzen, können wir die erforderliche Menge von Werten für diese Zwecke bearbeiten.

Aus der Divergenz der Extinktionsspektralfunktionen schließen wir auf das Vorhandensein verschiedener hydrooptischer Eigenschaften am betrachteten Ort. Eine Aussage über die hydrooptischen Eigenschaften ist bei dieser Beschreibung nicht notwendig. Wir stellen fest, daß die hydrooptischen Eigenschaften innerhalb eines Schnittes und auch zwischen den Schnitten unregelmäßigen Änderungen unterworfen sind. Es ändert sich nicht nur der Wert der Extinktion, es ändert sich auch sein spezifisches Verhalten.

Abb. 14. Station 4 d

Eine recht gute Beziehung konnte zwischen den hydrooptischen Größen und der Temperatur festgestellt werden. Die durch die Temperatur aufgeprägten hydrooptischen Eigenschaften an einem Meßort haben eine zeitliche Trägheit. Auf Temperaturänderungen folgt eine hydrooptische Änderung, die aber zeitlich nachgeht. Wie groß die Verschiebung zwischen den beiden Ereignissen ist, kann ohne zusätzliche Bestimmungen nicht festgestellt werden.

Eine Beziehung zwischen den hydrooptischen Eigenschaften und dem Salzgehalt konnte mit einem Polynom zweiten Grades bestimmt werden. Wird ein Polynom ersten Grades benutzt, so können die Regressionskoeffizienten statistisch nicht gesichert werden. Aus der Tatsache, daß bei einer Reihe von Schnitten auch die Korrelation zwischen den beiden Größen nicht vorhanden waren, läßt sich schlußfolgern: Es besteht kein einfacher Zusammenhang zwischen diesen Größen.

61

Literatur

 NEHRING und ROHDE, Weitere Untersuchungen über anomale Ionenverhältnisse in der Ostsee. Beiträge zur Meereskunde 20 (1967).

[2] GOHS, Tyndall- und Extinktionsmessungen in ausgewählten Meeresgebieten. Beiträge zur Meereskunde 20 (1967).

[3] WEBER, Grundriß der biologischen Statistik. VEB Gustav Fischer Verlag Jena (1961).

[4] JOSEPH, J., Trübungs- und Temperatur-Verteilung auf den Stationen und Schnitten von V. F. S. "Gauss" sowie Bathythermogramme von F. F. S. "Anton Dohrn" und V. F. S. "Gauss" im Internationalen Geophysikalischen Jahr 1957/58. Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe B (4°). Nr. 5 (1961).

Untersuchungen über die Korrekturformel für Tiefsee-Kippthermometer

Von DIETRICH BÖHL

Zusammenfassung: Im Hinblick auf die maschinelle Berechnung wird die Korrekturformel ausgehend von empirischen Werten der Wärmeausdehnung erneut abgeleitet $\left(C \approx \frac{(T+v)(T-t)}{K-v-1,5(T-t)}\right)$ und mit den bisher verwendeten Formeln verglichen.

Das von ZAMBRA und NEGRETTI im Jahre 1878 in die ozeanographische Meßpraxis eingeführte Tiefsee-Kippthermometer wird in verbesserter Form noch immer als Standardinstrument zur Messung der Wassertemperatur in der Tiefe

eingesetzt. An die am Hauptthermometer abgelesenen Werte sind zwei Korrekturen anzubringen:

- 1. die bei der Eichung ermittelte Kaliberkorrektur, durch die die Ablesewerte auf eine fehlerfreie Skala bezogen werden,
- 2. die Korrektur C, die auf die Erwärmung des Thermometers vom Zeitpunkt der Messung bis zur Ablesung zurückzuführen ist.

GEISSLER hat 1934 eine Zusammenstellung der bis heute gebräuchlichen Formeln zur Berechnung von C gegeben und nachgewiesen, daß die geringfügigen Unterschiede auf verschiedene Ansätze der thermischen Ausdehnung des Quecksilbers gegen Glas zurückzuführen sind. Entsprechend ist in Tab. 1 die Zusammenstellung der gebräuchlichen Korrekturformeln vorgenommen worden.

Hierin bedeuten:

t

- T_w wahre Temperatur des Wassers in der Tiefe;
- T Ablesung des Hauptthermometers (Kaliberkorrektur angebracht);
 - Ablesung des Nebenthermometers;
- v Volumen des Auffanggefäßes bis zum Nullpunkt, ausgedrückt in Grad entsprechend einer längeren Kapillare;
- K Reziprokwert des linearen Wärmeausdehnungskoeffizienten von Quecksilber gegen Glas;
- l Länge des Quecksilberfadens in Kapillare und Auffanggefäß.

	Zusamme	nstellung der bisher gebräuc	TABELLE 1 Michsten Formeln zur Berec	hnung der Korrektur C	d) Damol für das
Zur Ableitung benu Ausdehnungsforn	itzte nel	a) Genaue Formel	b) Näherung durch Korrekturfaktor	c) Näherung durch Variation des Nenners	u) roume tur uas ungeschützte Thermometer
$l(t) = l(0) \left(1 + o\right)$	(1)	$C=rac{\left(T+v ight) \left(T_{w}-t ight) }{K+t}$	$C = rac{\left(T+v ight)\left(T-t ight)}{K+t} imes \left(1+rac{K+t}{K} ight)$	$C = \frac{\left(T+v\right)\left(T-t\right)}{K-\left(T+v\right)+t}$ Hidaka	$C' = rac{\left(T+v ight)\left(T_w-t ight)}{K+t}$ Schumacher ²
$l(T_w) = l(t) \left(1 + lpha \left(T ight)$	w-t))	$C=rac{\left(T+v ight) \left(T_{w}-t ight) }{K}$.	$C = rac{\left(T+v ight)\left(T-t ight)}{K} imes \left(1+rac{T+v}{K} ight) (\mathrm{Subow})$	$C=rac{\left(T+v ight) \left(T-t ight) }{K-\left(T+v ight) }$	$C' = rac{\left(T+v ight)\left(T_{w}-t ight)}{K}$ Ruppin
$l(t)=l(T_w)\left(1+lpha\left(t- ight) ight)$	$T_w)$	$C = rac{\left(T_w + v ight)\left(T_w - t ight)}{K}$ Phys. techn. Reichsanstalt	$egin{aligned} \mathcal{C} &= rac{\left(T+v ight)\left(T-t ight)}{K} \ imes \left(1+rac{T+v}{K}+rac{T-t}{K} ight) \ imes ext{Schumagned} ext{Schumagned} \end{aligned}$	$\frac{C=}{K-(T+v)(T-t)} \frac{C}{S_{\rm VERDRUP}}$	$C' = \frac{(T+v) (T_w - t)}{K - (T_w - t)}$ Schumacher ¹
$l(t) = l(0) e^{\alpha t}$		$C = (T+v) \; (e^{lpha (T_w-t)}-1)$ HANSEN	$C = rac{\left(T+v ight)\left(T-t ight)}{K} imes \left(1+rac{T+v}{K}+rac{T-t}{2K} ight)$	$egin{aligned} C = & \ (T+v) \ (T-t) & \ K-(T+v) - rac{1}{2} \ (T-t) & \ m{Harstein} & $	$C' = rac{\left(T+v ight)\left(T_w-t ight)}{K-rac{1}{2}\left(T_w-t ight)}$ Hansen
- 2 1933.					

Namen auf Kompendien während die eingeklammerten verweisen auf den Autor, der diese Formel zuerst zitiert hat, denen diese Formel verwendet wird. Die Namen verweisen, 63

Untersuchungen über die Korrekturformel für Tiefsee-Kippthermometer 65

DIETRICH BÖHL

Kund v
 liegen in der Größenordnung von 6300° bzw. 100°. Dem
gegenüber sind die variablen GrößenTund
t klein und können im Nenner vernachlässigt werden, so daß die erste Näherung

$$C = \frac{(T+v)(T-t)}{K} (1.5a) \qquad \text{bzw.} \quad C = \frac{(T+v)(T-t)}{K-v} (1.5b)$$

lautet, wobei der formelle Unterschied auch noch entfällt, wenn der Wert des gesamten Nenners empirisch bestimmt wird. Für die Berechnung reicht die Genauigkeit dieser 1. Näherung meist aus, zumindest wenn durch Ablesung im Wasserbad die Temperaturdifferenz T - t klein gehalten wird. Bei der Berechnung mit Tabellen ist überdies die Berücksichtigung der Glieder höherer Ordnung schwierig und wird deshalb nach Möglichkeit vermieden. Sollen jedoch auch Glieder 2. Ordnung berücksichtigt werden, wie dies bei der Berechnung auf einer Datenverarbeitungsanlage durchaus zu vertreten ist, so muß eine Entscheidung gefällt werden, welche Formel am genauesten ist.

Wie vorstehend geschildert, ist der Unterschied auf die verschiedenen Ausdehnungsformeln zurückzuführen. Deshalb wird diejenige Korrekturformel am besten sein, die von der genauesten Ausdehnungsformel ausgeht. Aus empirischen Messungen sind sowohl für Quecksilber als auch für verschiedene Thermometergläser Ausdehnungsformeln abgeleitet. So gibt EBERT das Quecksilbervolumen für den Bereich von 0° bis 100 °C zu

$$V = V_0 \left(1 + 1.8144 \cdot 10^{-4} t + 7.016 \cdot 10^{-9} t^2 + 2.8625 \cdot 10^{-11} t^3 + 2.617 \cdot 10^{-14} t^4 \right).$$
(1.6)

Die Reihenentwicklung des entsprechenden Exponentialansatzes führt auf

und zeigt kaum eine bessere Übereinstimmung mit der empirischen Formel als der lineare Ansatz

$$\mathbf{V} = \mathbf{V}_0 \left(1 + 1.8 \cdot 10^{-4} t \right) \,. \tag{1.8}$$

Auch für Thermometerglas 16¹¹¹ hat EBERT eine genauere Formel für die Wärmeausdehnung angegeben, jedoch liegt der Gültigkeitsbereich für die vorliegende Aufgabenstellung zu ungünstig. Deshalb wurde aus Angaben des Kohlrausch die Volumenausdehnungsformel

$$\mathbf{V} = \mathbf{V}_{0} \left(1 + 2,284 \cdot 10^{-5} t + 1,619 \cdot 10^{-8} t^{2} - 2,77 \cdot 10^{-11} t^{3} \right)$$
(1.9)

abgeleitet, die größenordnungsmäßig mit der Formel von EBERT übereinstimmt. Bemerkenswert ist dabei die verhältnismäßig starke Abhängigkeit der Längenausdehnung des Glases von den höheren Potenzen der Temperatur.

Auch hier stimmt der Exponentialansatz

$$V_0 e^{2,2 \cdot 10^{-5}t} = V_0 (1 + 2, 2 \cdot 10^{-5} t + 2, 4 \cdot 10^{-10} t^2 + 1, 8 \cdot 10^{-15} t^3)$$
 (1.10)

kaum besser mit der abgeleiteten Formel überein als der lineare Ansatz

$$\mathbf{V} = \mathbf{V}_{\mathbf{0}} \left(1 + 2,28 \cdot 10^{-5} t \right). \tag{1.11}$$

Weder mit dem linearen noch mit dem Exponentialansatz ist also eine genaue Darstellung der Korrekturformel möglich, sofern diese Größen enthält, die von höherer als der ersten Ordnung klein sein sollen. Wenn beabsichtigt ist, auch Glieder zu verwenden, die von zweiter Ordnung klein sind und wie sie in allen Formeln außer der ersten Näherung auftreten, so muß nach Ansicht des Verfassers schon bei der Ableitung eine Ausdehnungsformel verwendet werden, die Glieder dieser Größenordnung mit berücksichtigt.

Für die nachfolgende Ableitung werden die vollständigen Ausdehnungsformeln jedoch nicht mit ihren Zahlenwerten, sondern in der Form

$$V = V_0 (1 + \alpha_1 t + \alpha_2 t^2 + ...)$$
 (1.6a)

für Quecksilber und

$$V = V_0 (1 + \gamma_1 t + \gamma_2 t^2 + ...)$$
 (1.9a)

für Glas benutzt.

2. Ableitung einer Korrekturformel für das geschützte Kippthermometer

Dem Prinzip des Kippthermometers entsprechend werden für die Ableitung der Korrekturformel folgende Bezeichnungen außer den schon im 1. Kapitel definierten verwendet (vergl. auch die Abb. auf S. 62):

 V_0 Volumen des Auffanggefäßes und des Kapillarenstücks bis zur Teilung 0 °C

 $V(t) \;$ Das Volumen der Kapillare zwischen den Teilstrichen 0 und t

 $V_{\mathbf{1}}$ – Das Volumen des Vorratsgefäßes bis zur Abreißstelle.

Diese Volumen sind als auf 0 °C reduziert zu betrachten.

Ein Kippthermometer habe die Eigentemperatur t, die am Nebenthermometer abgelesen wird. Das beim Kippen des Thermometers separierte Quecksilber reicht genau bis zum Teilstrich T des Hauptthermometers. Sein Volumen ist unter Berücksichtigung der Eigentemperatur des Thermometers

$$[V_0 + V(T)] (1 + \gamma_1 t + \gamma_2 t^2 \dots) .$$
(2.1)

T wird nur dann die wahre Meßtemperatur T_w angeben, wenn das Thermometer noch dieselbe Temperatur wie zum Zeitpunkt der Messung hat. Anderenfalls bedingt die thermische Ausdehnung eine Fehlanzeige. Unter Verwendung der Ausdehnungsformeln (1.6) und (1.9) ist es jedoch möglich, den Zustand zum Zeitpunkt der Messung zu rekonstruieren. Die bei der Temperatur T_w abgetrennte Quecksilbermenge muß bei dieser Temperatur das Volumen

$$[V_0 + V(T)] (1 + \gamma_1 t + \gamma_2 t^2 \dots) \frac{1 + \alpha_1 T_w + \alpha_2 T_w^2}{1 + \alpha_1 t + \alpha_2 t^2}$$
(2.2)

besitzen, wenn (2.1) gelten soll. Bei dieser Temperatur reicht der Quecksilberfaden entsprechend der Eichung bis zum Teilstrich T_w und hat definitionsgemäß das Volumen

$$[V_0 + V(T_w)] (1 + \gamma_1 T_w + \gamma_2 T_w^2 \dots) .$$
(2.3)

Beide Angaben sind gleichwertig, so daß die wahre Temperatur T_w nachträglich aus

$$[V_0 + V(T_w)] \frac{1 + \gamma_1 T_w + \gamma_2 T_w^2 \dots}{1 + \alpha_1 T_w + \alpha_2 T_w^2 \dots} = [V_0 + V(T)] \frac{1 + \gamma_1 t + \gamma_2 t^2 \dots}{1 + \alpha_1 t + \alpha_2 t^2 \dots}$$
(2.4) berechnet werden kann.

5 Meereskunde, H. 21

DIETRICH BÖHL

Es sei an dieser Stelle schon erwähnt, daß für das ungeschützte Thermometer dieselben Überlegungen gelten. Im Gegensatz zum geschützten Thermometer ist die Anzeige bei gleichbleibender Temperatur der von T_w verschiedene Wert T', so daß in diesem Falle

$$[V_{0} + V(T')]\frac{1 + \gamma_{1} T_{w} + \gamma_{2} T_{w}^{2} \dots}{1 + \alpha_{1} T_{w} + \alpha_{2} T_{w}^{2} \dots} = [V_{0} + V(T)]\frac{1 + \gamma_{1} t + \gamma_{2} t^{2} \dots}{1 + \alpha_{1} t + \alpha_{2} t^{2} \dots}$$
(2.5)

gilt.

Eine praktische Durchführung der T_w -Berechnung ist nur möglich, wenn die Abhängigkeit der Volumina V(T) von den Temperaturen selbst genauer bekannt ist. Am Beispiel von $V(T_w)$ soll dieser funktionelle Zusammenhang abgeleitet werden. Da V(0) definitionsgemäß Null ist und bei dieser Tempera tur $V_q - V_1$ die separierte Quecksilbermenge darstellt, gilt

$$V_g - V_1 = V_0 . (2.6)$$

Bei einer beliebigen Meßtemperatur dagegen beträgt das Volumen des Quecksilbers über der Abreißstelle

$$V_g (1 + \alpha_1 T_w + \alpha_2 T_w^2 \ldots) - V_1 (1 + \gamma_1 T_w + \gamma_2 T_w^2 \ldots) .$$
 (2.7)

Eine andere Darstellung dieses Volumens gibt (2.3), so daß unter Berücksichtigung der in (2.6) dargestellten Beziehung mit den Hilfsgrößen

$$k_{n} = \frac{\alpha_{n} - \gamma_{n}}{\alpha_{1} - \gamma_{1}}, \quad (n > 1) \quad \text{und} \quad \alpha_{1} - \gamma_{1} = \frac{1}{K},$$

$$V(T_{w}) = \frac{V_{g}}{K} \frac{T_{w} + k_{2} T_{w}^{2} + k_{3} T_{w}^{3} \dots}{1 + \gamma_{1} T_{w} + \gamma_{2} T_{w}^{2} \dots}$$
(2.8)

gilt. Um bei späteren Rechnungen V_g/K eliminieren zu können, wird eine Hilfsgröße v eingeführt, die der Beziehung

$$V_0 = \frac{V_g}{K} v \tag{2.9}$$

genügen soll. Werden in (2.4) $V(T_w)$ und V(T) durch der Gleichung (2.8) genügende Ausdrücke ersetzt und V_0 gemäß (2.9) durch die Hilfsgröße v, so besteht die Möglichkeit, die Meßtemperatur T_w aus T und t zu berechnen, bzw. die Korrektur $C = T_w - T$, die an T anzubringen ist.

Bei der praktischen Durchführung dieser Rechnung wurde durch Reihenentwicklung der Nenner zuerst eine Formel zur Berechnung von T_w ermittelt und anschließend T_w durch T + C ersetzt. Daraus folgt für C die Bestimmungsgleichung

$$C\left(1-\frac{v}{K}\right)\left[1+2\left(k_{2}-\alpha_{1}\right)T+3\left(k_{3}-\alpha_{2}-\alpha_{1}\left(k_{2}-\alpha_{1}\right)\right)T^{2}\right] + C^{2}\left(1-\frac{v}{K}\right)\left(k_{2}-\alpha_{1}\right)=\frac{(T-t)\left(T+v\right)}{K}\left\{1+\left(k_{2}-\alpha_{1}\right)\left(T+t\right)\right\} + \left(k_{3}-\alpha_{2}-\alpha_{1}\left(k_{2}-\alpha_{1}\right)\right)\left(T^{2}+T\ t\ t\ t^{2}\right) + \frac{T^{2}}{T+v}\left[\left(k_{2}-\gamma_{1}\right)\left(1+\left(k_{2}-\alpha_{1}\right)\left(T+t\right)\right)+\left(k_{3}-\gamma_{2}-\gamma_{1}\left(k_{2}-\gamma_{1}\right)\right)T^{2}\right]\right\}.$$

$$(2.10)$$

Aus der Vielzahl von Gliedern sollen nur diejenigen in die endgültige Näherungsformel übernommen werden, die größenordnungsmäßig von Bedeutung sind. Die Größe der auftretenden Koeffizienten ist entsprechend den empirischen Ausdehnungsformeln (1.6) und (1.9) nachfolgend zusammengestellt.

$$\begin{split} & \alpha_1 = 1,814 \cdot 10^{-4} \,, \qquad \alpha_2 = -7,02 \cdot 10^{-9} \,, \qquad \alpha_3 = -2,86 \cdot 10^{-11} \,, \\ & \gamma_1 = 2,28 \cdot 10^{-5} \,, \qquad \gamma_2 = -1,619 \cdot 10^{-8} \,, \qquad \gamma_3 = -2,8 \cdot 10^{-11} \,, \\ & \alpha_1 - \gamma_1 = 1,596 \cdot 10^{-4} \,, \qquad k_2 = -5,75 \cdot 10^{-5} \,, \qquad k_3 = -2,8 \cdot 10^{-11} \,, \\ & K = \frac{1}{\alpha_1 - \gamma_1} = 6266^\circ \,, \qquad k_2 - \alpha_1 = -2,4 \cdot 10^{-4} \,, \qquad k_3 - \alpha_2 = +3,4 \cdot 10^{-7} \,, \\ & k_2 - \gamma_1 = -8,0 \cdot 10^{-5} \,, \qquad k_3 - \gamma_2 = +3,3 \cdot 10^{-7} \,. \end{split}$$

Außerdem wird zur Abschätzung $v = 100^{\circ}$, $T = 10^{\circ}$ und $t = 30^{\circ}$ angenommen.

Alle Glieder, die kleiner als 10^{-3} sind, können in der Endformel unberücksichtigt bleiben, da die Ausgangswerte sehr hoch angesetzt waren. Die Näherungsformel für C lautet dann

$$C = \frac{(T-t)(T+v)}{K-v} \left[1 - (k_2 - \alpha_1)(T-t)\right].$$
(2.12)

Im Gegensatz zu der bisher üblichen Methode wird v im Nenner berücksichtigt, da bei der Ableitung 1 - v/K als Faktor von C auftrat. Natürlich besteht auch hier die Möglichkeit, die Abweichung von der 1. Näherung (1.5b) durch Veränderung des Nenners zu berücksichtigen.

In dieser Form lautet die entsprechende Näherungslösung

$$C = \frac{(T-t)(T+v)}{K-v+K(k_2-\alpha_1)(T-t)}$$
(2.13)

bzw. mit den unter (2.11) angegebenen Zahlenwerten

5*

$$C = \frac{(T-t)(T+v)}{K-v-1,5(T-t)} \,. \tag{2.14}$$

Für andere Glassorten könnte statt des Faktors 1,5 ein anderer Wert auftreten. Deshalb beziehen sich die nachfolgenden Vergleichsbetrachtungen nur auf ein Thermometer aus Thermometerglas 16^{III}.

In Tabelle 2 ist ein Vergleich mit der ersten Näherung (1.5b) sowie mit den bisher gebräuchlichen Korrekturformeln, jeweils in der in Tabelle 1 unter cangegebenen Form vorgenommen worden. In allen Fällen ist der Zähler übereinstimmend (T - t) (T + v), so daß es genügt, nur die Nenner gegenüberzustellen (Spalte 2). Außerdem wurde die relative Abweichung der einzelnen Formeln von der ersten Näherung (Spalte 3) und von der neu vorgeschlagenen Korrekturformel (Spalte 4) angegeben, sowie für $T = 10^{\circ}$ und $t = 30^{\circ}$ der absolute Wert dieser Abweichungen errechnet (Spalte 5 und 6).

Die neue Formel paßt sich in die bisher gebräuchlichen gut ein. Gegenüber der von HANSEN vorgeschlagenen Korrekturformel ist nur eine von *t* abhängige Abweichung zu verzeichnen, während auch mit der Formel von HIDAKA eine gute Übereinstimmung vorliegt.

Das Ergebnis läßt den Schluß zu, daß die Abweichung von der ersten Näherung etwas größer ist als bisher angenommen wurde.

66

	DIE	
	$T = 10^{\circ}, t = 30^{\circ}$ von 2.14	$\begin{array}{c} -0,0015^{\circ}\\ -\\ -0,0005^{\circ}\\ -0,0020^{\circ}\\ -0,0010^{\circ}\\ -0,0015^{\circ}\end{array}$
	Abweichung für von 1.5 b	+ + + - - - - $0,0005^{\circ}$ + - $0,0005^{\circ}$
n Korrekturformeln	Abweichung von 2.14	$egin{array}{c} 0.24 \ (t-T)^{0/00} \ 0.24 \ (t-T)^{0/00} \ 0.08 \ (t-T)^{0/00} \ 0.08 \ (t-T)^{0/00} \ 0.08 \ (t+T)^{0/00} \ 0.08$
ergleich der verschiedene	Relative / von 1.5 b	$\begin{array}{c} -\\ -\\ 0.24 \left(T-t\right) {}^{0/00} \\ 0.16 \left(T-t\right) {}^{0/00} \\ 0.16 \left(T {}^{0/00} \\ 0.16 \left(2 \left(T-t\right) {}^{0/00} \\ 0.08 \left(3 \left(T-t\right) {}^{0/00} \\ 0.08 \right) \end{array}\right) \\ \end{array}$
	Nenner*	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	Formel	1.5b (l. Näherung) 2.14 (HIDAKA) 1.16 (HIDAKA) 1.2c (SUBOW) 1.3c (SUHUMACHER) 1.3c (HANSEN) 1.4c (HANSEN) 1.4c (HANSEN) * Der Zähler ist übereir

TABELLE 2

Bei allen Formeln sind diese Abweichungen jedoch so klein, daß auch die neue Formel nur dann von Bedeutung ist, wenn eine höhere Genauigkeit gefordert wird, als sie durch die erste Näherung zu erreichen ist.

3. Korrekturformel für das ungeschützte Thermometer

Nach dem bisher Gesagten bereitet die Berechnung einer Korrekturformel für das ungeschützte Thermometer keine wesentlichen Schwierigkeiten. Die Korrektur soll dabei so bemessen sein, daß lediglich die durch Einfluß der nachträglichen Temperaturänderung auf die abgerissene Quecksilbermenge bedingte Fehlablesung korrigiert wird. Die Ausgangsformel wurde schon unter (2.5) angegeben und außerdem festgelegt, daß die Ablesung am Haupt-Thermometer T'sein soll, wenn die Meßtemperatur T_w bis zum Zeitpunkt der Ablesung erhalten bleibt. Auch in diesem Fall können gemäß (2.8) statt der Volumen die Temperaturen selbst in die Gleichung (2.5) eingesetzt werden und statt V_0 die in (2.9) definierte Größe v. Bei der Auswertung ist T' als Unbekannte zu betrachten und durch T + C' zu ersetzen. Die Rechnung führt auf die schon vereinfachte Näherungsformel

$$C' = \frac{T_w - t}{K} \{ (T + v) [1 - (k_2 - \gamma_1) (2 T - T_w) + (k_2 - \alpha_1) t + k_3 (T_w^2 + T_w t + t^2 - 3 T^2)] + T^2 [(k_2 - \gamma_1) + (k_3 - \gamma_2) T] \}.$$
(3.1)

Da die Temperatur T unter dem Druckeinfluß sehr große Werte annehmen kann, muß bei der Korrekturformel für das ungeschützte Kippthermometer unter Umständen diese Anzahl von Gliedern mitgenommen werden.

Für T < 50 °C weicht jedoch

$$C' = \frac{(T_w - t)(T + v)}{K} [1 - (k_2 - \gamma_1)(2 T - T_w) + (k_2 - \alpha_1) t]$$
 (3.2)

bzw.

$$C' = \frac{(T_w - t) (T + v)}{K + K (k_2 - \gamma_1) (2 T - T_w) - K (k_2 - \alpha_1) t}$$
(3.3)

um weniger als $1^{0}/_{00}$ von der ausführlicheren Formel ab, bei $T_{w} - t = 30$ °C also um weniger als 10^{-3} °C, während auch für alle weiteren zu erwartenden T-Werte die Abweichung unter 1% bleiben dürfte. Der Vergleich mit anderen Formeln wird erleichtert, wenn auch hier die in (2.11) zusammengestellten Zahlenwerte eingesetzt werden. Die so folgende Korrekturformel für das ungeschützte Thermometer

$$C' = \frac{(T_w - t)(T + v)}{K - T + 0.5 T_w + 1.5 t}$$
(3.4)

gilt ebenfalls nur für Thermometer aus Thermometerglas 16^{III}, während für andere Thermometer die Zahlenwerte anders sein können. Die Übereinstimmung dieser Formel mit den bisher für die Korrektur des ungeschützten Kippthermometers verwendeten Korrekturformeln, die in Tab. 1 unter Spalte d zusammengestellt sind, ist trotz der Abweichung als gut zu bezeichnen.

DIETRICH BÖHL

Entsprechend den Gedankengängen, die zur Ableitung der vorliegenden Korrekturformeln führten, soll auch der Einfluß des am Meßort herrschenden Wasserdrucks auf die Anzeige des ungeschützten Kippthermometers definiert werden.

Da das Thermometer evakuiert ist, verläuft die Ausdehnung des Quecksilbers im Thermometer nach den gleichen Gesetzen wie beim geschützten Kippthermometer. Das Volumen des Vorratsgefäßes hängt dagegen sowohl von der Temperatur als auch vom Druck am Meßort ab. Es werde angenommen, daß sich diese Abhängigkeit durch

$$V_{1} (1 + \gamma_{1} T_{w} + \gamma_{2} T_{w}^{2} \dots) (1 - \beta_{1} p - \beta_{2} p^{2} \dots)$$
(3.5)

darstellen lasse. Der von dem Druck unabhängige Bestandteil dieser Formel ist identisch mit dem beim geschützten Thermometer bei der Temperatur T_w gefundenen Volumen des Ausdehnungsgefäßes, so daß das Volumen der Quecksilbermenge, die durch das Kippen separiert wird, durch

$$(V_0 + V(T_w)) (1 + \gamma_1 T_w + \gamma_2 T_w^2 \dots) + V_1(\beta_1 p + \beta_2 p^2 \dots) (1 + \gamma_1 T_w + \gamma_2 T_w^2)$$
(3.6)

dargestellt werden kann. Diese Quecksilbermenge füllt das Oberende des Thermometers bis zum Teilstrich T', muß also auch das Volumen

$$(V_0 + V(T')) (1 + \gamma_1 T_w + \gamma_2 T_w^2 \dots)$$
(3.7)

besitzen. Daraus folgt für den Druckeinfluß auf die Anzeige des ungeschützten Kippthermometers

$$(V_0 + V(T')) - (V_0 + V(T_w)) = V_1 (\beta_1 p + \beta_2 p^2 \dots), \qquad (3.8)$$

wobei für die einzelnen Volumen wiederum die durch (2.8) und (2.9) definierten Beziehungen zu den Temperaturen selbst eingesetzt werden können. Auf die Auswertung dieser Formel soll im Rahmen dieses Aufsatzes nicht eingegangen werden.

Literatur

DIETRICH, G. und KALLE, K., Allgemeine Meereskunde, Berlin 1957.

EBERT, H., Physikalisches Taschenbuch, Berlin 1962.

- FERUGLIO, G., Il termometro a rovesciamento Richter e tavole per la sua correzione. R. Com. Talassogr. Ital. Memoria VII Venedig 1912.
- GEISSLER, H., Zur Korrekturformel für die Richterschen Kippthermometer. Ann. d. Hydr. Bd. 62 (1934).
- HANSEN, W., Bemerkungen zu den Korrektionsformeln für das Tiefsee-Umkippthermometer. Ann. d. Hydr. Bd. 62 (1934).
- HIDAKA, K., Über eine neue Korrektionsformel zur Umkippthermometerablesung. Memoirs of the Imperial Marine Observatory Kobe, Japan Vol. V (1932).
- KEYTE, F. K., On the formulas for correcting reversing thermometers. Deep-Sea Research Vol. 12 (1965).

KOHLRAUSCH, F., Praktische Physik, Stuttgart 1960.

NORDSTROM, S. G. und FOLSOM, T. R., Suggestion for eliminating pressure effects on protected reversing thermometers. Deep-Sea Research Vol. 6 (1960).

- RUPPIN, E., Umkippthermometer als Tiefenmesser. Wissenschaftliche Meeresuntersuchungen N.F. Bd. 9 (1906).
- RUPPIN, E., Die Hydrographisch-Chemischen-Methoden. Wissenschaftliche Meeresuntersuchungen N.F. Bd. 14 (1912).

SCHULZ, B., Eine italienische Tabelle der Korrektionen für das Tiefsee-Umkippthermometer nach Richter. Ann. d. Hydr. Bd. 42 (1914).

SCHUMACHER, A., Neue Hilfstafeln für die Umkippthermometer nach Richter und Beiträge zur thermometrischen Tiefenmessung. Ann. d. Hydr. Bd. 51 (1923).

SCHUMACHER, A., Eine neue Berichtigungsformel für das Tiefsee-Umkippthermometer. Ann. d. Hydr. Bd. 61 (1933).

SUBOW, N. N., Okeanologičeskie Tablizi, Leningrad 1957.

- SVERDRUP, H. U., Note on the correction of Reversing Thermometers. J. Mar. Res. Vol. 6 (1947).
- SVERDRUP, H. U., JOHNSON, M. W. und FLEMING, R. H., The Oceans, Englewood Cliffs, N. Y. (1964).

Ein neues hochfestes Seilkabel für ozeanographische "in-situ-Geräte" 73

Ein neues hochfestes Seilkabel für ozeanographische "in-situ-Geräte"

Von Edgar Bengelsdorff

Zusammenfassung: Berichtet wird über ein neues hochfestes Seilkabel. Es zeichnet sich durch große Übertragungsbandbreite und geringen Durchmesser aus und kann für Bathysonden mit mehreren Kilometern Tauchtiefe sowie als Verbindungskabel zu küstennahen ozeanologischen Meßstationen eingesetzt werden.

Mit dem Einşatz neuer elektronischer Tiefseemeßgeräte für ozeanologische Messungen in situ mit simultaner Datenübertragung nach dem Multifrequenzverfahren werden Kabel mit erhöhtem Frequenzbereich benötigt. Zur Verfügung stehende Spezialgummikabel älterer Konstruktion genügen den Anforderungen der elektrischen Übertragungseigenschaften nicht mehr. Sie haben eine zu große Dämpfung. Die mit letzteren erreichbaren maximalen Tauchtiefen betragen 800-1000 m. Beim Einsatz neuer Geräte werden wesentlich größere Tauchtiefen gefordert, ferner sollen Anlagen im Küstengebiet von Land aus betrieben werden. Aus ökonomischen Gründen sind Anlagen notwendig, die auf kleineren, wirtschaftlich arbeitenden Schiffen eingesetzt werden können, jedoch optimale Ergebnisse erreichen.

Die Masse der Tiefseesonden läßt sich auch für Sonden mit mehreren Meßwandlern in der Größe von 100 kg halten. Der Aufbau des die Sonde tragenden Kabels bestimmt somit weitgehend die Abmessungen, Gewichte und Antriebsleistungen der an Deck aufzustellenden Auslegevorrichtungen.

Tab. 1 gibt eine Übersicht über das Gewicht der Auslegeeinrichtung und der Antriebsleistung in Abhängigkeit des Kabeldurchmessers.

Zur Anpassung der Abmessungen, Gewichte und Antriebsleistungen an die Erfordernisse auf kleinen Schiffen muß der Durchmesser des Kabels so gering wie nur möglich gehalten werden. Diese Forderung, kleiner Durchmesser, große

TABELLE 1

Kabeldurch- messer	Trommelgewicht mit 3000 m Kabel	Gesamtgewicht der Auslege- vorrichtung	Antriebsleistung bei 2 m/s und 100 kp Nutzlast
16 mm	3000 kg	ca. 8000 kg	ca. 60 kW
10 mm	1200 kg	ca. 4000 kg	ca. 25 kW
4 mm	200 kg	ca. 1500 kg	ca. 5,5 kW

Tragkraft und breites Frequenzband, ist am ehesten mit einem konzentrischen Kabel zu erfüllen, dessen Außen- oder Innenleiter als Trageorgan ausgebildet ist.

Möglich ist es, um einen isolierten Innenleiter eine oder zwei Lagen Stahlseil zu bringen und diese als Trageorgan und Außenleiter zu benutzen. Die mit Versuchslängen gewonnenen Erfahrungen sprechen eindeutig dafür, Kabel mit zwei Lagen Stahlseil entgegengesetzt gewickelt zu verwenden. Kabel mit einer Lage Stahlseil drehen bei einigen schon 100 Metern Tauchtiefe leicht auf, wobei der Innenleiter zerreißt, bzw. sich infolge der Dehnung bei Entlastung in die Stahllage einklemmt und dann beschädigt oder zerstört wird. Zur Herabsetzung des Strömungswiderstandes und zum Schutz bei Bruch und nachfolgenden Aufspleißen einzelner Adern kann das Kabel mit einer Schutzhülle aus Polyäthylen oder Polypropylen versehen werden.

Prinzipieller Aufbau des Kabels: (s. Abb. 1).

Für den Einsatz neuer elektronischer Meßgeräte wurde vom Institut für Meereskunde Warnemünde in Verbindung mit der Entwicklungsstelle des VEB Kabelwerk Vacha und dem VEB Nagel- und Seilwerk Eberswalde ein Seilkabel nach oben angeführtem Prinzip entwickelt für das sich folgende Werte errechneten:

	Seilkabel $1 imes 0.75$ geschirmt	\varnothing 7 mm
1.	Innenleiter: E Cu F 25 24×0.2 mm= 0.75 mm ²	\varnothing 1,1 mm
2.	Isolation: Hochdruckpolyäthylen, Wanddicke 1 mm	arnothing 3,1 mm
3.	Eine Lage (19 Drähte) Seildraht	
	$0,55 \times 180$, TGL 9538, verzinkt, Linksschlag	\varnothing 4,2 mm
4.	Eine Lage (25 Drähte) Seildraht	
	$0,55 \times 180$, TGL 9538, verzinkt, Rechtsschlag	Ø 5,3 mm
5.	Schutzhülle: Hochdruckpolyäthylen, Wanddicke 0,85 mm	Ø 7,0 mm
6.	Mechanische Daten:	
	Bruchlast	$\geq 1700~{ m kp}$
	Seilmasse	ca. 120 kg/km
	Auftrieb im Wasser	ca. 37 kg/km
	Seilgewicht im Wasser	ca. 83 kg/km
	Seil: drehfrei	
	Biegeradius bei Wechselbiegung	$\geq 70 \; \mathrm{mm}$
7.	Ausfahrtiefe bei Sicherheitsbeiwert 4:	
	Zulässiger Gesamtzug	$425~\mathrm{kp}$
	Ausfahrtiefen in km bei Nutzlast im Wasser von	
	$50 \text{ kp} \sim 4,5 \text{ km}, 100 \text{ kp} \sim 3,9 \text{ km}$	
8.	Elektrische Daten:	
	Widerstand Innenleiter	$R_{1}=23,5~arOmega/\mathrm{km}$
	Widerstand Außenleiter	$R_{\mathrm{A}} = 17.5 \ \Omega/\mathrm{km}$
	Schleifenwiderstand	$R_{ m Schl} = 41,0 \ \Omega/ m km$
	Isolationswiderstand	$R_{ m Is}=1,5\cdot 10^{14}arOmega m km$
	Betriebskapazität	$C = 127 \mu \mathrm{F/km}$
	Betriebsinduktivität	L = 0.2 mH/km
	Wellenwiderstand	$Z = 50 \ \Omega$
	Nennspannung	500 V eff
	Prüfspannung	2 kV eff
9.	Klimabeständigkeit	-20 bis $+50$ °C
10.	Fertigungslänge	5 km

Vorgenommene Messungen und Untersuchungen an den ersten fertiggestellten Längen ergaben folgendes:

Eine Biegeprüfung, 1000 Biegezyklen, unter Zugbelastung von 500 kp wurde von 3 Mustern (2 mit Hochdruckpolyäthylenisolation, 1 mit Polypropylenisolation) bestanden. Die aufgetretene Änderung der Bruchdehnung ist unbedenklich. Eine Widerstandserhöhung des Cu-Leiters trat nicht auf. Der Außenmantel zeigte keine Beschädigungen. Bei verschärfter Kälteschlagprüfung und Kältewickelprüfung zeigten sich keine Beschädigungen. Die elektrischen Werte weichen unwesentlich von den obengenannten ab.

Im Kurvenblatt sind die Werte des Wellenwiderstandes, der dazugehörige Phasenwinkel und das Dämpfungsmaß von einem 4350 m langen Seilkabel mit Hochdruckpolyäthylenisolation dargestellt. Wellenwiderstand und Phasenwinkel sind aus den Scheinleitwerten für Leerlauf und Kurzschluß, das Dämpfungsmaß durch Spannungsmessung am Kabelende und -anfang bei Veränderung des Abschlußwiderstandes ermittelt.

Ozeanologische Beobachtungen an einer Stromgrenze auf dem patagonischen Schelf 77

Begrenzung nach W oder E war vom Peildeck aus (9 m Höhe) nicht erkennbar. Innerhalb der Stromgrenze erschien die Wasseroberfläche als glatt (in der Abbildung nur undeutlich erkennbar). Der Übergang vom normalen Bild der Wasseroberfläche zur geglätteten Oberfläche vollzog sich allmählich. Nach Norden war das Gebiet durch eine langgestreckte Linie kleiner Schaumkämme abgegrenzt.

Von der "Ernst Haeckel" wurden 1 sm voneinander entfernt nödlich und südlich der Stromgrenze 2 Stationen (379 und 380) durchgeführt und außerdem beim langsamen Überqueren der Kabbelung Oberflächenproben geschöpft (s. Tabelle). Die Oberflächenwerte beider Stationen unterschieden sich nur

	Station 37	79	Station 3	80
	37°09' S		37°10′ S	
	57°57' W		55°57' W	
	13.50 ^h		14.30 ^h	An and
0 m	12,45 °C	32,62 %	12,32 °C	32,81 º/ ₀₀
10 m	12,24 °C	32,78 % 0/00	11,94 °C	33,04 º/ ₀₀
20 m	11.08 °C	33,31 %	10,22 °C	33,63 º/ ₀₀
30 m	10,34 °C	33,65 0/00	10,14 °C	33,36 º/00
40 m			10,13 °C	33,63 °/00
44 m	10.33 °C	33,65 º/oo	_	
48 m			10,12 °C	33,63 %/00

Schöpfproben (Oberflächenwerte)

A	В	C
12,5 °C 32,84 %	12,4 °C 32,79 %	13,9 °C 29,13 %

geringfügig $(0,1 \ ^{\circ}C \ bzw. \ 0,2 \ ^{0}_{00})$. In 20 m Tiefe betrug der Unterschied 0,9 $^{\circ}C$ und 0,3 $^{\circ}_{00}$, unterhalb von 30 m stimmten beide Stationen überein. Auch zwei Oberflächenproben, die etwa 500 m südlich der Stromgrenze (A) bzw. direkt an ihrem Südrande (B) geschöpft wurden, ergaben nahezu dieselben Werte. Überraschenderweise ergab eine 3. Probe (C) etwa 500 m südlich der Station 379 und rund 300 m nördlich des Randes der Stromgrenze 13,9 $^{\circ}C$ und einen Salzgehalt von nur 29,13 $^{\circ}_{00}$. Hier handelte es sich offensichtlich um vom Rio de la Plata stark beeinflußtes Wasser, das etwa 120 km südöstlich des Mündungstrichters in einem nur wenige hundert Meter breiten Streifen innerhalb des eigentlichen Küstenwassers lagerte. Strommessungen nördlich der Kabbelung erfolgten leider nicht.

Nach dem Passieren der Stromgrenze ging die "Haeckel" auf $37^{\circ}11'$ S und $56^{\circ}00'$ W für 15 Stunden vor Anker. Hier wurden stündlich Serien oder Bathythermogramme gefahren und in 5, 20 und 40 m Tiefe Strommesser ausgebracht. (Eine Bearbeitung steht noch aus.) Es sei nur mitgeteilt, daß der Strom in 5 m Tiefe zwischen 10° und 100° pendelte und Geschwindigkeiten bis 60 cm/s erreichte. In 20 und 40 m setzte die Strömung noch $35-65^{\circ}$ und erreichte Ge-

Ozeanologische Beobachtungen an einer Stromgrenze auf dem patagonischen Schelf

Von HANS-JÜRGEN BROSIN und DIETWART NEHRING

Unstetigkeiten an der Meeresoberfläche (Stromgrenzen, Kabbelungen) sind für verschiedene Seegebiete beschrieben worden (s. z. B. KRÜGLER 1966). Auch im Gebiet der La Plata-Mündung treten derartige Stromgrenzen auf. Nachstehend sollen einige Beobachtungen mitgeteilt werden, die auf dem patagonischen Schelf gewonnen wurden.

Am 15. 10. 1966 gegen 13.00 Uhr Ortszeit wurde vom FFS "Ernst Haeckel" des Instituts für Hochseefischerei Rostock-Marienehe auf der Position $37^{\circ}09'$ S und $55^{\circ}57'$ W über einer Wassertiefe von 45-50 m eine markante Stromgrenze beobachtet (s. Abbildung). Zur Zeit der Beobachtung herrschten folgende Bedingungen: Wind 140° 5 m/s; Seegang Stärke 2 aus 140°, Wellenhöhe 0,3 m; Dünung aus 180°, Wellenhöhe 1,0 m, Periode 8 sec; Lufttemperatur 10,6 °C; Himmelsbedeckung 2/8. Die Stromgrenze verlief in Richtung 240-60°. Eine

Stromgrenze von N aus gesehen.

HANS-JÜRGEN BROSIN und DIETWART NEHRING

schwindigkeiten bis 55 cm/s (in 40 m 40 cm/s). Die Messungen mußten am 16. 10. 1966 gegen 05 Uhr abgebrochen werden.

Von der Ankerstation aus konnte die Kabbelung am 15. 10. bis gegen 17 Uhr Ortszeit in einiger Entfernung beobachtet werden. Nach einer Zunahme des Seegangs war sie schließlich nicht mehr auszumachen. Am 16. 10. 1966 wurde beim Hellwerden gegen 06 Uhr die Stromgrenze erneut etwa 100 m nördlich des Schiffs gesichtet. Ihre Richtung war fast unverändert 260°-80°. Wiederum war der Nordrand durch einen Streifen sehr kurzer kabbeliger Wellen mit Schaumkämmen gekennzeichnet. Es herrschten folgende Bedingungen: Wind 360° 7 m/s; Seegang Stärke 3 aus 360°; schwache Dünung aus 200°. Die letzte Schöpfserie um 05.54 Uhr ergab an der Oberfläche 11,56 °C und 33,60 $^{0}/_{00}$. Eine am Vortage an der Ankerstation zwischen 0 und 30 m vorhandene Temperaturund Salzgehaltsschichtung war weitgehend abgebaut worden. Oberflächenund Tiefenwerte stimmten nahezu überein. In der Folgezeit wanderte die Stromgrenze langsam achteraus. Eine Schöpfprobe um 06.15 Uhr ergab eine Oberflächentemperatur von 12,2 °C und einen Salzgehalt von nur 28,14 %. Es war also in 20 Minuten eine Salzgehaltsabnahme von 5,5 $^{0}/_{00}$ erfolgt. Gegen 06.35 Uhr schien die etwa 500 m südlich des verankerten Schiffes liegende Stromgrenze langsam weiter südwärts zu wandern. Gegen 07 Uhr war die Kabbelung nicht mehr auszumachen. Leider waren weitere Untersuchungen zu diesem Zeitpunkt nicht mehr möglich.

Die vorliegenden Messungen zeigen, daß innerhalb der beobachteten Kabbelung ein schmaler Streifen von Wasser mit geringerem Salzgehalt lagerte, der sich auch durch eine höhere Temperatur von der Umgebung unterschied. Diese Verhältnisse blieben über einen Zeitraum von mindestens 18 Stunden stabil. Aussagen darüber, inwieweit hier eine tatsächliche Stromkonvergenz vorlag, lassen sich anhand der verfügbaren Messungen nicht machen.

Literatur

KRÜGLER, F., Über eine optisch markante Stromgrenze an der Polarfront in der Dänemark-Straße. Deutsche Hydrogr. Zeitschr. 19 (4) (1966) S. 159-170.

Anschrift der Verfasser:

Dipl.-Ing. Bengelsdorff, Dipl.-Math. Böhl, Dr. Brosin, Dipl.-Phys. Gohs, Dr. Nehring und Dr. habil. Sager, Institut für Meereskunde der DAW, 253 Warnemünde, Seestraße 15 Dr. Morcos, Faculty of Science, University of Alexandria, Alexandria (UAR)

E. F. SAWARENSKI / D. P. KIRNOS

Elemente der Seismologie und Seismometrie

(Übersetzung aus dem Russischen)

Von den Autoren ergänzt und in deutscher Sprache neu bearbeitet herausgegeben von WOLFGANG ULLMANN

1960. XV, 512 Seiten — 291 Abbildungen — dav. 4 auf 4 Falttafeln — 28 Tabellen — gr. 8° Ganzleinen MDN 54,—

Seit der Herausgabe des Lehrbuches "Vorlesungen über Seismometrie" von dem russischen Gelehrten B. Golitzin (deutsche Bearbeitung von O. Hecker) im Jahre 1914 sind außer Beiträgen in Lehr- und Handbüchern nur sehr wenig deutschsprachige Darstellungen auf dem Fachgebiet der Erdbebenforschung erschienen.

Um so mehr ist die Herausgabe dieses Lehrbuches in deutscher Bearbeitung begrüßt worden. Die umfassende mathematisch-physikalische Behandlung der zwei Hauptprobleme – "Ausbreitung elastischer Wellen" und "Theorie der seismischen Instrumente", wird auch erfahrenen Wissenschaftlern viele Anregungen vermitteln. Einen wesentlichen Teil nimmt die Beschreibung der auf Grund der theoretischen Überlegungen neu entwickelten Instrumente ein. Ein ausführliches Literaturverzeichnis über Einzelarbeiten sowjetischer Fachwissenschaftler bildet eine wertvolle Ergänzung.

Bestellungen durch eine Buchhandlung erbeten

AKADEMIE-VERLAG . BERLIN

CURT WEIKINN

Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850

Band I — Hydrographie

(Quellensammlung zur Hydrographie und Meteorologie)

Der Autor legt hier den ersten Band einer Fortsetzungsreihe über die Quellensammlung zur Hydrographie und Meteorologie vor. Aufgeführt sind die anormalen hydrographischen Erscheinungen (Überschwemmungen, Zu- und Aufgänge der Gewässer, sehr niedrige Wasserstände der Flüsse sowie die Sturmfluten und ihre Folgen aus den historischen Überlieferungen der verschiedenen Länder. Damit werden den Wirtschaftshistorikern zuverlässige Unterlagen für ihre Forschungen zur Verfügung gestellt. Diese Arbeit läßt aber auch erkennen, wie wir durch Beobachtung von Witterungskatastrophen drohende volkswirtschaftliche Schäden vermeiden oder auf ein Minimum reduzieren können.

```
Teil 1: Zeitwende – 1500
1958. VIII, 531 Seiten – gr. 8° – Leinen MDN 64,–
```

```
Teil 2: 1501 - 1600
1960, VI, 486 Seiten - gr. 8° - Leinen MDN 76,---
```

```
Teil 3: 1601 – 1700
1961. VI, 586 Seiten – gr. 8° – Leinen MDN 77,–
```

```
Teil 4: 1701 - 1750
1963. VI, 381 Seiten - gr. 8° - Leinen MDN 58,-
```

Bestellungen durch eine Buchhandlung erbeten

AKADEMIE-VERLAG · BERLIN

DIETRICH SONNTAG

Hygrometrie

Ein Handbuch der Feuchtigkeitsmessung in Luft und anderen Gasen

1. Lieferung 1966. 118 Seiten – 2 Abbildungen – 27 Tabellen – gr. 8° – MDN 24,–

2. Lieferung 1967. 296 Seiten – 124 Abbildungen – 74 Tabellen – gr. 8° – MDN 40,–

3. Lieferung 1967. 140 Seiten – 86 Abbildungen – 74 Tabellen – gr. 8° – MDN 24,–

4. Lieferung

1967. 168 Seiten - 94 Abbildungen - 10 Tabellen - gr. 8° - MDN 28,-

5. und 6. Lieferung in Vorbereitung

Der Autor gibt in diesem Werk einen ausführlichen Überblick über die Entwicklung und den Stand der experimentellen und theoretischen Arbeiten der Feuchtigkeitsmeßmethoden in Luft und anderen Gasen. Zunächst werden die Grundlagen der Feuchtigkeitsmessung, d. h. die Zustandsgrößen und Gasgesetze, die Maßeinheiten, die thermodynamischen Grundbegriffe, die Äquivalenttemperatur und der Wärme- und Stoffaustausch behandelt. Daran schließen sich Ausführungen über den Sättigungsdampfdruck, über Wasser, Säuren und Salze an. Im folgenden befaßt sich der Autor mit den einzelnen Meßverfahren und Feuchtigkeitsmeßgeräten, nämlich: Psychrometer, Haarhygrometer, Goldschlägerhauthygrometer, Textilfaserhygrometer, Zellophanhygrometer, Taupunkthygrometer, Absorptionshygrometer nach verschiedenen-nichtelektrischen Prinzipien, elektrische Ab- und Adsorptionshygrometer, Diffusionshygrometer, optische Hygrometer, die Feuchtigkeitsbestimmung mit Hilfe des Brechungsindexes, chemische Hygrometer, Sättigungshygrometer, Hygrometer mit Verflüssigung oder Ausfrierung des Wasserdampfes, Bistreifenhygrometer, Feuchtigkeitsmeßverfahren mit Hilfe der Dichte, des Schalles und der Wärmeleitfähigkeit, Hygroskope, Messungen und Übersättigungen, Feuchtigkeitsprobe-Konservierungsverfahren. Abschließend werden die Eich- und Prüfmethoden und die Auswerteverfahren der Feuchtigkeitsmessung angeführt.

Bestellungen durch eine Buchhandlung erbeten

AKADEMIE-VERLAG . BERLIN