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The detailed analysis of patterns of benthic community distribution related to selected environmental
parameters provides a basis for predictive modelling of species distribution. Species-specific models
predicting the probability of occurrence relative to environmental and sedimentological characteristics were
developed in this study for 29 macrofaunal species common for our study area using a logistic regression
modelling approach. This way, a good description of the occurrence of species along gradients of single
environmental variables was obtained. Subsequently, we used a technique for a predictive modelling of
species distributions in response to abiotic parameters based on single-factor logistic regression models,
utilizing AIC and Akaike weights for multimodel inference. Thus, probabilities of occurrence for selected
exemplary species (Arctica islandica, Hediste diversicolor, Pygospio elegans, Tubificoides benedii and Scoloplos
armiger) were modelled and mapped. For all species the use of this newly available combination of methods
provided fairly accurate results of a distribution prediction. Water depth that represents a type of integral
parameter remained the key factor determining the species distribution among the parameters considered
within the study scale. This is particularly relevant for species that find their optima habitat here, but also for
those as H. diversicolor that occur only locally and in comparatively low densities. Total organic content,
sorting and, for S. armiger, salinity also had noticeable effect in the determination of suitable habitats for
benthic macrofauna. The employed technique proved to be appropriate for modelling of the benthic species
habitat suitability, at least within comparable spatial scales and variability of environmental factors.
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1. Introduction

Climate change models assume a drastic change in the food web
structure, a shift in species composition towards warm water species
and growing benthic deserts on the sea floor as up-coming changes
for the Baltic Sea ecosystem (Philippart et al., 2007). Predictive
modelling of species distribution can be a valuable tool in manage-
ment directed towards the sustainable development of the Baltic Sea.
Studies on various scales are required to extend our knowledge of
habitat change effects.

Response of macrofaunal assemblages to substrate composition,
hydrographic parameters and their variation is declared by many
different studies (e.g. Sanders, 1968; Rhoads, 1974; O'Brien et al., 2003;
Laine, 2003; Perus and Bonsdorff, 2004; Ellis et al., 2006). Particular
establishments regarding the dynamics and structure of biotic/environ-
mental interactions are required to evaluate natural and anthropogenic
influences and effects on the ecological systems (Pavlikakis and
Tsihrintzis, 2000; Glockzin and Zettler, 2008a). An exploratory statistical
description of the prevailing ecological structure based on observations
is always the indispensible first step (Bourget and Fortin, 1995).

Recently, a number of studies have succeeded in the development of
effective statisticalmodels of benthic distribution. Ysebaert et al. (2002)
successfully applied logistic regression to derive response surfaces of
distributions for 20 commonmacrobenthic species found in the Schelde
estuary in the Netherlands related to salinity, depth, current velocity,
and sediment characteristics. Thrush et al. (2003) developed species-
specific models for 13 benthic species of New Zealand estuaries that
predicted probability of occurrence as well as maximum abundance
relative to sediment mud content using logistic regression for
distribution modelling and ‘factor ceiling’ method (Blackburn et al.,
1992) for maximum density modelling. Ellis et al. (2006) modelled the
distribution of 13 representative macrobenthic species in New Zealand
estuarine gradients using logistic regression and classification system
based on ‘controlling factors’ with sediment characteristics, elevation,
tidal currents, and wind-wave disturbance employed as predictors.
They faced complications to fully test the latter approach due to
differences in scales of collectedbenthic data andof higher level physical
variables. Meissner et al. (2008) developed habitat models for Nephtys
species in the German Bight (North Sea) with median grain size, mud
content, depth, and salinity as explanatory variables by application of
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multivariate adaptive regression spline techniques (MARS). Many
researches indicated difficulties due to the complexity of identification
of the underlying causal mechanisms controlling species distribution,
further extended by the fact that animals modify their physical
environment, andmany physical parameters co-vary (Ellis et al., 2006).

The present study contributes to the development of statistical
models that are able to predict the distribution of benthicmacrofaunal
species as a function of environmental variables. Models that forecast
the behaviour of species distribution versus changes in environmental
factors (sensu Legendre and Legendre, 1998) provide an insight into
chronic habitat change (regarding these parameters), though they do
not provide insight into the acute effects associated with disturbance
events (Thrush et al., 2003; Ellis et al., 2006). Model estimations based
on a data set consisting of the response variables (e.g. species
occurrence or abundance) and on a set of predictor variables (e.g.
environmental parameters) can be used to predict the spatial
distribution of species in a habitat with known or defined environ-
mental settings (Ysebaert et al., 2002; Ellis et al., 2006; Meissner et al.,
2008). Statistical models are able to relate ecological features to
environmental factors and, through validation and modification, are
able to reveal details in the underlying mechanisms responsible for
structure and organization of communities (Austin, 1987; Glockzin
and Zettler, 2008a).

Our investigation is focused on a limited area in the south-western
Baltic Sea. The pre-work of an exploratory statistical description of the
prevailing ecological structure is an essential first step towards
modelling, and it was completed for the area of interest beforehand
(Gogina et al., 2010-this volume). The identified distinct benthic
assemblages have proved to associate with certain spatial regions
and specific limits of environmental parameters. The reduction of
macrozoobenthic data to presence/absence is forced by the absence of
temporal homogeneity and is used here to eliminate the influence of
patchiness in spatial distribution that macrofauna exhibits (McArdle
and Blackwell, 1989; Legendre et al., 1997; Thrush et al., 2003).

2. Materials and methods

2.1. Study area

The study area is located in the south-western Baltic Sea, between
11.55° to 12.55° E and 54.09° to 54.96° N (Fig. 1). It is bounded by the
eastern part of the Mecklenburg Bight and the western region of the
Kadetrinne,with its northern and southern limits defined byDanish and
German land boundaries. Some geographical details about the area,
which is characterised by a relativelyhighbiodiversity of both saline and
brackish water species, as well as the analysis of benthic community
structure, can be found in Gogina et al., 2010-this volume.

2.2. Data used for model estimation

The study is based upon the data of benthic macrofauna and
associated sediment and near-bottom environmental characteristics,
sampled at 208 stations (Fig. 1a). For 72 of these stations a full set of
the abiotic parameters considered is available. Formodelling purposes
the species abundance data was reduced to presence/absence.

The description of methods for benthic macrofauna sampling and
abiotic factor determination, as well as the selection process for
extraction of 29 representative macrobenthic species modelled here,
can be found in Gogina et al., 2010-this volume.

2.3. Additional environmental data for predictive modelling

Additional data sets were required to compile the grids of each
abiotic descriptor, needed for predictive estimates of species distribu-
tion (probability of occurrence) for the whole investigation area. The
distribution surfaces obtained for each of the environmental variables
considered are presented in Fig. 1.

For the bathymetry a high-resolution digital elevationmodel (DEM)
was created usingmeasured data provided by the FederalMaritime and
Hydrographic Agency (BSH) and a regional grid data set from Seifert
et al. (2001), covering the Belt Sea region. For more details see the
description of DEMdesign inMeyer et al. (2008). Grid data sets for near-
bottom oxygen content and salinity were based on the modelled
hydrographical data, averaged for years 1960–2005 with the resolution
of 3 nautical miles (Neumann and Schernewski, 2008), covering the
whole western Baltic sea area. Grids for sediment parameters like
median grain size, sorting, skewness and permeability are derived from
the internal database of the Leibniz Institute for Baltic Sea Research
Warnemuende (IOW; Bobertz and Harff, 2004), integrating the data of
about five decades of marine investigations. The average distance
between adjacent sample sites is less than1nauticalmile. From the IOW
database external data on total organic content was also available,
however, only for a limited area. Hence, this data was agglomerated
together with the observed data used for model estimation to increase
the area covered and thedensity of data points.Nevertheless, only a part
of the investigation area could be coveredwith the compiled grid of this
parameter (Fig. 1d). Parameters were interpolated using ordinary
kriging with spherical fitted models of semivariograms into a grid with
the resolution of about 0.005 decimal degrees (approximately 0.5 km
with respect to longitude).

Ysebaert et al. (2002) favoured the usage of modelled estimates of
environmental variables over the data measured directly and
simultaneously with benthic sampling. The argumentation included
the available high spatial resolution and a sort of smoothing caused by
simulation, e.g. elimination of outfits. However, taking into account
the complexity of the functioning of ecosystems, the uncertainty of
simulations may increase the complexity of the interpretation of
derived empirical relationships. Utilization of simulated data for the
model estimation is forced merely by the necessity and absence of
alternatives. The preliminary explicit exploratory analysis of environ-
mental framework should exclusively be based on direct in situ
measurements. Therefore, to enable the investigation of autecological
relationships we rely our model calibration on directly observed data
to the highest extent possible, applying minimum transformations to
lessen the reduction of information contained in the data (Gogina
et al., 2010-this volume). Yet, the prediction is based partly on
modelled data of sufficient resolution available for the study area,
thus, allowing the validation of modelling success.
2.4. Statistical analysis and data treatment

2.4.1. Univariate logistic regression
Logistic regression of biotic data reduced to presence/absence was

employed to model the probability of occurrence of 29 discriminating
species, using the considered environmental factors (water depth,
salinity, oxygen concentrations, total organic content, median grain
size, sorting, skewness and permeability of sediments) as explanatory
variables. These factors are generally assumed to have direct or
indirect impact on distribution of macrobenthic species. The logit
function in a logistic regression is the special case of a link in a
generalised linear model, known as canonical for the binomial
distribution. Application of logistic regression methods in modelling
species distribution is not new. This method was widely used in plant
ecology (e.g. Guisan et al. 1999) and also in aquatic ecology, but to a
lesser extent. Thrush et al. (2003) concentrated their investigation on
a single environmental factor—sediment mud content, Ysebaert et al.
(2002) performed a comprehensive study, using salinity, depth, flow
parameters, median grain size and mud content as predictors. The
present study represents one of the first applications of this technique
to benthic habitats of the Baltic Sea.



Fig. 1. Distribution surfaces covering the study area (limited by the thick line) generated for each of the environmental variables considered using ordinary kriging. Dots indicate
stations sampled for macrofauna. Geographical data ESRI (2003); projection UTM on WGS84.
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The logistic regression model relates the probability of observing
the species p to one or more predictor variables x (in our study
separately to each of the environmental factors) using the logistic link
function. The regression model can be written as

pðxÞ = ez = ð1 + ezÞ ð1Þ

where z is the function of the explanatory variable(s). When this is a
first-order polynomial, the response is a logistic, S-shaped function. In
the special case of Gaussian logistic model when z is a second-order
polynomial, the responsewill approximate a bell-shaped function. For
this particular case Eq. (1) can be written as

pðxÞ = eðb0 + b1x + b2x
2Þ
= ð1 + eðb0 + b1x + b2x

2ÞÞ ð2Þ

where b0, b1, and b2 are regression parameters. They are estimated by
maximum likelihood, assuming a binomially distributed error term
(Legendre and Legendre, 1998; Ysebaert et al. 2002; Wisz and Guisan,
2009). When the estimation of z term parameters is based on log-
transformed data this can be interpreted as a further extension of the
method, aiming to produce an ecologically more plausible response
for certain species. This idea was adopted from Thrush et al. (2003,
2005) who found such a transformation to produce the most realistic
response to changes in sediment mud content for the occurrence of
some of the investigated species.
Fig. 2. Scatterplot matrix showing relationships between environmental factors over the data
organic content, o2—near-bottom oxygen concentration, kg—median grain size, so—sorting
Thus, for each factor and taxon combination, different functions
were used (linear, Gaussian, polynomial) and were based on either
raw or log-transformed data. The Wald statistic was used to estimate
the model's significance, with a significance level defined at 0.05. The
final single-factormodel used for each species was the function (of the
particular factor) that explained the most variability. The evaluation
of the model fit was performed by means of visual control of half-
normal plots of residuals and plots of residuals versus predicted
values and by considering the percentage of concordant pairs.

2.4.2. Collinearity among predictors
The complexity of prediction of species distribution is caused by

the complexity of interactions of various factors. To give some insight
in the extent and direction of collinearity among the considered
factors, relationships between pairwise combinations of individual
predictors are portrayed in Fig. 2 using scatterplot matrix. Addition-
ally, analyses of correlations among environmental parameters and
values of Pearson correlation coefficients can be found in Gogina et al.,
2010-this volume.

2.4.3. Information-theoretic approach and utilization of the Akaike
weights

To combine the results of single-factor models and to draw the
multimodel inference we considered the information-theoretic
philosophy described in Burnham and Anderson (2004). It relies on
the calculation of the Akaike's information criterion (AIC) as a model
set. Environmental factors notation: d—water depth, s—near-bottom salinity, org—total
, sk—skewness, kKM—permeability.
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selection tool. AIC is a measure of the relative Kullback–Leibler
information loss when the candidate model i is used to approximate
the truth j. Generally appropriate small-sample version (designed for
n /KN40) of criterion AICc is calculated as

AICc = – 2 lnðLÞ + 2KðK + 1Þ= ðn–K–1Þ ð3Þ

where L is a value of the maximised log-likelihood over the estimated
parameters given the data and themodel, K—number of parameters in
model i, and n is the sample sizes. AIC (or AICc) are calculated for each
of the candidate models, then these values are rescaled to calculate
delta AIC (Δi) so that the model possessing the lowest AIC value has a
Δi value of 0:

Δi = AICi–AICmin ð4Þ

where AICmin is the smallest AIC value in the model set. The model
with the lowest AIC value is considered to be the best approximating
model in the candidate set. The larger the value of Δi the less plausible
the fitted model i is. Burnham and Anderson (2004) suggest a simple
rule of thumb in assessing relative merits of models in a set: models
with Δi≤2 have strong support, models with Δi values between 2 and
10 have considerable support and those with ΔiN10 have essentially
no support. Akaike weights (ωi) are now calculated for each of the r
candidate models:

ωi =
exp − 1

2Δi

� �

∑
R

r=1
exp − 1

2Δi

� �
:

ð5Þ

The ωi are scaled between 0 and 1, and all Akaike weights sum to
one—ωi values represent the proportion of evidence for a particular
model i in the total evidence supporting all of the models (Wisz and
Guisan, 2009). A model that possesses the largest ωi value is the most
parsimonious and has most support among the specified candidate
Fig. 3. Box-and-whisker plots for 29 macrobenthic species with respect to depth, near-botto
codes from top to the bottom referring to Abra alba, Ampharete baltica, Arctica islandica, A
Diastylis rathkei, Dipolydora quadrilobata, Gastrosaccus spinifer, Halicryptus spinulosus, Hedist
Macoma balthica, Mya arenaria, Mysella bidentata, Parvicardium ovale, Polydora ciliata, Pygo
Trochochaeta multisetosa, and Tubificoides benedii. The tops and bottoms of each “box” are
each box is the sample median. The “whiskers” extending to the left and the right of each b
models given the data. When more than one model is supported by
the data it is possible to calculate a global model that is a weighted
average of all the candidate models in the a priori defined set. New
parameter estimates for each term in the global model can be
computed by weighting them by the Akaike weights

ˆ̄θ = ∑
R

i=1
ωi θ̂i ð6Þ

where is ˆ̄θ the model averaged parameter estimate based on all R
models, and θ̂i is the parameter estimate for a term in a candidate
model i with the Akaike weight ωi. For terms that do not feature in a
candidate model but are present in the global model the parameter
estimate is taken to be zero. Thus, if the goal is prediction, the point
inference can be based on the entire set of models using Akaike
weights within the overlapping of single-factor models as weight
factors to generally estimate the probability of species occurrence.

2.4.4. Habitat suitability mapping
The method applicability was tested on five selected species

(Arctica islandica, Hediste diversicolor, Pygospio elegans, Tubificoides
benedii and S. armiger). Finally, estimates derived for these species
were implemented in a geographical information system. As the grid
data for total organic content was only available for a limited part of
the investigation area (see Section 2.3), two model sets were
considered for the final prediction: one with and one without the
model of species occurrence probability as a function of total organic
content included. The final value assumed for the overlapping areas of
two model sets was the value from the model set with all parameters
considered; the rest of the areawas filled outwith the results based on
the model set lacking the total organic content factor. Concordance
was calculated to provide the estimate of modelling success.

All analysis were carried out using SPSS (SPSS, Inc.), Statistica
(StatSoft, Inc., 2007), PRIMER(PRIMER-E, PlymouthMarine Laboratory;
m salinity and oxygen, total organic content. Species are ordered alphabetically, 6-letter
starte borealis, Bylgides sarsi, Capitella capitata, Cerastoderma glaucum, Corbula gibba,
e diversicolor, Heterochaeta costata, Heteromastus filiformis, Hydrobia ulvae, Lagis koreni,
spio elegans, Scoloplos armiger, Spio goniocephala, Terebellides stroemi, Travisia forbesii,
the 25th and 75th percentiles of the samples, respectively. The line in the middle of
ox represent minimum and maximum of the observations.
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Clarke andWarwick, 1994), MATLAB and ArcMap (ESRI Inc., Redlands,
USA).

3. Results

3.1. Distribution of the observed species occurrence along considered
environmental variables

The observed frequency distribution of 29 macrobenthic species
(selected as representative/dominating within the study area as
described in Gogina et al., 2009—this volume) along considered
environmental variables is presented as box-and-whisker plots in
Figs. 3 and 4.

With respect to depth, while the range of species occurrence
represented by “whiskers” generally corresponds to the limits defined
by cumulative abundance distribution curves (see Gogina et al., 2010-
this volume), analysis of “boxes” suggests differences between
distributions of cumulative abundance and occurrence curves. E.g.
25th and 75th occurrence percentiles for Capitella capitata correspond
to ca.12 and 21 m depth, however, the cumulative percentage of its
abundance increases between depth values of 20 and 22.5 m from less
than 0.2 to more than 0.8, indicating the range of maximum response
against depth within the data limits. This is noteworthy, because this
sudden increase in cumulative abundance is due to very few locations
where the density of these polychaetes is up to two orders of
magnitude higher than the average abundance in the region.

Though generally all the dominating species are mesohaline, and
the salinity gradient is limited within the study area, the graphs
clearly distinguish characteristic species tending to polyhalinity
(Halicryptus spinulosus, Terebellides stroemi and Trochochaeta multi-
setosa) from species preferring the lower salinity within the
considered factor range (Cerastoderma glaucum, H. diversicolor, He-
terochaeta costata, Hydrobia ulvae, Mya arenaria, Spio goniocephala,
Travisia forbesii, T. benedii). Other species take intermediate positions
regarding salinity, with widest range of occurrence observed in our
data, e.g. for Bylgides sarsi and Diastylis rathkei.

The influence of total organic content on the occurrence of species
seems to be most evident. Some species indicate an exceptionally
Fig. 4. Box-and-whisker plots for 29 macrobenthic species with respect to median grain size,
all the explanation see caption of Fig. 3.
narrow range of occurrence at low values of organic content, e.g. C.
glaucum, H. diversicolor, T. forbesii, and, to a smaller degree, Astarte
borealis, H. costata, M. arenaria, and S. goniocephala. Others, such as B.
sarsi, C. capitata, H. spinulosus, occur along the whole range of organic
content.

3.2. Single-factor response curves

Logistic regression models predicting the probability of species
occurrence as a function of each of the abiotic parameters considered
were generated for each of the 29 species. Single-factor models are
defined here following Eqs. (1) and (2). Table 1, Figs. 5 and 6 give an
example of obtained response curves for a single environmental
variable, showing the fitted logit curves for the 29 macrobenthic
species in relation to water depth and to the total organic content.
These are the factors which reveal the most distinct patterns in
explaining the variability of benthic fauna distribution. Water depth
actually represents a type of integral parameter (‘proxy’) that
combines the effects of various habitat features that are either
described by the available data, or not measured (or even not
measurable). The response curves obtained were in general agree-
ment with the observed distribution from Figs. 3 and 4, which
supports the accuracy of the logistic modelling approach employed.
Models predicting the probability of species occurrence relative to
water depth show a concordance between 64.1 and 93.5%, relative to
the total organic content—between 57.4 and 94.3% (Table 1). The
variety of functional forms among the species response towater depth
indicates that the occurrence of species is driven by species-specific
sensitivity to that factor, with a non-constant rate of change
characteristic for all of the species. The probability of occurrence of
species such as C. glaucum, M. arenaria, H. costata, H. diversicolor and
T. forbesii was higher at shallow depths. The sharp drop of the curve
with increasing depth indicates that some species, e.g. H. ulvae and P.
elegans, are highly sensitive to this parameter and avoid deep regions.
Bell-shaped curves with an optimum at intermediate depths, as seen
for S. goniocephala, T. benedii and Gastrosaccus spinifer, indicate the
decrease of probability of occurrence both at the lower and upper
ends of the factor range. Some species, e.g. Mysella bidentata,
grain-size parameters sorting and skewness, and permeability of surface sediments. For



Table 1
Logistic regression models of species occurrence.

Species Model_d (x−water depth, m) p(model) Con % Model_org (x− total organic content, %) p(model) Con %

Abralb p(x)=exp(−4.43+0.21*x) /(1+exp(−4.43+0.21*x)) b0.0001 76.0 p(x)=exp(−0.84+0.48x−0.04x2) /
(1+exp(−0.84+0.48x−0.04x2))

0.0046 71.6

Arcisl p(x)=exp(−20.2+1.97x−0.04x2)/
(1+exp(−20.2+1.97x−0.04x2))

b0.0001 82.1 p(x)=exp(−0.62+2.32log(x+1)−0.75(log(x+1))2)/
(1+exp(−0.62+2.32log(x+1)−0.75(log(x+1))2))

0.0161 65.5

Astbor p(x)=exp(−42.3+4.55x−0.12x2)/
(1+exp(−42.3+4.55x−0.12x2))

b0.0001 86.7 p(x)=exp(0.35−0.52x) /(1+exp(0.35−0.52x)) b0.0001 71.0

Cergla p(x)=exp(4.02−0.30x) /(1+exp(4.02−0.30x)) b0.0001 84.0 p(x)=exp(−0.22−1.5x) /(1+exp(−0.22−1.5x)) b0.0001 59.9
Corgib p(x)=exp(−16.0+1.59x−0.04x2)/

(1+exp(−16.0+1.59x−0.04x2))
b0.0001 73.9 p(x)=exp(−0.84+2.1log(x+1)−0.64(log(x+1))2) /

(1+exp(−0.84+2.1log(x+1)−0.64(log(x+1))2))
0.0353 63.4

Macbal p(x)=exp(73.9−6.0x+0.12x2) /
(1+exp(73.9−6.0x+0.12x2))

b0.0001 92.2 p(x)=exp(2.62−0.47x) /(1+exp(2.62−0.47x)) b0.0001 94.3

Myaare p(x)=exp(8.04−0.45x) /(1+exp(8.04−0.45x)) b0.0001 89.3 p(x)=exp(1.25−1.5x) /(1+exp(1.25−1.5x)) b0.0001 87.3
Mysbid p(x)=exp(−12.7+1.24x−0.03x2)/

(1+exp(−12.7+1.24x−0.03x2))
b0.0001 75.7 p(x)=exp(−0.91+4.14log(x+1)−1.53(log(x+1))2)/

(1+exp(−0.91+4.14log(x+1)−1.53(log(x+1))2))
b0.0001 76.3

Parova p(x)=exp(−5.56+0.55x−0.02x2)/
(1+exp(−5.56+0.55x−0.02x2))

0.0114 64.1 p(x)=exp(0.01−0.32x) /(1+exp(0.01−0.32x)) b0.0001 68.6

Diarat p(x)=exp(−9.06+1.11x−0.03x2)/
(1+exp(−9.06+1.11x−0.03x2))

0.0003 80.8 p(x)=exp(0.13+4.54log(x+1)−1.5(log(x+1))2) /
(1+exp(0.13+4.54log(x+1)−1.5(log(x+1))2))

0.0008 77.8

Hydulv p(x)=exp(8.58−0.41x) /(1+exp(8.58−0.41x)) b0.0001 89.0 p(x)=exp(1.08−0.28x) /(1+exp(1.08−0.28x)) b0.0001 82.9
Gasspi p(x)=exp(−4.22+0.59x−0.02x2)/

(1+exp(−4.22+0.59x−0.02x2))
0.0004 69.0 p(x)=exp(0.09−0.18x) /(1+exp(0.09−0.18x)) 0.0002 69.5

Hetcos p(x)=exp(2.01−0.2x)/(1+exp(2.01−0.2x)) b0.0001 77.0 p(x)=exp(−1.96−0.29x) /(1+exp(−1.96−0.29x)) 0.0448 69.8
Tubben p(x)=exp(−6.02+0.93x−0.03x2)/

(1+exp(−6.02+0.93x−0.03x2))
b0.0001 78.5 p(x)=exp(1.23−0.78x) /(1+exp(1.23−0.78x)) b0.0001 81.7

Ampbal p(x)=exp(−11.8+1.25x−0.03x2)/
(1+exp(−11.8+1.25x−0.03x2))

b0.0001 70.3 p(x)=exp(0.19−0.17x) /(1+exp(0.19−0.17x)) 0.0003 61.1

Bylsar p(x)=exp(−3.75+0.31x) /(1+exp(−3.75+0.31x)) b0.0001 84.1 p(x)=exp(0.15+1.31x) /(1+exp(0.15+1.31x)) b0.0001 83.0
Capcap p(x)=exp(7.05−0.76x+0.02x2)/

(1+exp(7.05−0.76x+0.02x2))
0.0003 66.2 p(x)=exp(−1.41+0.16x) /(1+exp(−1.41+0.16x)) b0.0001 68.6

Dipqua p(x)=exp(−12.4+1.22x−0.03x2)/
(1+exp(−12.4+1.22x−0.03x2))

b0.0001 71.2 p(x)=exp(0.12−0.14x) /(1+exp(0.12−0.14x)) 0.0013 57.4

Heddiv p(x)=exp(7.5−0.56x)/(1+exp(7.5−0.56x)) b0.0001 93.5 p(x)=exp(−0.38−3.62x) /(1+exp(−0.38−3.62x)) b0.0001 86.6
Hetfil p(x)=exp(−20.6+1.91x−0.04x2) /

(1+exp(−20.6+1.91x−0.04x2))
b0.0001 79.4 p(x)=exp(1.94−0.49log(x+1)+0.04(log(x+1))2) /

(1+exp(1.94−0.49log(x+1)+0.04(log(x+1))2))
0.0005 73.6

Lagkor p(x)=exp(−3.21+0.17x) /(1+exp(−3.21+0.17x)) b0.0001 72.7 p(x)=exp(−1.2+4.07log(x+1)−1.48(log(x+1))2) /
(1+exp(−1.2+4.07log(x+1)−1.48(log(x+1))2))

b0.0001 73.7

Polcil p(x)=exp(−8.07+0.76x−0.02x2)/
(1+exp(−8.07+0.76x−0.02x2))

0.0020 68.5 – – –

Pygele p(x)=exp(5.99−0.3x)/(1+exp(5.99−0.3x)) b0.0001 82.2 p(x)=exp(0.69−0.5x) /(1+exp(0.69−0.5x)) b0.0001 74.4
Scoarm p(x)=exp(3.69−0.12x) /(1+exp(3.69−0.12x)) 0.0003 68.3 p(x)=exp(2.18−0.28x) /(1+exp(2.18−0.28x)) b0.0001 81.8
Spigon p(x)=exp(−13.1+1.82x−0.06x2)/

(1+exp(−13.1+1.82x−0.06x2))
b0.0001 79.7 p(x)=exp(0.91−2.49x) /(1+exp(0.91−2.49x)) b0.0001 80.1

Terstr p(x)=exp(−5.28+0.22x) /(1+exp(−5.28+0.22x)) b0.0001 78.1 p(x)=exp(−3.14+4.06log(x+1)−1.29(log(x+1))2)/
(1+exp(−3.14+4.06log(x+1)−1.29(log(x+1))2))

0.0006 71.7

Trafor p(x)=exp(3.89−0.34x) /(1+exp(3.89−0.34x)) b0.0001 87.4 p(x)=exp(0.97−7.78x) /(1+exp(0.97−7.78x)) b0.0001 92.3
Tromul p(x)=exp(−5.77+0.24x) /(1+exp(−5.77+0.24x)) b0.0001 80.5 p(x)=exp(−4.49+6.32log(x+1)−2.06(log(x+1))2)/

(1+exp(−4.49+6.32log(x+1)−2.06(log(x+1))2))
b0.0001 80.1

Halspi p(x)=exp(−5.79+0.23x) /(1+exp(−5.79+0.23x)) b0.0001 78.0 p(x)=exp(−2.15+0.35x) /(1+exp(−2.15+0.35x)) b0.0001 91.2

p(x) is the estimated probability that the species occurs. Species abbreviation is as in Fig. 3. p(model) indicates the model significance level, tested using Wald test based on the χ2-
distribution (pb0.05), and Con % is the percentage of concordant pairs.
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Dipolydora quadrilobata and D. rathkei, showed a clear optimum
towards the higher end of the depth range, differing in the position of
their optimum and in their tolerance towards the lower end of the
factor range. Abra alba, H. spinulosus, T. multisetosa, T. stroemi and, to
a lesser extent, B. sarsi had the highest probability of occurrence at
the deepest zones. A broad tolerance for water depth was indicated,
for instance for S. armiger. The inverse form of the Gaussian response
towards that factor shown by Macoma balthica and C. capitata can be
interpreted owning to their cosmopolite behaviour in the context of
depthwithin the studied ranges and dependency on other variables. It
may also be regarded as a realistic form of the response function,
when considered as a slice of the bimodal response explained by the
competition exclusion in the middle of broad tolerance to an
environmental gradient.

Most macrobenthic species showed a high probability of occur-
rence at the lower end of the total organic content range (e.g. M.
balthica, M. arenaria, D. quadrilobata) with only two species, C. capi-
tata and H. spinulosus, having an increasing probability of occurrence
with the increase of total organic content. Species such as M. biden-
tata, A. alba, Lagis koreni, T. stroemi showed skewed unimodal curve
forms with an optimum tending towards the lower end of the factor
range. The models developed for Heteromastus filiformis, and to a
lesser extent A. islandica and Corbula gibba, have indicated that the
occurrence of these species is not sensitive to a wide range of
sediment total organic content.

3.3. Modelling—predicting the probability of species occurrence

The multimodel inference technique was applied to five selected
species (A. islandica, H. diversicolor, P. elegans, T. benedii and S. armi-
ger), exemplarily chosen as representatives for soft and sandy-bottom
regions of the investigation area. Maximum densities and frequencies
of occurrence for selected species are given in Table 2.

Table 3 provides maximum-likelihood estimates of logistic
regression parameters for species response surfaces to each of the
abiotic factors. Single-factor models are defined as described in
Section 3.2. For H. diversicolor models of the factors sorting, skew-
ness and permeability were not supported by a sufficient value of
occurrence events (the species was recorded only at 2 stations out of
78 covered with data on corresponding abiotic variables), and thus



Fig. 5. Logistic regression models predicting probability of occurrence for 29 macrobenthic species relative to water depth. Species abbreviation as in Fig. 3.
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models for these factors were not included in the set for model
averaging defined for this species.

Akaike weights derived for two model sets for each species—one
set including the single-factor model of total organic content used as
predictor and one without it—are presented in the lower part of the
Table 3. To assess the accuracy of prediction the values of concordance
were estimated.

Regarding Akaike weight values, the factor dominating in the
explanation of variability of A. islandica was depth. Some significant
part of distribution variability was also explained by permeability,
while all other environmental parameters considered explain a small
part of uncertainty, though models with oxygen, median grain size
and skewness did not differ significantly from the random chance. The
water depthmodel also provided the greatest strength of evidence for
H. diversicolor, followed by the model of total organic content, which
possessed a considerably lower weight in the model averaging.
Factors dominating in the explanation of variability in distribution of
P. elegans were total organic content and depth. Some significant part
of distribution variability was also explained by sorting. When it was
not possible to take the total organic content into account salinity also
explained a noticeable part of variance. S. armiger indicated a well-
defined response to salinity, to total organic content, (when it was
possible to use this factor as predictor) and to sorting. Among the
considered abiotic factors, the variability of distribution of T. benedii
was almost entirely explained by depth, with some information
hidden in the gradient of total organic content.
In Fig. 7 the results of the prediction with application of the
described technique are mapped and compared to the observed
species abundance data. The visual inspection reveals that higher
values of species abundance prevail where higher probabilities of
species occurrence are modelled.

For A. islandica the preferable conditions for the settlement within
an area and considered ranges of environmental factors included high
values of depth (approximately N18 m) and salinity as well as wide
ranges of total organic content and sedimentological parameters. On
the contrary, H. diversicolor preferred low-saline regions shallower
than 18 m. Therefore, these species seem to present the biological
antipodes in our study area. P. elegans revealed disinclination to
regionswith high total organic content and preferredmore permeable
substrate (see Fig. 7).

4. Discussion

As pointed out by Praca et al. (2008) the use of temporally
heterogeneous data confounds the effect of interannual variations in
species occurrence and environmental conditions. However, our
objectives were to attempt a general description of species habitats
and to investigate the predictive abilities of the modelling technique
at the selected spatial scale. Models determining the distribution of
exemplary macrofaunal species common for the south-western Baltic
Sea from changing environmental variables, such as depth, salinity
and sediment characteristics, have been successfully developed. These



Fig. 6. Logistic regression models predicting probability of occurrence for 29 macrobenthic species relative to sediment total organic content. Species abbreviation as in Fig. 3.
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models are considered to be reasonably general, i.e. they are able to
resolve the distribution of species over a comparatively large spatial
scale (ca. N100 m) as opposed to a metre-by-metre basis. Confirming
the postulates of Ysebaert et al. (2002), Thrush et al. (2003), and Ellis
et al. (2006), we have found that logistic regression is a useful and
relatively transparent approach to predict the response of species
occurrence as a function of various environmental conditions.

Beside the widely used generalised linear models (GLM; Guisan
et al., 1998; Wisz and Guisan, 2009), other techniques employed in
order to unravel the complexity of interactions between distribution
and environmental factors are generalised additive models (GAM; Yee
and Mitchell, 1991), classification and regression trees (CART; Moore
et al. 1991), artificial neural networks (ANN; Fitzgerald and Lees, 1992)
and multivariate adaptive regression splines (MARS; Friedman, 1991).
The generation of ‘potential habitat distribution maps’ is stated to be
Table 2
Maximum densities and frequencies of occurrences of selected species within the data
set.

Species Maximum density, ind/m2 Frequency of occurence, %

A. islandica 622 52.4
H. diversicolor 667 20.7
P. elegans 11459 57.2
S. armiger 1684 77.9
T. benedii 1469 44.7
among the predictive modelling goals (Munoz and Felicisimo, 2004),
therefore the convenience of cartographic implementation is crucial.
Suchproperties aremainly assigned togeneralisedmethods aswell as to
the MARS method, that builds complex regression models by fitting
piecewise linear regressions. A successful development of habitat
models includes both geographical and ecological discrimination of
species. Since only very few species have been studied in detail in terms
of their dynamic responses toenvironmental changes, static distribution
modelling often remains the only approach for studying the possible
consequences (Woodward and Cramer, 1996). For the regions where
the distribution is strongly and directly coupled to physiochemical
processes statistical models are also capable of satisfactorily predicting
the species distribution (Ellis et al., 2006). This is the case for our study
area as was concluded in Gogina et al., 2010-this volume. Among the
objectives we had for selecting the relatively simple and intuitive GLM
approachwas its ability to construct a parsimoniousmodel that strikes a
balance between bias and variance; identify the relative importance of
thepredictor variables; exploreand interpret the response of the species
to each predictor; estimate the uncertainty associated with parameter
estimates; predict the probability of observing the species (rather than
predicting binary presence–absence) and explore spatially explicit
patterns of uncertainty in predictions. Decisive was its availability for
direct interpretation of the results, accompanied by its reputation for
providing a competitivelyhighaccuracy (e.g. Pracaet al., 2008;Wisz and
Guisan, 2009). The comparable method that employed logistic regres-
sions together with weighted overlay was also successfully applied and



Table 3
The maximum-likelihood estimates of logistic regression parameters for response surfaces of selected species to each of abiotic factors and normalized Akaike's weights derived for
the model set including single-factor model of total organic content as predictor and the model set without it.

Parameter estimates

A. islandica H. diversicolor P. elegans S. armiger T. benedii

d b0 −20.1829 7.5037 5.9871 3.6877 −6.0225
b1 1.9694 −0.5584 −0.2993 −0.1247 0.9314
b2 −0.0449 – – – −0.03179
p(model) b0.0001 b0.0001 b0.0001 b0.0001 b0.0001

s b0 −2.8957 3.3046 5.0447 6.6534 5.5642
b1 0.1868 −0.3310 −0.3101 −0.3215 −0.3635
b2 – – – – –

p(model) b0.0001 b0.0001 b0.0001 b0.0001 b0.0001
o2 b0 0.5838 −3.9298 0.0453 4.1259 −1.1231

b1 −0.0904 0.7660 0.0183 −1.1573 0.1690
b2 – −0.0520 – 0.1029 –

p(model) 0.1149⁎⁎ 0.0946⁎⁎ 0.7473⁎⁎ 0.0192 0.0085
org b0 −0.6234⁎ −0.3851 0.6887 2.1783 1.2297

b1 2.3222⁎ −3.6250 −0.5053 −0.2814 −0.7844
b2 −0.7467⁎ – – – –

p(model) 0.0161 b0.0001 b0.0001 b0.0001 b0.0001
kg b0 0.7970 −5.3292 −2.7251 −0.3493 −2.5964

b1 −0.0023 0.0207 0.0288 0.0087 0.0177
b2 – −0.00003 −0.00004 – −0.00002
p(model) 0.0647⁎⁎ 0.0215 b0.0001 b0.0001 b0.0001

so b0 1.4313 – 2.2991 2.8781 1.0022
b1 –0.4871 – –2.8793 –2.0383 –1.4740
b2 – – – – –

p(model) 0.2075 – b0.0001 b0.0001 0.0008
sk b0 0.7319 – 0.1435 0.9031 −0.2341

b1 −0.3262 – 3.7708 1.9679 1.6366
b2 – – – – –

p(model) 0.6379⁎⁎ – b0.0001 0.0043 0.0285
kKM b0 0.5043 – −2.7986 −1.0221 −2.0592

b1 0.1260 – 0.3755 0.5344 0.2287
b2 –0.0031 – –0.0068 –0.0118 –0.0036
p(model) 0.0300 – b0.0001 b0.0001 0.0128

Akaike's weights estimated for two model sets

A. islandica H. diversicolor P. elegans S. armiger T. benedeni

Set Full No org Full No org Full No org Full No org Full No org

d 0.7591 0.7669 0.8646 0.9939 0.4431 0.9885 0.0000 0.0000 0.9902 0.9999
s 0.0188 0.0190 0.0003 0.0003 0.0000 0.0001 0.5861 0.9450 0.0001 0.0001
o2 0.0517 0.0522 0.0046 0.0053 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
kg 0.0197 0.0199 0.0004 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
so 0.0411 0.0415 0.0025 0.0056 0.0341 0.0549 0.0000 0.0000
sk 0.0208 0.0210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
kKM 0.0786 0.0794 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
org 0.0101 0.1301 0.5543 0.3798 0.0097

Concordance of merged model results, %

82.86 94.59 81.24 75.78 77.75

The environmental factors notation is as follows: org—for total organic content, kg—for median grain size, o2—for oxygen concentration, s—for salinity, d—for water depth, so—for
sorting, sk—for skewness, and kKM—for permeability.
⁎ Estimated for log-transformed total organic content variable, that indicated a better model fit.
⁎⁎ No significant relation of species occurrence probability to the factor could be derived.
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tested on a similar spatial scale by Glockzin and Zettler (2008b), who
modelled habitat suitability maps for exemplary species of the
Pomeranian Bay. In their work they emphasised not only the
importance of spatial scale, but in-depth knowledge of species
autecology used in such studies andmodels. This is especially important
since top-down correlations between the macrobenthos and the
environmental variables represented by responsemodels do not always
reflect direct cause and effect relationships, since many environmental
variables co-vary (van der Wal et al., 2008).

It is essential to differentiate between the questions that the two
types of model solutions performed serve to answer. Each single-factor
model alone is able to answer the question of how certain species
respond to changes of this separate factor, e.g. describe it as euryoecious
or stenoecious organism. Thrush et al. (2005) acknowledge that simple
modelsmay fit well the purposes of responsemanagement, for instance
by defining the sufficiently consistent general pattern of which species
prefer muddy, intermediate or sandy sediment types across scales, so
that a rank order of species can be developed. Such classification can be
used to interpret changes in the distribution and abundance of
monitored species or incorporated with other predictions of habitat
change, and used in environmental risk assessment. The multimodel
inference serves to predict the distribution of species within the
common limits of combined environmental factors, e.g. to fill out the
lack of information in the locations, where no observational data is
available. Thus among the applications of statistical modelling exercises
suchas theonepresented in this paper are: testing thehypotheses about
the ranges of species distribution along environmental gradients and
benthic stress impacts (for instance, the Pearson and Rosenberg (1978)
model that reported a gradual loss of species as the degree of stress
increased over space and/or time driven by the replacement pattern



Fig. 7. Modelled probability of species occurrence determined using Akaike's weghts for multimodel inference. Circles indicate the observed distribution with their size
corresponding to the value of abundance density (abundance, ind/m2). The intensity of shading corresponds to increasing probability of occurrence.
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defined by different tolerance of species to stress); generalization of
habitat suitabilitymaps that predict the specific ecological potential of a
habitat (with limitations defined by the data analyzed) which can be
considered in marine spatial planning and conservation management
(Degraer et al., 2008); and predicting the possible consequences of
habitat changes (either natural or antropogenic). When accompanied
by other relevant developments and investigations possible use can be
found in the comparison the of species' spatial distribution at different
scales (e.g. Thrush et al., 2005). The coupling of species ecological
functions (filtration rates, bioturbation modes, etc.) with the results
of such modelling exercises via biochemical or sediment transport
models may help to assess the ecosystem functioning (e.g. Bobertz
et al., 2009).
Table 4
Essential autecological features of exemplary species and its evidences based on modelling

Species Essential autoecological features

A. islandicaa Habitat: arctic-boreal bivalve, found in high concentrations at 25–61 m
(recorded at 8 to 256 m), in the Baltic Sea found in high saline areas (at d
of 16 to 30 m, eastern distribution limit—Arkona basin).
Substrate: firm sediments, medium to fine grain sand, sandy mud, silty
Oxygen: resistant to oxygen deficiency; can burrow into substrate and re
anaerobically for up to week.
Salinity: found at oceanic salinities, in the lab resists salinities as low as 22
Feeding mode: suspension feeder
Notes: occur in dense beds over level bottoms. Extremely long life-span
80 years in the Baltic and about 405 in the Atlantic). Strong recruitment
species in the Mecklenburg Bight during the past decades and probably
displacement of recruitment zone from below 20 to 15–20 m depth.

H. diversicolorb Habitat: inhabits shallow marine and brackish waters. In the Baltic Sea pr
enclosed bays and lagoons with smooth slopes and absence of strong cur
Substrate: sandy mud but also gravels, clays, even turf.
Oxygen: able to survive drastic conditions of hypoxia.
Salinity: euryhaline, lowest limit of salinity (determined through its lar
development) of about 5 psu.
Feeding mode: carnivore, scavenger, filter feeder and a surface deposit fe
however also having the ability to live as a suspension feeder
Notes: generally endobethic species, able to penetrate the substrate up
depths of about 30 cm.

P. elegansc Habitat: mainly lower superlittoral down to depth of 100 m, in the Balt
from ca 5 m down to 20 m.
Substrate: fine to medium sands
Oxygen: highly sensitive to hypoxia, hardly ever found in areas affected b
phenomena
Salinity: from 2 psu to hypersaline pools
Feeding mode: deposit and filter feeder
Notes: features the penetration depth of 4–6 cm. Evolves opportunistic
strategies: the species is able to rapidly re-colonize defaunated substrat
Regarded as a semi-sedentary species. Avoids strong currents. Negative
response to organic enrichment.

S. armigerd Habitat: cosmopolitan species with intertidal as well as in the subtidal
occurrence encountered in all zoogeographic regions. In the Baltic Sea, e
the Mecklenburg Bight, species habitat is limited from 5 to ca. 30 m, wi
highest abundance values found around 10 m depth and absence in pure
regions.
Substrate: muddy sands and mud
Oxygen: resistant to hypoxia down to 0.5 ml/l
Salinity: cannot survive at salinities lower than 10.5 psu
Feeding mode: deposit feeder
Notes: mobile non-selective species burrowing freely through sediments
builds non-persisting tubes in the sediment down to 15 cm.

T. benediie Habitat: ubiquitous marine oligochaete that dominates in coastal areas.
often typified as ‘opportunist’ that is adapted to the rapid environment
fluctuations and harsh conditions in estuaries.
Substrate: fine organic- enriched sediments
Oxygen: resistant to hypoxia
Salinity: found in meso- to euhaline waters.
Feeding mode: deposit feeder
Notes: very successful adaptive strategies in sulfidic benthic environme
Able to penetrate into the substrate up to 10 cm.

a Cargnelli et al., 1999; Zetter and Röhner, 2004; Wanamaker et al., 2008.
b Nithart et al., 1998; Scaps, 2002; Kristensen, 2001; Henning et al., 2004; Zetter and Röh
c Fauchald and Jumars, 1979; Morgan et al., 1999; van der Wal et al. 2008.
d Fauchald and Jumars, 1979; Zettler et al., 2000; Bleidorn et al. 2006.
e Dubilier et al., 1994; Giere, 2006.
Considerable differences of the importance of various environmental
conditionswere highlighted by the predictionmaps for selected species
(Fig. 7). All obtained response surfaces indicated a relatively high
percentage of concordance, though a more robust validation of derived
models is still to be executed and will unambiguously require external
data. The essential autecological features found in literature sources and
evidences derived from modelling results are summed up in Table 4.

The discussion above illustrates, that to distinguish between coloni-
zation types, prior biological knowledge must support the statistical
examination. Bonsdorff (2006) states the “ecological age” of the present
Baltic Sea ecosystem to be only about 8000 years, resulting in still ongoing
primary succession processes and numerous ecological niches remaining
available for immigration. This seems to be evidenced by the fact, that
results (Fig. 7).

Evidence from the modelling results

epths
Confirm: wide ranges of organic content and sediment parameters, high
values of depth (N18 m) and salinity define suitable habitat. Very unlikely to
occur in the shallow coastal zone, influenced by freshwater runoff. Highest
densities found at depth between 15 and 20 m, whereas highest probabilities
of occurrence coincide with the regions slightly below 20 m. As densities of
species are known to correlate negatively with size/age this confirms the
displacement of recruitment zone. Not recorded in the region at salinities
below 10 psu, highest densities found between 14 and 16 psu (much lower
than oceanic salinity), but occurrence increases with salinity. The preference
of dense beds reflected in low likelihood of occurrence on coarse sediments
and at high permeability values. Oxygen concentration had no strong effect.
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Confirm: does not find its optima within the study area (greatly higher
densities are recorded in the enclosed coastal estuarine regions of the Baltic
Sea). Preference of low-saline regions shallower than 18 m within the
investigated spatial and environmental limits. Among considered abiotic
factors the largest effect size featured water depth, followed by total organic
content. Species also responded here noticeably to oxygen, grain size and
salinity, but with relatively low weights in the model averaging inference. Its
opportunistic abilities seem to allow species to avoid locations where it may
be disturbed by other competitive species.
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ic Sea Confirm: the model with highest weight in the model averaging was the
function of total organic content. Response indicates almost no chance of
finding the species in sediments with organic content exceeding 5%. Water
depth (containing the effect of currents) indicated slightly smaller but
comparable influence on species distribution. Typically favors shallower
waters, but the response against increasing water depth is not as rapid as in
case of H. diversicolor. Surprisingly, only sorting had non-zero (yet low) model
averaging weight among sediment factors, perhaps due to the limiting power
of covarying organic content.
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Confirm: among the considered abiotic factors only salinity, total organic
content and, to small extend, sorting explained the distribution pattern of S.
armiger in multimodel inference. Bleidorn et al. (2006) revealed that S.
armiger represents a species complex and is not a cosmopolitan species that
explains the inconsistency between general environmental setting found in
literature and its observed and predicted distribution limits within the study
area. Thus, there is a negative response along increase of both salinity and
organic content in terms of both occurrence and abundance within the region
(though observed salinities have the lower limit of 8 psu).
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Confirm: the prediction map for this species is derived nearly exclusively from
water depth as a proxy, with highest probability of its occurrence around 10 to
20 m, and solitary occurrence events below 23 m. In the investigation area this
species never seems to settle on the truly mud substrate and does not favor
high organic contents as such conditions here coincide with undesirable water
depth (that probably comprises a range of other limiting factors for this
animal).
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most of the representative species selected for predictivemodelling in the
study area are named as opportunists.

The presented models should be best applicable for species that
find their optima within the observed ranges of environmental
factors. Inter alia, such models can also reflect the tendencies of an
opportunistic species distribution with satisfactory result, e.g. H. di-
versicolor that reaches only low abundances within the study area
compared to its average density inmore favourable in-shore estuarine
conditions. For such species the modelling results reveal the best of
available conditions in contrast to their optima. However, it should be
mentioned that, as for all statistical methods, the inference about the
model selection uncertainty is conditional on both data and the full set
of a priori models considered (Burnham and Anderson, 2004). Coudun
and Gégout (2006) suggest a general minimum value of 50
occurrences for species to derive acceptable ecological response
curves with logistic regression. The available data for H. diversicolor
slightly drops out of this condition with 43 cases of occurrence within
total 208 observations.

A high variance in the species distribution that usually causes an
impediment for modelling, is often not a sampling error or random
“noise”, but rather the mechanistic consequence of shifts between
limiting resources or other effects and factors (e.g. intra- and inter-
species competition, predation, mortality or dispersal). The abun-
dance of species may be very low under favourable conditions if, for
some reason, the number of propagule is very low or species never
even reach a given area. This natural phenomena of a species failing to
colonize all areas where it could potentially thrive (Huston, 2002)
may partly explain some inconsistencies between the predicted high
probability of species occurrence and its factual absence according to
observations. Under optimal conditions species can reach maximal
reproduction rates and maximal abundances, but macrobenthic
surveys often show an entirely different reality: species and commu-
nities are distributed rather patchily and often the relatively smooth
structure of abiotic gradients and other characteristics can increase
statistical uncertainty and blur the picture.

5. Conclusions and outlook

For all exemplary species the used technique provided the results
of distribution prediction based on environmental data with a fairly
satisfactory accuracy. Themethod combining the parsimony of single-
factor logistic regression models with an AIC solution of multimodel
inference can therefore be recommended for modelling of the habitat
suitability for benthic species, at least on comparable spatial scales
and environmental gradients.

It is important to point out that only a fragment of the whole factor
network responsible for the macrozoobenthos distribution was
covered in this study. Consideration of additional variables may
reveal more insightful analysis. Results of the present study may only
be interpreted within the context of the momentary state of benthic
communities.

In the present study only the probability of benthic species
occurrence based on presence/absence data was modelled, allowing
the prediction of species distribution derived from environmental data.
However, the density of species is a considerably more informative
figure. Modelling of benthic species abundance as a function of abiotic
parameters is likely to be performed applying ‘factor ceiling’ (Thrush
et al., 2003) or quantile regression (Cade and Noon, 2003) methods.
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