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Abstract

Topographie Rossby waves trapped at a cylindrical· seamount are studied under
conditions where a linear theory applies. In thebarotropic approximation· an exact
analytical solution valid for obstacles ofarbitrary height 1S derived, baroclinic effects
are included approximately. The frequency of the topographie waves is proportion­
ally tothe inertial frequency and the relative obstacle height. Stratification increases
the wave frequency andrestricts the vertical extend of the pressure perturbation.

For a homogeneous upstreamfiowstarting at t == 0 thepressure perturbation
and the ·fiowfield arecalculated. The pressure perturbationencircles the obstacle
clockwise as a dipole like structure, thevelocity field is approximately in geostrophic
balance..·Due to friction .the· pressure· perturbation becomes stationary after some
time in correspondence to a very small fiow velocities over the top of the obstacle.

The analytical results are compared witllthe free surfaceGFDL-modeL For
barotropic conditions there is a quantitative agreement of analytical and ·numerical
results.lntne baroclinic caseespecially for small seamounts a differenceis found
between theanalytically and numerically calculated· spectrum.This can be traced
back to tlle coupling of low and lligh order vertical modes which are not resolved by
the finite 1110del grid.

Zusammenfassung

Die .Anregung topographischer Rossby-Wellen an einem zylindischen unterseeischen
Berg wird analytiscnund mit nUlnerisch~llExperimenten für den Fall untersucht, daß
eine linear Theorie anwendbar ist.·. UlltJr barotropen·Bedingungen· wird eine exakte
analytische Lösung, gültig für Berge beliebiger Höhe, angegeben, barokline Effekte
werden näherungsweiseberücksichtigt.. Die Frequenz der topographischen Wellen
ist zur Trägheitsfrequnz und zur relativen Hölle des Berg~sproportionaL Durch die
Scllichtung wird die topograpllischeFrequenz vergrößert und die Druckstörungam
Böden lokalisiert.

Fur eine bei t == 0 beginnende 11olnogene Anströmung werden die Druckstörung
und das Geschwindigkeitsfeld berechnet. Die Druckstörung umläuft den Berg im
Ullrzeigersinll als dipolartige Struktur, das Geschwindigkeitsfeld istnäherungsweise
geostrophiscll balanciert. Dureil Reibung stellt sich ein stationärer Zustand mit eiller
sehr kleillen Strolngesch\vindigkeit über dem Berg ein.

Die allalytische Theorie wird·luit· deIn GFDL-Model1·verglichen. Unter barotro­
pen Bedillgungen ist die qualltitative Übereillstimmung zwischen beiden exzellent.
Im baroklinen Fall gibt es, Abweicllungell iln S·pektrum. Diese können auf im nu­
merischen lvlodell nicht aufgelöste vertikale lvIoden höherer Ordnung zurückgeführt
"\verden, die durch die Bodenrandbedingung an den barotropen sowie an niedrige
vertikale Modell gekoppelt sind.



1 Introduction

The condition of zero mass flux tllrough the seaflool' is a simple boundal'Y

conditionssupplementing the hydl'odynamic equations. However, it involves

a complex interplay of earth rotation, nonlineal'ity, stratification and friction.

So the· l'elatioll betweenflow and bottom topography is one of the basic and

challenging·problems of geophysicalfluid dynamics and has been an intel'esting

topic of theol'etical and eXl)erimental research ovel' several decades.

Whel'easslowly varying 01' stationary phell0mena governed by the conser­

vation of potential vorticity are of impol'tance for the oceanic circulation, in

marginal·or semienclosed seas mesoseale and small seale· phenomena of high

variability.ean dominate. A weIl defilled large scale and permanent cil'culatioll

rnay beabsent and the flow pattel'lls may l)ersist at the lTIostfor some iner­

tialperiods. Modellillg tll0se IJrocesses requires higilly resolvingrnodels with

growillg demands for the qualltitative accuraey. Thus, it is worth to test the

correctness of eommoilly used numerieal models coneerning the interaetion of

flow with the bottom topography. Since field data of semienclosed seas are

the resultof a complex superposition of proeesses of different nature, a direct

comparison with numerical results is difficult. Alternatively, the comparison

ofanalyticaltheorieswith numerical experiments is possible. For that purpose

an analyticaI theory with an sufficient1accuracy is needed.

The aim ·of the present paper i8 to compare an analytical theory of baro­

clinic topographic Rossby waves with Ilumerical results from the free surfaee

versionof theGFDL-modeI, KILLWORTH et ale (1989). Weeonsider simplified

conditions, i.e., a flat bottom oeean with only some isolated topographie fea­

tures. Oneeanassume that tllegross properties of the flow are independent

of tlletopograpllY and controlled by some idealized forcing, e.g., a homoge­

neous and· barotropie upstream flow 01' flows with weIl definedstratification

and shear. In this.case the illfluellce of the isolated topographie feature ean be

weIl identifiedandstudied sepal'ately. Although the additionalflow sterns from

a diffel'entboundary condition, it is called usually "topographically foreed".

As·an example the interaction ofhomogeneol.lsflowwitharighteylindrical

obstaele is revisited. Tllere is all ilnportallt differencebetween topograpllie
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Rossby waves trapped at obstacles orelongated topographie structures as

ridges and coastlines respectively. The topography of an obstacle is periodic

in the angular co-ordinate. This allows only for special wavenumbers and

leads to a discrete frequency spectrum. The excitation of these barotropic

alld baroclinic topograpllic Rossby waves is studied in more detail. Although

the Rossbywaves ·can be described in the frame of linearized hydrodynamics,

the wave propagation is limited by nonlinear effects which should be shortly

reconsidered. Stationary or slowly varying flow phenomena near obstacles are

determined by the conservation of potential vorticity and friction. Over iso­

lated obstacles larger then a critical height areas enclosed by streamlines, so

called Taylor columns can be formed.For a barotropic ocean Taylor columns

over small obstacles have been studied by lNGERSOLL (1969), the stratified

prol)lem has been considered by HOGG (1973) , MCCARTNEY (1975) and Hup­

PERT (1975). Ou (1991)llas given all analytical theory of stationary flO'iV near

a cylindrical obstacle whicll can be applied also to high seamounts. A detailed

allalysis of statiollary pllell0ll1ella near ol)stacles 11as been given by KOZLOV

(1993).

COllsidering statiollary states only tlle flow in the Taylor columns is not

ulliquely defined. INGERSOLL (1996) obtained an unique analytical solution by

adding all illfinitesimal viscosity. FENNEL and SCHMIDT (1991) investigated

tl1e till1e del)endent stratifiedflow ovdr a cylindrical obstacle in the frall1ework

of all allalytical inviscid quasigeostrophic approach. Their approach permits to

follow theevolution oftheflow from a starting phase governed by topographie

waves towards a phase wllere tlle waves are damped by vortex shedding and

vortex-vortex .interaction. Finally, a stationary regime is established charac­

terized by two eddies, an anticyclonic eddy trapped over the obstacle, whereas

a CYClOllic Olle leaves tlleobstacle downstream. A Taylor column is formed

over tlle obstacle if itsl1eigllt is larger thall a critical value. Althougll tlle

stationary state is equivalellt with tllat given by HOGG (1973) the flow within

tlle Taylor column appears as tlle fillal state of an adjustment process. DAVEY

et. al. (1993) as weIl as THOMPSON (1993) used an alternative method based

Oll I\:oslovs COlltour dynall1ics to follow tlle evolution of the flow field near an

obstacle witllin a two layer system.
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Th:e al~9ve seenari9 9utlines the frame of existenee of 1gealized top9graphie

Rossby ·\ivaves. After the upstrealn flow has started, waves evolve from the

eompression of vortieity linesat the gradients of the topography. These waves

ean spread ·only if other effeets balaneing thev9rtieity produetion are. small,

i.e. the tirne seale of vortex slledding by adveetion or of damping by frietion

must Be targer than the wave period. In the barotropie limit the frequeney

of the t9IJ9graphie··waves is determined by the fraetional height· fJ of the ob­

staele, HUTHN.A.NCE (1974), JOHNSON (1984). Stratifieati9n inereases the to­

pograplliefrequeney, FENNEL and SCHMIDT (1991). In the frietionless limit

the topograpllie waves are stopped.after S9me time by adveetive effeets. Al­

ternatively, if frietion is ·taken into aeeount and the adveetive time seale is

large ·tlle tOIJograpllie waves are damped. In this Gase a frietionally eontrolled

statiollar,ystate isestablished. Tlle fl9W 9ver tlle9bstaele bee9mes very small,

S9 this IJllel19mel19ll may be ealleda frieti9nallyeontrolled Tayl9r e9lumn.

F9r the l~a,rotropie Gase for small tOI~9grapllY tllis s9lution has been f9Ulld l~y

HICKIE (1972), the baroelin!e generalizati9n for small obstaeles hasbeen given

by FENNELand SCHMIDT (1991) .

Alterllatively t9analytieal tlle9ries whieh are restrieted tosimplified e9n­

ditiollS l1umerieal models areeapable for realistie investigations. Thestrati­

fied quasigeostr9phie model of HUPPERT and BRYAN (1985) and the bar9tr9pie

quasigeostrophie model of VERR.ON ana LE PROVOST (1985) show topographie

waves, vortex shedding. and v9rtex-vortex interaeti9n. The influenee of verti­

ealand l19rizontalmomentum exehangeean be studied.Whereas the model of

Huppert and Bryan is periodie, tlle·m9del of Verron and Le Provost has open

boundarye9nditions and may runinto stationary states for long times.

JAMSS (1980) considered the pressure "lift" and "drag" forees due to the

interaeti9n ·9f a seamount with a homogeneous barotropie upstream flow. He

eompared model results based Olla numerieal soluti9n of the barotropie vortiei­

tyequation witll the·" drag" {orees ealeulated from Ingersolls· approaeh. Vary­

ing frictiolland adveetionhis lTIodel shows either Taylor eolumns eontrolled

by advecti9n or frieti9n. In theinitialphaseof themodel runs topographie

waves caI1 be observed.

Se\Tera.l l1UlTIerieal eXperilTIellts \iVitll lTI9dels based9n the primitive equa-
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ti011S llave been published Wllicll SllOW the importance of topographic waves.

BEcKMANNetal. (1993) and HAIDVOGEL et ale (1993) investigated the flow

near a tall isolated seamount USillg a a-co-ordinate model. Using a periodic,

i.e. tidal, foreing the frequency of the topographie waves can be estilnated

from tlle resonant amplification of thetrapped flow for varying stratifieation.

The resultsare in good agreement with the estimates of BRINK (1989).

\JVith amodelbasedon theCoxcode SHERWIN andDALE (1992) have in­

vestigated thefrequencyof topographie waves trapped ata eylindrieal obstacle

as a fUllctionoftheobstaele 11eigllt. They are eonfronted with model results

delJellding onthegrid spacillg.

Recently,GJEVIKandMoE (1994) used a multilayer model to investigate

the ·illfluence of an obstacleon theflowover the Norwegian shelf. A simi­

laI" eXIJeriment.but based on theMellor-Blumberg model has been performed

by SL0RDALetal. (1994). Tlle model is initialized with ageostrophically

balallced TOllgsllelf current.Tllenall isolated seamount is "grown up" on the

sllelf. TOIJographically iJiduced eddy forillation and vortex shedding by a large

11orizol1tal advectiol1 veloeity are stlldied.

111 tlle present paper analytieal resultsare eompared quantitatively with

resultsof tl1e GFDL-model. In seetion 2.1 a general approach towards an

al1alytieal tl1eory of topograpllie forcing is given. As in the earlier paper of

FENNEL al1d SCHMIDT(1991) a GrJen function method is used. The theory

is developed further towards all applicability for finite height topograpl1Y il1­

cluclillg tl1e extremecaseofflo\vnear islal1ds. The study is confined to a linear

theory. It is sufficient todescribe the exeitation of topographic waves but its

valiclitJTis restricted by the timescale of advection. Therefore, the damping of

tOIJograplliewaves due.to adveetion as wellas the formation of Taylor colulnns

islJeJTond the present approael1.Alternatively to a steady state determined by

tl1e lJalallee ofadvection and Coriolisforee a frietionally governed steady state

rnay be establisl1ed. 111 tl1e presellt IJalJer we will cOllfine ourselves to slnall

horizol1tal seales and use tl1e.f-lJlane apIJroximatiol1.

1rl.seetion 2.5 the results are applied to the case of a eylindrieal obstaele

vvitllill a starting hOlnogel1eous flow. Tlle topograpllie frequeney as weIl as flow

IJatterlls are ealeulated for variousvalues of the relative topographie h.eight and
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tlle stratificatioll parameter.

In· section 3 analytical resultsare compared with the results of numeri­

cal experill1ents with a free surface version of the GFDL-model, KILLWORTH

et aL (1989). Thismodel is based olTthe nonlinear, hydrostatic Boussinesq

equations ill1plemented as a finite difference scheme on an Arakawa B-grid.

The COrnlJarison with the analytical results isnot straightforward. The model

geornetry can .. be prepared with the same· idealized conditions as in the ·ana­

lyticaltlleory.However, numerical requirementsrestrict the range of physical

pararnetersunder investigation. Especiallyfrictionless conditions·cannot be es­

tablislled sillce.friction is an essential ingredient to keep the model stable. The

extractioll of special quantities of illterest i8 moredifficult then froman analyt­

icalm.odel.Also the resolution in SlJaCeand time is limited by theconditions of

numerical stability. Additional numerical difficulties, as a zero group velocity

phenoll1el1011 il1tlle ArakawaB-grid may influence the results, MESINGER and

ARAKAWA (1976). Tlle topographie frequency appears as suitable to compare

analyticala,nd numerical repults also on a quantitative level.

2 Analytical approximations

2.1 The basic equations

We consider anunbounded, stratified, rotating and flat bottom ocean with an

isolated tOlJographic·featl.1.replaced in.the center of the co-ordinate system. We

are interested in the starting flowprolJlem, i.e. a homogeneous upstreamflow

UO(t) is switched on at t = 0 andwe ask for the flow pattern ernerging near

the·topogralJhic feature. In this section .allalytically solvable approximations

of the IJrimitive equationsare derived. Forsome physicalprocesses very simple

mathematicalapproximation are necessary. Werestrict ourselvesto timescales

shorter tlTall the advection time Ta ,'Vllich can be defined as that time a water

particle 11eeds to bemoved over a distance of the horizontal extension of tlle

topogralJllic featureA, i.e.,

(2.1)
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Tllen we, can. expect the linearized Boussinesq equations apply to a good ap­

proxiination, i.e.,

Ut - fv + Px

Vt + fu + py

-b+pz

bt + N 2w

x ,

Y,

0,

Q.

(2.2)

(2.3)
(2.4)

(2.5)

Eq.s (2.4) and (2.5) can be combined to give

Pzt + N 2
w == Q. (2.6)

Tlle systemis completed by tlle continuity equation for an incompressible fluid

(2.7)

Here u and v are the zOllal alld themeridional horizontal velocity COrnpo­

11ents, w is the. vertical, velocity, p stands for the ,pressure deviation, from the

state of rest, b is tlle buoyallc~y alld N2 is tlle Brunt Väisäla frequency. Tlle

sul)scril)ts x, y, z and tstalld for tllepartial differelltiation. Otherwise tlle

notatioll is standard.

f describes the horizolltal cOlnponellt of the earth rotation, here we consider

tlle f-plalle approximation. x, yandzorient to build a right handed system

of l{artesian co-ordinates.

The elevation ofthefree surface isrelated to the pressureat z ==0

1)
1] == - at z == O. (2.8)

9

Tlle quantities X, Y alld Q symbolize theReynolds stress, i.e., wind stress

as all exterllal force and illterllal Reynolds stress. For the sakeof simplicity

weconsider a linear superpositioll ofwind stressandinternal Reynolds stress

(2.9)

wllere tlle superscripts stand for W: wind and z. internal ReYll01ds stress.

Wind forcillgcan'be'parameterized as a body force acting within a mixed layer

of tllicl<:lless" Hmix

(X' 'W l/W ) == ( ,W w,,) 8(Z +H~ix)
, , Tx ,Ty Hw. .

mzx
(2.10)
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r W is tlle wind stress at the surface. Bottom friction may be included by a sim­

ilar layer, however, the calculations for finite topography will be complicated.

For tlle illternal Reynolds stress a simple ansatz

(2.11)

is suitable for analytical investigations. The parameterization (2.11) implies a

loss of momentum of the vertically integrated flow and we neglect additional

bottom friction. Similarly we set

Q == -lJb. (2.12)

(2.13)

Diffusion vallishes for zero buoyancy, i.e. the stratification described by the

Brunt Vaisäla· frequency N 2 ··isa steady reference state. For simplicity the

value of botll tlle diffusion parameter formomenturn and buoyancy have the

same value.

The parameterization of turbulellt·processes as given above is simplified as

muchas possible. For adetailed discussion of turbulent processes in terms of a

stationaryquasigeostrophic ..boundary layer theory we refer to FOSTER (1989)"

It 1S convenient to consider the Fourier transforms about t,

1
+(X) dw .

A(t) == -.e-twtA(w).
~(X) ·.2%

The quantities in the time-and the frequency domain are denoted by the same

symbolsand can be distinguished by their arguments.

It is not in the scope oI this approac~ how the upstream flow UO is driven.

We assurne there is some forcing which would producea homogeneous flow

in a flat bottom ocean, Le. the flow field and the corresponding pressure are

solutions of theBoussinesq equatiolls for a flat bottom ocean. This flow is

not necessarily ingeostrophic balance. We subdivide all flow fields into an

tlpstreampartalld aperturbation produced at the irregularities of the bottom

topograplly,

p (2.14)

Then, the topographically forced flow is a solution of the Boussinesq system

-iwu - j~v + 'l/Jx

- iwv + .fu + 'l/Jy

0,

0,

(2.15)

(2.16)
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the equation of continuity

(2.17)

and tlle vertical equatiol1

<-nI, N 2 "" 0--2Wo/z + W == .

The complex frequency w,

w-w + iv,

(2.18)

(2.19)

e1nerges froln the combination of the time derivative and the damping accord­

i11g to eq. (2.11).

Tl1is setof·equations canbe combined to one single .equation for the pres­

sure perturbation ~

-iw (.6+Z) ~(xyzw)==0.

Tlle olJerator Z stallds for

f) 12 - w2 f)

Z = OZ N2 OZ'

(2.20)

(2.21)

2.2 Boundary conditions
)

We llave to specify the boundary conditions for ~.

At tl1e surface we willassume the absence of horizontal airpressure gra-­

dients. Tllus, in the linear approximation the vertical velocity at the surface

equals the time derivative of the surface elevation ~

W == 1]t for z- o. (2.22)

01" equivalently with eq.s (2.8) and (2.18) in theFourier space

for z== o. (2.23)

111 eq.(2.23}a smallfrictional term llas been added to the time derivative of

tlle free surface. This is convellie11t i11 tlle analysis below. Since the time scale

of cllanges in the surface elevation is very short compared with the diffusive
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time scale and the resulting error will be small. This minor inconsistency

vanishes in the rigid lid approximation (w == 0 at z == 0).

At rigid boundaries, Le. at the bottom and at the coast the flow perpen­

dicular to the boundary vanishes

w == -u· VH(xy) for z == -H(xy). (2.24)

The function H(xy) --- Ho - h(xy) describes the shape of the sea floor.

In the flat bottom case the vertical flo~ at the position z == - H(xy) is

wo. Thevertical flow appearing additionally to wO due to the influence of the

botton1 slOl)e is

w==_wü -u· VH(xy) for Z== -H(xy). (2.25)

Subsequelltly, anol1divergent upstream flow is considered and WO is zero.

Equations (2.25) includes the flat bottom, w == 0, and a sidewalllike coast

as special cases. In the latte~casetlle normal derivative of H becomes infinitely

largeand one gets the usual coastal boundary condition of vanishing normal

velocity,

u n == o.

The horizontal equations

(2.26)

u

v

(2.27)

(2.28)

Fora cylindrical obstacle with steep sidewalls and a. flat top H reads in

cylindrical co-ordinates

as weIl as eq. (2.18) can beused to eliminate the velocities,_

(P ~ w2
) (~7ßz +UD. \7H)

- -iw(VV;)· VH - f((Vv;) x VH)zfor z == -H(xy).

H(r,cp) ==Ho - hO(a - r),

(2.29)

(2.30)



and the above eonditioll simplifies to

(p - ( 2
) ; 'ljJz = 0, far r -I- a and z = -H(r)

(P - ( 2
) UD cas <p = -iw'IjJr + ~'IjJ",

for r - a and - Ho < z < - Ho + h.

13

(2.31 )

Considering loealized proeesses as trapped topographie waves the pressure per­

turbatioll as weIl as its derivative should vanish far from the topographie fea­

ture

o
o

for r -+ 00,

for r -+ 00. (2.32)

For waves Ieaving tile topograpilie feature an radiation eondition applies.

2.3 Formal solution of the vorticity equation using a

Green function

To diseuss tile prOI)erties of tlle solutioll of eq. (2.20) a formal solution is de­

siral)le.For lillear differeiltial equations as used llere this ean beaeeomplished

bya Green function. Let us defille a funetion G(xyzi, x'y'z'i') governed by tlle

equatioll (in frequeney represelltation)

-iWß~G(xyz,x'ylz',W)==8(x - x')l5(y - y')8(z - z'). (2.33)

Here, tlle priined derivatives act on the primed variables. For shorter notation

tlle abbreviation

A' _ A' + ';{,
Ll3 - Ll ..:.J • (2.34)

llas beeIl illtroduced.

Next, we multil)ly eq. (2.33) l)y 1/J and eq. (2.20) with G, add botll eqlla­

ti011S aI1d il1tegrate over tl1e total ,roluine iI1 tl1e l)rimed variables. 111 cylil1drical

co-ordillates r, ep and z

r Jx2 + y2, (2.35)

rp aretan (;) , (2.36)

z z, (2.37)



(2.38)

(2.39)

o
-G == 0 for Zl == -Ho. (2.40)
OZ'

Eq. (2.38)' can be integrated by parts. Using the bottom boundary condi­

tion (2.31) it follows

we obtaill

14

The argulnents of the functions Ullder the integral have been omitted.

The usual procedure according the classical Green function method would

be an integration by parts using Gauss' lemma or equivalently Green theorem.

Choosing appropriate boundary conditions for the Green function the pressure

would l)e given in tlle form ofa convolution integral of the Green function with

the sources of pressure perturbations, here the Reynolds stress term. However,

this will be of no practical use because the Green function for a non Hat bottom

can bedeterlnilled analytically only ill· someexceptionalcases.

Alterllatively, one can use a simplified Green function which fulfills sim­

ple bOl1ndary COllditions and can be calculated analytically. In this case the

Green functiol1 is 110t the "solving l<ernel". Additionally to the forcing term

there appear further sources of pressure perturbations in connection with gra­

dients of the bottom topography. Unfortunately these source terms depend on

the pressurefield itself, so the resulting equation has the form of an integral

equationfor thepressure, which,however,is onlya two·dimensionalone.

Let us consider the Green function to be known. At the surface we require

for the Greell fUl1ction theboundary condition

BO + N
2

G = 0 für z' = O.
Oz' 9

and at the bottoln the boundary condition for the Hat bottom case

This illtegro-differential equation can be solved numerically. The upstream

flOV\T al)l)ears as tlle forcing ill1l01nogeneity. As an advantage cOlnpared to
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(2.42)

(2.43)

(2.44)

n

G(rzr'z', w) == b Fn(z )Fn(z')Gn(rr', w).

2.4 Calculation of the (;reen function for an unboun­

ded ocean

the pressure equatioI1 it is 011ly two dimensional and fulfills the boundary

COI1ditioI1S automatically. 'ljJ vanislles in tlle flat bottom case.

Tlle eigellfullctionsare governed by tlle eigenvalue equation

Tlle quantities An are the eigeilvalues corres!)onding to the Fn's and are related

to· tlle Rossby radius as

We consider the Green function for an unbounded f-plane ocean with flat

bottom as a reference state. We can decompose equation (2.33) for the Green

function in verticaieigeI1functioI1S Fn (z )

Tlle boundary conditions correspoI1d to tlle kinematic boundary conditions for

tlle pressure and tlle GreeI1 functioll, i.e.,

for z ==

for z == -lio.

Tlle eigenfuIlctiollS are ortll0110rI11alized according to

allel forill a cOluplete basis

b F~(z)Fn(z') == 8(z - Zl).
n==O

Gn is goverlled bytlle partialdifferelltial equation

~iw(A'+ 1);;) Gn(rr'w) = 8(r - r'),

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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where the abbreviation K:~ stands ·for

K~ = A~ (c} - P) . (2.50)

The solution of eq. (2.49) is a Hankel function Hgl
), e.g. ARFKEN (1970) :

Gn(rr'w) = :w Hg l
) (Ir - r'IKn ). (2.51)

It fulfills a radiation conditioll for large r ' assuming K: n is that root of K:~ with

the positive imaginary part. In the case w < f the Hankel function may be

transformed into a modifiedBessel function I{o and Gn reads

Gn(rr'w) = ~f{o (Ir - r'lan ), (2.52)
21f~W

wllereby,

(2.53)

For later reference we note the Fourier series of Gabout the angular variable

i m==oo eim(<p-<pl)

G(rzr'z',w) ==-=-.I: ' . Lm(rzrlz'w),
w m==-oo .. 21f

(2.54)

(2.55)
n

Tlle function gmn reads

gmn(r, r') == {}(r --- r/)g~n{r, r') +B(r' r)g;;'n(r, rl), .

with

(2.56)

(2.57)

I{m(ran)Im(r'an),

I{m (r'an )Im(ran),

g~n(r,r')

g;;'n (r, r')

01" equivalently

> (') 1f~ (1) ( ) (' )gmn 'r,'r "2: Hm 'rKn Jm 'r K n ,

< (') 7r2 H (1)(· I )J ( ) (2 58)gmnr,r "2: m rK:n mrK:n · ..

The former expression·for gmn ·has real arguments for Jwl< f,whereas the

second one is more appropriate fortwl ::> f.From the properties of Km and

Im or H~) and Jm respectively, ABRAMOWITZ & STEGUN (1984), it follows

gmn ==g-mn· (2.59)



(2.62)

(2.61 )

(2.60)
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2.5 Approxilllate solution for an isolated cylindrical

searnount

111 tl1is section eq. (2.41) will be solved approximately. In comparison with

otherresults which confine toa topography of small height, the approach is

applicablealso to a topography with finite height including the island case.

Matl1ematical details aregiven in the appendix. We start with the barotropic

apI)roximation. Here, an exact solution can be found. Baroclinic effects will

be included approximately.

Becauseof the cylindrical symmetry of the topography, eq. (2.41) can be

simplified by separation of tlle allgular variable 'P,

Assuming a homogeneous upstreamflow UO the remaining integral equation

for tlle components ~m reads

a f2 -2 a I
'l/Jm(rzw) = - f. dr'r''Ij;m(r'z'w) ;;2Wa ,Lm(rzr'z'w)

Jo z z'=-Ho+h

j -HO+h ·f2 _(jj2
+ ... dz'i .. u01fa8Iml,lLm(rzaz',w)

-Ho w

j
-HO+h

+ .. dz'~m(az'w)gm(rzaz'w).
-Ho

We 11ave used the abbreviation

a Im
9m(rzr'z'w) = -r' Ja Lm(rzr'z'w) w Lm(rzaz'w).

An explicit expression for gm is

(2.66)

(2.63)

(2.64)

J{m(T<Yn) (1Janlm+l(r'an) +m (1 - ~) Im(r'an)) ,

Im(ran) ( -r'anJ{m+l(r'an) + m (1 -~) J{m(r'an)) .

(2.65)

g~n(rr'w)

gn1,(rzrl z'w)

G. < (rr'w)- mn

gmn llas tlle important l)roperty
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2.5.1 Tlle barotropic solutioll

As a first example we consider tlle barotropic approximation. It follows from

eq. (2.61) in the limit N2 ---f O. The baroclinic components of the Green

function are proportionally to the baroclinic Rossby radius R1 and vanish in the

limit N2 ---f O. For the derivatives of the Bessel functions inYm the limit N2 ---f

omust be performed before setting eventually r == a. The baroclinic part of

the first contribution of eq. (2.61)does not become zero in the limitN2 ---f 0

because the bottom geometry is expressed also in terms of the eigenfunctions

Fn • The details are given in AppendixA.

Since the flow is independent of the depth z the barotropic equations are

valid rather for the vertically integrated velocity (transport) than for the ve­

locityitself. Tlle number of degrees of freedom in the linear barotropic approx­

imation is to ·small to adjust tlle velocity field to the shape of the topography.

As a consequence the boundary conditions (2.31) have to be replacedby the

weaker condition of a contip.uous transport perpendicular to the gradient of

the topography.This happensautomatically if thebarotropic limit iscarried

out in eq. (2.61). For a cylindrical obstacle this boundary condition reads in

termsof the radial velocity component at the obstacle edge

(2.67)

u(a,i)r is the velocity outside and over th~ obstacle.

The barotropic solution for the pressure perturbation forced at a cylindrical

obstacle can be calculated exactly. The details are given in Appendix B. The

resulting pressure perturbationover the obstacle VJi and beside the obstacle

'ljJa reads

with

Dmo

-/kCuKm(aor) Im (ßa) D~Ö
O"mO(w)

-/kCuKm(aoa) Im (ßr) D~Ö
O"mO{w)

(2.68)

(2.69)

(2.70)

(2.71 )

(2.72)
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'Ve call restrict tlle discussioll to l)ositive values of the allgular Illode Ill1111ber

11~, tlle case of negative m call be treated with the relation

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

O"rnO(W) = 1 - ;0 -;0 (-aaoKrn+l (aoa)

+m (1 - ~) Krn (aoa))Im (ßa) D~~.

-f < w < f·

f < IwI < 00,

0"1nO(w) == o.

0"-mO(w) == O"mO( -w).

and

Tlle eq.s (2.68) and (2.69) are valid for obstaeles with arbitrary height h

ineluding the islandease, h ..... Ho.The results asgiven above are very similarly

to the findings of HUTHNANCE (1974) for topographie wave exeited by tides

at Roekall Bank. However, tlle tidal foreing eouples the modes with m == ±1
to the m - 0 mode so that an additional eontribution appears in his solution

and the wave speetrum is different.

The frequeney speetrum of tlle pressure perturbation 1/J eorresponds to the

singularities of eq.s (2.68) and (2.69) respeetively. It eonsists of a eontinuous

part in tlle superinertial frequelley range

anda discrete part at frequellcies wmoin tlle subinertial domain

For the COlltillUOllS specttum, Iwl > tl1e modified Bessel functions Im and

!(m call be rewritten as oscillatil1g Bessel funetions H~) and Jm . 'ljJ describes

tlle radiation of inertial waveswllich decay asymptotically as Vi-I. In the

frequencydomain -f < w < ~f tlle lllodified Bessel funetion !(m decreases

eXl)Onentially for large r alld 'lj; describes waves trapped at the obstacle.

Tlle discretefrequellcies wrnO are determined by thezeros of the denomina­

tor of eq.s (2.68) and (2.69),
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For the sl)ectrulu the dalnping 11 is of minor importance, since 0"mO depends

on W only. The corresponding complex frequency values accounting for the

damping explicitly can be calculated by

- .
W m == W m - 'l1l. (2.78)

(2.84)

(2.83)

(2.79)

(2.80)

(2.82)

(2.81 )

o.

We start the discussion with the island case. In the limit h -4- Ho we obtain

-CuI<m (aor) Im (aoa)
SmO(w)

'l/J':nO(rw)

'l/J~O(1~W)

(The latter equation is valid with the exception of the point r == a.) SmO is

the remainder ofO"mo in the island case. To find the discrete spectrum, i.e. the

trapped waves, we have to solve theequation

Smo(W) = (aoKm+l(aao)- m (1 - ~) Km(aao)) Im(aao) = O.

The factorIm ( aao) has been introduced for convenience and does not influence

thespectrum.

Thezero at w == -sig(m)f corresponds to a free wave. There is at least

one additional zero lwmol< f. For positive values ofm it follows wmn < o.
According to eq. (2.77) every solutionwmn for positive m has acomplementary

solution--wmn for negative m.

A criterion for the existenceof this. second zero can be derived considering
t

the slope of Sm in the point W- -sig(m)f. There is a critical radius a~bt for

the trapping of waves at a cylindrical island, LONGUET-HIGGINS (1969),

Often Olle has the situation that R1 ~ a ~ Ra so the barotropic mode is

untrapped,whereas near the island trapped baroclinic modes may exist. If

a·~ aC:::~ a rougll estimate for wmn reads

_ .Rnm
W ,.-......; -f-·-mn"-"""; '" .•

a

For a > a~bt trapped waves can exist but not for a < ac;;~t. Obviously, for the

island case all verticalmodes separate and the above result can be generalized

for the baroclinic modes
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i.e. a I<elvill like wave with a wavenumber

This frequency belongs to waves with phases
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encircling the island clockwise.

Figure 1: The real part of BIn asa function of w (left figure) and the I<elvin
wavefreqllency wmn as a functionof J;,n for different values of m (rigllt figure).

The filled squaresmarl<tl1e critical r~dius aC;::~.

Tllere is no trapped solutioll for m == o. For m == ±l the critical radius

is zero. As a special prOIJerty of tllismode which is forced bya homogeneous

upstream flow a trapped solution exists also for islands with a small radius.

However, tlle trapping is weal<, since for Ra ~ a the wave frequency is apIJrox­

inlately

So tlle arguments of the Bessel functiollS are small and decrease slowly evell

for large radii.

Tlle left part of Fig. 1 sl10ws the real part of BIn as a function of w for

differellt values of J:
n

• All graplls run through the point w== - f. If the
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Figure 2: The topographicfrequency w;:r as a funetion of /;0 for different val­
ues of~o ~ 1, left: m - 1, right: m - 2. The dotted line is theapproximation
according to eq. (2.92) for a ~ Ro

0 0
p. p.
00 00

,..I ...... ,..IN

13 -0.5 13 -0.5

.....--- a/Ro=O.l ----- a/Ro=O.l
>HHHH< a/Ro=O.5 ~ a/Ro=O.5
++-++-+ a /Ro= 1 +-++++ a/Ro= 1
~. a/Ro=2 .-........... a/Ro=2
~ a/Ro=5 ~ a/Ro=5

-1.0 -1.0
0.0 0.5 1.0 0.0 0.5 1.D

h/Ho h/Ho

ratio J:
n

is large, a weIl distinct secondzero exists corresponding to a trapped

(I{elvin) wave. The right part of Fig. 1 shows the value of this Kelvin wave

frequency as function of ;n for different values of the angular mode number

m. The squares marI< the critical radiusa~~.

Nowwe let the island "sink down" and get a seamount. The change in

the spectrum can be understood from Fjg. 1 and eq. (2.73). The curves for

Sm(W) are shifted upwards. If there is a weIl distinct Kelvin wave trapped

at an island, its frequency value is lowered with decreasing obstacleheight h.

If the obstacle radius is ~mall, i.e., if there are near inertial waves generated

at the island, tl1e change in the frequency spectrum is more dramatic with

decreasil1gh. The zero at the inertial frequency moves rapidly to lower values

of w, i.e. the waves become trapped.

Rewriting the denominator of .'l/J as

the structure is more transparent. Vl~ml(w) is positive definite. There is one so­

lutioll w~ho corresponding to a trapIJed wave which will be called subsequelltly

_ . (_ . h Im (ßa) !{m (aoa))
WO"mo(w)Dmo = Wlml(w) W+mf Ho Wjml(w) ,

Wlml(w) . aoa (ß-1I{ml(ßa)I<m (aoa) - Ilml(ßa)I<:n (aoa)) ,

(2.88)

(2.89)
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Fig. 2 gi'ves a guide, wllere tllis al)l)roximation is applieable. Tlle rigid lid

aPl)rdxinlation eq. (2.92) follo\iVS as aspeeial easeof eq. (2.93) for /Ja ~ Ro.

(2.93)

(2.94)

(2.92)

(2.91 )

(2.90)~ -mf2Hoh~h (1+2H~-h~ (41-1+2In(~))),
(p - w;::r02

) a2

f 2Ra

-topo
Wmb

-top0'""-J ·f h r R
W rnb '" -m 2H

o
-h Iora ~ o·

-tapa
W 7nb

The above rigid lid approxilnatioll provides an upperlimit for the modulus of

tlle tOl)ogral)llie frequeney.

If tlle relativeheight of the obstaele is slnall, the topographie frequelley is

luuell slualler tllan f. Thisallows an iterative solution of eq. (2.88). Tlle first

order approximation is valid for /;0 ~ 1 and reads

"tol)ograpllie frequeney". The subseript b stands for "barotropie approxilna­

tiOll" ill tlle senseof "deptll indepelldent" rather than for "barotropie mode".

Fig. 2 shows the topographie frequelley ealeulated numerieally from eq. (2.88)

as funetion of the relative topographie height /;0' The modulus of the fre­

queney deereaseswith h, the frequeney of a Kelvin wave trapped at an island

with radius a appears as anupper bound for the topographie frequeney of

waves trapped ata eylindrieal obstaele.

For the two·limiting eases ßa ~.·Ro and a ~ Ra analytieal approximations

for w;;:ro eanbe found. Iftheobstaele radius is smalleompared to theRossby

radius, /Ja ~ Ra, the topograpllie frequeney reads for m == ±1

8 2 tellds to zero if the island radius. is. ·slnall eompared to the Rossby radills

and tlle rigid lid approximation is valid. In tllis ease the right hand side of eq.

(2.90) is illdependent of w:::ro a.lld the topographie frequeney depends on tlle

inertial frequeney fand the relative height /;0 of the obstacle only,



24

For a ~ Ro tlle topographie frequeney is proportionally to the frequeney of a

Kelvin wave trapped at the obstaele edge

- tapa rv h j3 - f R
Wmb rv Ho 1 -+ j3 Wmo or a:::?> o· (2.95)

The topographie frequeney w;;:bo depends on the relative obstaele height

/;0 only but is independent of the total depth Ho and the obstacle height

hitself. -Tllis sterns .from- the fact tllat the topographie waves propagate as

vortieity waves generated by eompressing or stretching of vortieity lines at tlle

gradients of tllebottom topography.

Imw Imw

-f (0,0) f Rew -f (0,0) f Rew

· "8 ® .0 G· "• •
WmO- 1E W-mo WmO- c W-mO

Figure3: The relevant singularities and theintegration path in the complex
w plane.

Letus now diseuss the time evolution of the flow pattern. This requires the

inverse Fourier transformation of eq.s(2.68) and (2.69) whieh ean be performed

usingCauellYs tlleorem. To geta closed integration path in the complex w­

plane. we eomplete the integral along the real axis by a semicirele in the upper

or lower half plane. Itdepends on the behavior of VJ(w) for w --7 ±ioo whether

the integration path can be closed·in theupper or the lower halfplane.Setting

w - iq we filld

q

( t- a-'-r (3)q
e fRo

q

(2.96)

(2.97)
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Tllis ex!)ression tends to zero if

(2.98)

r>a

r<a.

q --+ 00t < r-a for
fRo

t > a-r/J for q --+ -00fRa

t < a-r /J for q --+ 00fRa

Fig. 3 Sl10WS the relevallt singularities. Closing the integration path in the

upper half plane it can be contracted to apoint without enclosing a singularity.

Consequently, the Fourier transformof 'l/J:no vanishes for t < f~. For t > fR~ it

can be expressed bya Caucllyintegralclosed in the lower half plane. A similar

behavior can be found for 'lfJ:no. Besides the poles with 1wl< f corresponding

to the trapped waves we llave to consider the branch points of v'f2 - i;j2 at

w == ±f - iv. Rewriting

ao - ~Vf - w - ivVf +w + iv

t > r-a for q --+ -00fRo

it turns out that we need two cuts to make ao unlque. Choosing the cuts

parallel to the real axis according to Fig. 3 the imaginary part of ao is always

positive and the cut of the Hankel fhnction needs no special consideration.

However, we are not allowed to cross the line Im(w) = -iv at IRe(w)1 > f.
The il1tegralover the cuts Wllicll llave been added to close the contour does

110t vallisll and we have to subtract tllis contribution from the total illtegral

over tlle closed contour. Tlle secolld part of Fig. 3 shows the remaining

path illtegrals after cOl1tracting tlle whole contour to separate contour lines

encircling the singularities.

Sul)sequently, we will COllsider only tlle trapped waves, i.e., we tal{e into

accoullt Ollly the integrals ellcirclillg the singularities at W== 0 and W== W;;:b o •

However, tllis approxinlation 11as to l)e considered with some cautioll if tlle

frequency of tlle trapped waves is near the inertial frequency, i.e. if h ~. Ho

and a ~ Ro.Althougll tlle a!)l)roximatioll (2.93) is suitable to calculate tlle

spectruln, the calculation of tlle residuum ismore delicious and requires a
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(2.99)

detailed diseussions of all parts of the speetrum. Espeeially for islands with

a small radius, a ~ Ro, the integral along the euts eompensates partially the

eontribution of the trapped waves. This problem will be diseussed elsewhere.

Here, we restriet ourselves to situations where the frequeney of the trapped

waves is weIl distinet from tlle illertial frequeney, i.e. /Ja ~ Ra 01" a ~ .. Ro.

For reasons of consistency we negleet in all expressions w in comparison with

f, i.e., in the numerator of 'ljJ and in the arguments of the Bessel functions and

calculate the topographie frequeney from the approximation eq. (2.93). This

is necessary to fulfill the boundary eOlldition (2.67) for the radial transport.

The denominator of'ljJ readsapproximately

_ h Im (13~)Km C~J (_ -topo)
wo-mo(w)Dmo ~ - u. f .-topo W - 1TIWl b •

LIO W 1b

For theFourier transformation the upstream flow has to be specified. We

consider the example of a flow switclled on at t == 0 and staying constant

thereafter. Tlle Fourier transforn1ed reads

2
uo(w) ==Uo ..

w +Zc
(2.100)

(2.104)

(2.103)

(2.102)

(2.101)

!{ (..I-)1 Ra

!{(.~). '
1 Ra

h (13*)
11 (13 ;:J ·

The radial function r reads

(Other examples, i.e. an oseillatillg upstream flow, but within a perturbational

solution scheme valid for snlall tOlJography,has been consideredby FENNEL

and SCHMIDT, (1991).) 'Uo is undamped, and the frequency w has to be·distin­

guished .. carefully from w.
The pressure perturbation is a product of an amplitude function r{r) de­

scribingtheradial shape of 'ljJand afactor Q (<pt) standing for a angular wavelike

time evolution of '1/;.

() (t - r~ja) jUoara(r)Q(cpt),

() (t - ß~;) jUoari(r)Q(cpt).



(2.105)
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Outside of the obstaele f( r') deereases exponentially for distanees larger than

the barotropie Rossby radius. Over the obstaele the pressure perturbation is

also trappedat the edge but the ellaraeteristie distanee

I4J = ! CiiV.Ho - h = Vg(Ho - h)
ß jyg.l.LO Ho j

is a redueed Rossby radius eorresponding to the redueed depth over the obsta­

eIe, Ho - h. If the radius of the obstaele a is mueh smaller than this Rossby

radius tlle pressure perturbation deereases linearly from the edge to the obsta­

eIe cellter.

InitiaIIy, after the upstream flow has been switched on, the information

on tile obstaele perturbillg the upstream fiow spreads by inertial waves over

the -\ivll0Ie basin. Outside theobstacle tlleir phase speed is I4J!, over the

obstaele the phase speed is redueed by a faetor ß-l. The inertial waves are

not eOllsidered expIicitIy and the step funetions in the expression for 'ljJ are tlle

remainder of tilis initial proeess.

In addition to tllis radially spreadillg wave front there is a topographie

wave orlJitillg clockwise rOlllld tlle obstacie. Tllis wave process is represellted

by tlle factor

topo

Q(<pt) = to~l;+ 2 (wi~POqs(<p, t) + vqc(<p, t)) (2.106)
W 1b v

witll the abbreviatiolls

qs(cp,t)

qc(cp, t)

sin<p - e-vt sin (<p ~ wi~POt),

cos<p - e-vt cos (<p - wi~POt) .

(2.107)

(2.108)

The radial and allgular C0111ponents of the velocity field (transport) are

related to tlle pressure l)erturlJatioll via

<p w
== UOm + 12. -2-w

For a 1101llogeneous ul)strean1 flow,

U07fblmll'

iU07fblmll sig( T'~),

(2.109)

(2.110)

(2.111)

(2.112)
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the time evolutioll of the flow near the obstacle is governed by topographie

waves with the frequeney w~~po,

( ( r- a) a. \
uT(rrpt) ~ Uoeosrp ()(t) - () t - Ro! ;:-f(r))

( ) (

topo ar) (r - a a aW1b·· vt topo
+Uo()t - Ro! ;:-f(r) - -j-.- or / e- eos (rp -W1b t)

V ( topo .+ topo 2 2 V COS <.p + W 1b Sin <.p
W 1b + V

-vt ( . ( tOPOt)·· topo · ( toPOt))))-e veos <.p - W 1b . +W 1b SIn <.p - W 1b ,

. ( (r - a) ar)u'P(rrpt) ~ -Uo sm rp O(t) - 0 t - R
o
! a or

( ) (
ar topo ) (r - a . aW1b.·· . vt. / topo

-Uo() t. - Ro! a or - ---:;:jf(r) e- sm (rp -wib t)

v . (. .topo+ .top.0 2 .. 2 V sin <.p -:::- W 1b eos<.p
W 1b + v ..

-vt ( · ( . tOPOt) topo. ( tOPOt) ) ) )-e . 1/ sm <p - W 1b· - w1b eos rp - w1b .. ·

(2.113)

(2.114)

The rigid lid result as diseussedby JOHNSON (1984) is reelaimed in the limit

ßl:.o < 1 and for small topography, };o ~1. Sinee this easeoeeurs frequently in

oeeanography, it should be diseussed in mlore detail. For ßl:.o < 1 the veloeity

components ur and u'P ·are

((
2). .. 2( . toPO) 1

uaT(r<pt) ~ UoO(t) 1 - :2 eos<p + :2 1+Wj wi~PO 2 + 1/2

(
2 topo·

V eos ep + VW1b Sin <.p

+ -vt topo ( topo . ( . tOPOt) • ( tOPOt) ) ) )e W 1b W 1b eos <.p - W 1b . - 1./ SIn <.p - W 1b ,

(2.115)

((

toPO) 1
uiT(rrpt) ~ Uo()(t) 1 - Wj wi~po 2 + 1/2

(
2 topo .

. V eos <p + VW1b SIn <.p

+ -vt topo (topo ( tOPOt) ..( tOPOt))))e W 1b W 1b eos <.p - W 1b - v SIn <.p - W 1b . ,

(2.116)
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ua<P(r'Pt ) ~ -UOB(t)((l+ a:\ sinrp - a:(l +wif~PO\ topo; 2
. r ) r ) W 1b + V

(
2 . topo

V SIll 'P- W 1b 1/ COS 'P

topo -vt ( topo · ..(. . .. tOPOt) . . ( tOPOt))) \+w1b e w1b sm 1,0 - w1b + 11 COS <p - w1b ) ,

(2.117)

(( toPO\ 1
ui'P(r<pt) ~ +UoB(t)" 1 - Wj ) wi~PO 2 + 112

(
2· topo

-1/ sIn'P + VWlb COS 'P

topo -vt ( topo . (. tOPOt) ( tOPOt) ) ) \-w1b e w1b sm 1,0 - w1b + 11 COS 1,0 - w1b ) •

(2.118)

Fig. 4 shows a sl(etcll0f six snapshots of the flow over the obstacle during

one cycle of the topograpllic wave in the inviscid case, v == o. The perturbation

in the sea level has a mq,ximum at the obstacle edge and travels clockwise

round the obstacle. Tlle corresponding flow field follows the isobars. There are

ageostrophic fiow. compo11ents·wl1icll, however, do not alter the flow directio11

hut decrease the magnitude by a factor ~ 1 - 2H:-h'

Outside of tlle obstacle theflow is a linear superposition of the upstream

flow and a dipole like l)erturbatioll. Over the topography the ftow is homo­

geneously. The modtilus is independJnt of time, whereas the flow direetion

rotates witll the frequellcy -w1~po. Tlle radial transport is continuously at tlle

edgeof tlle olJstaele bllt tlle angular transport exhibits a jump eOrreSI)onding

to a vorticity slleet at r == a. Partially closed streamlines oceur independent

of tlle ol)stacle 11eigllt alld tlle 111)strealTI velocity.

If viscosity is present, i.e. v > 0, tlle time dependent flow part tends to

zero after SOll1e oscillatiolls alld tllevorticity production at the obstacle edge is

balallced by dissil)atio11. Tlle flo\v is cOlltrolled by frietioll and apprOXilTIately

geostropllically balallced. Tlle zerolille of the stationary dipole like pressure

field i8 twisted by all allg1e

1,000 = aretan (-w;)O ) (2.119)

C01TIl)ared to the directioll of tlle llpstrealTI flow.
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Figure 4: First eyele of the evolution of the topographie waves in timesteps
of wi~POt == i. Isolines. of the sealevel and the flow veloeity are shown. The
parameters are };o = 0.667, obstacle radius a = 20 km, Ra ~ 140 km, fric-

tion parameter 11 ==0. Tlle topographie frequeney is wi~po == -0.48j. The
geostropllie upstream flow eoming from the left hand side is set to 1 em S-l.

If tlle frietion l)arameter is of the same order of magnitude as the topo­

grapllie frequelley, tlle statiollary fiow over tlle obstacle is of the same order
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Tlle eOllsideratioll of tlle ease Ra ~ a is of rather theoretieal value, sinee the

aSSUllll)tioll of a 110mogelleolls upstrea111 flow with a l10rizontal extelld larger

tllall tl1e barotropie Rossby radius is Inore 01' less artifieial.However, tllis lilllit

shows tlle ill:flueneeof tlle trapping of tlle pressure perturbation at the ol)staele

edge vVllicll plays a,1l ilnportant role also for tlle baroclinicmodes. Tlle result

Inay beeonsidered as tlle lovvest order term of a decomposition into allgular

lllodes.
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Figure 5: Stationary states eontrolled by frietion forv == /0 (left pieture) a,lld

V = Iw~~pol (right pieture). The parameters are the same as in Fig. 4.

of magnitude as tlle upstrea11l flow too. This may be the ease espeeially for

small seamounts wllere the topographie frequeney is small. If the frietion pa­

rameter v is mueh smaller tllan the topographie frequeney w~~po the stationary

flow remaining over the obstaele is mueh smaller than the upstream flow and

the angle 'Poo tends to zero. Almost all water partieles originating upstream

pass the topograpllY at a path beside the obstacle. Examples for frietionally

eontrolled stationary states are shown in Fig. 5. The stationary pressure

perturbation following from eq. (2.102) is equivalent to the result of HICKIE

(1972).

These stationary statesare sometimes related to Taylor eolumns and ealled

"frietiollally balaneed Taylor columns". However, this may be missleading

because no elosed strealnlines oeeur and the underlying physies is eompletely

differellt .
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Considering the lowest order of lff the radial and vertical velocity simplifies
for the illViscid case

The fiow perturbation is tiapped within a distance of Ra at the edge of the

obstacleand rotates clockwise with a frequency wi~po. An approximation for

the frequency is given as a funetion of J;o by eq. (2.95). Fig. 6 shows two

examples for the evolution ofthe flow at the obstacle in the frictionless limit.

Remarkably, the radial fiow generated at the obstacle is of higher order in
t

lff than the angular fiow. Consequently, the fiow perturbation consists of weIl

pronounced angular jets corresponding to a vorticity sheet at r ==a. At the

obstacle edge the radial fiow is purely oscillating. The order of magnitude is Uo
and the average over one cycle of the radial transport vanishes. The angular

fiow is of the order lto and is strongly enhanced. Since the radial derivative of

ur is larger by a fartor 1':0 than the angular derivative of u'P by, both velocity

compol1ents c011tribute with tlle sa1ne order of magnitude to the horizontal

flow divergence.

The a11gular jets at the edge of the topography are fed by the water masses

which do not pass over the topography. Beside the obstacle the amplitude of

the jet is independent of the obstade height. Over the obstacle the trapping

radius becomes smaller with increasing height so the fiow perturbation for

11igll obstacles is C011fi11ed to a tlli11 area at tlle edge. 111 the isla11d limit tlle

(2.120)

(2.121)

(2.122)

(2.123)

( r- a\
Uar(rl.pt) ~. UoO(t) COS I.p - UoO \.t - Rot)

fr. ..-r..-,-a (.. a ... . (a hß) ( topo ))-e Ro ..- cos 'P - - - .---~ cos 'P - W
1b

t ,
T,T T Hol+ß

. .. . (~a - r \ (aI1(ßr)
uzr(rl.pt) ~ UoO(t) cOSI.p - UoO \.t - ß Ra! ) \.rI

1
(ßa) cOSI.p-

(
aI1(ß.r) h.. /3.'2. I 2(ßT)) ( toPO))- -I-(ß) + rr---....... I (ß) cos 'P - W 1b t ·r 1 a LLO 1 + ß 1 a
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Figure 6:Surfaee elevation and flow field for Iw1~port;~ 2; and lw1~PO jt == ~.

The parameters are };o= 0.667, obstacle radius a -.: 320 km,Ro ::::: 140 km,

frietion parameter v == o. Tlle topographie frequency is w1~po == 0.17f. The
geostropl1ic upstream flow eoming from·tl1e left handside is set to 1 em S-l .
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Figure 7: Stationary states eontrolled by friction for v == /0 (left picture) and
V == Iw1~pol (rigl1t picture). Tl1e parameters are the same as in Fig. 6.

-verticall~y il1tegratecl radial velocit:y -val1isl1es at tlle edge of the ol)staele as \iVell

as over tlle obstaele itself. Tl1e al1gular velocity over the obstacle at r' == a,

ui<P(a), is 110t weIl defil1ed a11d l)ecolnes il1finitly large for h ~ Ho. HO\iVeVer,

tl1e vertieally i11tegrated flowvanisl1es.

111' tlle viscous statiol1ary state tl1e radial velocity eomponent vanislles at
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tlle edge of the obstacle for small v. Then, the flow beside and over tlle

obstacle is separated by the vorticity sheet. Nevertheless, the flow over the

obstacle does not vanish as in the viscous rigid lid case. On the contrary,

the pressure perturbatioll is trapped within a distance /iRo at the obstacle

edge and the flow over tlle cellter of the obstacle is approximately the original

upstream flow. The streamlines are closed by the inner jets at the edge of the

topography. These jets at the inner edge keep the inner flow running even

in the viscous case. Tlle jet itself is in geostrophic balance with the radial

pressure gradient. Tllis statiollary state is shown in the left partof Fig. 7.

The right part of this Fig. 7 corresponds to the case v == Iw~~pol.

The present calculation does not distinguisll vertical and lateral friction.

It can be expected, tllat the vorticity s]leet is smoothed if lateral friction is

included. However, it remains an open question, whether the motion over the

obstacle is onlydiminislled by lateral momentum exchange or if the flow over

the topography is completely spun down.

2.5.2 Baroclinicapproximations

In this -section the considerations for the baratropic approximation are general­

ized to include the influence of stratification. The changes.due to stratification

concern· both the spectrumof· the topogr~phicwavesas weIl. as the flow pat­

tern.Two approximation schemes for solvlng the baroclinic equation are dis­

cussed. One is based on the. assumption that the pressureperturbation at the

sidewallof the obstacle is approximately constant, i.e. 'l/Ym(z < ----Ho + h) ~

'l/Ym( -Ho + h). This approximation may be justified if the stratification is

weak or the topography is of small height. The other approximation scheme

is based on a decomposition of 'l/;m(z) into vertical eigenfunctions. Since all

vertical modes are coupled via the bottom boundary condition the integral

equation for the pressure is transformed into a linear system of equations of

rank infinity which has to be reduced to afiniteamount of equations. This

approximation is good, if onlya small amount of vertical modes is necessary

to apprOXilTIate the COll1plete solution. For high seamounts it isan alternative

for the first approximation scheme which fails in this case. In both schemes

the first terlTI ill eq. (2.61) iscalculatedby iteration startillg with the onset
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of apressureperturbation over tlle topography proportional to the barotropic

solutio1l.

We begin the discussion witll the iterative solution scheme. Details are

given in Appendix C.1. As in thebarotropie ease, the speetrum follows from

the zeros of the denominatorof the .pressure perturbation. This approxima­

tion allows. for one topographie mode. Assuming a eonstant Brunt Väisäla

frequeney, for an obstaele with.a· diameter mueh smaller than the barotropie

Rossby radius, Ra ~ a, but larger thanthe baroelinie Rossby radius, R1 ~ a,

the pressureperturbation at r -- a simplifies. eonsiderably, all mode sums can

be performed analytically (Appendix C.1). The topographie frequency reads

approxilllately

wtopo~ _ ·h (sgn(m) +~ (1 -ln (~)))
m f 2Ho _ h _ h1m12R1 (1 - In (~: )) ·

This approximation is valid for J;o < ~. A more general result is given in

Appelldix C.I.

For 'vveak stratification tlle barotropic result for Ra ~ a, eq. (2.92) is

retained. Stratificatioll increases tlle frequency of the trapped wave because a

pycnocline acts in a similar manner as tlle sea surface and yields an effective

decrease of the total depth.

To avoid confusion we have to distinguish the wave modes corresponding

to barotropicand ])aroelinic. verticalteigenfunctionswith respect to the flat

bottom ocean froll1 tlle topograpllic wave modes.Except Kelvin waves trapped

at an island eaclltopograpllic mode is build up by contributions coming from all

flat bOttOlll vertical eigenfunctiollS, i.e., from the barotropic and all baroclillic

lllodes.

At an island with steep sidewalls besides the barotropic Kelvin wave a

large variety of baroclinic I<:elvi1l waves lllay be excited. The vertical struc­

ture of tllesewaves is governed by tlle baroclinic vertical eigenfunctio11S for a

flat bOttOlll oceall. It is natural to asl< \vllich topogral)hic wave modes corre­

Sl)ond to tl1e barocli11ic I<:elvill waves if tl1e island is replaced by a fillite 11eight

seall10l111t. Picl<i11g Ul) a Sl)ecial mode i11 tl1e islal1d case and replacing tl1e

island l)ya sea1lloul1t, the cl1ange of the wave freque11cy can be traced. Thus,

tl1e tOl)ogral)llic lllodeslllay be labeled by.the mode numbers of the vertical
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müdes 111 the island case. Tlle iterative approximation scheme as given above

allows for Ollly Olle topograpllic mode in the first iteration step. Other modes

can be found by ftlrther iteration.

NOVI we consider tlle alternative solution method by decomposition into

vertical eigenfu:netiolls. Tlle integral equation (2.61) is transformed into a

linear systeID. of e<'luations of rank infinity, eq. (C.34). The details are given

ill AppeIldix(J.2. Tb.e equation for 1./J has been rearranged in such a way, eq.

(C.I0), tllat all contributions are weIl convergent sums. Thus, the'linear system

of ranl{ illfinjty can' lJe replaced approximately by a system offinite rank.

If tlle D_lllulJer of 1110des involved is n, tllere are n zeros of the determinant

of the 1lOll1tJgel1€OllS systelu, eq. (C.41), which define the spectrum of the

topograpl1ic waves. In tlle island ease tlle eoeffieient matrix· is diagonal and

the frequeney spectrum of I{elvinwaves trapped at the island is retained.

Sinee tlle v€rticalrHodesseparate, the truncation of the m'ode sums does not

influence tlle reluaining wave spectrum.

For an. obstaele eaeh topographie mode eonsists of a superposition of all

flatbottoIll verticaleigenfunetions.The larger the mode coupling, i.e. the

smaller theheightof the seamount is, the more vertieal modes have to be

included. This sterns frorn tlle coupling matrix M nz . Comparing diagonal

andoff-diagollal matrix elements, for high seamounts the diagonal elements

dominate, whereas for seamounts of small height both are of the same order

of magnitude. Thismay be of importanee for the interpretation of numerical

results fromfillite differeneemodels. Due to the finite horizontal andvertieal

resolutioll those sellellles filter out lligher modes. We will come back to this

point in sectioll 3.

Eq. (C.41) has been solved including the barotropic and 19 baroclinie

eigenfunetions. Thus, for eaeh value of };o 20 topographie modes eau be found.

In Fig. 8 tlle frequellcy of tlle five lowest topographie modes is shown as a

function of the relative height };o' It has been tested that the inclusion of ad­

ditional vertical modes does not alter the frequency of these topographie wave

modes. In the island limit, };o - 1, the topographie waves are going over into

the barotropic and tlle first foul" baroelinie I{elvin waves. The dotted line is

the l)arotrOl)ic apl)roxill1atioll Vvllicll is obtailled, ifonly the barotropic vertical
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mode is illeluded. It is equivalent to the barotropie result as disGussed in.' the

previous seetion. Tlle differenee, between the barotropieapproximation alld

the baroclinie result shows tllat stratifieation may increase the topogr<tphie

frequeney considerably. Since mode coupling is growing with decreasing .. ob­

stacle height, the frequency enhancement is most obvious for small obstaeles.

Tlle dashed line shows the iterative approximation based on eq. (C.15).

It may be usedas a guide for the order of magnitude of b~roelinie~ffeetsbut

fails for seamounts with a height ;;0 > ~. The value of tlie crossingpointwith

the barotropicapproxirnation at ;;0 = ~ sterns frorn the special choice of the

stratifieation.

Tlle tllreedillleilsional baroelinic pressure perturbation and tlle eorrespolld­

illgfloVl fieldeall be ealeulatedalso froln the aforementionedapproxilnation

sellemes. Here, Ollly tile vertieal strueture of the pressure perturbatioll as weIl

Figure 8: Tlle speetruln of baroelinie topographie waves at a cylindrieal
SealTIOunt. Parailleters: obstaele radius a == 6 km, Ro ~ 140 km, R1 ~ 2
l<lll. Dotted lille (... ): barotrOl)ie approximation, dashed line( - - -): iter­
ative solutiollaeeordil1g to eq. (C.15), (e - e): most prominellt topograpllie
lTIode eorrespol1dil1g to a barotrOl)ie I{elvin wave in the islalldlimit, otller
SYlllbols: topograpllie modes eOrreSl)ondillg to baroelinie I{elvin waves
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as thevertieal dislJlaeement of isopyenals isdiseussed basing on the iterative

approximation scheIne.

We start from eq.s (C.2)and(C.3).Considering the ease that the to­

pographie frequeney is lnuell smaller tllan the inertial frequeney the approx­

imation an ';:::jR;;l is justified, whereby, Rn denotes the internal Rossby ra­

dius eorrespol1ding to the n'th vertieal (Hat bottom) eigenfunetion. As in the

barotropie ease a two-step solution is possible. In the first step an approxima­

tion for 'if;(a, -Ho-t- lz), eq. (C.14), ean be found by iteration. This result is

reinserted as an alJproximationfor 'if;(az) at the right hand side of eq.s (C.2

and (C.3). Tlle details are given in AIJpendix C.I.

Since the iterative SOltltion allows for only one topographie mode, the in­

verse Fourier tral1sforlnatiol1 ean be performed in the samemanner as in the

barotropie ease. For simlJlicity we assurne Ro ~. R1 ,whieh will be justified for

the most aPIJlieations. Tllepressure perturbation has the general form

(2.125)

The funetion Q(<pt) differs from thebarotropie approximation eq. (2.106)

only by the value of the topographie frequeney. Thebaroelinie amplitude

function rbk has a complicated structure. Here wediseuss only the simple

approximatioll

. I: .f-R
.. o+h dz'F: (z'.)F: .(z)O (t - .r-a) g~ (ra)r a /2(rz) f':'J .-...._n...................-_R........o.......................................................n....................... .. n ......................... . ..............._R........n-f--m-n ____

bk ~ I:nIClfo0+hdz'Fn(Z')Fn(-Ho+h)gmn(aa) ,
(2.126)

whieh isvalid for amall topography, ß ';:::jao,and follows from eq. (C.32).

In eomparison with the barotropie approximation the barotropie eontribution

is aupplemented by similar baroelinie eontributions loealized at the obstacle

edge.

Fig. 9 shows the amplitude funetion rbk(rz) for different values of the

baroelinie Rossby radius. If the stratification is weak, (left picture), the pres­

sure perturbation is mainly depth independent. Baroelinie effeets are visible

near the ·obstaele edge. If stratifieation is inereased, the pressure perturba­

tion becomesmore alld more bottom trapped whereas the surfaee elevation is

reduced.
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Figure 9: The baroclinic amplitudefunction fbk{rz) according to eq. (2.126).
The relativetopographic height is 0.2, the obstacle radius is6 km. The baro­
clillic Rossby radius is varied fromO.8 km (left), 2.1 km (middle) to 4 km
(rigllt ).

Figure 10: Tlle displacelnent of iSopycllals for several values of the baroclinic
Rossl)y raditls. Tlle parameters are the salne as ill Fig. 9.

\I\Titllill tlle lil1earized tlleory tlle above equatioll can be integrated to calculate

tllevertical disl)lacelnellt of iSoPycllals ~,
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There is also a barotropie eontribution, sinee the derivative of the barotropie

eigenfunetion reads for eonstant Brunt Väisäla frequeney

o 1 N2 ( Z )-Fo(z) ~--- 1 + - ..oz ~ 9 Ho
For z == 0 ~ is the surfaee elevation. As shown in Fig. 10 the maximum

displaeement of isopyenals is found near the edge of the obstaele. The weal<:er

the stratifieation is the more thedisplaeement is coneentrated near the ob­

stacle edge whereas the amplitude of the displaeement is inereasing and the

perturbation penetrates more to the surfaee. However, although 'ljJ is.a smooth

funetion of z at z == - Ho + l~ the vertieal displaeement at r == a is logarithmi­

eally divergent. Tllisdivergenee does not vanish even for small stratifieation.

The reason for tllis shorteoming is ambiguous. It may be either a eonsequence

of the approximation made in the integral over the top of theobstaele. Alter­

natively it may result from the simple ansatz for the pressure at the sidewall

whieh yields a eoncentration of all waveenergy in a single topographie mode.

Higher order approximations ",hich possibly remove this singularity have not

been tested.

3 Comparison with a numerical model

The analytical results are eompared with t~e outeome of a free surface version

of the GFDL..:model. The details of the mo~el implementation can be found in

the report of.KILLWORTH et ale (1989). The model is.based on the nonlinear,

hydrostatic Boussinesq equations and realized as a finite differenee scheme

on an Arakawa B-grid. The model topography was prepared with the same

idealized shape asused ill the analytical theory, i.e., a eylindrical obstacle of

radius a and ·height h i8 placed in a homogeneous upstream flow. However, the

steepobstacle sidewalls are simple approximations for an analytieal treatment

but afinite difference scheme may run in .difficulties because of large vertieal

velocity values.

The numericalmodel.includes nonlinear advective terms. These contribu­

tions could beremoved to compare witll the linear analytical results. However,

since the model Sl10uld be tested "as it is" , linear condition are established ap­

1)roxi111ately by slTIall 'values oftlle lll)strealTI flOV\T. Choosillg Uo == 1 cms-1 tlle
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typical time which is necessary to move a water particle over an obstacle of 20

km diameter is about 500 hand linear approximations are weIl justified.

Another problem is tlle treatment of friction. In analytical approaches the

frictionless case is the most simple approximation, whereas friction is essential

ingredient for the numerical stability of finite difference schemes. In the present

experiments horizontally and vertically constant turbulent mixing coefficients

are used. The model consists of· a zonally periodic channel with 300 x 300

horizontalgridpoints witha gridspacing of 1 km and 15 verticallevels of 2 m

thickness. To keep the horizontal advection-diffusion scheme stable a minimum

valueof tllevertical mixing coefficient of

(3.130)

is required. Thevertical mixing coefficient should have the order of magnitude

(3.131 )

These values permit·amaximumtimestep of 240 s for the baroclinic mode and

12s fortlle barotropic partoftlle model.

To initialize tllehomogeneous upstream flow a slight modification of the

model codeis necessary.ln. the beginning of· the· experiments a homogeneous

barotropic flowUo is set at all ,vetpoints. To prevent a spin down of the flow lJy

lateral frietion a small amount of morrlentum is added to the barotropic mode

whichexactly compensatesthe loss of momentum at the sidewalls. This small

momelltum correction can be calculated approximately from an analytical so­

lution of the statiollary barotropic momentum equation with lateral friction

for a flat bOttOl11. The flow correctionvanishes everywherewith the excelJ­

tiOll of tllill boundarylayers at tlle sidewalls. Bottom friction is switched off.

Thell, in the·central part of tlleflow where the obstacle i8 placed the upstream

flOV\T is l101TIogelleously fora lOllg time. For the timescales under consideratioll

tlle flo,v perturbatioll renlains trapped at the obstacle. The amplitude of tlle

illertial waves irradiated fromtlle obstacle is small and they do not interact

with the obstacle via tlle periodic boundary conditions. Thus, the model setup

reflects tlle same idealized boundary and initial conditions as in the analytical

tlleory.
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The model does not explode numerieally as a eonsequenee of the rough

treatment in the initial time step. Due to the large ratio of the horizontal grid

spaeing to the vertieal seale, the horizontal divergenee of the flow is small even

at the steep rise of the topography.

The first experiment eoneerns the ease of weak stratifieation. 'l'he model

runs witll all haroelinic eomponents hut with eonstant salinity and only a small

vertieal gradient in the initial temperature field. The eorresponding baroelinic

Rossby radiusof R1 ~ 800 m is not resolvedby the model. The barotropie

Rossby radius of 141 km is mueh larger than the obstaele radius of 20 km.

The eonstant turbulent mixing eoeffieients for heatand salt are 0.01 em2s-1

for the vertieal mixing and 5 · 104em2s-1 for the horizontal mixing. Several

values for the relative height of the obstacle J;o have been tested. Fig. 11

is an example for J;o = 0.667. The time series of the surface elevation and

the veloeity field during the first orbit of the topographie wave Tound the

obstaele is very similarly to theanalytieal result as shown in Fig. 4. The most

obvious differenee is tl1e morepronouneed enhaneement of the flowover the

seamount inthe numerieal experiment. For topography with smaller height the

correspondenceto theanalytiealresultis improved. Fig. 12 showsnumerical

results from· a. model run with .a>Ro eorresponding toFig. 6. To ensure

numerieal stability for the gridspaeingof 8 km used in this experiment the

horizontal mixingparameterhas to be inerhased to AH ==4 ·105cm2s-1 • Sinee

in the first.wavecyele strong inertialoseillations ean he observed, the examples

in Fig. 12 are taken from the seeond waveeyele.

If bottom frietion is added, the topographie waves are damped and a sta­

tionary state is established aftersome time.A rough estimate for the equiv­

alent frietion eonstant 1/ used in the numerieal experiment is v ~ /0. This is

mueh smaller than tlle topographie frequeney and the stationary flow veloeity

over the obstaele beeomes very small. An example is shown in Fig. 13.

The topographie frequency ean be estimated from time series of the angle

of thezero line of the pressure perturbationwith the upstream flow. Fig. 14

eompares the topographie frequeney as· it follows from the numerical experi.,.

ments in eomparison witll analytieal results derived from the zeros of (TI0, eq.

(2.76). Tlle overall agreeluellt is sufficient for seamounts with a radius muell
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Figure 11: First eye1e oft11e evolutiol1 of the topographie waves. Thetimesteps
are 4h, lOh, 14h, 20h, 24h and 2811. The parameters are the same as in Fig. 4,
a smal1 viseosity is 11eeded for numerieal stability. The wave periodis about
28.511.

smaller tl1al1 tl1e l)arotropie Rossby radius l)ut also for seamounts with a larger

ra/dius.

To ITla1<e the nUlnerieal experilnents 'iVith a baroelinie flow eomparab1e with
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Figure 13: Stationary state eontrolled by frietion for CD ~. 0.007. The param­
eters are the same as ill Fig. 4.

the analytieal results of the previous seetion a linear vertieal temperature and

salinity profilehas been chosen. As in the barotropie ease the pressure pertur­

bation is governed by one topographie wave eloekwise eneireling the obstaele.

This supports theapplieability of theiterative solution eq. (2.125) whieh

allows for one topographie mode only. Contrary to the barotropie ease the

l)ressure perturbation is bOttOlTI intensified, the signal in the surfaee elevation
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Figure 14: The analytieallY ealeulatedwave speetrum, (--), and·the results
from the GFDL-model, (. - .):~o==0.14, (0 - 0): ~ ==.0.57, (. - .):
~o -1.14. Tlle barotropie Rossby radius is Rn ~ 140 km

is mueh weaker.whereas internal up- and downwelling develops at the obsta­

eIe edges. Thebaroelinie signal is trapped horizontally within one baroelinie

Rossby. radius. Thus, stratifieation e~nfines the pressure perturbation verti­

eally andhorizontally near the obstaele edge. Fig. 15 shows vertieal seetions

of the temperature deviationfrom the stratifieation far upstream. Sinee the

vertieal temperature gradient is eonstant in the fluid at rest, the temperature

deviation is proportionally to the vertieal displaeement of isopyenals and ean

be eompared direetly with Fig. 10. The enhaneed bottom trapping with in­

ereasing stratification is obvious. The amount of the numerieally ealeulated

displaeement of SOlne dm is of the same order of magnitude as in the analytieal

theory.

Fig. 16 gives an example for one eyele of the topographie wave, which

ean be seen in the best way from the temperature perturbation immediately

over the obstaele. The wave starts with upwelling upstream and downwelling

dowllstream and fini~hes one eyele if the upwelling area has travelled towards
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.

the downstream side ofthe. seamount.

Whereas in the analytieal approach with small. frietion the pressure per­

turbation vanishes completely after one c,ycle, there is a small residual in the

numerieal experiments whieh sterns possibly from nonlinear effeets, frietion,

higher topographie modes and numerieal effeets as from the approximation of

the eylindrieal obstaele by. apolygon in themodelgrid. Additionally, espe­

eially in the initial phase ofthe experiments inertial waves ofsmallamplitude

canbe observed leaving the obstaele as spiraling waves. Another source of flow

is the different vertical diffusionover and beside the obstaele whieh generates

radial pressure gradients and abaroelinie eireular flow with vertically chang­

ing orientatioll. However, here tllis effeet is kept srnall by very small vertieal

mixing coeffieients but it may driveflows of some cm S-1 in realistic models.

For a qualltitative eomparison of numerical and· analytieal results we eon­

sider the tOIJographie frequeney. Fig. 17 shows the relative frequeney shift

of the gravest topographie mode dueto baroelinic effects as a funetion of
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Figure 16: Series of snapsll0ts representing the first cycle of a baroclinic to­
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the relative tOl)ograpllic heigllt. Tlle analytical values are gained basing on
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Figure 17: Tlle relative frequeney shift in the most prominent topographie
modedue to baroelinie effects as funetion of the relative topographie height.
Tlle full··lines, .. (._.... -..-... ), stand for analytical results, the filled cireles, (. -.),
for numerieal1110del resultswitha horizontal grid spaeing of ßx == 1 km, the
eireles, (0'-- o), forßx - 0.5 km. The barotropie Rossby radius is Ra ~ 140
km, thebaroclinieRossby radiusR1 ~ 2.1 km, theobstaele radiusa == 6 km.

adecomposition of thepressure perturb~tion in vertical eigenfunetions, eq.

(C.41).The different eurves eorrespond to different levels of approximation,

i.e.a varyingllumber .of vertieal eigenfunetions is used. This illustrates the

mode number dependenee of the topographie frequeney as diseussed in seetion

2.5.2. ·In tlle allalytieal theory for high seamounts the mode eoupling is weak

and a smallnumber ofmodesis sufficientto deseribe the pressure perturbation.

For small seamounts strong mode eoupling requires a large number of baro­

clinie modes. This picture is supported by the numerieal experiments. Sinee

the horizontal grid resolves only the first baroelinicRossby radius the finite

difference scl1eme suppresses stronglythe higher.vertical modes. Indeed, the

values of the topographie frequency are elose to the analytieal approximation

including, Ollly tlle first baroclinic vertical eigenfunction. Doubling the hori­

zontalmodel resolutioll, i.e. resolving thesecond baroelinic Rossby radius, tlle
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numerically determined frequency. values areincreased towards the analytical

results ineluding tvvo vertieal eigenfunetions.

4 Summary

The exeitation of topographie waves at a eylindrieal obstaele by a homoge­

neous flow has been studiedby both, analytieal ealeulationsand numerieal

experiments. For eonditions of small adveetion the analytieal theory can start

with the linearized Boussinesq equations. A Green function teehnique is used

to derive perturbational solution methods. The solutions apply for seamounts

of smalilleightas wellas fortall seamounts and islands. Both barotropie and

baroelillieconditions have been investigated. For the barotropie case an ex­

act solution can be found. If stratification is present, approximate solution

teellniques·have been developed.

Witllilla llomogeneous upstream flow suddenly switehed on at t == 0 topo­

graphiewaves trappedat theobstaele edge ean be observed. Theperturbation

of thepressure fieldhasdipole formand encireles ·the obstacle eloel<wise (in

the northerll hemisphere). In alleases under eonsideration one topographie

wave lTIode isdominating. If theobstaele radius is small compared to the

barotropic .Rossby ·radius the ·wave frequeney is proportionally to the illertial

frequeney and to the relative topogr~phie height };o. The topographie wave

frequency deereases with inereasing obstaele radius. Stratifieation leads to an

enhaneement of tlle topographie frequeney.

Tlle analytieal results areeompared with numerieal experiments based on

tlle GFDL-mode1. In tlle barotropie case the analytieally ealculated and tlle

numerieally gained topographie frequeney agree exeellently. If stratifieation is

presellt, there is good eorrespondenee of both approaehes for tall seamounts

but a diserepalley for small obstaeles. This ean be traeed baek to tlle liln­

ited horizontal resolutioll of the numerical model suppressing higher baroelinie

partial \vaVeSWlliell are neeessary to eompose the topographie wave modes.

However, tllis is a mill0r shorteolning sinee at obstaeles of small height the

wave l)eriod 1S llluell larger than tlle inertial periodand other proeesses may

destroy the waves quiel<ly. The influenee of the finite grid spaeing on the
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amount of internal upwelling has not been investigated.

In most the examples considered the flow is in geostropic balance with the

pressure gradients, ageostrophic components as inertial oscillations are of SOlne

importance Oilly i11 the initial phase of tlle experiment and for obstacles with

a radius comparable with the barotropic Rossby radius. Even when the flow is

controlled by friction, the geostrophic fiow components dominate. By friction

the flow perturbation at the obstacle becomes stationary. Contrary to Taylor

columns the production of vorticity is balanced by dissipation. If friction is

small, tlleflowoverthe obstacle·vanishes.approximately. Especially in shallow

seas the fiow variability is to high to allow for the observation of these stagnant

conditions i11 11ature, hut asa tendency all influence on material transport and

sedimentatio11 is expected.

The analytical results are easy to implement on aPC and maygive aquick

orientation Oll the spectrum of tOI)ographic waves near obstacles. Although the

results correspond to idealized conditions the comparison with the numerical

modeL shows that major p~opertiesareweIl described. Improvements of the

theoryare possible. Usingthe homogeneous upstream flow as the referenee

state for linearizing the basic equations, a· quasi-linear theory canbe derived

whieh ineludes tlledamping of topographie waves due to advection. Horizontal

andvertical turbulent mixing as weIl as bottom friction may be discussed sep­

arately and in more detail. However, thi~ would make the analytical equations

intraetable andanumerical investigation should be preferred.



A Th~ approxima.tion of weak stratification

We consider thelimit N2 ~ 0 or' equivalently a! ~ 00. Using the asymptotic

representation for .• the modifie<l Bessel functions ]{m and Im the baroclinic

compollents of the Green function are

()(r - r')ean(r'-r) + O(r' - r )ean(r-r')
gmn(rr')~. ...y;::;;.. ... ,

2an . rr'
(A.l)

i.e., the·baroclinic part ofthe Greenfunction vanishes for weak stratification.

The first term in eq.(2.61)

i
a .... ... . .j2 - w2 a I

'J/J:n(1'ZW) ~.... dr'r''J/Jm(r'z'w) N2 j:) ,Lm(rzr'z'w)
o uZ z'=-Ho+h

(A.2)

is proportionally to N- 2 and has to be considered separately. We consider the

barotropicalld the baroclinicpart ofthe· Green function separately. Tllis is

possible since tlle Green function corresponds to the Hat bottom case and can

be decolnposed naturally into vertical eigenfunctions Fn . We use the identity

j
-HO+h

-Ho dzZFn(z)

j -HO+h
__ . i · dza~Fn(z).

.. -Ho
(A.3)

Tlle integralld of the baroclinicP1trt in eq. (A.2) is different from zero only

in a slnall area round the point r' == r·. Thus, the r' integrationcan be carried

out,

(A.4)

By tlle cornpleteness of tlle eigenfunctions Fn the surn can be perforrned alld

tlle 1)arotrOl)ical)proxilnatiol1for tP i reads

'J/J:n(rzw) ~ - A
o

ladrlr''J/Jm(1J, -Ho + h,w)f~;R~2 gm(rr'w)

-()(a-r)'J/J(r,-Hö+h,W)~(){-Z-Ho+h)- Ao)' (A.5)
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Never stepping into the bottom 1/Jt is independent of z and the barotropic

equation reads

(A.6)

B Exact solution of the barotropic equation

The barotropic equation for r < a, i.e. in the area over the topography, reads

1/J~o(rw) == ChIm(aor)

-lu:Y61
T

dr'r''$:no(r'w)Im(aor') Km (aor)

+ha~ l a

dr'r''$:no(r'w)Im(aor) Km (aor')

(B.I)

where

h

C

h

Ho-h
-CuI{m (aoa)

+ (-aaoKm+I (aoa) +m (1- :) Km (aoa)) '$mo(aw).

(B.2)

The subscript 0 mean barotropic approximation. This equation is solved by

the ansatz

All integrals can be performed analytically,

1/J~o(rw) hCIm(ßr)D~~,

Dmo aßIlml+l (ßa) !(m (aoa) + aaolm(ßa) !(lml+l (aoa) ,

ß
2 2 Ho

aoHo - h·

At r == a 1/J reads

, - J;CuI{m (aoa) Im (ßa) D~1
'$mO (aw) = 0 . ( ) •

O"mO W

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)
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Tlle denominator

(B.8)

determines the spectrum of 'ljJ. The complete solutionover the topography is

Inserting ·this result in the ·pressure equation für r > a it follows

a . _ - Jio CuJ{m (aor) Im (ßa) D~Ö
1/JmO (rw) - ( ) ·

(TmO W

C The baroclinic approximation

(B.9)

(B.IO)

(C.I)
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as well.as. from the analytical properties of the modified Bessel function. Above

tlle level z > - Ho + lt 'l/J isa continuous function at r == a whereas below that

level tllere is a step in VJ at the sidewallof the obstacle. This follows from tlle

completeness.of tlle eigel1functiollS,

(C.5)

(C.4)

g~n(aa)(- g~n(aa) == 1

which foliows. from the relation

Dmn is thedirect generalizationof Dmoin.Appendix B.

'l/J is a smooth function at both Z == - Ho + hand r == a. To show this, we

consider the matching condition of the inner and the outer solution at r - a,

'I/J':n(azw) - 'I/J~(azw) = j.-Ho+h dz'LFn(z)Fn(z')'I/J':n(az'w).
-Ho n

(C.6)
n

i.e., the right hand side of eq. (C.4) becomes zero for z > -Ho + h.

The behavior of 'l/Jc:nat z"'== - Ho + h can be derived analytically in the limit

R1-*O. The lowest order in R1 is )

dz' LFn(z)Fn(z')
n>O

{;;ean(a-r) (~~(a, -Jiott- h) - 'I/J':n(az'w))

+barotropic terms. (C.7)

(Note, that this approximation· is only if ß2 << a;, in the near island

case some baroclinic modes have·to be treated separately!).The higher order

terms converge as n-2 • From the completeness of the eigenfunctions it follows

that the above expression issmootlrly even for r == a.

.The integral equation (C.3) for 'fc:n(r, z, w) can be solved in two steps. The

first step is tlle solution forr a. Since'f~ (z) is smoothly at z == - Ho + h it

has not to be specified whether thepoint z --Ho + h + [) or Z . - Ho + h - 8

is considered. Usingtlleequationfor'l/Jfnone has to consider the point above

the topof theobstacle,i.e.z == -Ho+h+8, and not to step into the bottom.

As the next step the solutiontPin(azw} i8 reinserted into eq. (C.3) to get the

cOffil)Iete solution.
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The integral equation for 'lj;m(azw) reads

J-HO+h (
'l/Jm.(azw) ~ - dz'LFn(z)F~(z') Cug~n(aa)

-Ho .n ..

( ) a~ ..(Im(ana) Dmn )
+'l/Jm a, --llo+h ß2>_.a~. . Im (ßa)· - 1

-g~n(aa)'l/Jm(az'w ).)

(C.8)

To avoid the occurrenceofslowly converging sums the above equation has to

be rearranged. From· the asymptotic result for largen

1
Im (ana) Km+1 (ana) ana-t2" (C.9)

it follows that tllereare sums. cOl1vergingvery slowly as the power series of a

step lil<efunction. Separating these terms the above equation can be rewrit­

ten in sucha way that all seriesconverge at least asn-2 • Additionally,

'lj;m (a, -- Ho + h) is elilninated and the resulting equation for 'lj;m (azw) looks

much morecomplicated out issuitable for a perturbational treatment since all

contributions .are welLdefined convergent sums,

1/Jm(z)(l -~e(h - Ho -z)) = 'I/J~(z) - 'I/J~A(z) + ~:~ i Ho - z)

.......z=J.. -Ho+
h

dz'Fn(z')Bn'I/Jm(z') (Fn(z) _ FnA(z) +~8(hi Ho - z))
n -~ . 1+

t (C.IO)

witll tlle functions

'lj;~(z)

A(z)

(C.II)

(C.12)

The functionsA, ~o and Fn witll0ut arguments denote the function value at



(C.13)

(C.14)

(C.16)

VJm(az'w) ~ VJm(a, -Ho + h,w).
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C.1 Solutionby iteration

This approximation will be exeellent in the near barotropie ease and for to­

pography of smaIl relative height.

The result is a elosedequation for 1/Jc:n (a, -Ho +hw). The solution reads

The integrand at the right hand side of eq. (C.3) has its maximum value at

z' == z. Thus, as a first order approximation 1/Jc:n under the integral is replaeed

by the eonstant value

The topographie frequeney follows from the zeros in the denominator of

eq. (C.14). Resolving for w the topographie frequency reads

~ _fmj:/fo0+h dz1bn Fn(-Ho+h)Fn(ZI)Im (ana)Km (ana)

1 +"J~/fo0+h dz' bnFn(-Ho +h)Fn(Z') Qn '
(C.15)

Eq. (C.15) eanbe evaluated numerieally. An analytieal result ean be found

for aoa ~ 1 and ala ~ 1. As shown for the barotropie ease the topographie

frequeney is mueh small~rthan f for h ~ Ho. Then, the right hand side of

eq. (C.15) beeomes independent of w with the approximation

(C.ll)

A selfeonsistent solution may be of some interest for the weakly stratified

ease, where the assumption VJm (az'w) ~ VJm (a, ----Ho +h, w) is justified for high

seamounts also.

For themodified Bessel funetions the approximations

(C.18)
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are valid and Qn readsapproximately

(C.19)

(C.20)

(C.21 )

Fo(z)
1

~

Fn(z) · (-ltffcos (n;;).

,......,{ -~ + O.(a5a2) for n= 0,
Qn"""" I I (a2 a2

)-~ + 0 _0_ for n > 1
2ana ana -

It is independentof h. If the Brunt Väsiäla frequency is constant, the vertical

eigenfunctions are

The z' integral can be performed.

Fn(-Ho+h) J. -Ho. +hdzIFn(ZI) ••••....•{. ( /;0) for n = 0,
-Ho -L sin 2n1fh for n >1

n1f Ho -

(C.22)

(C.23)

The tOI)ographic frequency reads with theabove approximations for Qn

wtopo ~ _fsgn(m)~+~C (~)

m 1- /no ~ 2l:laC (~:) ·

Tlle SUIU

C(x) · .2: sinC:x) (0 ~ x ~ 11")
n2::1 n

(C.24)

denotes Clausen's integral. For x < ~,i.e. /;0 ~ ~,itteadsapproximately

C(x) ~ x(1 -lll(X)). (C.25)

The spatial structure of the pressureperturbation follows if eq. (C.14) is

reinsertedat>tlleright hand in eq.s>(C.2) and (C.3) as an approximation of

VJ( az'w).In the most cases tllebarotropic Rossby radius 1S much larger than

tlle baroclinic Rossby radius, Ro~Rl, and the approximation

Ho-h
-h-

-1

for n -0,

for n

(C.26)

l)ermits a considerable simplificatioll. \iVith the Wronskian of the modified

Bessel fUllctiollS,

Im+1(x )I{m (x) + (C.27)
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the pressure perturbation call be written as

(C.29)

(C.28)

(C.30)

(C.31)

(C.32)

(C.33)

j
-HO+h

L,~(rz) == L . dz'Fn(Z')Fn(z)g~n(ra).
n -Ho

topo I Lm (a,-J!lo + h)
~m ~ -- m -Im-(a-.o_a)-.n-----.......----,..(-Im-+--1(ß-.a-)ß-.-.+--)-",_.(--.-rr-+--h-)·

Im (ßa) mO - . Im(ßa) a. m J-,m a, -110

topo f L,m(a, -Ho + h)
~ ~-m---------------

m 1- (Im+1(aoa)aoa + m) L, (a -Ho + h)·
Im(aoa) m ,

with

~topo

'I/J':n(rzw) ~ cuw I:
[L~(rz) + (I7:(~))ßalm(aoa) - aoalm+I(aoa))

(L~(rz)Km(aoa) - L~(a,-Ho + h)Km(aor))]/

[Lm(a, -Ho +h) (w - w:;:po)] ,

. ~topo

'I/J:n(rzw) ~ cuw I:
(Im(ßr) - Im (aor)Dmo ) L,~(a, -Ho + h) + Im(aoa)DmoL,~(rz)

Lm(a, -Ho +h)Im(ßa) (w - w;::po)

For consistency the topographic· frequency has to be calculated on the same

level of approximation ast/J,

For smalltopography, i.e. ß == aO, the above result may be simplified to

C .- topo '"R( )'l/Jaji(rzw) ~uWWm J..,m rz
m Im Lm(a, -Ho + h) (w _ w;::po) ,

with

C.2 Decomposition into vertical eigenfunctions

The perturbational result as given in the previous appendix C.I filters out

only Olle ll10de oftlle topographie waves. Eq. (C.10) ean be decomposed into
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vertical eigenfunctions. Multiplying with an eigenfunction Fn and integrating

over tlle illterval (-Ho, - Ho + h) the following matrix equation is obtained

rlf;n == In + 2: TnZrlf;l.
Z

The inhomogeneity In depends on rlf;0,

o rlf;0 ( )In = 2'ljJn - (1 +A)Fo Mon +2~ MnkMkOAk

the matrix Tnz reads

BzFz ( ~ )Tn1 = (1 +A)Fo Mon +2f'MnkMkoAk - 2Mn1B1

witll

(C.34)

(C.35)

(C.36)

j -HO+h

-Ho dzFn(z)'ljJ(Z),

j
-HO+h

. -Ho dzFn(z)Fr(z),

Fn(-HO +h).

(C.37)

(C.38)

(C.39)

The. angular index m has been suppressed to avoid confusion with the vertical

modenumbers.The other quantities are defined in eq. (C.12).

For constant Brunt Väisäla frequency the matrix M n1 reads

for n == 0, I - °
Visin (n1rh)n1r Ho

~ + _1_ sin (2n1rh)·
Ho 2n1r .Ho

for n == 0, I ~ 1

for n -l·~ 1

(C.40)

1 'sin(n-;'.IJ~h). sinUn~th)).-- + for n, 1~ 1
1r .n-Z n+l

Theset of equations (C.35) is of rank oo.Since Tn1 is a diagonal matrix in

the island case· truncation of the sums at somemaximum value nmax does not

influence the result for the modes included. Thus, the approximation of the

infinite. set (C.35) by afinite number of equations is a good approximation for

high seamounts.

Tllespectrum defined by the zeros of the determinant of the homogeneous

system ofequations,

Det(l - r) o. (C.41)



60

Acknowledgement

I would like to thank Prof. W. Fennel and Dr. T. Seifert for stimulating dis­

eussions as weIl asB. Kayser for teehnieal assistanee. This work was supported

by the BMBF, projeet03F0076A.

References

ABRAMQWITZ, M.,STEGUN, J. A., 1984: Handbook of Mathematical Functi­
ons. Verlag Harri Deutsch, Thun-Frankfurt.

ARFKEN,G., 1970: Mathematical methods for physicists. Academie Press,
New York, London.

BECKMANN,A., HAII1VOGEL, D. B., 1993: Numerieal simulation of flowa­
round a tall isolated seamount.part i: Problem formulation and model
aecuraey.Journal of Physical Oceanography, 23, 1736-1753.

BRINK,K.H., 1989: The effect of stratification on seamount-trapped waves.
Deep-Sea Research, 36, 825-844, 1989.

DAVEY,M.K.,HuRsTR. G. A., JQHNSQN, E. R., 1993: Topographie eddies
in a multilayer flow.Dynamics ofAthmospheres and Oceans, 18, 1-27.

FENNEL,W",SCHMIDT,. M., 1991: Responses to topographie foreing. Journal
of Fluid Mechanics, 223,209-240.

I
FQSTER,M.R., 1989: Rotating ·stratified flow past a steep-sided obstaele.

ineipient separation. Journal· of Fluid Mechanics, 206, 47-73.

GJEVIK,B.,MoE, H.,1994:Steady and transient flows around banks loeated
near a shelf edge. ContinentalShelj Research, 14, 1389-1409.

HAIDVOGEL,D.B., BECKMANN, A., LIN,R.-Q., 1993: Numerieal simulation
offlow around·a, tall isolated seamount. part ii: Resonantgeneration of
trapped waves. Journal of Physical Oceanography, 23, 2373-2391.

HICKIE, B. P., 1972: Taylorcolumns for small rossbynumbers. In Proceedings
of the GFD Summer School, volume 11, pages 29-39.

HOGG, N~ G.,1973: On thestratifiedtaylor column. Journal of Fluid Me­
chanics,58, 517-537.

HUPPERT, H. E., 1975:Some remarks on the initiation of inertial taylor eo­
lumns. Journal of Fluid Mechanics,67, 397-412.



61

HUPPERT, H.E., BRYAN, K., 1976: Topographically generated eddies. Deep­
Sea Research, 23:655-679.

HUTHNANCE, J. M., 1974: On the diurnal tidal currents over rockall bank.
Deep-Sea Research, 21, 23-35.

INGERSOLL,A. P., 1969: Inertial taylor columns and jupiters great red spot.
Journalof Atmospheric Sciences, 26, 744-752.

JAMES, J. N., 1980: The forces due to geostrophic flow over shallow topogra­
phy. Geophysical andAstrophysical Fluid Dynamies, 14, 225-250.

J OHNSON, E. R., 1984: Startingflow for an obstacle moving transversely in a
rapidly rotating fluid. Journalof Fluid Mechanics, 149, 71-88.

KILLW0RTH, P. D., STAINFORTH, D., WEBB, D. J., PATERSON, S. M.,1989:
A free surfaceBryan-Cox-Semtner model. Technical Report No. 270,
Institute of Ocean Sciences, DeaconLaboratory.

LONGUET-HIGGINS,M. S., 1969: On thetrapping of long-period waves round
islands. Journal of Fluid Mechanics, 37, 773-784.

MCCARTNEY, M.S., 1975: Inertial taylor columns on aß-plane. Journal of
Fluid Mechanics, 68, 71-95.

MESINGER, F.,ARAKAwA,A., 1976: Numericalmethods used in atmospheric
model~. GARP Publication Series, No. 17,vol. I, 64 p..

Ou,H. W., 1991: Some effects of a seamount onoceanic flows. Journal of
PhysicalOceanography, 21, 1835=1845.

SHERWIN, T., DALE, A., 1992: Grid size dependence of the resonant frequency
ofa submerged cylinder in astratified ocean. Ocean Modelling, 6.

SL0RDAL, L.H., MARTINSEN, E. A., BLUMBERG, A. F., 1994: Modelling the
response of an idealized coastal ocean to a travelling storm and to flow
overbottom topography. Journal of PhysicaZ··Oceanography, 24, 1689­
1705.

THOMPSON, L. A., 1993: Two-Iayer quasigeostrophic flow overfinite isolated
topography. Journal of PhysicaZ Oceanography,23, 1297-1314.

VERRON, J., LEPROVOST, C., 1985: A numerical study of quasigeostrophic
floW" over isolated topography. Journal.ofFluid Mechanics, 154, 231­
252.

K03JIOB, B.4>., 1983: MO,L(eJIHTOnorpaqH1QeCKHX BHxpei1: B OKeaHe. HayKa, MOCKBa.



1 (1990)

2 (1990)

3 (1990)

4 (1992)

5 (1993)

6 (1993)

7(1994)

8 (1995)

9(1995)

10 (1995)

Meereswissenschaftliche Berichte
MARINE SCIENCE REPORTS

Postei, Lutz:
Die Reaktion des Mesozooplanktons, speziell der Biomasse, auf
küstennahen Auftrieb vor Westafrika (The mesozooplankton response
to coastal upweJling off West Africa with particular regard to biomass)

Nehring, Dietwart:
Die hydrographisch-chemischen Bedingungen in der westlichen und
zentralen Ostsee von 1979 bis 1988- ein Vergleich (Hydrographie
andchemical conditions in thewestern and central BalticSea from
1979 to 1988 - acomparison)

Nehring,Dietwart; Matthäus, Wolfgang:
Aktuelle Trends hydrographischer und chemischer Parameter in der
Ostsee, 1958 -1989 (Topical trends of hydrographie and chemical
parameters in the Baltic Sea, 1958 - 1989)

Zahn, Wolfgang:
Zur numerischen Vorticityanalysemesoskaler Strom- und Massen­
felder im Ozean ·(On numerical vorticity analysis of mesoscale current
and· mass !ields in·theocean)

Lemke,Wolfram;Lange, .Dieter; Endler, Rudolf (Eds.):
Proceedings of the Second MarineGeologicalConference - The
Baltic, heidin Rostock fromOctober 21 to October 26,1991

Endler,Rudolf; lackschewitz, Klas (Eds.):
Cruise Report RV"Sonne" Cruise S082, 1992

Kulik,Dmitri A.;Harfl,Jan:
Physicochemicalmodeling 01 theBaltic Sea water-sediment colunn:
I. Referenceion associfltion modelsof normative seawater a n d 0 f
Baltic brackish waters·at salinities 1-40 %0, 1 bar total pressure and
Oto 30°C temperature
(system
Na-Mg-Ca-K-Sr-Li-Rb-CI-S-C-Br-F-B-N-Si-P-H-O)

Nehring, Dietwart;Matthäus, Wolfgang; Lass, Hans-Ulrich; Nausch,
Günther:

Hydrographisch-chemische· Zustandseinschätzung derOstsee 1993
Hagen, Eberhard; John, Hans-Christian:

Hydrographische Schnitte im Ostrandstromsystem vor Portugal· und
Marokko 1991 - 1992

Nehring,Dietwart; Matthäus,Wolfgang; Lass, Hans Ulrich; Nausch,
Günther; Nagel, Klaus:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1994
Seifert, Torsten; Kayser, Bernd:

A high resolutionspherical grid topography ofthe Baltic Sea
Schmidt, Martin:

Analytical theory. and numerical experiments to the forcing
of flow at isolated topographie features


	MWB10-01
	MWB10-02
	MWB10-03



