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Eukaryotic microbial life at abyssal depths remains “uncharted ter-
ritory” in eukaryotic microbiology. No phylogenetic surveys have
focused on the largest benthic environment on this planet, the
abyssal plains. Moreover, knowledge of the spatial patterns of
deep-sea community structure is scanty, and what little is known
originates primarily from morphology-based studies of foramini-
ferans. Here we report on the great phylogenetic diversity of mi-
crobial eukaryotic communities of all 3 abyssal plains of the
southeastern Atlantic Ocean—the Angola, Cape, and Guinea Abys-
sal Plains—from depths of 5,000 m. A high percentage of retrieved
clones had no close representatives in genetic databases. Many
clones were affiliated with parasitic species. Furthermore, differ-
ences between the communities of the Cape Abyssal Plain and the
other 2 abyssal plains point to environmental gradients apparently
shaping community structure at the landscape level. On a regional
scale, local species diversity showed much less variation. Our study
provides insight into the community composition of microbial eu-
karyotes on larger scales from the wide abyssal sea floor realm
and marks a direction for more detailed future studies aimed at
improving our understanding of deep-sea microbes at the com-
munity and ecosystem levels, as well as the ecological principles
at play.
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The abyssal sea floor (3,000–6,000 m depth) represents the
most common benthic environment on this planet, covering

54% of the Earth’s surface (1). Studies of the abyss have been
impeded by the considerable technical difficulties involved in
accessing this remote environment. Almost all studies to date
have focused on prokaryotes and metazoans. Whereas diversity
estimations of metazoans of meiofaunal size have a long and rich
history (2), microbial eukaryotes (protists) have received much
less attention, and studies have concentrated mainly on a single
taxonomic group, the foraminiferans (3). There remains a sig-
nificant lack of information on the community structure of other
deep-sea microbial eukaryotes (4, 5). Environmental molecular
surveys have revolutionized our understanding of microbial sys-
tems (6). Phylogenetic surveys also have been applied success-
fully to study the community composition of eukaryotic microbes
at several deep-sea sites (7–16); however, to date, no study has
addressed the phylogenetic diversity of eukaryotic microbial life
of one of the largest habitats, covering over half of the Earth’s
surface: the abyssal plains.
Abyssal plains are among the Earth’s flattest and smoothest

regions and are covered with muddy soft sediments. At one time,
these plains were assumed to be vast, desert-like, contiguous
habitats with relatively constant physical and chemical parame-
ters. Recent studies of prokaryotes have shown that even the
deepest parts of the Earth teem with a wide variety of life (17);
however, information on the diversity and distribution of mi-
crobial eukaryotes at abyssal depths and beyond remains scarce,
despite these eukarocytes’ important role in the material flux in
other aquatic ecosystems of the biosphere. Knowledge of the

role of microbial eukaryotic communities is essential to under-
standing global biogeochemical cycles (18).
The perceived homogeneity of abyssal environments, with

little environmental variation, has led to the assumption that
species have broad distribution ranges. This is in fact supported
by studies of foraminiferans, which in some cases have ranges
encompassing entire abyssal plains (19). But environmental
gradients do shape the deep-sea community structure, especially
in benthic environments (20). Except for the studies by Count-
way et al. (13), molecular studies of microbial eukaryote com-
munities in the deep sea have all been carried out on a local
scale. Local-scale studies of benthic deep-sea microbial com-
munities have reported differences in the community structures
between adjacent sampling sites (11, 21). Although currently
scant, knowledge of large-scale patterns of deep-sea community
structures is necessary to allow the assessment of the forces
driving biodiversity and biogeography in the deep.
In the present study, we used environmental cloning and

sequencing techniques to investigate microbial eukaryotes in the
three abyssal plains of the southern Atlantic Ocean: the Angola,
Cape, and Guinea Abyssal Plains (Fig. 1). We addressed and
compared the phylogenetic diversity and community structure of
these abyssal plains using a multiple PCR primer approach, in-
cluding general eukaryotic and group-specific (Heterokonta,
Cercozoa, and Kinetoplastea) primers. The data reveal a high
phylogenetic diversity and demonstrate that large-scale patterns
of eukaryotic microbial biodiversity exist at the abyssal sea floor.

Results
Sampling Efficiency and Estimation.We were able to retrieve a total
of 763 protistan clones with an average length of 594 bp, 442 of
them with general eukaryotic primers and 331 of them with
group-specific primers (Heterokonta, n = 205; Cercozoa, n = 59;
Kinetoplastea, n = 57). In addition, 26 clones were identified by
RDP Chimera Check, Pintail, or our manual procedure as po-
tential chimeric sequences and consequently were excluded from
the analysis. All clones were grouped into operational taxonomic
units (OTUs), following mean (5.21%; OTU5.21) and median
(0.80%; OTU0.80) values for OTU delineation estimated with the
SILVA data set (22) (Fig. S1), resulting in 180 (for OTU5.21) and
387 (for OTU0.80) different OTUs. Rank-abundance curves of the
entire data set (deducible from the bar charts of Figs. 2 and 3;
rank-abundance curves for each region are shown in Fig. S2)
showed high percentages of singletons (59% forOTU5.21 and 73%
for OTU0.80). Rarefaction curves calculated with both the general
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eukaryotic and the group-specific primers always leveled off, but
did not reach saturation (Fig. S3). The total number of OTUs was
estimated at 408 for S5.21ACE [95% confidence interval (CI), 328–
535] and 1,240 for S0.80ACE (95% CI, 1006–1562).

Large Amount of Novel Phylotypes. Comparisons of all clones with
published sequences resulted in a very high percentage of clones
having neither a nearest named neighbor (73%) nor any nearest
neighbor in GenBANK (63%). We defined the nearest neighbor
as the Basic Local Alignment Search Tool (BLAST) hit with the
highest score and no more than 5.21% p-distance to the re-
spective clone. The nearest named neighbor was accordingly
defined as the highest scoring BLAST hit with no more than
5.21% p-distance to the respective clone and representing a se-
quence with full species name annotated. The mean genetic p-
distances between clones and their first BLAST hit (i.e., the
BLAST hit with the highest score), as well as first named BLAST
hit (i.e., the BLAST hit with the highest score representing a
sequence with full species name annotated), were accordingly
high, with mean values of 11% and 13%, respectively (Fig. S4).
This was mainly the result of novel euglenozoan clones. The first
BLAST hit within this group was nearly always a highly divergent
named sequence and no environmental sequence, indicating that
these clones rarely appeared in other clone libraries. Removing
euglenozoans from the analysis resulted in mean genetic p-dis-
tances between clones and published sequences of 6.5% (first
BLAST hit) and 12.4% (first named BLAST hit). Calculating
mean genetic p-distances between clones and published se-
quences without clones from group-specific clone libraries raised
the mean values to 15.9%–16.0% (Fig. S4), due to the fact that
most euglenozoan clones (all diplonemids and 78% of all ki-
netoplastids) were present in clone libraries retrieved with gen-
eral eukaryotic primers.

High Phylogenetic Diversity with Many Parasites. All retrieved
clones belonged to well-established high-rank taxonomic groups.
All phylogenetic groups generally found in deep-sea molecular
surveyswere present in our clone libraries (Figs. 2 and 3). Themost
abundant phylogenetic groups in clone libraries constructed with
general eukaryotic primers were Alveolata (n = 168), Euglenozoa
(n = 161), Heterokonta (n = 39) and Rhizaria (n = 26). This re-
sembles the phylogenetic composition of other deep-sea clone li-
braries. Well-known major phylogenetic clades, such as the
uncultured marine alveolates (UMA/MALV/NA) or marine
stramenopiles (MAST), were abundant. Lineages and clades with
no close representatives in GenBANK (5.21% threshold) were
retrieved for all major phylogenetic groups, even within well-
studied groups, such as the Ciliophora (red long-dashed lines in
Figs. 2 and 3). Furthermore, numerous clones had parasites as
nearest neighbors, including Amoebophrya, Cryptocaryon, Cy-
tauxzoon, Duboscquella, Haramonas, Ichthyobodo, Miamiensis,
Paradinium, Perkinsus, Pirsonia, and Rhizidomyces.

Community Comparisons of Deep-Sea Abyssal Plains. Clone libraries
constructed with general eukaryotic primers were statistically
compared. Rank-abundance curves for each sampling region
(deducible from Figs. 2 and 3 and Fig. S2) show that the nu-
merically dominant OTUs generally were present in all 4 sam-
pling regions, highlighting the similarity of the underlying
communities based on relative clone abundances. However,
OTU-based similarity indices showed significant dissimilarity
between the communities of the Cape Abyssal Plain and those of
the Angola Abyssal Plain and the eastern and western Guinea
Abyssal Plain (0.20–0.26 θ5.21YC), but considerably greater sim-
ilarity of the communities of the Angola Abyssal Plain and the
Guinea Abyssal Plain (0.72–0.87 θ5.21YC). FST (Table S1) and
Unifrac (Table S2) tests revealed significant differences among
the communities of the Cape Abyssal Plain and the other abyssal
plains (Fig. 4). Differences in the community structures of the
Angola and the Guinea Abyssal Plain turned out to be statisti-
cally nonsignificant; however, the P-test (Table S2) was non-
significant only between the communities of the Angola and the
western Guinea Abyssal Plains. According to SIMPROF-tests
(OTU5.21- and OTU0.80-based Bray–Curtis similarity indices),
communities of the Cape Abyssal Plain differed from those of
the Angola and the 2 regions of the Guinea Abyssal Plain (P >
.01). The communities of the Angola and the Guinea Abyssal
Plains could not be distinguished with the present data set (P <
.01).

R
-LIBSHUFF tests (Table S3) also could not distinguish

between communities of the Angola Abyssal Plain and the 2
regions of the Guinea Abyssal Plain (P > .05); communities of
both of these abyssal plains were mostly significantly different
from communities of the Cape Abyssal Plain (P < .01).
Tests with group-specific clone libraries showed that com-

munities from the same abyssal plain (the eastern and western
Guinea Abyssal Plain) were very similar (Table S4). This high-
lights the remarkable similarity of communities retrieved from
the same abyssal plain. Sampling regions from different abyssal
plains were generally significantly different from each other.
All clone libraries were significantly different (P < .01; Fig. 4)

from other published deep-sea clone libraries.

Discussion
High Diversity and High Numbers of Novel Phylotypes. The most
obvious feature of microbial eukaryotes from abyssal plains is the
substantial species richness of their communities (408 S5.21ACE;
1,240 S0.80ACE), which is as high as that at proclaimed diversity hot
spots, such as hydrothermal vents, anoxic and hypersaline envi-
ronments, and methane seeps (8–10, 12, 14–16) with mean esti-
mates ranging from410 (S5.21ACE) to 489 (S

0.80
ACE). Furthermore,

themean genetic p-distances between all clones and both their first
BLAST hits (11.0%) and first named BLAST hits (13.0%) are
higher than those reported from other deep-sea environments
(2.5% and 10.6%, respectively; Fig. S4). These values point to a
specific assemblage ofmicrobial eukaryotes at benthic abyssal sites
and are supported by high FST values between our clone libraries
and other published clone libraries (Fig. 4). To some extent this is
the result of a single taxonomic group: the Euglenozoa (i.e.,
Diplonemea andKinetoplastea). Although group-specific primers
have proven useful in assessing the phylogenetic diversity of some
groups, such as the Cercozoa (23) andDiplonemea (24), only one-
third of the kinetoplastid clones were retrieved from group-
specific clone libraries, whereas two-thirds were retrieved with
general eukaryotic primers. Thus, the high representation of eu-
glenozoans in our clone libraries is the result of their high occur-
rence in these environments, rather than due to a bias resulting
from group-specific primers able to detect lineages that otherwise
may not appear in general eukaryotic clone libraries.
The first BLAST hit within the euglenozoans was mostly a

highly genetically divergent sequence, indicating that these deep-
sea euglenozoans rarely appear in published clone libraries and

Fig. 1. Map of the southeastern Atlantic with sampling locations: western
Guinea Abyssal Plain (1), eastern Guinea Abyssal Plain (2), Angola Abyssal
Plain (3), and Cape Abyssal Plain (4).
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Fig. 2. Midpoint rooted maximum likelihood tree of all clones (general eukaryotic and group-specific primers). Because of their very long branches, the
euglenozoans were removed and are displayed separately (Fig. 3). Their branching position is marked by an arrow. Bootstrap support values ≥ 70 are
highlighted by black circles. Branches in red are clones; branches in black are named sequences retrieved from GenBANK. For clarity, clones were grouped into
OTUs (5.21% threshold; Fig. S1), and only 1 representative clone from each OTU was included in the phylogenetic tree. These clones are identified by the last 4
numbers of their GenBANK accession numbers (GU218701-GU219463) followed by the lowest p-distance to the first BLAST hit and, after the slash, the lowest
p-distance to the first named BLAST hit within each OTU. When the first BLAST hit was already a named sequence, the first value was omitted. Bar charts
represent the number of clones per abyssal plain obtained for each OTU; pie charts represent the relative number of clones obtained from each abyssal plain
for the major phylogenetic groups. Sequences in bold represent the nearest named neighbor for each OTU. Phylogenetic branches are extended toward their
labels by gray dotted lines and by red dotted lines if the lowest p-distance to the first named BLAST hit within the respective OTU was > 5.21%. These
branches are also highlighted by long dashes if the lowest p-distance to the first BLAST hit was already > 5.21%. Species names and GenBANK accession
numbers of the reference sequences are listed in Table S6.
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have not yet been taxonomically studied. This was an unexpected
finding for the euglenozoan group Kinetoplastea, because this
group has been studied in detail. This supports the idea of a
specific benthic deep-sea community of euglenozoans and is in
agreement with the fact that most nonparasitic diplonemids and
kinetoplastids have been described as typical benthic species, and
some diplonemid lineages have been hypothesized to preferen-
tially inhabit the deep oceans (24).
Removing euglenozoans from the analysis did lower the mean

p-distance between all clones and their first BLAST hits, al-
though the mean values (Fig. S4) were still higher than those
reported from most other deep-sea habitats. This contradicts the
assumption that the abyss is simply a “sink habitat” (25), as has
been suggested for some metazoans, and indicates that the di-
versity of benthic, deep-sea microbial eukaryotic communities
can be attributed only partially to the sedimentation of organ-
isms from the pelagial.

“Rare Biosphere.” Most of the OTUs obtained in this study
occurred at low abundance, giving the distribution of clone rel-
ative abundances a very long right-hand tail, with rare species
present as singletons. This “rare biosphere” (26, 27) is a common
phenomenon in microbiology and has traditionally been thought
to indicate the presence of a seed bank of potential new colo-
nizers, according to the “everything-is-everywhere” hypothesis
(28). Interestingly, this is consistent with observations of rare
species of metazoans present in the deep sea that led to the idea
of a high deep-sea diversity (29). These rare species challenge
the traditional concept of diversity and are likewise hypothesized
to form a pool of transient immigrants (30). Several other ex-
planations have been given to explain this rare biosphere in
eukaryotic microbiology (27).
The diversity of microbial eukaryotes in the deep sea seems to

be undersampled, as indicated by rarefaction curves. Thus,
future studies may reveal many additional new phylotypes.
Group-specific clone libraries seem to be especially useful for

evaluating this missed diversity. This applies particularly to
phylogenetic groups that have been underreported in environ-
mental sequencing surveys (e.g., amoebozoans and foraminifer-
ans). At present, we cannot provide any reliable estimates of this
missing diversity, however (31).

High Diversity of Parasites. The presence of many lineages and
clades associated with parasitic species or groups, such as the
Apicomplexa, emphasizes the importance of parasitism in
aquatic (in particular, marine and deep-sea) environments
reported by many recent molecular surveys (e.g., 32). Never-
theless, the putative parasitic diversity (in both phylogenetic di-
versity and relative clone abundance) reported herein is
noteworthy. Although inferring the trophic role of an organism
by its sequence is difficult, parasitism appears to be a major force
shaping microbial community structure at abyssal depths, a force
that has been underestimated in current conceptualizations of
the marine carbon cycle. Lafferty et al. (33) have concluded that
up to 75% of all food web links include parasites.
Studies of deep-sea metazoan parasites have reported declines

in parasitic abundance and diversity with depth but increases
close to the sea floor (34, 35). This phenomeon has been linked
to the increased biomass at benthic sites and thus to an increased
availability of potential intermediate hosts, resulting in higher
parasite abundance and diversity. This also may explain the high
occurrence of microbial eukaryotic parasites at the abyssal sea
floor. One possible explanation for the paradox of a species-rich
deep-sea floor, according to Snelgrove et al. (36), was accorded
to the underestimation of positive species interactions in the
deep sea due to parasites (37).

Large-Scale Patterns in Biodiversity. Communities of the Angola
and the Guinea Abyssal Plains were relatively similar and dif-
fered from the community of the Cape Abyssal Plain. The
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community structure of microbial eukaryotes showed little geo-
graphic variation on large spatial scales encompassing different
abyssal plains located thousands of kilometers apart. Although
protistan biogeography is controversial (e.g., refs. 28 and 38) and
no consensus has been reached, it is well known that at least
some deep-sea microbial eukaryotes, including several foramin-
iferan species (19), exist with large distribution ranges at benthic
abyssal sites, similar to some deep-sea metazoans. Allen and
Sanders (39) noted that 50% of North Atlantic bivalves have
geographic ranges encompassing entire abyssal plains, a finding
echoed by Rex et al. (25) for gastropods. A recent study (13)
reported similar community compositions of microbial eukar-
yotes on a regional scale in the abyssopelagial zone of the
northwestern Atlantic Ocean. At abyssal depths, the perceived
homogeneity of sea floor habitats thus appears to be paralleled
by the homogeneity of their communities. However, by pooling
the DNA from each region, we were not able to capture the local
heterogeneity possibly present at each sampling region as re-
ported by other deep-sea studies (10, 21).
In the present study, the numerically dominant OTUs were

generally present at all 4 sampling regions, in contrast to many
rare OTUs (deducible from bar charts of Figs. 2 and 3 and Fig.
S2). It is generally assumed that the dominant taxa contribute the
most to an ecosystem’s function and consequently best describe
that ecosystem. According to this assumption, different envi-
ronments with a high overlap of the dominant species should
contribute similarly to ecosystem processes. There is an ongoing
debate regarding the role of rare species in ecosystem func-
tioning, however (e.g., ref. 27). If this rare biosphere turns out to
play an important role, then abundance-based statistics (e.g.,
Bray–Curtis similarity indices) might not adequately describe the
underlying communities. Nevertheless, all statistics showed high
similarity between the Angola and Guinea Abyssal Plains. Con-
sequently, although our sampling was far from exhaustive, and
many more especially rare taxa might be present at the sampling
sites, virtually identical communities over large spatial scales, as
reported here, indicate the prevailing homogeneous environ-
mental conditions on the abyssal sea floor. Thus, the differences
in community structure between the Cape Abyssal Plain and the
other 2 abyssal plains studied underscore the importance of
ecological parameters in shaping community composition. This
finding is in accordance with, for example, studies of eukaryotic
picoplankton from marine surface waters of the Southern Ocean
showing similar community structure over long geographic
distances and changes between different hydrographic areas
(40). This might also be supported by the significant differences
between several deep-sea clone libraries from different habitats,
as shown in Fig. 4. Keep in mind, however, that we cannot state
with confidence to what extent these differences are the result of
PCR biases or represent true differences between the com-
munities (41).
Studies of metazoans and foraminiferans suggest that 2 of the

most important factors controlling deep-sea species distribution
are water quality and food supply (42, 43). At the water surface,
the Angola and Guinea Abyssal Plains lie within the influence of
the South Equatorial Current, whereas the sampling stations at
the Cape Abyssal Plain are under the influence of the cold, less-
productive Benguela Oceanic Current (44). At the sea floor, the
Angola and Guinea Abyssal Plains are filled with North Atlantic
Deep Water, modified by injections of Antarctic Bottom Water
through the Mid-Atlantic Ridge System, whereas the Cape
Abyssal Plain is filled with Lower Circumpolar Deep Water (also
referred to as Antarctic Bottom Water), which has lower tem-
perature, salinity, and dissolved oxygen (44). All 3 abyssal plains
are furthermore separated by geographic barriers, namely the
Guinea Fracture Zone in the North and the Walvis Ridge in the
South (Fig. 1).

The high similarity of communities from the Guinea and the
Angola Abyssal Plains assume that some abyssal plains form a
vast interconnected environment. Thus, communities of micro-
bial eukaryotes might not be shaped primarily by geographical
distance. The differences in the ecological conditions between
our sampling regions suggest that ecological parameters might be
the decisive factors in shaping deep-sea communities of micro-
bial eukaryotes on larger scales. It must be noted, however, that
we sampled only 4 regions, and further sampling might challenge
our findings.

Conclusion
Our findings challenge the concept of lower biodiversity on the
abyssal sea floor than in other marine environments. The high
percentage of lineages with no close representatives in genetic
databases points to rich, and to some extent specific, commun-
ities of microbial eukaryotes at the abyssal sea floor with a
potentially high percentage of parasites.
The abyssal sea floor appears to be a contiguous habitat for

microbial eukaryotes on regional scales. Nevertheless, the sig-
nificant differences between the Cape Abyssal Plain and the
other 2 abyssal plains studied suggest that ecological parameters
might be the decisive factors in shaping microbial eukaryote
distribution patterns and zonation on large spatial scales at
abyssal depths. The abyssal sea floor seems to be a mosaic of
semi-isolated habitats, shaped and maintained on larger scales by
diverse environmental gradients.
Investigating the diversity and distribution of natural microbial

communities in Earth’s largest habitat is critical to our under-
standing of global biogeochemical cycles. Unique techniques
(27) and large-scale studies (45), as well as long-term surveys/
time series (46), may further elucidate the diverse composition of
deep-sea communities over both space and time (43).

Materials and Methods
Sampling Site. Sampling regions, depths, and sample volumes were the
western Guinea [Fig. 1 (1); 0° 50’ N 5° 35’ W; 5,136–5,142 m], eastern Guinea
[Fig. 1 (2); 0° 0’ S 2° 25’ W; 5,060–5,066 m), Angola [Fig. 1 (3); 9° 56’ S 0° 54’ E;
5,646–5,655 m], and Cape Abyssal Plains (Fig. 1 (4); 28° 7’ S 7° 21’ E; 5,033–
5,038 m]. Samples were taken with a multicorer. Each region was sampled by
3 multicorers; thus, each sampling region consisted of several cores located
several kilometers apart. From each multicorer, water from several corers
was obtained and directly filtered over polycarbonate filters with a pore size
of 0.2 μm (GTPB; Millipore) and then stored in lysis buffer (47) at -20°C until
further treatment. All materials were autoclaved before use.

DNA Extraction, Purification, Cloning and Sequencing of PCR-Amplified SSU
rDNA. Genomic DNA was extracted from the filters using a general phenol/
chloroform/CTAB extraction protocol (47) and further purified by Sepharose
4B/PVPP columns (48). Genomic DNA from the same sampling region was
pooled together. SSU rDNA was amplified with FastStart Taq DNA poly-
merase (Roche Applied Science) under standard conditions as specified by
the manufacturer. Amplified gene fragments were cloned (StrataClone PCR
Cloning Kit; Stratagene) and sequenced (positions 500–1,300) in both di-
rections (BigDye Terminator v3.1 Cycle Sequencing Kit; Applied Biosystems)
following the manufacturers’ protocols. The primers used are listed in Table
S5 From each sampling region, clone libraries were constructed with general
eukaryotic primers, kinetoplastid-specific primers, cercozoan-specific pri-
mers, and heterokont-specific primers.

Phylogenetic Analysis. The obtained sequences were corrected and assembled
manually. Chimeric sequences were detected using the Check Chimera (49)
program and by comparing each clone with its first BLAST hit, both manually
and with the Pintail program (50). Multiple alignments for phylogeny were
calculated using SINA Webaligner (22) and phylogenetic analysis with
RAxML v7.0.4 (51) under the GTRCAT model with 1,000 bootstrap replicates.
Phylogenetic trees were drawn using iTOL (52). Representative clones for
Figs. 2 and 3 were chosen as described in SI Materials and Methods.

Statistical Analysis. P-distance matrixes were built from pairwise p-distances
inferred from pairwise alignments for each possible combination using

Scheckenbach et al. PNAS | January 5, 2010 | vol. 107 | no. 1 | 119

EC
O
LO

G
Y

http://www.pnas.org/cgi/data/0908816106/DCSupplemental/Supplemental_PDF#nameddest=sfig02
http://www.pnas.org/cgi/data/0908816106/DCSupplemental/Supplemental_PDF#nameddest=sfig02
http://www.pnas.org/cgi/data/0908816106/DCSupplemental/Supplemental_PDF#nameddest=st05
http://www.pnas.org/cgi/data/0908816106/DCSupplemental/Supplemental_PDF#nameddest=st05
http://www.pnas.org/cgi/data/0908816106/DCSupplemental/Supplemental_PDF#nameddest=STXT


ClustalW2 v2.0.10 (53) and distmat (54). Based on these matrixes, pairwise
statistics were calculated with Arlequin v3.11 (FST tests) (55), UniFrac (un-
weighted UniFrac and P-tests) (56), DOTUR v1.53 (OTU assignment, rar-
efaction curves, and richness estimations) (57), SONS v1.0 (OTU-based
statistics) (58),

R
-LIBSHUFF v1.22 (59), and PRIMER v6 (PRIMER-E Ltd; OTU-

based SIMPROF tests).
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