ACTA HYDROPHYSICA

Herausgegeben von Prof. Dr. H. ERTEL und Ing. J. FISCHER

1966 erschien u. a. Band XI, Heft 2

52 Seiten - 7 Abbildungen - 3 Tabellen - 8° - MDN 7,50

In der ersten Arbeit schildert der Autor, Ing. Fischer, ein projektiv-verzerrtes Funktionsnetz, das die exponentiell verlaufenden Abklingungsvorgänge mathematisch erfaßt und ihre Interpretation erleichtert.

Ingrid Henning, Bonn, legt zwei Beiträge über hydrologische Probleme des Laacher Sees vor. Es handelt sich dabei um eine Untersuchung über den Wasserhaushalt und um eine Arbeit über periodische Schwingungen im Laacher See.

Der letzte Aufsatz bringt die Fortsetzung und den Schluß der Zusammenstellung über die Hochwasserhäufigkeit im Erzgebirge von Weikinn, und zwar für den Zeitraum 1801 bis 1850.

Einzel- bzw. Fortsetzungsbestellungen durch eine Buchhandlung erbeten

AKADEMIE-VERLAG . BERLIN

DEUTSCHE AKADEMIE DER WISSENSCHAFTEN ZU BERLIN INSTITUT FÜR MEERESKUNDE

BEITRÄGE ZUR MEERESKUNDE

HERAUSGEGEBEN

VON

ERICH BRUNS

UNTER MITWIRKUNG VON

OTTO KOLP, GÜNTHER SAGER, KLAUS VOIGT

HEFT 20

AKADEMIE-VERLAG. BERLIN
1967

DEUTSCHE AKADEMIE DER WISSENSCHAFTEN ZU BERLIN INSTITUT FÜR MEERESKUNDE

BEITRÄGE ZUR MEERESKUNDE

HERAUSGEGEBEN

VON

ERICH BRUNS

UNTER MITWIRKUNG VON

OTTO KOLP, GÜNTHER SAGER, KLAUS VOIGT

HEFT 20

INHALT

Günther Sager: Karten der stündlichen Tidewasserstandsdifferenzen 2 Tage nach den Quadraturen in der Nordsee, dem Kanal und der Irischen See	
DIETWART NEHRING und KARL-HEINZ ROHDE: Weitere Untersuchungen über anomale Ionenverhältnisse in der Ostsee	
Karl-Heinz Rohde: Untersuchungen über die Calcium-Chlor- und Magnesium-Chlor-Relationen in Flußmündun- gen und Bodden der westlichen Ostsee	34
Ludwig Gohs: Tyndall- und Extinktionsmessungen in ausgewählten Meeresgebieten	4:

Erschienen im Akademie-Verlag GmbH, 108 Berlin, Leipziger Straße 3-4

Copyright 1967 by Akademie-Verlag GmbH

Lizenznummer: 100/536/67

Kartengenehmigung: Nr. 1151/66, 41/67

Gesamtherstellung: VEB Druckerei "Thomas Müntzer", 582 Bad Langensalza

Bestellnummer: 2105/20 · Es 18 E 4

Karten der stündlichen Tidewasserstandsdifferenzen 2 Tage nach den Quadraturen in der Nordsee, dem Kanal und der Irischen See

Von GÜNTHER SAGER

Zusammenfassung: Auf der Basis des "Atlas der Tidewasserstände für die Nordsee, den Kanal und die Irische See" von G. Sager und R. Sammler werden 12 Karten mit den stündlichen Differenzen des Tidewasserstands in bezug auf die Mondkulmination in Greenwich zur Zeit 2 Tage nach den Quadraturen gegeben. Für andere Termine wird die Umrechnung unter Benutzung der Gezeitentafeln und beigefügter Tabellenwerte erläutert.

Grundlagen der Karten

In Heft 19 der "Beiträge zur Meereskunde" sind vom Verfasser 12 Karten der stündlichen Tidewasserstandsdifferenzen in der Nordsee, dem Kanal und der Irischen See für den Termin 2 Tage nach den Syzygien gegeben worden. Jetzt sind diese Daten für dieselben Seegebiete für den Zeitpunkt 2 Tage nach den Quadraturen ermittelt und in entsprechenden Karten dargestellt worden. Ausgangspunkt war wie bei der vorigen Kartengruppe der "Atlas der Tidewasserstände für die Nordsee, den Kanal und die Irische See" von G. SAGER und R. Sammler mit dem Komplex der dort zugrunde gelegten numerischen Arbeitskarten, über die in dem Textteil des Atlas Ausführungen gemacht worden sind. Jede der 12 Karten ist wiederum auf 1300 Daten basiert.

Da die Entwicklung dieser Karten analog der für 2 Tage nach den Syzygien entwickelten Gruppe ist, darf für alle Details grundsätzlich auf den diesbezüglichen Beitrag "Karten der stündlichen Wasserstandsdifferenzen 2 Tage nach den Syzygien in der Nordsee, dem Kanal und der Irischen See" in Heft 19 der "Beiträge zur Meereskunde" verwiesen werden.

Für die stündlichen Tidewasserstandsunterschiede gilt als zeitliche Zuordnung

$$T_1$$
 bis $T_2 = m_1$ bis m_2 + Hochwasserzeit am Bezugsort - $(n + \Delta n)$ (aus den Gezeitentafeln) (laut Tab. 1).

Dabei sind T_1 und T_2 die Eintrittszeiten zweier in stündlichen Abständen gegebener Tidewasserstände H_1 und H_2 und m_1 und m_2 die Intervalle zwischen dem Eintritt von H_1 bzw. H_2 und der Mondkulmination in Greenwich. n bedeutet den Hochwasserzeitunterschied bei Springzeit gegenüber der Mondkulmination in Greenwich und ist mit Δn — das ist die Variation der Hochwassereintrittszeit zu anderen Terminen des Gezeitenintervalles gegenüber dem Mittelwert n— kombiniert für 18 Bezugsorte in der Tab. 1 angegeben.

Tabelle 1 Konstanten zur Benutzung der Differenzkarten

Bezugsort	Mittlerer Springtidenhub		- ⊿n Quadraturen
	m	h	m
Bergen	0,6	-2	13
Helgoland	1,9	-2	01
Cuxhaven	2,4	-0	45
Bremerhaven	2,9	-0	16
Vlissingen	2,9	+0	28
Hoek van Holland	1,4	+1	24
Dover	3,4	-1	33
Le Havre	3,8	-2	36
Brest	2,9	+3	53
Devonport	2,2	+5	19
Portsmouth	2,0	-1	07
Immingham	3,1	+5	34
Aberdeen	1,7	+1	14
Stornoway	1,7	-5	16
Oban	1,1	+5	53
Greenock	1,9	-0	05
Liverpool	4,6	-1	15
Cobh	2,0	+5	12

Bei der Bestimmung der Höhen bzw. Differenzen zu einem beliebigen Zeitpunkt kommt der Umstand gelegen, daß die Unterschiede zum Termin 2 Tage nach den Quadraturen und unmittelbar zur Nippzeit in den behandelten Seegebieten mit Ausnahme des Skagerraks — wo bekanntlich bis zu 2 Tage Springverfrühung auftreten — unter 2% der Höhe bleiben. Man kann deshalb mit Ausnahme des Skagerraks auf die übliche Weise modifizieren zu Stündliche Tidewasserstandsdifferenz $H_2 - H_1$ im Zeitraum

 T_1 bis $T_2 =$

Kartenwert im Zeitintervall m_1 bis m_2 · $\frac{\text{Momentaner Tidenhub am Bezugsort}}{\text{(aus den Gezeitentafeln)}}$ Mittlerer Nipptidenhub am Bezugsort (laut Tab. 1)

Diese Kartengruppe ist gegenüber derjenigen für 2 Tage nach den Syzygien dann zu bevorzugen, wenn sich der Zeitpunkt zur Bestimmung der Tidewasserstandsdifferenz in der Nähe der Nippzeit befindet, wobei daran erinnert sei, daß ein Gezeitenintervall von knapp 15 Tagen eingeteilt wird in 2 Tage Nippzeit + 3 Tage Mittzeit + 5 Tage Springzeit + 3 Tage Mittzeit + 2 Tage Nippzeit. Für Termine im Bereich der Springzeit ist die in Heft 19 veröffentlichte Kartengruppe zu verwenden, bei Mittzeit kann man mit beiden Kartengruppen arbeiten, wobei sich bei größeren Ansprüchen empfiehlt, das arithmetische Mittel aus beiden Berechnungen zu nehmen.

Nautische Anwendungen

Die Handhabung der Differenzkarten sei an zwei Beispielen erläutert, wozu die Abb. 1 die Zuordnung der Seegebiete zu den verschiedenen Bezugsorten angibt. Bei der Berechnung ist auf die in den Gezeitentafeln unter dem Bezugsort verzeichnete Zeitangabe zu achten, die auch für das Ergebnis maßgebend ist.

Beispiel 1: Welche stündliche Tidewasserstandsdifferenz ist auf der Position 54°00′ N, 4°00′ W (Irische See) zur Mittagszeit des 18. März 1966 zu erwarten und zwischen welchen Zeitpunkten tritt sie ein?

Lösung: Man bestimmt als Zeitpunkt 2 Tage nach den Quadraturen nach der Gezeitentafel den 16. März 1966, so daß für die Berechnung die vorliegende Kartengruppe zu benutzen ist.

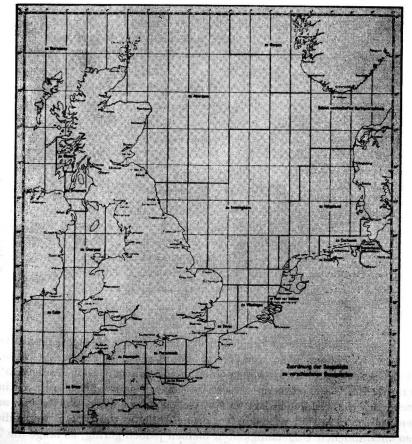


Abb. 1. Zuordnung der Seegebiete zu verschiedenen Bezugsorten

Mit der Hochwasserzeit am Bezugsort Liverpool folgt für den 18. März 1966 $09^{\rm h}$ $15^{\rm m}$ und aus der Tab. 1 für das Intervall $n+\varDelta n=-1^{\rm h}15^{\rm m}$, also für

$$T_{\mathbf{1}}$$
 bis $T_{\mathbf{2}}=m_{\mathbf{1}}$ bis $m_{\mathbf{2}}+10^{\mathrm{h}}30^{\mathrm{m}}$.

Die dem gewünschten Zeitintervall zugeordnete Differenzkarte muß also von m_1 bis $m_2=+1^{\rm h}$ bis $+2^{\rm h}$ gewählt werden, damit die Zeitpunkte T_1 und T_2 mit $11^{\rm h}30^{\rm m}$ und $12^{\rm h}30^{\rm m}$ um die Mittagszeit fallen.

Aus der Karte für die Zeitspanne von $1^{\rm h}$ bis $2^{\rm h}$ nach der Kulmination des Mondes in Greenwich entnimmt man für die obige Position den Wert -81 cm. Der mittlere Nipptidenhub in Liverpool beträgt nach Tab. 1 4,6 m. Der momentane Tidenhub errechnet sich als arithmetisches Mittel aus Tidenfall und Tidenstieg zu 1/2 (4,9 m + 5,4 m) = 5,15 m. Für die Tidewasserstandsdifferenz erhält man somit

$$-81 \text{ cm} \cdot \frac{5,15 \text{ m}}{4.6 \text{ m}} = -91 \text{ cm}$$
.

Der Tidewasserstand fällt auf der genannten Position am 18. März 1966 zwischen 11^h30^m und 12^h30^m um 91 cm. Durch die Berechnung benachbarter Werte kann man relativ schnell eine Punktfolge der Tidewasserstände in stündlichen Intervallen gewinnen, aus der man die Tidekurve ausschnittsweise zeichnen kann.

Beispiel 2: Welche größte stündliche Tidewasserstandsdifferenz ist auf der Position 49°10′ N, 3°10′ W am Nachmittag des 28. April 1966 zu erwarten und in welchem Zeitraum tritt sie ein ?

Lösung: Als Zeitpunkt Quadraturen +2 Tage bestimmt man den 30. April 1966, so daß die vorliegende Kartengruppe zu benutzen ist. Für die zeitliche Zuordnung erhält man mit der Hochwasserzeit am Bezugsort Brest von $22^{\rm h}10^{\rm m}$ und dem Wert $n+\varDelta n=+03^{\rm h}53^{\rm m}$

$$T_1 \text{ bis } T_2 = m_1 \text{ bis } m_2 + 18^{\text{h}}17^{\text{m}}$$
.

Damit als Tageszeit der Nachmittag erscheint, muß das Intervall von m_1 bis m_2 negativ sein, also vor der Mondkulmination in Greenwich liegen. Beim Durchblättern der Kartengruppe findet man den größten Differenzbetrag zwischen $m_1=-4^{\rm h}$ bis $m_2=-3^{\rm h}$ mit ca. -81 cm. Mit dem mittleren Nipptidenhub in Brest von 2,9 m und dem momentanen Tidenhub von 1/2 (2,7 m +3,0 m) =2,85 m folgt für die Tidewasserstandsdifferenz

$$-81 \text{ cm} \cdot \frac{2,85 \text{ m}}{2,9 \text{ m}} = -80 \text{ cm}.$$

Der Tidewasserstand fällt auf der genannten Position am 28. April 1966 zwischen $14^{\rm h}17^{\rm m}$ und $15^{\rm h}17^{\rm m}$ um 80 cm und erreicht damit etwa sein stärkstes Gefälle. Der absolute Höchstwert wird im allgemeinen nicht vorliegen, weil die aus den Karten ermittelten Wasserstandsunterschiede sich auf ganzzahlige m beschränken, während sich die wirklichen Extrema zwischen gebrochenen Werten von m einstellen und nur hin und wieder mit ganzen Zahlenwerten von m koinzidieren. Die so entstandenen Ungenauigkeiten bleiben jedoch gering, so lange die Tidekurven nicht allzu unregelmäßig verlaufen.

Es liegt überdies im Beispiel 2 der Fall vor, daß der momentane fast dem mittleren Nipptidenhub entspricht, so daß der Verlauf der Linien gleicher Tidewasserstandsdifferenzen für den Bereich des Bezugsorts Brest zu diesem Zeitpunkt demjenigen der hier gegebenen Kartenserie fast identisch ist.

Abschluß der Arbeit: 10. 6. 1966

Weitere Untersuchungen über anomale Ionenverhältnisse in der Ostsee

Von Dietwart Nehring und Karl-Heinz Rohde

Zusammenfassung: Von 67 Stationen in der Ostsee wurden 380 Wasserproben aus verschiedenen Tiefen chemisch untersucht. In Übereinstimmung mit Ergebnissen anderer Autoren ergaben sich beim Calcium und bei der Alkalinität deutliche positive Abweichungen von den ozeanischen Relationen. Der Magnesiumüberschuß war nur gering und ließ sich nicht eindeutig statistisch sichern. Spezielle analytische Untersuchungen zeigten, daß der Erdalkaliüberschuß in der Ostsee durch die Alkalinitäts- und Sulfatanomalie kompensiert wird. Dadurch werden Vermutungen von Gripenberg [5] über das Vorhandensein einer sogenannten "surplus" — Alkalinität hinfällig. Ferner ist die Möglichkeit gegeben, die Sulfatanomalie mit Hilfe der drei anderen Anomaliewerte zu berechnen. Auf Grund der anomalen Ionenverhältnisse in der Ostsee war der nach Knudsen berechnete Gesamtsalzgehalt um 0,02 bis 0,05 g/kg Meerwasser zu niedrig.

1. Einleitung

Von den ozeanischen Relationen abweichende Ionenverhältnisse in Brackwassermeeren haben seit jeher die meereskundlich tätigen Chemiker interessiert. So liegen auch für das Gebiet der Ostsee mehrere Publikationen zur Calciumanomalie [1, 2, 3, 4], Alkalinitätsanomalie [1, 2, 5], Magnesiumanomalie [1, 6] und Sulfatanomalie [7] vor. Darüber hinaus liegt eine Zusammenfassung zu diesem Fragenkomplex vor, in der insbesondere auch neuere sowjetische Arbeiten auf diesem Gebiet berücksichtigt werden [20]. In einer kürzlich fertiggestellten Veröffentlichung hat der eine von uns (Rohde [8]) das Problem der Calcium- und Magnesiumanomalie erneut aufgegriffen und Berechnungen über den Einfluß des Erdalkaliüberschusses auf den elektrischen Leitwert angestellt. Um die Befunde dieser Arbeit auf eine noch breitere Basis zu stellen, wurden anläßlich einer Reise mit dem Forschungsschiff "Professor Albrecht Penck" durch die Ostsee im Herst 1965 weitere 380 Proben von 67 Stationen analysiert und die Beziehungen zwischen dem Chlorgehalt einerseits sowie Calcium, Magnesium, Alkalinität und Sulfat andererseits untersucht. Unser Hauptinteresse galt den hydrologischen Verhältnissen in den tiefen Becken und Mulden der Beltsee, der Arkonasee, der Bornholmsee, der Gotlandsee und der Ålandsee. Die Lage der Stationen ist aus Abb. 1 zu ersehen, wobei der besseren Übersicht halber jeweils nur die erste und letzte Station sowie die Richtung der gefahrenen Schnitte eingezeichnet sind. Die genauen Positionen können dem Tabellenanhang entnommen werden. Ergänzt wurden die Ergebnisse dieser Forschungsreise

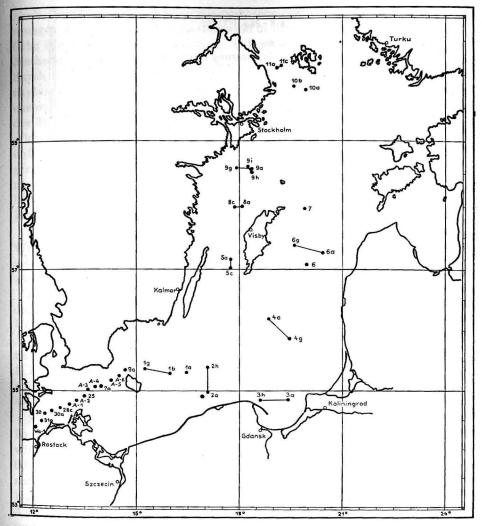


Abb. 1. Übersichtskarte der Stationen in der Beltsee, Arkonasee, Gotlandsee und Ålandsee

durch einen Schnitt, der gemäß Abb. 2 in der Unterwarnow beginnend in Richtung Ansteuerung Warnemünde verlief und jeweils im November und Dezember 1965 gefahren wurde.

2. Experimenteller Teil

Der Chlorgehalt wurde nach der Methode von Mohr-Knudsen bestimmt und nach Kalle [9] in g/l umgerechnet. Zur Ermittlung des pH-Wertes stand uns

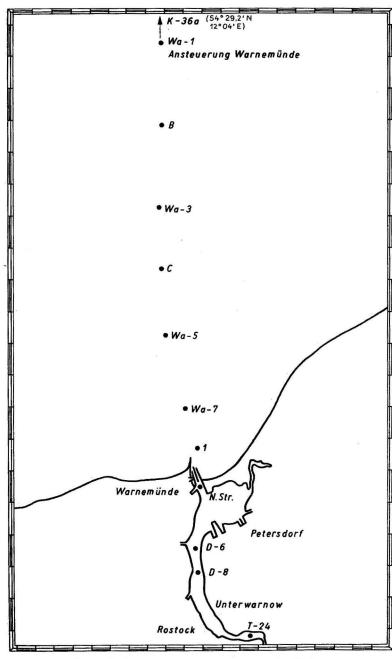


Abb. 2. Übersichtskarte der Stationen vom Schnitt Unterwarnow — Ansteuerung Warnemünde

ein Beckman-pH-Meter H 3 mit Glaselektrode zur Verfügung. Sauerstoffbestimmungen wurden nur bei Tiefen über 150 m durchgeführt. Dabei fand das übliche Winklerverfahren Verwendung. Calcium und Magnesium wurden nach der Methode von Pate und Robinson [10, 11] mittels ÄDTA analysiert, wobei durch die Verwendung von HHSNN (2-hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoesäure) bei der Calciumbestimmung [12] und von Eriochromschwarz T im Gemisch mit Phthaleinpurpur und Methylrot (50:10:5) bei der Magnesiumbestimmung [13] der Endpunkt der Titration besonders gut zu erkennen war. Die komplexometrische Bestimmungsmethode hat den Nachteil, daß das Strontium bei der Calciumbestimmung miterfaßt wird. Wegen des geringen Absolutwertes im Ostseewasser wurde der Strontiumgehalt im allgemeinen nicht vom Analysenwert abgezogen. Nur wenn der durch die Anomalie bedingte Calciumüberschuß berechnet wurde, fand der Sr-Gehalt der Probe Berücksichtigung.

Zur Ermittlung der Alkalinität benutzten wir ein von Wattenberg und Wittig [14] beschriebenes Verfahren, bei dem die überschüssige Salzsäure mit Calciumhydroxidlösung gegen Methylrot-Bromkresolgrün zurücktitriert wurde.

Die analytische Bestimmung des Sulfats ist an Bord eines Schiffes schwierig durchführbar, da die Bordlaboratorien im allgemeinen nicht für gravimetrische Untersuchungen eingerichtet sind. Indirekte Titrationsverfahren auf der Basis ÄDTA-BaCl₂ [7] erfordern viel Zeit. Daher mußte zunächst von einer analytischen Bestimmung des Sulfats abgesehen werden. Erst nach Abschluß der 1. Forschungsreise wurde ein Titrationsverfahren soweit vereinfacht, daß es auch unter den erschwerten Bedingungen an Bord noch durchführbar ist. Es sei im folgenden näher beschrieben:

Zunächst wird in einer 10-ml-Meerwasserprobe der ÄDTA-Verbrauch für die Erdalkalien in bekannter Weise [10, 11] bestimmt. Eine weitere 10-ml-Probe wird mit 25 ml destilliertem Wasser, 2 ml 0,1 n HCl und einer definierten Menge 0,01 m BaCl₂-Lösung im Überschuß versetzt, um die SO₄-Ionen quantitativ auszufällen. Die genaue Titerstellung des Fällungsreagenz erfolgt mittels 0,01 m H₂SO₄. Nach einer Kochzeit von 5 Minuten läßt man abkühlen, versetzt mit 3 ml Ammoniumpuffer und titriert den Überschuß an Barium (sowie Magnesium und Calcium) mit ÄDTA-Lösung zurück. Ein Abfiltrieren des BaSO₄-Niederschlages ist dabei nicht erforderlich. Als Indikator ist Eriochromschwarz T geeignet. Der Endpunkt der Titration ist besser zu erkennen, wenn die Pufferlösung 1% Magnesiumchelatonat enthält¹) und wie bei der Magnesiumbestimmung ein Mischindikator mit Eriochromschwarz T, Phthaleinpurpur und Methylrot verwendet wird. Der Sulfatgehalt wird wie folgt berechnet:

$$SO_4 \text{ (mg/l)} = (a + b - c) \cdot F \cdot M \cdot 96,06 \cdot 100$$
.

 $^{^{1})}$ Bei der Titerstellung der BaCl $_2$ -Lösung mit 0,01 m $\rm H_2SO_4$ ist die Zugabe von Mg-Chelatonat unumgänglich, da Barium mit Eriochromschwarz T nur einen schwachen, wenig gefärbten Komplex bildet.

In dieser Gleichung sind

- a ÄDTA-Verbrauch für die in der Probe vorhandenen Erdalkalien,
- b ÄDTA-Verbrauch der eingesetzten 0,01 m BaCl₂-Lösung,
- c ÄDTA-Verbrauch nach Ausfällung der $\mathrm{SO_4}\text{-}\mathrm{Ion}$ mittels 0,01 m $\mathrm{BaCl_2}\text{-}\mathrm{L\ddot{o}sung},$
- F Faktor der 0,01 m BaCl₂-Lösung,
- M Molarität der ÄDTA-Lösung.

Bei einiger Übung liegt der relative Fehler bei SO_4 -Konzentrationen von 0.3-1.5 g/l unter ± 1.1 %. Seine Größe ist stark von der Genauigkeit der Erdalkalibestimmung abhängig.

Rund 60% der Chloritrationen, 10% der Erdalkalianalysen, 20% der Alkalinitätsbestimmungen sowie alle Sulfatanalysen wurden doppelt durchgeführt.

3. Versuchsergebnisse und Diskussion

Die Analysenwerte nebst Positionen und Meßtiefen sind in einem Tabellenanhang zusammengefaßt. Hier finden sich ferner Angaben über die Ca/Cl-, die Mg/Cl- sowie die A^1)/Cl-Verhältnisse. Die Sauerstoffwerte wurden wegen ihrer geringen Anzahl dort nicht berücksichtigt.

Sauerstoffanalysen wurden erst ab 150 m Wassertiefe durchgeführt. Das Sauerstoffdefizit war hoch, da in den tiefen Becken der Ostsee das Wasser weitgehend stagniert. Die Sättigungswerte lagen im allgemeinen unter 20%. Lediglich in der Ålandsee wurden auch in größeren Tiefen und dicht über dem Boden noch verhältnismäßig hohe Sauerstoffsättigungswerte zwischen 76 und 84% gefunden (vgl. hierzu auch [15]).

Hohe pH-Werte von 8,2 und mehr wurden insbesondere in den oberflächennahen Schichten gemessen, während sie mit zunehmender Wassertiefe auf 7,0 bis 7,5 absanken. Dabei wurde gelegentlich ein intermediäres pH-Minimum durchlaufen.

Die Alkalinität, der Calcium- und teilweise auch der Magnesiumgehalt unterlagen innerhalb der Salzgehaltssprungschicht stärkeren Änderungen. In der Deckschicht und unterhalb der halinen Sprungschicht blieb das Chlorverhältnis der 3 Komponenten weitgehend konstant. In Abb. 3 sind der Chlorgehalt sowie die Alkalinitäts-, Calcium- und Magnesiumrelationen von Station 9c (Landsort-Tief) graphisch dargestellt worden. Der Kurvenverlauf ist charakteristisch für zahlreiche andere Stationen. Die Ionenverhältnisse werden mit den entsprechenden ozeanischen Relationen verglichen. Bei der komplexometrischen Titration mit ÄDTA werden — wie oben ausgeführt wurde — der Calcium- und der Strontiumgehalt gemeinsam erfaßt. Für das Ca/Cl-Verhältnis wurde daher ein von der ozeanischen Relation (0,02106, vgl. [16]) abweichender Wert von 0,0214 berechnet, in dem der Strontiumanteil des Meerwassers (ozeanische Sr/Cl-Relation 0,0007, vgl. [16]) enthalten ist. Dieser Wert stimmt ausgezeichnet mit komplexometrischen Calciumbestimmungen von verschiedenen Stationen und

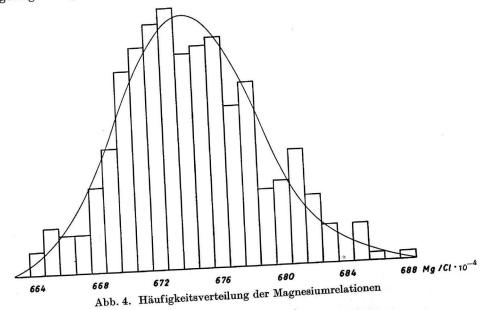


Abb. 3. Haline Sprungschicht, Calcium-, Magnesium- und Alkalinitätsrelationen auf Station 9c (Landsort-Tief)

Tiefen im Golf von Guinea überein, die eine Relation von 0.0214 ± 0.0001 ergaben [8]. Gripenberg [3] verwendete für das ozeanische Ca/Cl-Verhältnis einen Wert von 0.0215, der ebenfalls den Strontiumgehalt des Meerwassers einschließt und unseren Werten sehr nahe kommt¹). Das ozeanische A/Cl-Verhältnis wird von Wattenberg [17] mit 0.123 angegeben.

In Übereinstimmung mit Versuchsergebnissen anderer Autoren [1, 2, 3, 4, 5] wurden beim Calcium und bei der Alkalinität stets ausgeprägte positive Abweichungen von den entsprechenden ozeanischen Relationen gefunden, wobei im

¹⁾ Alkalinität.

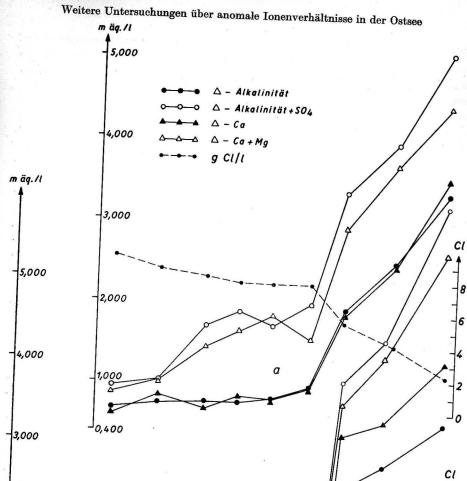

¹⁾ Während der Drucklegung erschien eine Arbeit von Culkin und Cox [21], in der Angaben über die regionale Abhängigkeit der ozeanischen Relationen sowie die Anderungen der relativen Ionenkonzentrationen mit der Tiefe gemacht werden. Das mittlere Mg/Cl-Verhältnis im Weltmeer wird mit 0,03692 angegeben. Das entsprechende Ca/Cl-und Sr/Cl-Verhältnis beträgt 0,02126 bzw. 0,00040.

salzärmeren Oberflächenwasser höhere Werte angetroffen wurden als im salzreicheren Tiefenwasser. Gemäß dem hohen Süßwasseranteil lagen die Oberflächenwerte für die Calcium-Relationen in der Ålandsee mit 0.0262 bis 0.0268am höchsten, während in der Mecklenburger Bucht nur Werte von 0,0243 bis 0,0254 erreicht wurden. Der wesentliche Abfall der Ca/Cl-Relationen erfolgt, wie Rohde [8] bereits früher feststellen konnte, im Bereich der Kadetrinne, parallel mit dem dortigen Anstieg des Salzgehalts.

Abnehmende Tendenz zeigte auch die Alkalinitätsrelation, die im Oberflächenwasser der Ålandsee bei etwa 0,380 lag und auf 0,300 in der Mecklenburger Bucht (Beltsee) absank. Entsprechend dem zunehmenden Anteil an Meerwasser ist jedoch ein Anstieg der Absolutwerte sowohl beim Calcium als auch bei der Alkalinität von der Älandsee in Richtung Beltsee zu verzeichnen.

Voipio [6] ermittelte aus 151 Ostseeproben, die auf 46 Stationen in verschiedenen Tiefen entnommen wurden, ein Mg/Cl-Verhältnis von 0,0669. Dieser Mittelwert entspricht annähernd der ozeanischen Mg/Cl-Relation von 0,0670 [16] bzw. von 0,0668 [11]. Eine positive Magnesiumanomalie, die durch Flußwasserzufuhr zu erwarten wäre, konnte auch von uns nicht eindeutig nachgewiesen werden. Abb. 4 zeigt die Normalverteilung aller im Tabellenanhang aufgeführten Magnesium-Relationen unabhängig vom Ort der Probeentnahme und der Wassertiefe. Der Mittelwert der Mg/Cl-Verhältnisse liegt mit 0,0674 etwas über der ozeanischen Relation. Die mittlere quadratische Abweichung beträgt $\pm 0{,}0004$. Damit ist eine positive Magnesiumanomalie nicht eindeutig statistisch gesichert.

Die auch von anderer Seite [4] geäußerte Vermutung, daß in der Ostsee ein geringer Magnesiumüberschuß gegenüber der ozeanischen Relation vorhanden


sein muß, wird ferner durch frühere Untersuchungen [8] am Ystad-Schnitt gestützt, bei denen ein mittleres Mg/Cl-Verhältnis von 0.0672 ± 0.0002 (mittlere quadratische Abweichung) gefunden wurde.

Zur Berechnung des Calciums mittels des Chlorgehalts sind für die Ostsee von mehreren Autoren Beziehungen abgeleitet worden. GRIPENBERG [3] und WITTIG [4] erkannten, daß entsprechend dem unterschiedlichen Meerwasseranteil in den verschiedenen Regionen und in Abhängigkeit von der Wassertiefe verschiedene Calcium-Chlor-Beziehungen gültig sind. Die aus dem Chlorgehalt errechneten Calciumwerte im Oberflächen- und Tiefenwasser stimmten für das Bornholmund Gotlandbecken gut mit den von uns analytisch ermittelten Konzentrationen überein. Die Unterschiede betrugen 0 bis 1%, wobei die Abweichungen auf den südlichen Stationen im allgemeinen positiver, auf den nördlichen Stationen negativer Art waren. Eine etwas weniger gute Übereinstimmung wurde bei Anwendung der Wittigschen Regionalbeziehungen für die Mecklenburger Bucht und das Arkonabecken erzielt. Unbefriedigende Ergebnisse wurden ferner bei Benutzung des Ca/Cl-Verhältnisses von Zarins und Ozolins [1] für die mittlere Ostsee erhalten. Regionalbeziehungen zwischen der Alkalinität und dem Chlorgehalt, die ebenfalls von WITTIG [4] entwickelt wurden, ergaben gegenüber den von uns analytisch ermittelten Werten häufig größere Abweichungen.

Spezielle Betrachtungen über das Verhältnis der Alkalinitätsanomalie zum Calciumüberschuß wurden von Gripenberg [5] angestellt. Gripenberg fand und bestätigte damit Beobachtungen von WITTIG [4], daß die durch Titration ermittelte Alkalinitätsanomalie häufig größer war, als zum Absättigen des Calciumüberschusses erforderlich gewesen wäre. Dieser Überschuß wurde als "surplus"-Alkalinität bezeichnet und auf das Vorhandensein geringer Mengen organischer Säuren oder Oxyverbindungen zurückgeführt, wobei letztere die Acidität der Borsäure soweit verstärken sollen, daß diese bei der Alkalinitätstitration miterfaßt wird. Die Möglichkeit einer positiven Magnesiumanomalie wurde auf Grund der Voipioschen Untersuchungen [6] ausgeschlossen.

Die Ansichten Gripenbergs konnten durch unsere Untersuchungen nicht bestätigt werden. Obwohl die von uns untersuchten Proben keine eindeutig statistisch gesicherte, positive Magnesiumanomalie ergaben, deuten die im Tabellenanhang zusammengefaßten Werte einen Magnesiumüberschuß im Ostseewasser an. Auf Grund der analytisch ermittelten Konzentrationen sowie der aus Chlorgehalt und ozeanischer Ionenrelation berechneten Konzentrationen kann der Ionenüberschuß bzw. das Ionendefizit bestimmt werden. Durch die einheitliche Darstellung der Anomaliewerte in mäg/l tritt wegen des niedrigen Aquivalentgewichts auch eine sehr geringe Magnesiumanomalie noch deutlich in Erscheinung. In Abb. 5 wird für Station 9c (Landsort-Tief) gezeigt, daß die Alkalinitätsanomalie nicht ausreicht, um den Calcium- und Magnesiumüberschuß vollständig zu binden, d. h., eine "surplus"-Alkalinität im Sinne Gripen-BERGS ist nicht vorhanden. Dieser Befund war für viele der untersuchten Wasserproben zutreffend. Zur Absättigung des gesamten Erdalkaliüberschusses müssen noch andere Kationen oder Anionen in ihrem Chlorverhältnis etwas von der ozeanischen Relation abweichen. Da im Süßwasser die Sulfatkonzentration

² Meereskunde, H. 20

Wa-3 C Wa-5 Wa-7 1 N.Str. Abb. 6. Beziehungen zwischen Anionen- und Kationenüberschuß im Oberflächenwasser $\hbox{auf dem Schnitt Unterwarnow} - \hbox{Ansteuerung Warnemünde.}$ a) November 1965; b) Dezember 1965 Meereskunde, H. 20

2,000

000

0,400

K-36a

Wa - 1

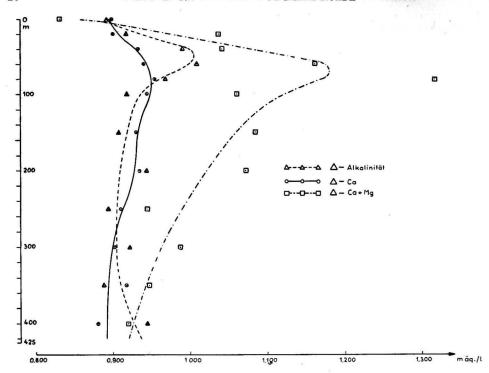


Abb. 5. Beziehungen zwischen Alkalinitätsanomalie und Erdalkaliüberschuß auf Station 9c (Landsort-Tief)

häufig den Chlorgehalt übertrifft, neigt man heute zu der Ansicht, daß dies durch Sulfationen geschieht [4, 7]. Um zu prüfen, inwieweit diese Vermutungen zutreffend sind, wurden auf dem Schnitt Unterwarnow-Ansteuerung Warnemünde während zweier Fahrten alle vier Komponenten (Mg, Ca, Alkalinität und SO₄) analytisch bestimmt. In Abb. 6 wird der Kationenüberschuß im Oberflächenwasser mit dem Anionenüberschuß verglichen. Dabei zeigt sich, daß durch die Sulfatanomalie tatsächlich das Gleichgewicht zwischen dem Erdalkaliüberschuß einerseits sowie der Alkalinitätsanomalie andererseits aufrechterhalten wird. Das trifft im wesentlichen auch noch für die Unterwarnow zu, wo der Meerwasseranteil schon stärker abnimmt. Es ist ferner bemerkenswert, daß in den vorliegenden Beispielen sich die Calcium- und Alkalinitätsanomalie zumeist vollständig ausgleichen, während der Magnesiumüberschuß durch den Sulfatüberschuß nahezu kompensiert wird. Dieses Ergebnis steht im Einklang mit Beobachtungen auf verschiedenen anderen Ostseestationen (vgl. Abb. 5). In Abb. 6b ist ferner interessant, daß beim Magnesium und Sulfat unter Umständen sogar ein geringes Defizit gegenüber der ozeanischen Relation auftreten kann. Ähnliche Beobachtungen, wie bei den Oberflächenproben gemacht wurden, ergaben sich auch bei Proben, die dicht über dem Grund entnommen wurden.

Wenn Δ die Differenz zwischen der analytisch bestimmten Konzentration und der mit Hilfe der ozeanischen Relation berechneten Konzentration ist, sollte es möglich sein, auf Grund der oben angestellten Überlegungen die Sulfatanomalie nach

$$\Delta$$
 SO₄ (mg/l) = (Δ Ca (mäq/l) + Δ Mg (mäq/l) – Δ A (mäq/l)) · 48,03

rechnerisch zu ermitteln.

Dabei ist jedoch zu beachten, daß die kleinen A-Werte insbesondere beim Magnesium schon durch geringe Analysenfehler¹) beträchtlich verfälscht werden können. Wenn trotzdem für einige Stationen auf diesem Wege die Sulfatanomalie berechnet wurde (vgl. Tabellenanhang), so sind wir uns darüber im klaren, daß es sich nur um eine grobquantitative Schätzung handeln kann, deren Fehlerbreite auch bei Verwendung graphischer Darstellungen (vgl. Abb. 5) beträchtlich ist. Es ergaben sich sowohl positive als auch negative Abweichungen von der ozeanischen Relation. Im allgemeinen überwog der Sulfatüberschuß das Defizit. Dieses Ergebnis stimmt mit Befunden von KWIECINSKI [7] überein, der in 28 Wasserproben von 4 Stationen in der Ostsee in den meisten Fällen eine positive Sulfatanomalie fand. Negative Werte wurden nur in stagnierenden Wassertiefen festgestellt und auf Schwefelwasserstoffbildung zurückgeführt.

Die Anomalieerscheinungen beim Calcium, Magnesium und Sulfat sowie bei der Alkalinität müssen zu einer positiven Salzanomalie führen. Wir haben daher den Gesamtsalzgehalt von einigen Stationen auf Grund der ermittelten Anomaliebeträge korrigiert. Gemäß Sörensen [18] ist "S % definiert als Gesamtmenge an gelösten Stoffen, die in einem Kilogramm Meerwasser vorhanden sind unter der Annahme, daß alle Carbonate in Oxide, die Bromide und Jodide in Chloride übergeführt und die gesamte organische Substanz oxydiertist. Die Alkalinitätsanomalie muß daher in g Sauerstoff pro Kilogramm Meerwasser berechnet werden. Die korrigierten Salzgehaltwerte, die wie die anderen Versuchsergebnisse im Tabellenanhang zusammengefaßt sind, liegen um 0,02 bis 0,05 g/kg höher als Werte, die nach der Knudsen-Gleichung $S = 0.03 + 1.805 \cdot Cl$ ermittelt wurden. Zarins und Ozolins [1] rechneten den Alkalinitätsüberschuß in g HCO₃/kg um. Ihre Werte sind daher höher als der von uns berechnete Salzgehaltsüberschuß. Sie stimmen jedoch gut mit unseren Angaben überein, wenn der Alkalinitätsüberschuß in Sauerstoffäquivalenten ausgedrückt wird. Den größten Einfluß auf die Salzgehaltskorrektur üben die Calcium- und Sulfationen aus, während der Einfluß des Alkalinitätsüberschusses sich durch das niedrige Äquivalentgewicht des Sauerstoffs schwächer auswirkt. Das Magnesium beeinflußte die Korrektur des Gesamtsalzgehalts sehr wenig, da sein Anomaliebetrag im allgemeinen gering war.

Die vorliegenden Untersuchungen über anomale Ionenverhältnisse erstreckten sich nur über einen relativ kurzen Zeitraum. Wenn trotzdem einige weiterreichende Schlußfolgerungen gezogen wurden, so deshalb, weil in den verschie-

denen Becken und Mulden der Ostsee stabile Gleichgewichtszustände vorzuliegen scheinen. Andernfalls wäre die Aufstellung von Regionalbeziehungen durch Gripenberg [3] und Wittig [4], die bei der Berechnung des Calciums auf Grund der Chlortitration gute Resultate liefern, nicht möglich. In früheren Untersuchungen [8] konnte ferner nachgewiesen werden, daß das Ca/Cl-Verhältnis von verschiedenen Stationen im Arkona- und Bornholmbecken während eines Ijährigen Untersuchungszeitraumes oberhalb der Salzgehaltssprungschicht nur geringen Schwankungen unterworfen war. Kwiecinski [19] gibt an, daß im Tiefenwasser der Ostsee größere Unterschiede bei der Calciumanomalie auftreten können, und führt dies auf Salzwassereinbrüche zurück. Inwieweit es sich dabei um langandauernde oder nur um schnell vorübergehende Erscheinungen handelt, muß weiteren Untersuchungen vorbehalten bleiben.

Wir danken den Herren WILDE, NIELSEN und WACHS sowie der Besatzung des Forschungsschiffes "Professor Albrecht Penck" für die Unterstützung und Ausführung technischer Arbeiten.

6. Literatur

- [1] ZARINS, E. und OZOLINS, J., Untersuchung über die Zusammensetzung des Meerwassers im Rigaschen Meerbusen und an der lettländischen Küste des Baltischen Meeres. J. du Conseil 10 (1935) S. 275-301.
- [2] Brandt, v. A., Der Kalkgehalt der Ostsee. J. du Conseil 11 (1936) S. 314-342.
- [3] GRIPENBERG, St., The calcium content of Baltic water. J. du Conseil 12 (1937) S. 293
- [4] WITTIG, H., Über die Verteilung des Kalziums und der Alkalinität in der Ostsee. Meereskundl. Arbeiten d. Univ. Kiel Nr. 70 (1940).
- GRIPENBERG, St., On the alkalinity of Baltic waters. J. du Conseil 16 (1960) S. 5-20. [6] Voipio, A., On the magnesium content in the Baltic. Suomen Kemistilehti B 30 (1957)
- [7] KWIECINSKI, B., The sulfate content of Baltic water and its relation to the chlorinity.
- Deep-Sea Res. 12 (1965) S. 797-804. [8] ROHDE, K. H., Untersuchungen über die Calcium- und Magnesiumanomalie in der
- Ostsee. Beitr. zur Meereskunde 19 (1966) S. 18-31.
- [9] Kalle, K., Zur Frage der Festsetzung der Maßeinheiten in der meereskundlichen Chemie. Ann. d. Hydr. u. Marit. Met. 63 (1935) S. 18-23.
- [10] [11] PATE, J. B. und ROBINSON, R. J., The (ethylenedinitrilo)—tetraacetate titration of calcium and magnesium in ocean waters. I. Determination of calcium. J. Marine Res. 17 (1958) S. 390-402. II. Determination of magnesium. J. Marine Res. 19
- [12] PATTON, J. und REEDER, W., New indicator for titration of calcium with (ethylenedinitrilo) tetraacetate. Analyt. Chemistry 28 (1956) S. 1026-1028.
- [13] MÜNCH, U., Mischindicator für die chelatometrische Bestimmung von Magnesium. Z. analyt. Chem. 212 (1965) S. 419.
- [14] WATTENBERG, H. und WITTIG, H., Über die Bestimmung der Titrationsalkalinität des Seewassers. Kieler Meeresf. 3 (1940) S. 258-262.
- [15] Palosuo, E., A description of the seasonal variations of water exchange between the Baltic proper and the Gulf of Bothnia. Merentutkimuslaitoksen Julkaisu Havsforskningsinstitutets Skrift 215, Helsinki 1964.
- [16] LYMAN, J. und Flemming, R. H., Composition of sea water. J. Marine Res. 3 (1940)

¹⁾ Der relative Fehler bei der Mg-Bestimmung beträgt +0,95% [8].

[17] WATTENBERG, H., Kalziumkarbonat- und Kohlensäuregehalt des Meerwassers. Wiss. Ergebn. Dtsch. Atlant. Exped. "Meteor" 8 (1933) S. 143-178.

[18] KNUDSEN, M., FORCH, C. und SÖRENSEN, S. P. L., Bericht über die chemische und physikalische Untersuchung des Seewassers und die Aufstellung der neuen Hydrographischen Tafeln. Wiss. Meeresunters. Kiel, N.F. 6 (1902) S. 1-62.

[19] KWIECINSKI, B.: The relation between the chlorinity and the conductivity in Baltic water. Deep-Sea Res. 12 (1965) S. 113-120.

[20] Е. Н. Черновская, Н. М. Пастухова, А. Т. Буйневич, М. Э. Кудрявцева, Э. А. Ауниньш, Гидрохимический режим Балтийкого моря. Ленинград 1965.

[21] Culkin, F. und Cox, R. A., Sodium, patassium, magnesium, calcium und strontium in sea water. Deep-Sea Res. 13 (1966), S. 789-804.

Abschluß der Arbeit: 3. 3. 1966

7. Tabellenanhang

Positionen, Meßtiefen und Analysenergebnisse

			00000	., .	v				1		-
Tiefe m	Cl g/l	рН	Ca¹) mg/l	Ca/Cl ¹) • 10 ⁻⁴	Mg mg/l	Mg/Cl · 10 ⁻⁴	A mäq/l	A/Cl • 10 ⁻³	$\Delta SO_4^4)$ mg/l	S 0/ a ²)	b ³)
Station '	Wa-1		54°	24,2′ N					4. 10. 19		
0,5 $15,0$	5,37 5,94	7,39 7,42	130,8 $142,2$	243 239	362,0 399,5	674 673	1,589 1,626	$\begin{array}{c} 296 \\ 274 \end{array}$		9,67 10,68	
Station	1		54°	28,3′ N		2°14,8′			4. 10. 19		
	5,21 5,40 9,28 10,58	7,32	131,0 $214,2$	244 243 231 226	350,9 365,6 623,0 706,6	677 671	1,578 1,608 1,879 1,950	298 202		9,38 9,72 16,60 18,87	
Station	30		54	°36,3′ N					3. 10. 1		
0,5 $18,0$	1	7,29 7,14	125,8 144,7	$\begin{bmatrix} 248 \\ 240 \end{bmatrix}$	$\begin{vmatrix} 339,5 \\ 403,2 \end{vmatrix}$		1,584 1,635	$\begin{vmatrix} 312 \\ 271 \end{vmatrix}$		9,13 $10,84$	
Station	30a		54	°40,5′ N	1	2°32,8′	\mathbf{E}		3. 10. 1	965	
0,5 15,0	4,85	7,39 7,37	120,4 121,1	1 248 1 248	$\begin{vmatrix} 325,1\\ 329,2 \end{vmatrix}$		1,572 1,570	$\begin{array}{c c} 324 \\ 322 \end{array}$		8,73 8,78	
Station	28 c-F		54	.°43,1′ N	1 1	2°47,3′	\mathbf{E}		3. 10.		
0,5 $20,0$	4,92	7,98 7,95		$\begin{bmatrix} 247 \\ 249 \end{bmatrix}$	$\begin{vmatrix} 332,5\\ 368,2 \end{vmatrix}$	676 688	1,561 1,636			8,86 9,60	
Station	A-1		5	4°47,7′ I	N 1	13°03,3′	E		3. 10.	1965	
0,5 20,0 25,0	4,78 4,81	8,07		1 250		8 675	1,558	324		8,60 8,68 8,77	

¹⁾ Ohne Korrektur für den Strontiumgehalt.

2) Nach KNUDSEN berechnet.

3) Korrigiert auf Grund der Anomaliewerte.

Tabellenanhang (Fortsetzung)

Tiefe m	Cl g/l	рН		Ca/Cl ¹) · 10 ⁻⁴		Mg/Cl	A mäq/l		⊿SO ₄ 4) mg/l		0/00
	g/1 		mg/l	. 10 -	mg/I	• 10	maq/1	. 10	mg/I	a ²)	b ³)
Station A	A-2		54°	51,5′ N	13	°16,7′ I	E		3. 10. 19	965	
0,5	,	8,08	118,1		318,5		1,538		7.00	8,44	-,
20,0 40,0	$\frac{4,68}{8,20}$		118,1 191,3	252 233	318,5 550,9		$1,541 \\ 1,762$	$\begin{array}{c} 329 \\ 215 \end{array}$	19 10	8,44 $14,69$	-,
Station 2	5		54°	55,5′ N	13	°30.0′ I	E.		2. 10. 19	965	
0,5	4,65	1	117,1		313,0		1,547			8,39	8,42
20,0	4,65		117,1		313,0	The same of the sa	1,567	337	2	8,39	
40,0	8,66		201,3				1,802			15,50	
Station A	1-3		55°	01,4′ N	13	°36,4′ I	E		2. 10. 19	965	
0,5		,	114,7		308,9		1,544		-1	8,28	8,31
20,0	4,59	8,13	114,7		308,9		1,552	338	-1	8,28	, , , ,
40,0 45,0	$7,81 \\ 9,89$	7,89	183,4	$\frac{235}{228}$	522,5		1,742 1,836	$\frac{223}{186}$	-1	14,00 17,66	
10,0	0,00	1,02	220,0	220	001,0	000	1,000	100	0	17,00	17,00
Station A	1-4		55°	04,0′ N	13	°48,7′ I	Ξ		2. 10. 19	965	
0,5	4,50	1	113,4		304,9	100 100 100 100	1,530		9	8,12	,
20,0	4,50	8,11		252	304,9		1,533	341	9	8,12	8,16
40,0	7,31	7,50	172,2	236	487,9	067	1,703	232	5	13,12	13,15
Station 7	a		55°	04,7′ N	13	°59,4′ I	E		2. 10. 19	965	
0,5	4,41		112,2				1,527			7,95	
20,0 40,0	4,41	8,12	112,2		298,3		1,536			7,95	
40,0	7,37	7,67	175,2	238	499,3	677	1,716	233	İ	13,22	1
Station A	A -5		55°	11,5′ N	14	°17,2′ I	Œ		2. 10. 19	965	
0,5	,	8,04					1,530			8,03	
20,0	4,45	8,11	113,2		303,4		1,542	347		8,03	
$\frac{40,0}{43,0}$	$6,88 \\ 8,93$	7,54 7,31	162,8	237 228	463,6		1,696	$\begin{array}{c} 247 \\ 204 \end{array}$	1 1	12,34 $15,97$	
45,0	0,90	7,31						204	l i	15,97	1
Station A	A-6		55°	15,0′ N	14	°30,4′ I	C		2. 10. 19	965	
0,5	4,38		111,2		296,1	676	1,516	346	1	7,90	
20,0	4,38	8,00	111,2	5-770-510-5	296,4	10-0-10-1	1,524	348		7,90	
40,0 42,0	$4,57 \\ 8,58$	7,67 7,39	115,6		309,3 577,0		1,533 1,798	$\begin{array}{c} 335 \\ 210 \end{array}$		8,24 $15,35$	
Station g		1,00									i Trans
		1 -2		20,9′ N					2. 10. 1		11 1136
0,5	4,42		111,4		297,5	673		342		7,97	4.08
20,0 35,0	4,42 4,77	8,09 7,65	111,4 121,6		297,3 322,2		1,527 1,556	345 326		7,97 8,59	at the
00,0	4,11	1,00	121,0	200	342,2	075	1,550	520		0,09	10.18

a) Korrigiert auf Grund der Andmane werde.
 b) Alle △ SO₄-Werte wurden berechnet nach Gleichung S. 20.

Tabellenanhang (Fortsetzung)

¥1							4				
Tiefe m	Cl g/l	рН	Ca ¹) mg/l	Ca/Cl ¹) • 10 ⁻⁴	Mg mg/l	Mg/Cl · 10-4	A mäq/l	A/Cl • 10 ⁻³	⊿SO ₄ 4) mg/l	8 (a ²)	0/ ₀₀ b ³)
		<u> </u>			1	!		<u> </u>			-
Station 1	a		55°	21,3′ N	16	°28,0′]	E		30. 9. 1	965	
0,5	4,25	8,12	108,0	254	287,2	676	1,526	359		7,67	
20,0	4,26	8,16	108,0	253	287,2	674	1,523	357		7,68	
40,0	4,28	7,87	108,2		287,6	672	1,529	357		7,72	
52,0	4,45		112,9		300,1		1,526	343		8,03	
Station 1	b		55°	19,0′ N	15	°59,2′]	E		1. 10. 1	965	
0.5	4,23	8,12	109,4	259	289,8	685	1,504	356	1	7.63	F
20,0	4,30	8,17	109,4	14.7-27.10-25	291,6	678	1,519	353		7,76	19
40,0	4,37	7,72	111,4	255	294,6	674	1,524	349		7,88	
60,0	7,61	7,48	179,4	V.10-20-23399	516,6		1,761	231		13,64	
80,0	9,25	7,07	212,7	230	620,1		1,841	100 00000		16,55	
85,0	9,36		215,7		628,2		1,952			16,73	
Station 1	c		55°	19,7′ N	15	6°50,3′]	E		1. 10. 1	965	
0,5	4,31	8,12	109,7	254	290,5	674	1,507	350	1 1	7,77	
5,0	4,31	8,14	109,7	254	290,5	674	1,500	000		7,77	
20,0	4,31	8,17	109,7	254	290,5	674	1,530	354		7,77	
40.0	4,45	7,74	114,4	257	299,4	673	1,539	346		8,03	
60,0	7,81	7,47	184,1	236	524,4	671	1,767	226		14,00	
	9,33	7,16	214,4	230	624,1	669	1,912	205		16.67	
80,0 90,0	9,33		216,9		631,5		1,975			16,80	
Station 1	d	1		20,0′ N	15	°42,0′ I	e.		1. 10. 1	965	
		1 0 10					1,510	353	1	7,72	
0,5	4,28	8,12	109,2	255	287,6		1,516	354		7,72	
20,0	4,28	8,15	109,2	255	287,6			$354 \\ 352$		7,81	
40,0	4,33	7,74	109,9	254	291,3		1,522	$\frac{332}{232}$		13,44	
60,0	7,50	7,55	176,2	235	505,2	674	1,738			,	
80,0	9,14	7,17	210,9	231	613,8	671	1,844	$\frac{202}{206}$		$16,35 \\ 16,78$	
90,0	9,39	7,21	215,7	230	630,4	671	1,932	200		10,70	
Station 1	e			21,0′ N		°33,5′ 1			1. 10. 1		
0,5	4,24	8,18	107,7		289,4		1,504	355		7,65	
20,0	4,30	8,11	108,0	251	289,4	673	1,507	350		7,76	
40,0	4,35	7,77	109,7	252	296,1	678	1,527	351		7,85	
60,0	7,23	7,58	171,7	237	487,9	675	1,724	238		12,97	
80,0	9,10	7,25	208,2	229	612,0	672	1,894			16,28	
90,0	9,26	7,16	213,4	230	625,6	675	1,888	203	е ,	16,56	
Station 1	\mathbf{f}		55°	21,8′ N	15	°25,5′ I	\mathbf{E}		1. 10. 1	965	
0,5	4,29	8,17	108,7	253	287,9	671	1,504	351		7,74	
20,0	4,29	8,20	108,9	254	287,6	670	1,504	351		7,74	
40,0	4,45	7,81	110,9	249	298,6	671	1,524	342	9.	8,03	
60,0	7,25	7,66	171,2	236	486,4	671	1,718	237		13,01	
80,0	9,13	7,31	188,9	207			1,784	195		16,33	
90,0	9,24		210,7	228	618,6	669	1,895	205	12 1 4	16,53	
	520		•								

Tiefe m	Cl g/l	рH	Ca1)	Ca/Cl ¹) · 10-4		Mg/Cl	A mäq/l	A/Cl · 10 ⁻³	⊿SO₄ 4)		8 %
	8/1	301 / 1	mg/l	. 10 -	mg/l	. 10 -	maq/1	. 10-3	mg/l	a ²)	b3)
Station	lg		55°	23,0′ N	15	°16,5′]	E		1. 10. 19	965	
0,5	4,26	8,15	108,0	253	287,2	674	1,502	353	1 1	7,68	1
20,0	4,28	8,18	108,4	253	287,9	673	1,504	351		7,72	1.
40,0	4,48	7,73	112,7	251	301,2	672	1,539	344		8,08	1
60,0	7,20	7,63	169,0	235	484,6	673	1,716	238		12,93	
80,0	9,05	7,20	208,2	230	606,5	670	1,872	207		16,18	
Station 2	2a		54°	58,8′ N	17	°03,7′ E	C	30	0. 9. 19	65	
0,5	4,32	8.08	109,2	253	290,5	672 1	1,506	349	1 1		
20,0	4,34	8,03	109,7		291,6		1,512		$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$	7,79 7,83	7,81
Station 2	b		55°(04,7′ N	17°	°03,9′ E	2	30). 9. 19	35	
0,5	4,31	8,04	108,7	252	289,1	671	1,498	347			
20,0	4,31	8,13	108.7		289,1	671	1,515	352	-5	7,77	7,79
30,0	4,31	8,10	108,7	252	289,1		1,515	352	$\begin{bmatrix} -6 \\ -6 \end{bmatrix}$	7,77 7,77	7,79 7,79
Station 2	c		55°0	9,2′ N	17°	03,8′ E		30	. 9. 196	55	
0,5	4,27	8.06	108,2	253	288,3	675	1,519	356	3		0
20,0	4,27	8,08	108,2		288,3		1,515	355	4	7,70	7,73
40,0	4,46	7,68	114,2		300,5	200-17/2000	1,540	345	527 15	7,70	7,73
50,0	4,89		121,9		329,0	1250 St. 2250	1,563	320	140	8,04 8,80	8,08 8,83
Station 2	d		55°1	1,4′ N	17°(04,0′ E		30.	9. 1965		
0,5	4,23	8.06	107,5	254 2	86,1	676	1,509	357			= 00
20,0	4,23				arment to the	2 22 000		357	10000	7,63	7,66
40,0	4,27					200		356	1000	7,63	7,66
60,0	6,02				Carrier Store	25 14 150		279	2000		7,73
75,0	6,77				The state of the s	S 9 37		248		3000	10,85 12,18
tation 2e			55°12	2,9′ N	17°0	4,0′ E		30.	9. 1965	4	
0,5	4,22	8.07	107,2	254 2	83,9 6	373 1	,506 3	357	-1 7		H C4
20,0	4,22					200 200		20-32-27-30		,61	7,64
40,0	4,23						A local land			,61	7,64
60,0	6,17							265		,63	7,65
80,0	7,08		Transaction of the second					275			11,12
85,0	7,33		con-confidence of								12,72 $13,17$
tation 2f			55°15	,0′ N	17°04	4,0′ E		30.	9. 1965		
0,5	4,23	8,07 1	07,5 2	254 28	4,3 6	72 1,	506 3	56 -	-2 7.	,63	7,65
20,0	4,23			random in the same of the						500	
40,0	1927 1921							5.00560	7 1 1 2 2 2 2	Security of the second	7,65
60,0					,					50122 111020	7,74
80,0						,	_	33 -	1	100000000000000000000000000000000000000	0,31
	, , ,	, 1	. 0,0 2	00 00	0,0 0	10 1,	112 2	oo -	-4 13,	02 1	3,64

Tabellenanhang (Fortsetzung)

m. a	- CI		Ca1)	Ca/Cl¹)	Mg	Mg/Cl	A	A/Cl	⊿SO ₄ ⁴)	8 %/0	0
Tiefe m	Cl g/l	pН	mg/l	· 10-4	mg/l		mäq/l	· 10-3	mg/l	a ²)	b ³)
		****		19,9′ N	17	°03,8′]	E	3	0. 9. 196	35	
Station ?	$2\mathrm{g}$		99	19,9 N						H 60	7,70
0,5	4,26	8,06	108,0	253	286,5		1,512		-2	7,68	7,70
20,0	4,26	8,07	108,0	253	286,5	672	1,515	356	-3	7,68	7,78
40,0	4,30	7,84	108,4	252	287,6	669	1,529	356	-7	9,20	9,22
60,0	5,11	7,42	128,1	251	340,2	666	1,575	308	-6		10,84
68,0	6,02	7,32	144,7	240	403,6	670	1,678	279	-6	10,02	10,01
Station	2 h		55	°25,0′ N	17	7°03,8′	\mathbf{E}	;	30. 9. 19		
		1000	107,7	253	285,4	671	1,515	356	-4	7,67	7,69
0,5					285,4	100.000.000	1,529		-4	7,67	7,69
20,0					287,9	- Committee	1,533	358	-1	7,72	7,75
40,0 50,0			or the support was to		291,6		1,529	352	1	7,83	7,86
Station	2 0		54	°52,0′ N	[1	9°24,8′	\mathbf{E}		24. 9. 19	965	
					283,5	681	1,524	366	15	7,50	7,55
0,5				2 1	283,5	4	1,540		15	7,50	7,55
20,0	1 1 1 1 1 1	C 2007 TAX 10		C - Contractor	283,9	2000	1,537		16	7,50	7,55
40,0	4,16		. 1		294,3				10	7,79	7,83
60,0	The state of the s				403,1				0	10,82	10,84
80,0	400 1000				469,0	N	1		4	12,50	12,53
100,0	6,96	6,9	100,	201	1 200,	1	,	1			
Station	1 3 e		5	4°52,0′ I	N]	19°16,7	'E		24. 9. 1	965	
0.5	6 4,1	1 8,1	6 106,	4 259	276,	5 673	1,54	6 376		1	7,44
0,5			(m) (m) (m)	10	278,		1,54				7,50
20,0				try to the training	278,	1 670	1,53			7,49	7,52
40,0 60,0				Contract to the contract of th	287,		1,54				7,76
80,0		1	Sept.	Total Control of Control	388,	0 674					10,38
90,0	STATE STATE			Course of the Commission of th	441,	5 675	2 1,71				11,82
100,0	-		(10)	Total III communication		7 670	0 1,73	3 250	-4	12,43	12,45
Statio	n 3e		ŧ	54°51,9′	N	18°53,6	8′ E		25. 9.	1965	
		0 1 0 3	M 106	.6 259	278	4 67	6 1,5	31 375	2 7	7,43	7,47
0,			200	, -			The second contraction	and the same of th			7,4
20,			-0.275	,	500 March 1995	,	-	0.00	4 9		7,6
40,	700		200	,		,	VIII 1996 1999		-	7,92	7,9
60,	1000		5 70		1	,-			4 8	3 10,64	10,6
80,	7,000	1	Annual Control	,		,			8	12,47	1
100,	,0 0,	99 1,		, 1					07.0	1065	
Static	on 3g			54°52,0′		18°43,		34 36	25. 9. 5 -		7,6
0	,5 4,	20 8,		7,1 25	1						
20	,0 4,	23 8,		3,7 25				-			
40	,0 4,	23 8,		8,7 25	The second second	72	The second second			-	1
60		27 7,		8,9 24				81 23			
80			10 15	7,7 23	8 443	3,0 60	68 1,6	01 20	-		1 2

Tiefe	Cl	pН	Ca1)	Ca/Cl ¹)	Mg	Mg/Cl	A	A/Cl	⊿SO ₄ 4)	S	0/00
m	g/l	pir	mg/l	• 10-4	mg/l	• 10-4	mäq/l	• 10-3	mg/l	a ²)	b ³)
Station 3	Bh		54	°52,0′ N	18	3°37,3′	E	2	5. 9. 19	65	
0,5	4,22	7,96	107,7	255	285,4	676	1,514	359	8	7,61	7,65
20,0	4,22	8,05	107,7	255	288,9	685	1,514	359	14	7,61	7,66
35,0	4,25	8,09	108,4	255	288,9	680	1,528	360	12	7,67	7,75
Station 4	a		56°	11,8′ N	18	°51,0′ I	Œ	2	3. 9. 19	65	
0,5	4,06	8,26	103,5	255	275,0	677	1,491	367	7	7,32	7,3
20,0	4,08	8,27	104,3	256	278,1	681	1,497	367	11	7,36	7,4
40,0	4,23	7,78	108,9	257	288,1	681	1,528	361	11	7,63	7,6
60,0	4,79	7,38	119,3	249	326,1	681	1,578	329	10	8,62	8,6
80,0	5,86	7,16	140,9	240	395,8	675	1,638	280	12	10,54	10,58
100,0	6,48	7,17	154,9	239	435,7	672	1,666	257	14	11,64	11,6
110,0	6,57	7,16	155,4	236	447,7	681	1,673	254	16	11,80	11,8
Station 4	· C		56°	07,8′ N	18	°59,0′ I	Œ	2	3. 9. 19	65	
0,5	4,06	8,09	104,5	257	276,9	682	1,491	367	15	7,32	7,3
20,0	4,06	8,17	104,8	258	276,9	682	1,500	369	10	7,32	7,3
40,0	4,24	7,69	108,7	256	285,4	673	1,526	360	6	7,65	7,6
60,0	4,54	7,43	114,4	252	307,1	676	1,546	341	5	8,19	8,2
80,0	5,68	7,06	137,5	242	382,6	674	1,655	291	5	10,21	10,2
100,0	6,33	7,10	149.9	237	427,9	676	1,678	265	6	11,37	11,4
125,0	6,77	7,05	160,3	237	455,8	673	1,710	253	6	12,16	12,19
Station 4	d		56°	05,2′ N	19	°05,3′ I	E	2	23. 9. 1965		
0,5	4,14	8,15	105,6	255	280,4	677	1,492	360	8	7,47	7,5
20,0	4,14	8,19	105,8	256	281,9	681	1,497	361	9	7,47	7,5
40,0	4,20	7,66	107,9	257	283,9	676	1,517	361	8	7,57	7,6
50,0	4,25	7.67	109,2	257	288,1	678	1,540	362	7	7,67	7,7
60,0	4,34	7,60	111,0	256	292,8	675	1,531	352	7	7,83	7,8
80,0	5,78	7,12	139,8	242	388,4	672	1,626	281	6	10,39	10,4
90,0	6,33	7,13	151,5	239	427,2	675	1,658	261	8	11,37	11,4
100.0	6,52	7,14	155,4	238	440,3	675	1,670	256	8	11,71	11,7
110,0	6,63	7,16	157,5	237	447,7	675	1,681	253	10	11,91	11,9
Station 4	f		55°	58,0′ N	19	°20,0′ I	Œ	2	3. 9. 19	65	
0,5	4,15	8,22	106,9	257	282,7	681	1,502	361	12	7,48	7,5
20,0	4,17	8,31	107,1	257	282,7	678	1,517	363	9	7,52	7,5
40,0	4,20	8,02	107,9	257	282,7	673	1,514	360	8	7,57	7,6
60,0	4,66	7,58	116,5	250	316,8	680	1,557	334	8	8,41	8,4
70,0	4,72	7,54	117,8	249	319,5	677	1,560	330	. 8	8,51	8,5
Station 4	g		55°	54,2′ N	19	°27,5′ I	£	2	3. 9. 19	65	
0,5	4,15	8,13	107,1	258	282,3	680	1,494	360	15	7,48	7,5
20,0	4,16	8,20	107,4	258	283,1	680	1,520	365	12	7,50	7,5
-,-										Control of the second	100
40,0	4.21	7.77	107,9	256	283,9	674	1,528	362	4	7,59	7,63

Tiefe m	Cl g/l	pН	Ca ¹) mg/l	Ca/Cl ¹) • 10 ⁻⁴	Mg mg/l	Mg/Cl · 10-4	A mäq/l	A/Cl • 10 ⁻³	⊿SO ₄ 4) mg/l	S a2)	$^{0}/_{00}$ 0 3)
		1							0,		~ <i>,</i>
Station 8	b		58°	°00,6′ N	17	°58,0′ I	E	1	4. 9. 19	65	
0,5	3,73	8,19	98,5	264	250.7	672	1.401	375	5	6,74	6,77
15,0	3,73	8,18	98,5	264	251,1	673	1,404	376	4	6,74	6,77
40,0	4.12	7,60	107,5	261	276,6	671	1,478	358	3	7,43	7,46
60,0	4,90	7,08	124,4	254	328,0	669	1,566	319	3	8,82	8,88
80,0	5,72	6,95	140,5	246	386,1	675	1,636	286	7	10,29	10,33
100,0	5,86	6,97	145,5	248	397,1	678	1,677	286	11	10,54	10,59
150,0	6,01	0,0.	147,1	245	402,6	670	1,730	287	1	10,81	10,84
175,0	5,99	7,07	148,7	248	400,2	668	1,701	283	î	10,75	10,78
190,0	6,03	6,95	147,6	100000000000000000000000000000000000000	404,9	671	1,672	277	2	10,73	10,87
130,0	0,00	0,00	111,0	210	101,0	0/1	1,012	211	2	10,01	10,07
Station 8	c		57°	59,7′ N	17	°52,5′ I	E	1	4. 9. 19	65	
0,5	3,72	8,19	100,1	269	โลธอา	680	1.407	970	20	6 79	1 e 5 0
				268	253,1		1,407	378	20	6,73	6,78
20,0	3,80	8,01	101,7	5.00 E.300 F.50	259,4	682	1,366	359	20	6,86	6,71
40,0	4,13	7,65	107,8	261	279,8	677	7 4	921	20	7,45	0.0
60,0	4,90	7,09	124,1	253	331,9	677	1,574	321	20	8,82	8,87
80,0	5,71	6,96	140,0	245	387,3	678	1,648	288	20	10,26	10,31
100,0	5,90	6,94	145,5	247	400,6	679	1,652	281	20	10,61	10,66
150,0	6,00	7,00	147,6	246	403,8	673	1,677	279	5	10,79	10,82
175,0	6,03	7,00	147,6	245	403,4	669	1,663	277	0	10,85	10,83
Station 9	а		58°	54,8′ N	18	°20,6′ I	Ē	1	6. 9. 19	6 5	
0,5	3,39	8,11	89,3	263	229,1	676	1,295	382	7	6,13	6,16
20,0	3,62	7,88	95,6	264	244,8	676	1,380	381	17	6,55	6,60
40,0	3,97	7,75	105,4	265			1,492	376		7,16	0,00
60,0	4,15	7,49	113,0	272			1,516	365		7,49	
80,0	5,48	7,09	134,7	246	371,2	677	1.586	289	21	9.87	9,92
100,0	5,87	7,09	143,9	245	396,7	676	1,651	281	13	10,55	10,59
150,0	6,24	7.08	151,1	242	417,9	670	1,674	268	0	11,20	11,22
175,0	6,29	7,08	151,9	241	420,2	668	1,672	266	-4	11,30	11,32
Station 9	h		500	34,9′ N	10	°15,1′ F	7	,	6. 9. 19	ez	
Station 9	b		90	54,9 IN	10	15,1 1	u .	1	0. 9. 19	00	
0,5	3,48	8,20	91,6	263	234,2	673	1,330	382	3	6,29	6,32
20,0	3,51	8,13	92,4	263	239,7	683	1,345	383	15	6,35	6,39
40,0	4,07	7,75	106,2	261	277,4	681	1,489	366	18	7,35	7,40
60,0	4,27	7,42	112,5	263	290,7	681	1,524	357	20	7,70	7,75
80,0	5,42	7,09	133,9	247	370,0	683	1,607	296	23	9,76	9,81
100,0	5,90	7,09	143,1	243	404,1	685	1,645	279	21	10,61	10,66
150,0	6,17	7,13	149,8	243	415,5	673	1,713	277	10	11,09	11,13
200,0	6,31	7,20	153,2	243	422,6	670	1,718	272	0	11,33	11,35

Tabellenanhang	(Fortsetzung)
----------------	---------------

Tiefe m	Cl g/l	pН	Ca ¹) mg/l	Ca/Cl ¹ · 10 ⁻⁴		Mg/C		A/Cl 1 · 10 ⁻³	△SO ₄ ⁴		S º/00
-	-		01		8/-	10	maq/	10 -	mg/l	a ²)	b ³)
Station	9 c		58	°34,9′ N	1	8°13,8′	\mathbf{E}	1	5. 9. 19	65	
0,5	3,47	,	92,2	266	231,5	667	1,319	380	-2	6,28	1 0 00
20,0	3,48	, , ,	92,4	266	234,6		1,345	386	2	6,30	6,30 6,33
40,0	4,03	.,	104,8	260	271,1		1,486	369	$\frac{7}{4}$	7,27	7,30
60,0	4,32	,	111,2	257	291,9	676	1,514	350	9	7,79	7,83
80,0	5,32		132,8	250	360,6	678	1,622	305	11	9,58	9,62
100,0	5,91	7,00	145,3	246	397,1	672	1,645	278	9	10,63	10,66
150,0	6,12	7,07	149,5	244	411,6	672	1,660	271	7	11,00	11,03
200,0	6,24	7,14	152,1	244	419,4	672	1,711	274	5	11,20	11,03
250,0	6,30	7,10	152,9	243	422,2	670	1,668	265	4	11,32	11,25
300,0	6,32	7,09	153,2	242	424,2	671	1,698	269	3	11,35	11,38
350,0	6,33	7,08	153,7	243	424,2	670	1,666	263	2	11,37	11,40
400,0	6,34	7,17	153,2	242	424,9	670	1,724	272	0	11,38	11,41
425,0	6,34	7,41	153,4	242	426,9	673	1,968	310		11,38	11,41
Station 9	9d		58°3	34,9′ N	18	°12,5′ I	E	15	. 9. 196	5	- 02
0,5	3,38	8,12	90.1	266	220 1	0=0				.	
20,0	3,43	8,10	91,1		229,1	678	1,298	384	9	6,11	6,15
40,0	4.02	7,72	105,4	266	231,5	675	1,324	386	10	6,21	6,24
60,0	4,27	7,42	110.7	262	271,1	674	1,474	367	9	7,25	7,29
80,0	5,38	7,08	134,9	259	288,0	674	1,504	352	13	7,70	7,74
100,0	5,88	7,09	145,3	$\frac{251}{247}$	364,9	678	1,616	306	15	9,69	9,74
120,0	6,03	7,20	147,4	244	397,1 404,9	$\begin{array}{c c} 675 \\ 671 \end{array}$	$1,648 \\ 1,651$	280 274		10,58 10,84	10,62
St-1: 0				,	,		,	214	9 [10,64	10,87
Station 9		10.10.1		4,9′ N		°08,7′ E	}	15.	9. 1968	5	
$\begin{bmatrix} 0,5\\20,0 \end{bmatrix}$	3,36	8,10	88,7	264	226,8	675	1,286	383	6	6,08	6,11
40,0	3,36	8,09	89,3	266	228,0	678	1,292	385	9	6,08	6,11
60,0	4,01		105,6		270,7	675	1,519	379	6	7,24	7,28
80,0	4,36		112,8		292,7	671	1,530	351	7	7,86	7,90
90,0	5,34		133,9		361,8	677	1,607	301	9	9,62	9.66
90,0	5,73	7,03	140,8	246	385,7	673	1,630	284	10 1	0,30	10,34
Station 9	f		58°35	5,0′ N	180	03,2′ E		15.	9. 1965		
0,5	3,35	8,09	89,3	266	226,0	675	1,295	906 1	<i>-</i> .	0.00	0.00
20,0	3,38	8,11		274	-20,0	100		386 394		6,06	6,09
40,0	4,03				271,5					6,29	
60,0	4,34				291.5			365	100	7,27	7,31
80,0	5,55				372,0	1892-19		$\begin{array}{c c} 347 \\ 292 \end{array}$		7,83 9,98 1	7,86 10,01
Station 9g	\$		58°35	,1′ N	17°5	57′,1 E		15. 9). 1965	. 17	
0,5	3,49	8,11	93,2 2	267 2			9961				us/all
20,0	3,50						Table of Pitch			3,31	6,35
40,0	3,97					Carrier Control	Plant and the same	1 C		C. C	6,38
60,0	4,26		,								7,21
to a		,,55 1		200 2	01,0	675 1	,501 3	352	9 7	,68	7,72

33

Tabellenanhang (Fortsetzung)

Tiefe	Cl	pН	Ca1)	Ca/Cl1)	Mg	Mg/Cl	Α	A/Cl	△SO ₄ ⁴)	s	0/00
m	g/l	P	mg/l	• 10-4	mg/l	10-4	mäq/l	· 10-3	mg/l	a ²)	b ³)
Station 9	h		58°	33,6′ N	18	°19,8′ I	Ē	1	6. 9. 19	65	
0,5	3,46	8,09	92,2	266	232,3	671	1,313	379	4	6,26	6,29
20,0	3,49	8,04	92,9	266	236,2	677	1,340	384	7	6,31	6,38
40,0	4,05	7,73	106,7	263	272,3	672	1,486	367	7	7,30	7,3
60,0	4,30	7,53	112,0	260	289,6	673	1,504	350	9	7,76	7,8
80,0	5,46	7,10	135,5	248	367,7	673	1,604	294	12	9,84	9,8
100,0	5,97	7,04	144,2	241	404,9	678	1,642	275	13	10,74	10,7
150,0	6,17	7,09	148,7	241	416,3	675	1,689	269	10	11,09	11,13
200,0	6,31	7,07	151,3	240	425,3	674	1,660	263	7	11,33	11,3
250,0	6,33	7,07	151,9	240	424,9	671	1,674	264	4	11,37	11,40
300,0	6,33	7,09	153,2	242	425,3	672	1,698	268	1	11,37	11,40
350,0	6,35	7,12	153,7	242	424,5	668	1,704	268	-1	11,40	11,45
375,0	6,36	7,12	154,5	243	425,3	669	1,701	267	-2	11,43	11,4
Station 9	i		58°	37,4′ N	18	8°15,5′ I	E	1	6. 9. 19	65	
0 5 1	9 46	1 7 10	91,4	964	232,3	671	1,313	339	2	6 96	6 00
0,5	3,46	7,48		264		671			1	6,26	6,29
20,0	3,47	7,36	91,9	264	233,9	674	1,319	380	5	6,28	6,3
40,0	4,12	7,27	107,2	260	277,0	672	1,479	359	9	7,43	7,4
60,0	4,14	7,24	110,4	267	9500	050	1,495	361	10	7,47	0.0
80,0	5,47	7,04	135,0	247	370,8	678	1,610	294	16	9,86	9,9
150,0	5,19	- 00	1500	240	405 0	0=0	1,624	313	10	9,35	77.0
200,0	6,29	7,06	150,8	240	425,3	676	1,700	270	10	11,29	11,33
250,0	6,34	7,06	151,3	239	427,7	674	1,663	262	8	11,38	11,45
300,0	6,34	7,05	151,6	239	427,3	674	1,695	267	7	11,38	11,4
350,0	6,34	7,05	152,1	240	427,7	674	1,701	268	6	11,38	11,4
400,0	6,35	7,07	151,9	239	427,7	673	1,713	270	5	11,41	11,4
425,0	6,27	-	152,7	243	428,1	683	1,707	272		11,26	1
Station 1	0a		59°	47,1′ N	19	° 55,4′I	C	1	7. 9. 19	65	
5,0	3,63	8,19	95,9	264	246,0	678	1,380	380	8	6,56	6,60
10,0	3,63	8,19	95,9	264	246,0	678	1,378	380	8	6,56	6,60
20,0	3,64	8,15	96,1	264	245,6	675	1,378	379	4	6,58	6,6
40,0	3,90	7,69	102,2	262	260,9	669	1,448	371	3	7,03	7,00
60,0	4,01	7,62	104,8	261	268,4	669	1,466	366	4	7,23	7,26
80,0	4,22	7,38	109,3	259	285,3	676	1,486	352	3	7,62	7,68
100,0	5,02	7,14	126,2	251	337,4	672	1,554	310	3	9,05	9,08
150,0	5,30	7,10	132,1	249	354,3	668	1,586	299	2	9.54	9,57
190,0	5,36	7,05	133,6	249	358,2	668	1,598	298	2	9,66	9,69
Station 1	0 b		59°	50,5′ N	N 19°34,3′ E 17.			7. 9. 19			
0,5	3.27	8,07	87,7	268	217,4	665	1,257	384	1	5,91	
20,0	3,36	7,74	89,5	266	227,2	676	1,292	385		6,08	K
40,0	3,76	7,59	99,6	265	252,7	672	1,404	373		6,81	

Tiefe m	Cl g/l	рН	Ca ¹) mg/l	Ca/Cl ¹) · 10 ⁻⁴	Mg mg/l	Mg/Cl · 10-4		A/Cl • 103	⊿SO ₄ 4) mg/l		0/00
							mäq/l			a^2)	b3)
Station 11 a			60°07,0′ N 19°05,2′			E 18. 9. 1965					
0,5	3,38	8,14	88,7	262	226,2	669	1,275	377	-4		
20,0	3,40	8,19	88,7	261	227,0	667	1,280	376	0	6,11	6,13
40,0	3,60	7,85	94,1	261	242,4	673	1,357	376	2	6,15	6,17
60,0	3,80	7,80	101,3	266	254.4	669	1,410	371	3	6,51	6,54
80,0	3,90	7,75	101,8	261	263,3	675	1,433	367	4	6,85	6,88
100,0	3,97	7,72	103,9	262	267,6	674	1,451	365	5	7,04	7,07
150,0	4,12	7,62	105,4	256	278,0	675	1,469	356		7,16	7,19
175,0	4,16	7,55	106,9	257	279,9	673	1,409	355	4	7,43	7,43
		, , , ,	1 , -		210,0	010	1,410	999	3	7,50	7,53
Station 11 b			$60^{\circ}08,7' \text{ N}$ $19^{\circ}08,2' \text{ E}$			E	18. 9. 1965				
0,5	3,32	8,10	87,6	264	224,3	675	1,275	384	0	6.00	6.00
20,0	3,36	8,11	87,6	261	225,0	670	1,280	380	3	6,08	6,03
40,0	3,54	7,81	93,6	264	238,9	675	1,334	376	4		6,11
60,0	3,84	7,78	99,5	259	258,7	674	1,416	368	5	6,40	6,43
80,0	3,91	7,74	102,1	261	264,5	676	1,433	367	7	6,93	6,96
100,0	4,00	7,71	103.1	258	271,8	679	1,442	360	155	7,05	7,09
150,0	4,12	7,62	105,7	256	278,8	677	1,454	352	8	7,21	7,25
190,0	4,17	7,51	106,7	256	281,5	675	1,460	350	9 8	7,43	7,47
			, , .		_01,0	0.0	1,100	990	0	7,52	7,56
Station 11 c		$60^{\circ}09,5'$ N		19°10,9′ E			17. 9. 1965				
0,5	3,34	8,10	87,9	263	226,6	678	1,257	376	9	6,06	6,08
15,0	3,35	8,13	87,9	262	226,6	676	1,275	380	10	6,06	6,10
20,0	3,37	8,13	89,7	266	229,7	681	1,290	382	10	6,09	6,13
40,0	3,55	7,80	93,3	263	240,9	678	1,351	380	10	6,42	6,46
60,0	3,86	7,78	99,8	258	261,0	676	1,428	369	9	6,96	
80,0	3,93	7,67	101,8	259	266,4	678	1,442	366	9	7,09	7,00 7,13
100,0	3,98	7,66	102,3	257	269,9	678	1,451	364	10	1	7,13
150,0	4,07	7,60	106,7	262	275,3	676	1,457	357	10	7,18	
200,0	4,15	7,63	107,2	258	280,3	675	1,474	355		7,35	7,39
240,0	4,20	7,48	107,2	255	283,8	676	1,474	350	8	7,48	7,52
	-,	,,_0		200	200,0	370	1,4/4	990	7	7,57	7,60

Untersuchungen über die Calcium-Chlorund Magnesium-Chlor-Relationen in Flußmündungen und Bodden der westlichen Ostsee

Von Karl-Heinz Rohde

Zusammenfassung: Zu Fragen von Ionenanomalien wurden die Unterwarnow und die Darßer Bodden 1965 auf ihren Calcium- und Magnesiumgehalt untersucht. Analysenwerte der Flüsse Warnow, Recknitz, Peene, Oder und Weichsel zeigen, daß verhältnismäßig wenig Magnesium in die Ostsee transportiert wird, wodurch das Magnesium-Chlor-Verhältnis des Meerwassers kaum merklich beeinflußt wird. Zumischungen von Flußwasser werden in der Ostsee erwartungsgemäß durch eine Erhöhung der Calcium-Chlor-Relation sichtbar.

Der Salzgehalt des Ostseewassers wird durch Flußwasserzufuhr nicht nur erniedrigt, sondern auch in seiner Zusammensetzung verändert. Über die Änderungen der Ionenrelationen (Verhältnis der einzelnen Hauptbestandteile des Meersalzes zum Chlorgehalt) in Flußmündungsgebieten und Bodden der Ostsee ist wenig bekannt. Die vorliegende Arbeit soll diese Lücke an Hand von Calcium- und Magnesiumanalysen aus der Unterwarnow und den Darßer Bodden schließen helfen. Gleichzeitig werden damit frühere Untersuchungen über die Calcium- und Magnesiumanomalie in der Ostsee [1] fortgesetzt. Die Versuchsmethodik und Fehlerdiskussion ist dort beschrieben worden; die Werte der Chlortitration nach Mohr-Knudsen sind auch hier wieder in g/l angegeben.

In verschiedenen Arbeiten über die Salzzusammensetzung des Ostseewassers wird auf das Fehlen bzw. die Notwendigkeit von Flußwasseranalysen hingewiesen [2, 3]. In Tab. 1 wurden aus diesem Grunde uns zugängliche Calcium-, Magnesium- und Chloridwerte der Flüsse Warnow¹), Recknitz¹), Peene¹), Oder und Weichsel zusammengestellt.

Den niedrigen Chloridkonzentrationen ist zu entnehmen, daß die Proben gar nicht oder nur wenig durch Meerwasser beeinflußt waren. Die Calcium- und Magnesiumgehalte der aufgeführten Flüsse liegen in den Grenzen der Erfahrungswerte normaler Süßwässer. Der Gegensatz zur hohen Magnesiumkonzentration des Ostseewassers (bei 10% Salzgehalt enthält Ostseewasser 369,4 mg Mg/l) fällt besonders auf. Der Calciumgehalt der Flußwässer unterscheidet sich nur unwesentlich von den Werten in der Ostsee.

Abb. 1 und 2 zeigen die Lage unserer Stationen in der Unterwarnow und in den Darßer Bodden. In Abb. 3-6 sind von 3 Meßfahrten in der Unterwarnow

		g/l)	Min.			5,5	5,0	12,1	- 23	5.0
		sium (m	Max. Min			25,2	22,0	52,0	39.3	15,0
		Magnes	Mittel. Max. Min	MOTOM	,	10,4	1,2,1	21,1	1	9,3
		(L	Min.		1	7,00	59,0	25,8	50,1	44,9
		Calcium (mg/l)	Max.		100 6	100,0	0,671	2,111	110,1	97,4
	3	Calc	Mittel- wert		88.4	109.4	4,00	92,1	1 !	8,19
ABELLE 1		-	Min.		31.0	34.0	49.0	30.4	1,20	29,3
$\mathbf{T}_{\mathbf{A}\mathbf{J}}$	Chlorid (mg/l)	/8m/ hr	Max.		175,0	400,0	155.0	680,0	101	1,101
	Chlo	Wittel.	wert		60,2	215,3	63,7	1	41.6	064
	Anzahl	der	Proben	205 35 19 - 25						_
	Rochacht	zeitranm		15. 6. 59 - 25. 8. 65 $8. 11. 62 - 21. 6. 65$ $4. 2. 63 - 25. 8. 65$ $1958 - 1960$ $1958 - 1960$						
				Warmour	Recknitz	Peene	Oder	Weighed	TOTTO IA	

Quellen

¹⁾ Der Wasserwirtschaftsdirektion Küste-Warnow-Peene in Stralsund sei auf diesem Wege für die Überlassung der Meßwerte gedankt.

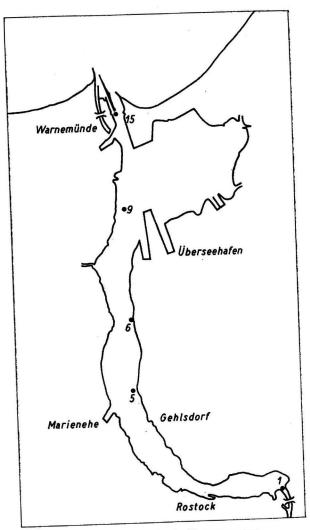


Abb. 1. Stationskarte Unterwarnow

und 1 Meßfahrt in die Darßer Bodden¹) die Oberflächenwerte von Calcium, Magnesium und Chlor sowie die Ionenrelationen Ca/Cl und Mg/Cl im schematischen Stationsabstand graphisch dargestellt.

Der Calciumgehalt zeigt mit zunehmender Entfernung zur Ostsee von Warnemünde nach Rostock bzw. von Barhöft zum Saaler Bodden keine starke Abnahme, während der Magnesiumgehalt wie aus Abb. 3 und 5 zu entnehmen ist, rapide abfällt. Die Abnahme des Chlorgehaltes nimmt landeinwärts einen dem

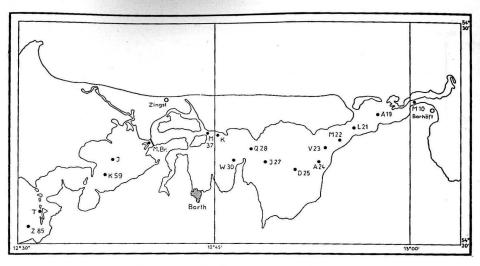


Abb. 2. Stationskarte Darßer Bodden

Magnesium ähnlichen Verlauf. In Abb. 4 und 6 sind die errechneten Ca/Cl- und Mg/Cl-Verhältnisse dargestellt. Meerwasser hat für die Hauptbestandteile auf Grund des Gesetzes von der "Konstanz der Zusammensetzung des Meersalzes" [7] konstante Ionenrelationen. Das konstante ozeanische Ca/Cl- bzw. Mg/Cl-Verhältnis ist in Abb. 4 und 6 durch die waagerechten Pfeile gekennzeichnet (Ca/Cl = 0.0215^2), Mg/Cl = 0.0668; vgl. [1]).

Die für die Unterwarnow und die Darßer Bodden berechneten Ca/Cl-Relationen liegen über dem ozeanischen Wert. Die Grenze zwischen den Mischungsgebieten — Meerwasser, dem Flußwasser beigemengt ist, bzw. Flußwasser, das durch Meerwasser beeinflußt ist — zeigt sich in Abb. 4 und 6 durch den Beginn des steilen Anstiegs der Ca/Cl-Relation. Die Mg/Cl-Verhältnisse der Unterwarnow und des Darßer Boddens verlaufen ohne große Streuungen oberhalb und unterhalb des ozeanischen Wertes. Lediglich auf Station 1 in der Unterwarnow wurden einmal eine größere positive und einmal eine größere negative Abweichung von der ozeanischen Relation registriert.

Zur Deutung dieser Werte wurden Analysenergebnisse der Wasserwirtschaftsdirektion Küste-Warnow-Peene vom Meßpunkt Warnow, oberhalb der Schleuse Rostock (unbeeinflußt durch Meerwasser, Mittel der Cl-Werte 0,060 g/l) und vom Meßpunkt Kabutzenhof Rostock (zwischen Station 1 und Station 5 in Abb. 1, meerwasserhaltiges Flußwasser, Mittel der Cl-Werte 3,03 g/l) herangezogen. Bei 205 Flußwasserproben lag das Mittel der Ca/Cl-Relationen etwa 70 mal höher als die ozeanische Relation. Die einzelnen Werte waren starken Schwankungen unterworfen. Beim Magnesium war der Mittelwert der Mg/Cl-

¹) Die Proben wurden freundlicherweise durch das Maritime Observatorium in Zingst geschöpft und uns zugeschickt.

²) Einschließlich des Strontiumgehaltes des Meerwassers.

⁴ Meereskunde, H. 20

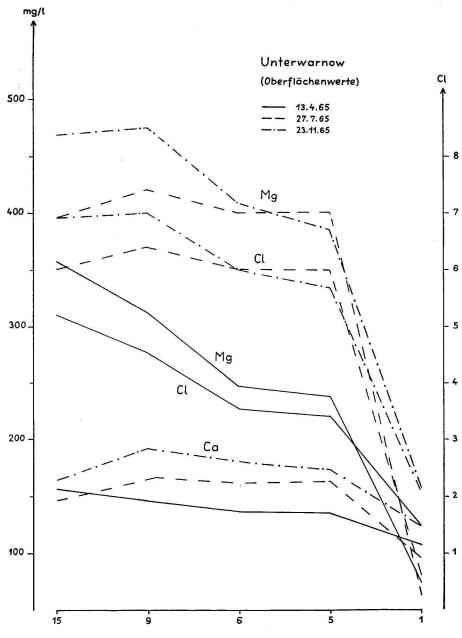
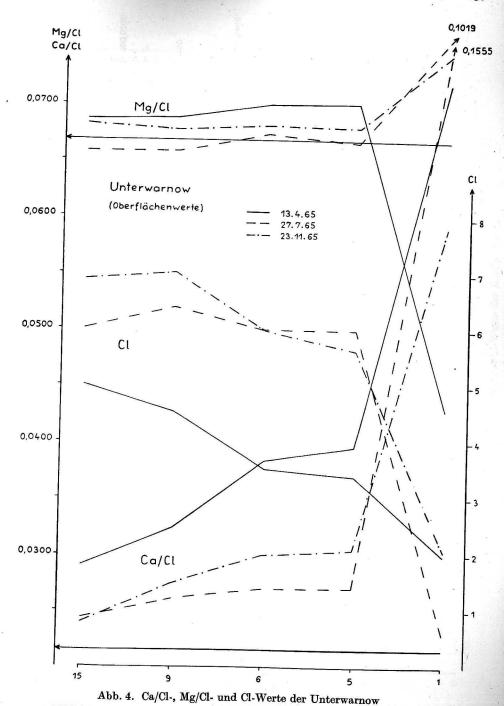
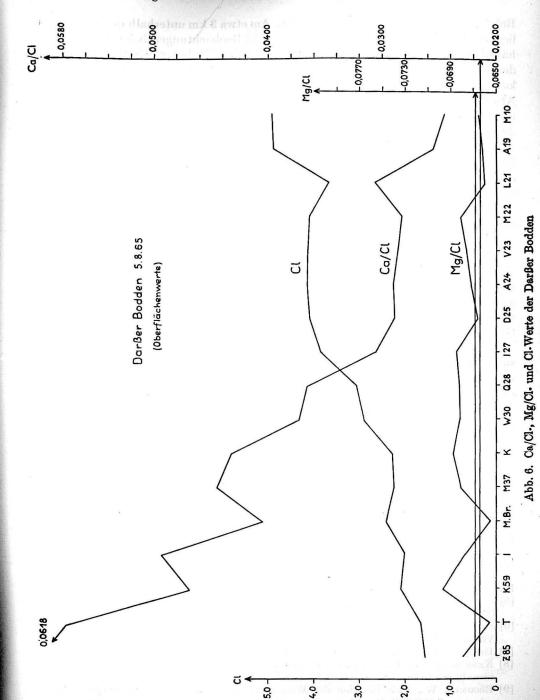




Abb. 3. Calcium-, Magnesium- und Chlorwerte der Unterwarnow

Relation nur um das 2- bis 3fache erhöht. Am etwa 3 km unterhalb der Schleuse liegenden Kabutzenhof war das Mittel aus 52 Beobachtungen beim Ca/Cl-Verhältnis nur noch dreimal höher. Das Mg/Cl-Verhältnis lag mit 0,0635 sogar deutlich unter dem Wert der ozeanischen Relation. Als Ursache dieser sehr starken Abnahme ist außer der Zufuhr von Meerwasser das Einwirken verschiedener Abwässer nicht ausgeschlossen. Außerdem liegt der Meßpunkt Kabutzenhof nicht wie die anderen Stationen in der Strommitte, sondern am Ufer zwischen dem Stadthafen und der Neptun-Werft.

Die vorliegenden Analysenergebnisse zeigen, daß die Veränderungen der Ionenzusammensetzung des Wassers in der Unterwarnow und den Darßer Bodden (größter Süßwasserzufluß durch die Recknitz) seewärts schnell abklingen. Die Beeinflussung des Magnesiumgehaltes des Ostseewassers durch die Warnow führt zwar zu meßbaren geringen Änderungen gegenüber dem Wert der ozeanischen Mg/Cl-Relation. Eine signifikante Veränderung des ozeanischen Mg/Cl-Verhältnisses ist in der Ostsee auf Grund des niedrigen Magnesium- und Chloridgehaltes der Flüsse nicht zu erwarten. Entsprechend dieser Tatsache ist der Anstieg der Mg/Cl-Relation zu reinem Flußwasser hin verhältnismäßig gering, im Gegensatz zur Ca/Cl-Relation. Die Vielzahl von Magnesiumanalysen aus allen Teilen der Ostsee [1, 3, 8] läßt darauf schließen, daß die für das Warnowmündungsgebiet beschriebenen Mg/Cl-Werte für die Mehrzahl der Ostseezuflüsse Gültigkeit besitzen.

Für Calcium gilt eine solche Verallgemeinerung nicht. Wie eigene Untersuchungen zeigten, kann durch Calciumanalysen die Ausbreitung des Warnowwassers vor der Küste verfolgt werden. In der Ostsee steigt das Ca/Cl-Verhältnis von Westen nach Osten an [1]. Dieser Anstieg erklärt sich durch die Tatsache, daß die östliche Ostsee mehr als 70% der Süßwasserzufuhr empfängt [9]. Die durch Süßwasserzuflüsse verursachte positive Calciumanomalie ist dort natürlich stärker ausgeprägt als bei den unbedeutenden Zuflüssen der westlichen Ostsee.

Literatur

- [1] ROHDE, K.-H., Untersuchungen über die Calcium- und Magnesiumanomalie in der Ostsee. Beiträge zur Meereskunde 19 (1966) S. 18-31.
- [2] WITTIG, H., Über die Verteilung des Kalziums und der Alkalinität in der Ostsee. Meereskundl. Arbeiten d. Univ. Kiel Nr. 70 (1940).
- [3] VOIPIO, A., On the magnesium content in the Baltic. Suomen Kemistilehti B 30 (1957) S. 84-88.
- [4] Meßprotokolle der Wasserwirtschaftsdirektion in Stralsund.
- [5] Zaborowska-Mlodzinska, Z., Chemizm Wod Ujsciowych Odry. Przeglad Geofizyczny (1963) S. 55-64.
- [6] MLODZINSKA, Z., Hydrochemische Charakteristik des Mündungswassers der Weichsel. Vortrag auf dem I. Int. Ozeanogr. Symposium in Gdynia, 1963.
- [7] DIETRICH, G. und KALLE, K., Allgemeine Meereskunde. Berlin 1957.
- [8] Nehring, D. und Rohde, K.-H., Weitere Untersuchungen über anomale Ionenverhältnisse in der Ostsee. Beiträge zur Meereskunde 20 (1967) S. 10—33.
- [9] Brogmus, W., Eine Revision des Wasserhaushaltes der Ostsee. Kieler Meeresforschungen 9 (1952) S. 15-42.

Tyndall- und Extinktionsmessungen in ausgewählten Meeresgebieten

Von Ludwig Gohs

Zusammenfassung: Die Methode der Tyndall- und Extinktionsmessungen wird beschrieben. Auf die Normierung der Tyndallwerte wird eingegangen. Zur optischen Charakterisierung der Wasserarten werden Funktionen eingeführt und graphisch dargestellt.

Einleitung

Bei der Lösung der in der Meereskunde auftretenden Probleme werden immer mehr optische Hilfsmittel eingesetzt, wie sie Kalle [1] und Joseph [2] zur Charakterisierung von Wasserkörpern benutzt haben. Ferner verwendete Wyrki [3] die von ihm gewonnenen optischen Parameter zur Berechnung des turbulenten Austausches.

Ohne die Kenntnis der Lichtverteilung im Meer können keine gesicherten Aussagen über den Verlauf der Primärproduktion gemacht werden. Gessner [4]. Messungen mit dem Tyndall-Messer führte Jerlov [5] durch, um in den Partikelgehalt des Meerwassers Einblick zu gewinnen. Den Zusammenhang zwischen den totalen Streukoeffizienten und der Volumenstreufunktion bei 45° stellte I. E. Tyler [6] graphisch dar. Schellenberger [7] verwies auf die Notwendigkeit der Messungen der Streuung bei kleinen Winkeln (in der Nähe des Primärstrahls), um die Streufunktion eindeutig bestimmen zu können.

Es gibt zwei Möglichkeiten, optische Meßwerte zu erhalten, die von den angeführten Autoren auch wechselweise benutzt wurden; erstens: Messungen, die in situ ausgeführt wurden und zweitens: Messungen, die im Labor erfolgen. In dieser Arbeit werden Meßwerte beschrieben, die im Schiffslabor an geschöpften Wasserproben gewonnen wurden.

Meßmethode

Die Tyndallmessungen wurden bei einem Winkel von 45° mit dem Zusatz zum Pulfrich-Photometer vom VEB Carl Zeiss, Jena, ausgeführt [8]. Um in einem definierten Spektralbereich messen zu können, wurde das Filter L 2 h benutzt, dessen wirksamer Filterschwerpunkt bei 533 nm liegt und dessen Halbwertsbreite 33 nm beträgt. Die relativen Meßwerte T werden in Prozent angegeben. Sie ergeben sich aus dem Abgleich der Helligkeiten zwischen dem Meßstrahl und dem Lichtstrahl, der von einem Vergleichsglas in das Pulfrich-Photometer fällt.

Tyndall- und Extinktionsmessungen in ausgewählten Meeresgebieten

Otto Krümmel" im gleichen Monat in der Nähe des Feuerschiffes Fehmarn-Belt und in der Lübecker Bucht auf Dauerstationen durchgeführt.

Die beobachteten Werte der verschiedenen Meeresgebiete wurden in ein Koordinatensystem eingetragen. Diese Werte ordneten sich in einer Punkteschar an. Sie lassen sich mit Hilfe der Ausgleichsrechnung in erster Näherung durch eine Gerade der Gleichung (2) darstellen.

$$C_{ik} = a_{ik} + b_{ik} C_{ik}. (2)$$

45

Den Indizes entsprechen die Spektralbereiche auf der Ordinate; z. B. ist i = 1 = 420 nm, i = 2 = 530 nm und i = 3 = 720 nm, und die k-Indizes bezeichnen die Spektralbereiche auf der Abszisse. In der Gleichung (2) wird mit b die Spektralzahl [2] und mit a die Spektralkonstante bezeichnet.

Die Tyndallwerte werden mit den Extinktionswerten durch die Gleichung (3) funktional verbunden

$$\beta_{ik} = A_{ik} + B_{ik} C_k. \tag{3}$$

Dabei bedeutet B die Tyndallspektralzahl und A die Tyndallspektralkonstante. Die Funktion C_{ik} wird als Extinktionsspektralfunktion und β_{ik} als Tyndallspektralfunktion bezeichnet. Es wird ein weiterer Index eingeführt, der den Ort charakterisiert, z. B. NA = Nordsee-Schnitt A, NB = Nordsee-Schnitt B, F = Fehmarn-Belt und L = L"ubecker Bucht.

Im nachfolgenden werden die Extinktionsspektralfunktionen für die genannten Meeresgebiete dargestellt. Für die Bestimmungen der Gleichungen (4) und (5) des Nordsee-Schnittes A wurden 90 Wertepaare benutzt.

$$C_{NA 12} = 5.2 \cdot 10^{-4} + 1.12 C_2$$
, (4)

$$C_{NA32} = 1.8 \cdot 10^{-4} + 0.85 C_2$$
 (5)

Die Gleichungen (6) und (7) für den Fehmarn-Belt wurden aus 146 Wertepaaren bestimmt.

$$C_{F12} = 9.0 \cdot 10^{-4} + 1.15 C_2, \tag{6}$$

$$C_{F32} = 4.0 \cdot 10^{-4} + 0.80 C_2. \tag{7}$$

Die Gleichungen (8) und (9) für den Nordsee-Schnitt B wurden aus 44 Wertepaaren berechnet.

$$C_{NB12} = 12.0 \cdot 10^{-4} + 1.51 C_2$$
, (8)

$$C_{NB32} = 4.0 \cdot 10^{-4} + 0.84 \,\mathrm{C_2}$$
 (9)

Die Ermittlung der Gleichungen (10) und (11) für die Lübecker Bucht erfolgte aus 258 Wertepaaren.

$$C_{L12} = 9.0 \cdot 10^{-4} + 1,20 C_2$$
, (10)

$$C_{L32} = 5.4 \cdot 10^{-4} + 0.84 C_2$$
 (11)

Für die Errechnung der Tyndallspektralfunktionen wurde die gleiche Zahl von Wertepaaren verwendet wie für die Bestimmung der Extinktionsspektralfunktionen der betreffenden Meeresgebiete.

Die relativen Meßwerte der verschiedenen Vergleichsgläser werden vergleichbar, wenn nach jeder Meßserie eine Messung mit aqua dest. und mit dem vom VEB Carl Zeiss geeichten Trübglaskörper erfolgt. Der vom Werk angegebene Trübungswert bezieht sich auf:

- 1. die durchstrahlte Schichtdicke in der Beobachtungsrichtung;
- 2. den Winkel von 45° zwischen Beobachtungs- und Ausstrahlrichtung;
- 3. den Spektralbereich des zur Beobachtung gelangenden Lichtes, der durch den obengenannten Filter gegeben ist.

Nach Sauer [9] gibt der Trübungswert t das Verhältnis der beobachteten Leuchtdichte zu der Leuchtdichte an, die festzustellen wäre, wenn das gesamte angestrahlte Licht gleichmäßig nach allen Seiten zerstreut würde. Ein Körper, der das gesamte einfallende Licht gleichmäßig in den ganzen Raum streut, besitzt den Trübungswert eins. Ein solcher Körper kann nicht verwirklicht werden, weil die Streuung und Absorption des Lichtes eng miteinander verbunden sind.

Die relativen Trübungswerte T werden nach der Formel (1) in absolute Trübungswerte β umgerechnet.

$$\beta = \frac{T \%}{H \%} t. \tag{1}$$

Dabei bedeuten T = relativer Meßwert der Probe;

H = relativer Meßwert des Glaskörpers;

 $t={
m der}$ vom Werk angegebene absolute Trübungswert des Glaskörpers.

Von T ist der Betrag des destillierten Wassers abgezogen. Die Temperatur des Wasserbades in der Meßkammer wird mit einem Thermostaten konstant gehalten.

Die Seewasserprobe wird zum Messen in ein 50 cm^3 großes Becherglas gefüllt. Von der gleichen Schöpfprobe kann die physikalische Extinktion C in drei Spektralbereichen (420, 530, 720 nm) bestimmt werden. Die Messung erfolgt mit dem visuellen Pulfrich-Photometer, wobei 50 cm lange Absorptionsrohre verwendet werden. Die C-Werte sind auf 1 cm Länge umgerechnet und in dekadischen Logarithmen angegeben. Der Abgleich der Werte erfolgt stets gegen das gleiche doppelt destillierte Wasser.

Wertebearbeitung

Im April 1965 wurde auf dem Forschungsschiff des Instituts für Meereskunde "Professor Albrecht Penck" in der Nordsee auf dem Schnitt A mit den Endpunkten $\varphi=58°40'$ N, $\lambda=2°30'$ E und $\varphi=58°40'$ N, $\lambda=4°30'$ E und auf Schnitt B mit den Endpunkten $\varphi=58°07'$ N, $\lambda=4°00'$ E und $\varphi=58°13'$ N, $\lambda=5°00'$ E Tyndall- und Extinktionsmessungen ausgeführt. Das gleiche optische Programm wurde in der Ostsee auf dem Forschungsschiff "Professor

Nordsee Schnitt A:

$$\beta_{NA\,21} = 13 \cdot 10^{-6} + 0.11 \, C_1 \,, \tag{12}$$

$$\beta_{NA22} = 55 \cdot 10^{-6} + 0.13 C_2, \tag{13}$$

$$\beta_{NA23} = 101 \cdot 10^{-6} + 0.14 C_3. \tag{14}$$

Fehmarn-Belt:

$$\beta_{F21} = 107 \cdot 10^{-6} + 0.08 C_1, \tag{15}$$

$$\beta_{F22} = 205 \cdot 10^{-6} + 0.08 C_2, \tag{16}$$

$$\beta_{F23} = 237 \cdot 10^{-6} + 0.09 \,C_3. \tag{17}$$

Nordsee Schnitt B:

$$\beta_{NB21} = 4 \cdot 10^{-6} + 0.17 C_1, \tag{18}$$

$$\beta_{NB22} = 12 \cdot 10^{-6} + 0.26 C_2, \tag{19}$$

$$\beta_{NB23} = 34 \cdot 10^{-6} + 0.37 C_3. \tag{20}$$

Lübecker Bucht:

$$\beta_{L21} = -389 \cdot 10^{-6} + 0.23 C_1, \tag{21}$$

$$\beta_{L22} = -265 \cdot 10^{-6} + 0.32 C_2, \tag{22}$$

$$\beta_{L23} = -17 \cdot 10^{-6} + 0.36 C_3. \tag{23}$$

Mit Hilfe dieser Spektralfunktionen sind wir in der Lage, die Wassermassen optisch zu beschreiben. Für jeden Ort besitzen wir zwei Extinktionsspektralfunktionen und drei Tyndallspektralfunktionen. Die Zahl der Funktionen wurde durch die Zahl der benutzten Filter begrenzt.

Diskussion der Meßergebnisse

In den Abb. 1—8 sind die Gleichungen (4) bis (24) eingezeichnet. Die Extinktionsspektralfunktionen sind in den Abb. 1 bis Abb. 4 dargestellt.

Wenn die Spektralzahlen der Funktionen gleich sind, dann sind die Kurven parallel. Bei ungleichen Spektralzahlen divergieren die Kurven. Die Größe der Divergenz der Kurven hängt von der Größe der Differenz der Spektralzahlen ab. Die Spektralzahlen der Funktion mit den Indizes C_{32} , d. h. bei 720 nm, sind in der Nord- und Ostsee fast gleich, die zugehörigen Kurven sind parallel. Diese Funktionen unterscheiden sich hauptsächlich durch die Spektralkonstanten. Der negative Wert der Spektralkonstanten besagt, daß der Extinktionswert bei der Lichtwellenlänge von 720 nm stets kleiner ist als der Extinktionswert bei 530 nm. In allen vier Abbildungen (1-4) bleibt das Verhältnis erhalten und ist charakteristisch für die Nord- und Ostsee. Diese Seegebiete unterscheiden sich zwar in der Farbhelligkeit, aber wenig in der Farbart. Die Extinktionsspektralfunktionen der Ostsee im blauen Spektralbereich (420 nm) C_{F12} und C_{L12} weisen in der Spektralzahl nur geringe Unterschiede auf und haben gleich große positive Spektralkonstanten. Die vier Funktionen der Ostseestationen unterscheiden

sich im jeweiligen Spektralbereich von einander nur wenig. Die Blaukurven (C_{F12}, C_{L12}) und die Rotkurven (C_{F32}, C_{L32}) divergieren nur schwach und haben die gleichen Differenzen der Spektralzahlen $(b_{F12} - b_{F32})$ und $(b_{L12} - b_{L32})$. Darum dürfen wir diese Meeresgebiete als optisch ähnlich bezeichnen.

Die Nordsee-Schnitte werden durch die Gleichungen (4), (5), (8) und (9) optisch charakterisiert. In den Abbildungen 1 und 2 erkennen wir offensichtlich verschiedene optische Bedingungen; in der Abb. 1 ist, wie aus den zugehörigen

 $\beta={\rm Tyndall spektral funktionen},\ 1=420\ {\rm nm},\ 2=530\ {\rm nm},\ 3=720\ {\rm nm}$

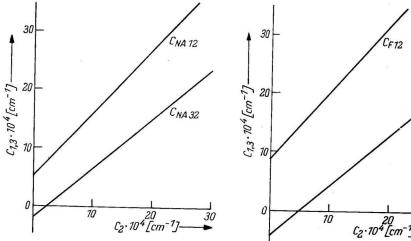


Abb. 1. Nordsee Schnitt A 16. 4. -17. 4. 1965

Abb. 2. Fehmarn Belt 5. 4. -10. 4. 1965

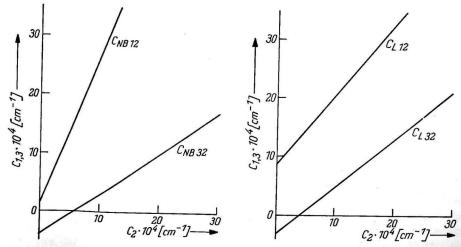


Abb. 3. Nordsee Schnitt B 19. 4. -20. 4. 1965 Abb. 4. Lübecker Bucht 12. 4. -16. 4. 1965

 $C={
m Extinktionsspektralfunktionen},\, 1=420~{
m nm},\, 2=530~{
m nm},\, 3=720~{
m nm}$

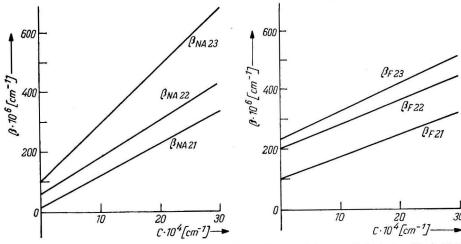


Abb. 5. Nordsee Schnitt A 16. 4. -17. 4. 1965

Abb. 6. Fehmarn Belt 5. 4.-10. 4. 1965

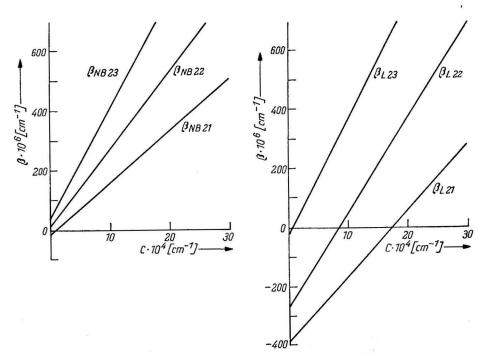


Abb. 7. Nordsee Schnitt B 19. 4. -20. 4. 1965 Abb. 8. Lübecker Bucht 12. 4. -16. 4. 1965

Spektralzahlen zu sehen ist, die Divergenz zwischen den beiden Funktionen $C_{NA\,12}$ und $C_{N\,432}$ gering. Auf dem Schnitt B der Nordsee finden wir infolge der großen Differenz der Spektralzahlen eine verhältnismäßig große Divergenz zwischen den beiden Extinktionsspektralfunktionen. Die Spektralzahlen $b_{NA\,32}$ und $b_{NB\,32}$ unterscheiden sich weniger als die gleichen Spektralzahlen der Ostsee voneinander. Dagegen sind die Spektralzahlen $b_{NA\,12}$ und $b_{NB\,12}$ stärker ungleich. Die vier Spektralkonstanten sind verschieden groß. Sie drücken damit die heterogenen optischen Verhältnisse des Seegebietes aus.

In den Abb. 5 bis 8 sind die Tyndallspektralfunktionen dargestellt. Dabei ist der Spektralbereich des Tyndallwertes immer konstant. Beim Überblicken der vier Abbildungen (5-8) stellen wir fest, daß die Kurven unterschiedlich verlaufen und keine gleich großen Werte besitzen.

Betrachten wir zunächst die Tyndallspektralfunktionen innerhalb der einzelnen Seegebiete, die jeweils in einer Abbildung erfaßt sind. In der Abb. 5 sind die Tyndallspektralfunktionen des Nordsee-Schnittes A eingezeichnet, die sich aus den Gleichungen (12, 13 und 14) ergeben. Die Funktionen β_{NA21} und β_{NA22} haben untereinander nur geringe Divergenz, während die Divergenz der Funktion β_{NA23} gegenüber den beiden anderen Funktionen groß ist.

Die hydrographischen Bedingungen in den einzelnen Seegebieten seien durch die Angabe der minimalen und maximalen Temperaturwerte und durch den minimalen und maximalen Salzgehalt angedeutet. Auf Schnitt A lag das Temperaturminimum an der Oberfläche bei etwa 6° C und das Temperaturmaximum bei etwa 7,4° C in 100 m Tiefe. Der minimale Salzgehalt an der Oberfläche belief sich auf diesem Schnitt auf etwa $34,0^{\circ}/_{00}$ und der maximale Salzgehalt in Bodennähe auf etwa $35,2^{\circ}/_{00}$.

Die Tyndallspektralkurven bei Feuerschiff Fehmarn Belt (Abb. 6) sind vollkommen parallel, weil ihre Tyndallspektralzahlen gleich sind. Die Tyndallspektralkonstanten der Funktionen β_{F23} und β_{F22} haben einen geringeren Abstand voneinander als β_{F22} zu β_{F21} . Das Salzgehaltsminimum mit Werten von etwa $10,0^{0}/_{00}$ wurde an der Oberfläche, das Salzgehaltsmaximum mit Werten um $25,0^{0}/_{00}$ am Boden angetroffen. Ein Temperaturmaximum von etwa 4 °C trat an der Oberfläche und ein Temperaturminimum mit etwa 1,0 °C einige Meter über dem Boden auf. Es existierte eine starke Salzgehaltsschichtung, jedoch war die Temperaturverteilung fast homogen.

In der Abb. 7 sind die Tyndallspektralkurven für den Nordsee-Schnitt B aus den Gleichungen (18) bis (20) dargestellt. Die Kurven divergieren vollständig, wie es sich aus der Verschiedenheit der Tyndallspektralzahlen ergibt. In der Gleichung (18) tritt erstmalig eine negative Tyndallspektralkonstante auf. Der negative Wert erscheint deshalb, weil die Tyndallstreuung des doppelt destillierten Wassers größer war als die der Meerwasserprobe. Zur Zeit der Beobachtungen wurde die niedrigste Temperatur mit etwa 4,5 °C an der Oberfläche, die höchste mit etwa 7,5 °C in 100 m Tiefe gemessen. Das Salzgehaltsminimum mit etwa $30^{\circ}/_{00}$ trat an der Oberfläche, das Salzgehaltsmaximum $35,1^{\circ}/_{00}$ in größeren Tiefen auf.

Die Tyndallspektralzahlen sind unterschiedlich. Alle Tyndallspektralkonstanten sind negativ. Im Gegensatz zu Abb. 7 trat während der Messung nach dem Abzug des Wertes von doppelt destilliertem Wasser kein negativer Tyndallwert auf. Das Seewasser war immer trüber als das benutzte Bezugswasser. Bei geringen Konzentrationen der trübenden Substanzen traten jedoch negative Tyndallwerte auf. Einen kleineren Tyndallwert des Meerwassers als den der Bezugsflüssigkeit fand auch Jerlov [5], wie aus seinen Tabellen ersichtlich ist. Der Bezugswert hat auf die Größe der Tyndallspektralkonstante einen Einfluß und muß bei der Diskussion berücksichtigt werden. Auf das Verhältnis der Tyndallspektralkonstanten zueinander hat der Bezugswert keinen Einfluß, denn er erreicht nur ihre parallele Verschiebung. Wenn die Bezugsflüssigkeit doppelt destilliertes Wasser ist, so gibt sie uns eine anschauliche Vorstellung über die Trübungsverhältnisse eines Seegebietes, und die Konstanten werden untereinander vergleichbar.

In der Lübecker Bucht lag das Salzgehaltsminimum bei $12^0/_{00}$ an der Oberfläche und das Salzgehaltsmaximum bei $17^0/_{00}$ am Boden. Das Temperaturmaximum mit 5,0 °C wurde an der Oberfläche, und das Temperaturminimum mit 1,5 °C einige Meter über dem Boden gemessen.

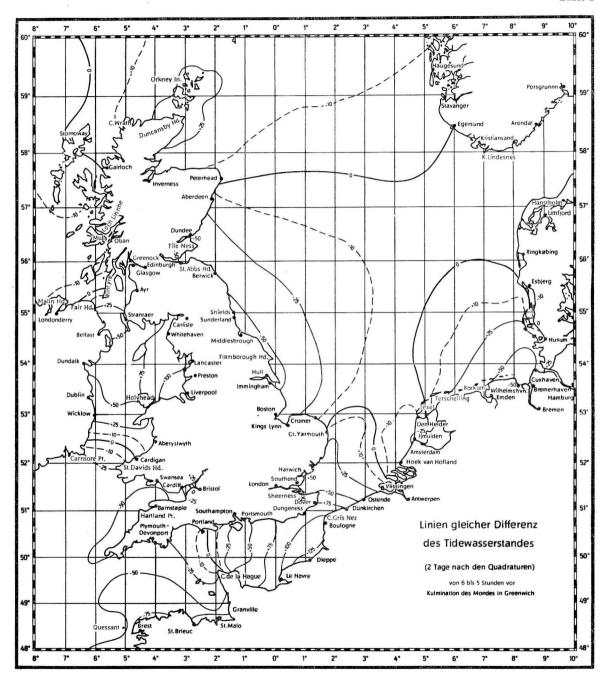
Schlußfolgerungen

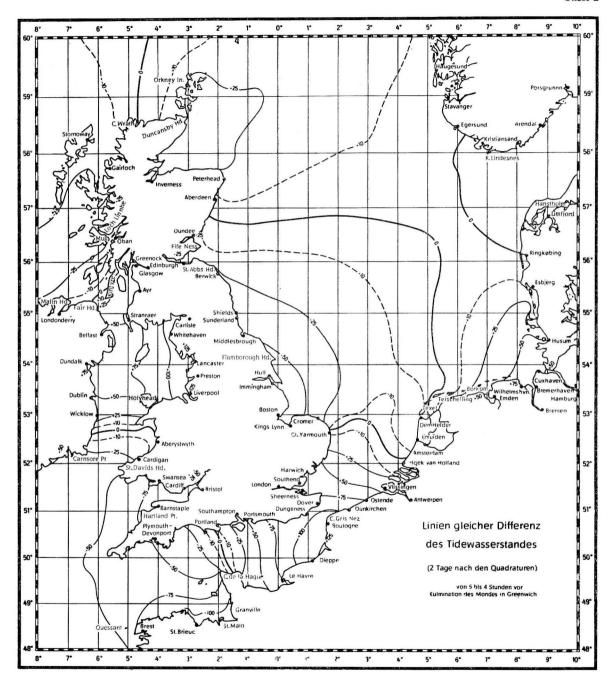
Mit Hilfe der eingeführten Spektralfunktionen läßt sich ein Seegebiet optisch eindeutig beschreiben. Die Spektralfunktionen eines Seegebietes sind entweder parallel oder divergent zueinander. Die Extinktionsspektralfunktionen allein sind in der Lage, ein Meeresgebiet optisch zu charakterisieren. Wenn wir jedoch Tyndallspektralfunktionen dazunehmen, dann kann die Aussage präzisiert werden. Am Beispiel der beiden Ostseestationen sehen wir, daß die Spektralzahlen sehr ähnlich sind. Durch die Tyndallspektralzahlen, die stärker variieren, erweist sich aber, daß zwischen den beiden Stationen bedeutende optische Unterschiede zu verzeichnen sind. Auch gemeinsame optische Merkmale von Seegebiet zu Seegebiet zeichnen sich deutlich ab.

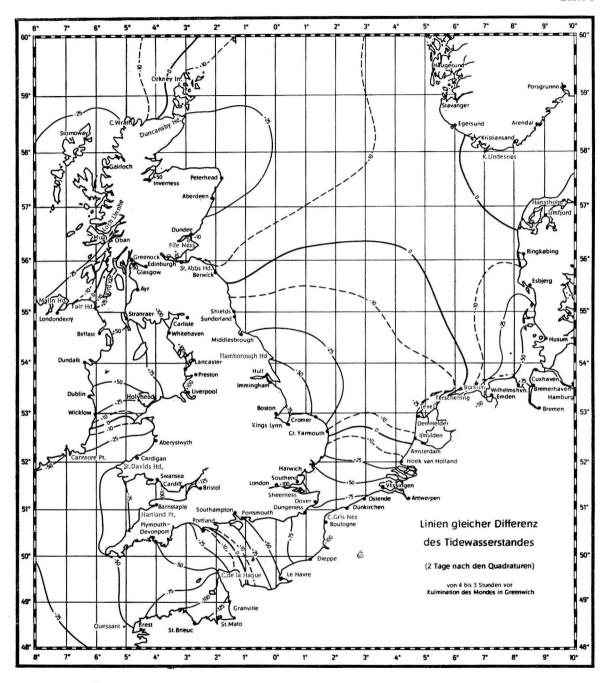
Wie eng diese optischen Funktionen mit anderen hydrologischen Merkmalen verknüpft sind, soll in einer weiteren Arbeit dargelegt werden.

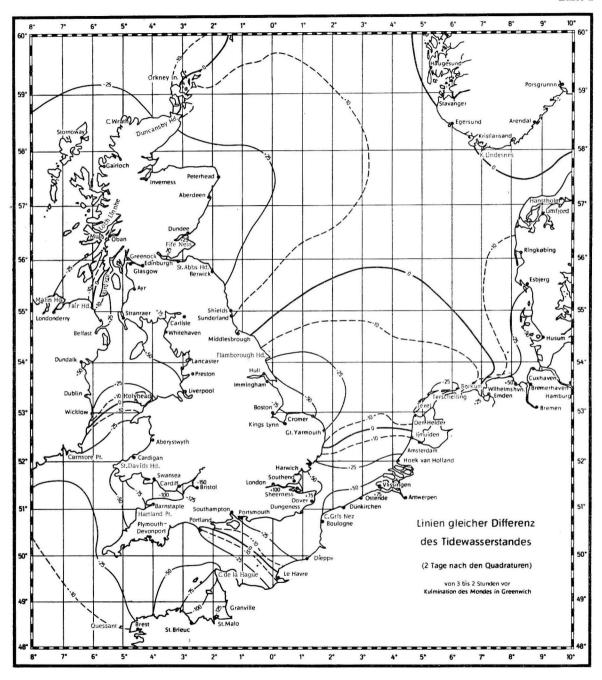
Literatur

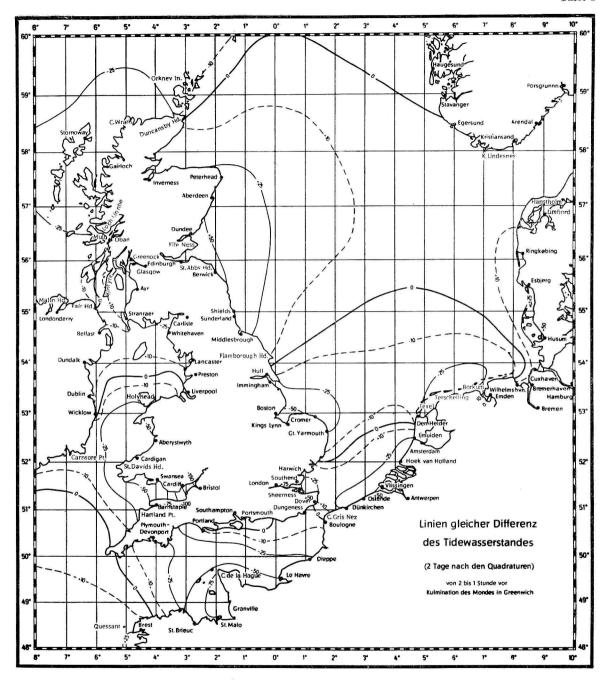
- [1] Kalle, K., Die chemischen Arbeiten auf der "Meteor"-Fahrt Januar bis Mai 1938. Ann. der Hydr. (1939) S. 23-30.
- [2] Joseph, I., Über die Extinktion des Lichtes im Wasser und ihre Messung. Dissertation, Hamburg 1946.
- [3] WYRTKI, K., Über die Beziehung zwischen Trübung und ozeanographischem Aufbau. Kieler Meeresforschung 7 (1950).
- [4] Gessner, F., Hydrobotanik Bd. I. VEB Deutscher Verlag der Wissenschaften, Berlin 1955.


[5] Jerloy, N. G., Particle distribution in the ocean. Reports of the Swedish Deep-Sea Expedition 1947—1948. Physics and Chemestry, III (1953) Nr. 3, S. 73—97.


[6] TYLER, I. E., Measurement of the Scattering Properties of Hydrosols. Journal of the optical Society of America, 51 (1961) Nr. 11, S. 1289-1293.


[7] SCHELLENBERGER, G., Über Zusammenhänge zwischen optischen Parametern von Gewässern. Acta Hydrophysica, X (1965) H. 2.


[8] Gebrauchsanweisung, Pulfrich-Photometer für Trübungs- und Fluoreszenzmessungen an Flüssigkeiten. CZ. G. 32-525a-1.


[9] SAUER, H., Beiträge zur Trübungsmessung. Z. techn. Phys. Nr. 3 (1931) S. 148-162.

