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Abstract

Topographic Rossby waves trapped at a cylindrical seamount are studied under
conditions where a linear theory applies. In the barotropic approximation an exact
analytical solution valid for obstacles of arbitrary height is derived, baroclinic effects
are included approximately. The frequency of the topographic waves is proportion-
ally to the inertial frequency and the relative obstacle height. Stratification increases
the wave frequency and restricts the vertical extend of the pressure perturbation.

For a homogeneous upstream flow starting at ¢ = 0 the pressure perturbation
and the flow field are calculated. The pressure perturbation encircles the obstacle
clockwise as a dipole like structure, the velocity field is approximately in geostrophic
balance. Due to friction the pressure perturbation becomes stationary after some
time in correspondence to a very small flow velocities over the top of the obstacle.

The analytical results are compared with the free surface GFDL-model. For
barotropic conditions there is a quantitative agreement of analytical and numerical
results. In the baroclinic case especially for small seamounts a difference is found
between the analytically and numerically calculated spectrum. This can be traced
back to the coupling of low and high order vertical modes which are not resolved by
the finite model grid.

Zusammenfassung

Die Anregung topographischer Rossby-Wellen an einem zylindischen unterseeischen
Berg wird analytisch und mit numerischen Experimenten fiir den Fall untersucht, daf
eine linear Theorie anwendbar ist. Untér barotropen Bedingungen wird eine exakte
analytische Losung, giltig fir Berge beliebiger Hohe, angegeben, barokline Effekte
werden naherungsweise beriicksichtigt. Die Frequenz der topographischen Wellen
ist zur Tragheitsfrequnz und zur relativen Hohe des Berges proportional. Durch die
Schichtung wird die topographische Frequenz vergroflert und die Druckstorung am
Boden lokalisiert.

Fiir eine bei ¢ = 0 beginnende homogene Anstromung werden die Druckstorung
und das Geschwindigkeitsfeld berechnet. Die Druckstérung umlduft den Berg im
Uhrzeigersinn als dipolartige Struktur, das Geschwindigkeitsfeld ist ndherungsweise
geostrophisch balanciert. Durch Reibung stellt sich ein stationdrer Zustand mit einer
sehr kleinen Stromgeschwindigkeit iber dem Berg ein.

Die analytische Theorie wird mit dem GFDL-Modell verglichen. Unter barotro-
pen Bedingungen ist die quantitative Ubereinstimmung zwischen beiden exzellent.
Im baroklinen Fall gibt es Abweichungen im Spektrum. Diese kénnen auf im nu-
merischen Modell nicht aufgeldste vertikale Moden héherer Ordnung zuriickgefihrt
werden, die durch die Bodenrandbedingung an den barotropen sowie an niedrige
vertikale Moden gekoppelt sind.




1 Introduction

The condition of zero mass flux through the seafloor is a simple boundary
conditions supplementing the hydrodynamic equations. However, it involves
a complex interplay of earth rotation, nonlinearity, stratification and friction.
So the relation between flow and bottom topography is one of the basic and
challenging problems of geophysical fluid dynamics and has been an interesting

topic of theoretical and experimental research over several decades.

Whereas slowly varying or stationary phenomena governed by the conser-
vation of potential vorticity are of importance for the oceanic circulation, in
marginal or semienclosed seas mesoscale and small scale phenomena of high
variability can dominate. A well defined large scale and permanent circulation
may be absent and the flow patterns may persist at the most for some iner-
tial periods. Modelling those processes requires highly resolving models with
growing demands for the quantitative accuracy. Thus, it is worth to test the
correctness of commonly used numerical models concerning the interaction of
flow with the bottom topography. Since field data of semienclosed seas are
the result of a complex superposition of processes of different nature, a direct
comparison with numerical results is difficult. Alternatively, the comparison
of analytical theories with numerical experiments is possible. For that purpose

an analytical theory with an suﬁicientéaccuracy is needed.

The aim of the present paper is to compare an analytical theory of baro-
clinic topographic Rossby waves with numerical results from the free surface
version of the GFDL-model, KILLWORTH et al. (1989). We consider simplified
conditions, i.e., a flat bottom ocean with only some isolated topographic fea-
tures. One can assume that the gross properties of the flow are independent
of the topography and controlled by some idealized forcing, e.g., a homoge-
neous and barotropic upstream flow or flows with well defined stratification
and shear. In this case the influence of the isolated topographic feature can be
well identified and studied separately. Although the additional flow stems from

a different boundary condition, it is called usually "topographically forced”.

As an example the interaction of homogeneous flow with a rightcylindrical

obstacle is revisited. There is an important difference between topographic




Rossby waves trapped at obstacles or elongated topographic structures as
ridges and coastlines respectively. The topography of an obstacle is periodic
in the angular co-ordinate. This allows only for special wavenumbers and
leads to a discrete frequency spectrum. The excitation of these barotropic
and baroclinic topographic Rossby waves is studied in more detail. Although
the Rossby waves can be described in the frame of linearized hydrodynamics,
the wave propagation is limited by nonlinear effects which should be shortly
reconsidered. Stationary or slowly varying flow phenomena near obstacles are
determined by the conservation of potential vorticity and friction. Over iso-
lated obstacles larger then a critical height areas enclosed by streamlines, so
called Taylor columns can be formed. For a barotropic ocean Taylor columns
over small obstacles have been studied by INGERSOLL (1969), the stratified
problem has been considered by Hoga (1973) , MCCARTNEY (1975) and Hup-
PERT (1975). OU (1991) has given an analytical theory of stationary flow near
a cylindrical obstacle which can be applied also to high seamounts. A detailed
analysis of stationary phenomena near obstacles has been given by Kozrov

(1993).

Considering stationary states only the flow in the Taylor columns is not
uniquely defined. INGERSOLL (1996) obtained an unique analytical solution by
adding an infinitesimal viscosity. FENNEL and SCHMIDT (1991) investigated
the time dependent stratified flow ovér a cylindrical obstacle in the framework
of an analytical inviscid quasigeostrophic approach. Their approach permits to
follow the evolution of the flow from a starting phase governed by topographic
waves towards a phase where the waves are damped by vortex shedding and
vortex-vortex interaction. Finally, a stationary regime is established charac-
terized by two eddies, an anticyclonic eddy trapped over the obstacle, whereas
a cyclonic one leaves the obstacle downstream. A Taylor column is formed
over the obstacle if its height is larger than a critical value. Although the
stationary state is equivalent with that given by Hoca (1973) the flow within
the Taylor column appears as the final state of an adjustment process. DAVEY
et. al. (1993) as well as THOMPSON (1993) used an alternative method based

on Koslovs contour dynamics to follow the evolution of the flow field near an

obstacle within a two layer system.




The above scenario outlines the frame of existence of localized topographic
Rossby waves. After the upstream flow has started, waves evolve from the
compression of vorticity lines at the gradients of the topography. These waves
can spread only if other effects balancing the vorticity production are small,
i.e. the time scale of vortex shedding by advection or of damping by friction
must be larger than the wave period. In the barotropic limit the frequency
of the topographic waves is determined by the fractional height é of the ob-
stacle, HUTHNANCE (1974), JOHNSON (1984). Stratification increases the to-
pographic frequency, FENNEL and SCHMIDT (1991). In the frictionless limit
the topographic waves are stopped after some time by advective effects. Al-
ternatively, if friction is taken into account and the advective time scale is
large the topographic waves are damped. In this case a frictionally controlled
stationary state is established. The flow over the obstacle becomes very small,
so this phenomenon may be called a frictionally controlled Taylor column.
For the barotropic case for small topography this solution has been found by
HickiE (1972), the baroclinic generalization for small obstacles has been given

by FENNEL and ScHMIDT (1991) .

Alternatively to analytical theories which are restricted to simplified con-
ditions numerical models are capable for realistic investigations. The strati-
fied quasigeostrophic model of HUPPERT and BRYAN (1985) and the barotropic
quasigeostrophic model of VERRON andl LE PROVOST (1985) show topographic
waves, vortex shedding and vortex-vortex interaction. The influence of verti-
cal and horizontal momentum exchange can be studied. Whereas the model of
Huppert and Bryan is periodic, the model of Verron and Le Provost has open

boundary conditions and may run into stationary states for long times.

JAMEs (1980) considered the pressure ”lift” and ”drag” forces due to the
interaction of a seamount with a homogeneous barotropic upstream flow. He
compared model results based on a numerical solution of the barotropic vortici-
ty equation with the "drag” forces calculated from Ingersolls approach. Vary-
ing friction and advection his model shows either Taylor columns controlled
by advection or friction. In the initial phase of the model runs topographic

waves can be observed.

Several numerical experiments with models based on the primitive equa-
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tions have been published which show the importance of topographic waves.
BECKMANN et al. (1993) and HAIDVOGEL et al. (1993) investigated the flow
near a tall isolated seamount using a o-co-ordinate model. Using a periodic,
i.e. tidal, forcing the frequency of the topographic waves can be estimated
from the resonant amplification of the trapped flow for varying stratification.

The results are in good agreement with the estimates of BRINK (1989).

With a model based on the Cox code SHERWIN and DALE (1992) have in-
vestigated the frequency of topographic waves trapped at a cylindrical obstacle
as a function of the obstacle height. They are confronted with model results

depending on the grid spacing.

Recently, GIEVIK and MOE (1994) used a multilayer model to investigate
the influence of an obstacle on the flow over the Norwegian shelf. A simi-
lar experiment but based on the Mellor-Blumberg model has been performed
by SLORDAL et al. (1994). The model is initialized with a geostrophically
balanced longshelf current. Then an i1solated seamount is "grown up” on the
shelf. Topographically induced eddy formation and vortex shedding by a large

horizontal advection velocity are studied.

In the present paper analytical results are compared quantitatively with
results of the GFDL-model. In section 2.1 a general approach towards an
analytical theory of topographic forcing is given. As in the earlier paper of
FENNEL and SCHMIDT (1991) a Gréen function method is used. The theory
is developed further towards an applicability for finite height topography in-
cluding the extreme case of flow near islands. The study is confined to a linear
theory. It is sufficient to describe the excitation of topographic waves but its
validity is restricted by the time scale of advection. Therefore, the damping of
topographic waves due to advection as well as the formation of Taylor columns
1s beyond the present approach. Alternatively to a steady state determined by
the balance of advection and Coriolis force a frictionally governed steady state
may be established. In the present paper we will confine ourselves to small

horizontal scales and use the f-plane approximation.

In section 2.5 the results are applied to the case of a cylindrical obstacle

within a starting homogeneous flow. The topographic frequency as well as flow

patterns are calculated for various values of the relative topographic height and




the stratification parameter.

In section 3 analytical results are compared with the results of numeri-
cal experiments with a free surface version of the GFDL-model, KILLWORTH
et al. (1989). This model is based on the nonlinear, hydrostatic Boussinesq
equations implemented as a finite difference scheme on an Arakawa B-grid.
The comparison with the analytical results is not straightforward. The model
geometry can be prepared with the same idealized conditions as in the ana-
lytical theory. However, numerical requirements restrict the range of physical
parameters under investigation. Especially frictionless conditions cannot be es-
tablished since friction is an essential ingredient to keep the model stable. The
extraction of special quantities of interest is more difficult then from an analyt-
ical model. Also the resolution in space and time is limited by the conditions of
numerical stability. Additional numerical difficulties, as a zero group velocity
phenomenon in the Arakawa B-grid may influence the results, MESINGER and
ARAKAWA (1976). The topographic frequency appears as suitable to compare

analytical and numerical results also on a quantitative level.

2 Analytical approximations

2.1 The basic equations

We consider an unbounded, stratified, rotating and flat bottom ocean with an
isolated topographic feature placed in the center of the co-ordinate system. We
are interested in the starting flow problem, i.e. a homogeneous upstream flow
u®(t) is switched on at ¢ = 0 and we ask for the flow pattern emerging near
the topographic feature. In this section analytically solvable approximations
of the primitive equations are derived. For some physical processes very simple
mathematical approxima,tioﬁ are necessary. We restrict ourselves to timescales
shorter than the advection time T}, which can be defined as that time a water
particle needs to be moved over a distance of the horizontal extension of the

topographic feature A, i.e.,

T,
A= dtug(t). (2.1)

JO




Then we can expect the linearized Boussinesq equations apply to a good ap-

proximation, 1.e.,

u— fot+p, = X, (2.2)
vt futp, =Y, (2.3)
—b+p. = 0, (2.4)
bi+ N*w = Q. (2.5)

Eq.s (2.4) and (2.5) can be combined to give
pat + N?w = Q. (2.6)
The system 1s completed by the continuity equation for an incompressible fluid
Uy + vy +w, = 0. (2.7)

Here u and v are the zonal and the meridional horizontal velocity compo-
nents, w is the vertical velocity, p stands for the pressure deviation from the
state of rest, b is the buoyancy and N? is the Brunt Vaisala frequency. The
subscripts z, ¥, z and ¢ stand for the partial differentiation. Otherwise the
notation is standard.

f describes the horizontal component of the earth rotation, here we consider
the f-plane approximation. z, y and z orient to build a right handed system
of kartesian co-ordinates.

i
The elevation of the free surface is related to the pressure at z = 0

n= g— atz =0. (2.8)

The quantities X, Y and () symbolize the Reynolds stress, i.e., wind stress
as an external force and internal Reynolds stress. For the sake of simplicity

we consider a linear superposition of wind stress and internal Reynolds stress
(X,Y) = (X¥,Y") + (X', Y7), (2.9)

where the superscripts stand for  “: wind and  *: internal Reynolds stress.
Wind forcing can be parameterized as a body force acting within a mixed layer

of thickness H,,;;

HY )

miz

(X, Y%) = (72, 7) o

x Y

(2.10)
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7% is the wind stress at the surface. Bottom friction may be included by a sim-
ilar layer, however, the calculations for finite topography will be complicated.

For the internal Reynolds stress a simple ansatz
(X5Y) = —v(u,v) (2.11)

is suitable for analytical investigations. The parameterization (2.11) implies a
loss of momentum of the vertically integrated flow and we neglect additional

bottom friction. Similarly we set
Q) = —vb. (2.12)

Diffusion vanishes for zero buoyancy, i.e. the stratification described by the
Brunt Vaisala frequency N? is a steady reference state. For simplicity the
value of both the diffusion parameter for momentum and buoyancy have the
same value.

The parameterization of turbulent processes as given above is simplified as
much as possible. For a detailed discussion of turbulent processes in terms of a
stationary quasigeostrophic boundary layer theory we refer to FOSTER (1989).

It is convenient to consider the Fourier transforms about ¢,
+oo dw

Alt) = /_ e A W), (2.13)

The quantities in the time- and the frequency domain are denoted by the same

symbols and can be distinguished by their arguments.

It is not in the scope of this approacfi how the upstream flow u° is driven.
We assume there is some forcing which would produce a homogeneous flow
in a flat bottom ocean, i.e. the flow field and the corresponding pressure are
solutions of the Boussinesq equations for a flat bottom ocean. This flow is
not necessarily in geostrophic balance. We subdivide all flow fields into an

upstream part and a perturbation produced at the irregularities of the bottom

topography,
u = u’+q,
p = p’ 4+ | (2.14)

Then, the topographically forced flow is a solution of the Boussinesq system
it — fod ey = O, (2.15)
— v+ fu+p, = 0, (2.16)
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the equation of continuity

Uy + Oy + W, = 0. (2.17)
and the vertical equation

—i), + N*b = 0. (2.18)
The complex frequency @,

O =w+1y, (2.19)

emerges from the combination of the time derivative and the damping accord-
ing to eq. (2.11).
This set of equations can be combined to one single equation for the pres-

sure perturbation
—10 (A 4+ Z)Y(zyzw) = 0. (2.20)

The operator Z stands for

9w D
= B (2.21)
2.2 Boundary conditions

. P
We have to specify the boundary conditions for 2.
At the surface we will assume the absence of horizontal air pressure gra-
dients. Thus, in the linear approximation the vertical velocity at the surface

equals the time derivative of the surface elevation 7
W =1 for z = 0. (2.22)
or equivalently with eq.s (2.8) and (2.18) in the Fourier space
N2
1w (zbz + -—¢> =0 for z = 0. (2.23)
g

In eq. (2.23) a small frictional term has been added to the time derivative of

the free surface. This is convenient in the analysis below. Since the time scale

of changes in the surface elevation is very short compared with the diffusive
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time scale and the resulting error will be small. This minor inconsistency
vanishes in the rigid lid approximation (w = 0 at z = 0).
At rigid boundaries, i.e. at the bottom and at the coast the flow perpen-

dicular to the boundary vanishes
w=—u-VH(zy) forz=—H(zy). (2.24)

The function H(zy) = Ho — h(zy) describes the shape of the sea floor.
In the flat bottom case the vertical flow at the position z = —H(zy) is
w9, The vertical flow appearing additionally to w® due to the influence of the

bottom slope 1s
w=—uw’—u-VH(zy) forz=—H(zy). (2.25)

Subsequently, a nondivergent upstream flow is considered and w® is zero.
Equations (2.25) includes the flat bottom, w = 0, and a sidewall like coast

as special cases. In the latter case the normal derivative of H becomes infinitely

large and one gets the usual coastal boundary condition of vanishing normal

velocity,
u, = 0. (2.26)

The horizontal equations

i@}bj:;l/’y : (2.27)
. 1wty + f1bs
= (2.28)

as well as eq. (2.18) can be used to eliminate the velocities, .

(fz —@2) (;V_G;¢Z . VH)
= —io(V) - VH — f((Vy) x VH), for z = —H(zy). (2.29)

For a cylindrical obstacle with steep sidewalls and a flat top H reads in

cylindrical co-ordinates

H(r,o) = Ho — h(a —r), (2.30)
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and the above condition simplifies to

(fZ—LDZ)—Z]gE@bZ:O, forr#a and z=-—H(r)

(£ = &) w0 cos o = —iap. + Ly,
T
for r =aand — Hy < z < —Hp + h. (2.31)

Considering localized processes as trapped topographic waves the pressure per-

turbation as well as its derivative should vanish far from the topographic fea-

ture
v = 0 for r — oo,
P, = 0 for r — oo. (2.32)

For waves leaving the topographic feature an radiation condition applies.

2.3 Formal solution of the vorticity equation using a

Green function

To discuss the properties of the solution of eq. (2.20) a formal solution is de-
sirable. For linear differential equations as used here this can be accomplished
by a Green function. Let us define a function G(zy=zt,z'y'z't’) governed by the
equation (in frequency representation)

—iwALG(zyz,2'y'2 ,w) = §(z — 2" )6(y — y')6(2 — ). (2.33)

Here, the primed derivatives act on the primed variables. For shorter notation

the abbreviation
A=A+ Z (2.34)

has been introduced.

Next, we multiply eq. (2.33) by 1 and eq. (2.20) with G, add both equa-

tions and integrate over the total volume in the primed variables. In cylindrical

co-ordinates r, ¢ and z

ro= yJo? +y2, (2.35)

@ = arctan <g>, (2.36)

x

z = z, (2.37)
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we obtaln
D(rpaw) = /V Vi@ (GALp — pALG) . (2.38)

The arguments of the functions under the integral have been omitted.

The usual procedure according the classical Green function method would
be an integration by parts using Gauss’ lemma or equivalently Green theorem.
Choosing appropriate boundary conditions for the Green function the pressure
would be given in the form of a convolution integral of the Green function with
the sources of pressure perturbations, here the Reynolds stress term. However,
this will be of no practical use because the Green function for a non flat bottom
can be determined analytically only in some exceptional cases.

Alternatively, one can use a simplified Green function which fulfills sim-
ple boundary conditions and can be calculated analytically. In this case the
Green function is not the "solving kernel”. Additionally to the forcing term
there appear further sources of pressure perturbations in connection with gra-
dients of the bottom topography. Unfortunately these source terms depend on
the pressure field itself, so éhe resulting equation has the form of an integral
equation for the pressure, which, however, is only a two dimensional one.

Let us consider the Green function to be known. At the surface we require

for the Green function the boundary condition

2 f
%ZG—, + —jyg—G =0 forz =0. ' (2.39)
and at the bottom the boundary condition for the flat bottom case
5}
%G =0 for 2z’ =—H,. (2.40)

Eq. (2.38); can be integrated by parts. Using the bottom boundary condi-
tion (2.31) it follows

a iy 2 L .2_(:)2
g[;(rgoz,w):/o drr/o dgpfzw(f - )¢Gz, et

+ /0% de’ L;;IOM dz' ((f2 - aﬂ) Gula cos ¢’ + i0ahGr — szbq,r)

ri=a

(2.41)

This integro-differential equation can be solved numerically. The upstream

flow appears as the forcing inhomogeneity. As an advantage compared to
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the pressure equation it is only two dimensional and fulfills the boundary

conditions automatically. 1 vanishes in the flat bottom case.

2.4 Calculation of the Green function for an unboun-

ded ocean

We consider the Green function for an unbounded f-plane ocean with flat
bottom as a reference state. We can decompose equation (2.33) for the Green

function in vertical eigenfunctions F,(z)
G(rzr'z ,w) =) Fu(2) Fo(2')Ga(rr', w). (2.42)

The eigenfunctions are governed by the eigenvalue equation

Jg 1 0

_ 2 ==
55 N aZFn(Z) + AL Fa(z) =0. (2.43)

The quantities A, are the eigenvalues corresponding to the Fi,’s and are related

to the Rossby radius as
R, = (A )L (2.44)

The boundary conditions correspond to the kinematic boundary conditions for

the pressure and the Green function, i.e.,

F, N?
aa~ +—F, =0 for z=0, (2.45)
oF,
5, = 0 for z = —Hy. (2.46)
The eigenfunctions are orthonormalized according to
0
/ dzFo(2) P (2) = Sum (2.47)
—Ho

and form a complete basis
S By (2)Fu(?) = 8(z — 2). (2.48)
n=0

G, 1s governed by the partial differential equation

—10 (A' + K,i) Gn(rr'w) = 6(r —1'), (2.49)
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where the ébbreviation k2 stands for
K2 =2 (2% - 7). (2.50)
The solution of eq. (2.49) is a Hankel function H{", e.g. ARFKEN (1970) :
G(rr'w) = Z%Hél) (Jr —r'|&n). (2.51)

It fulfills a radiation condition for large r’ assuming &, is that root of x2 with
the positive imaginary part. In the case w < f the Hankel function may be

transformed into a modified Bessel function Ky and G, reads

1
/ . ot
G (rr'w) = ——QWiGJKO (Jr = r'|an), (2.52)
whereby,
o = —k2. (2.53)

©

Glrar'sw) = = i T (), (2.54)
with

Ln(rzr' 2w) = =3 Fo(2) Fo(2' ) gmn (rr'w). (2.55)
The function ¢, rea?is

G (75 7) = O(r = 1) g (r,7") + 0(r" L )g (r,7), (2.56)
with

Imn(r57") = Kn(ran)In(r'on),

g (r,r) = Kp(r'an)ln(ro,), (2.57)

or equivalently
Gonlrt) = T HD () (),
Gin(ryr") = FHD (K In(rrn). (2.58)

The former expression for g,., has real arguments for |w| < f, whereas the

second one is more appropriate for |w| > f. From the properties of K,, and

I, or H() and J,, respectively, ABRAMOWITZ & STEGUN (1984), it follows
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2.5 Approximate solution for an isolated cylindrical

seamount

In this section eq. (2.41) will be solved approximately. In comparison with
other results which confine to a topography of small height, the approach is
applicable also to a topography with finite height including the island case.
Mathematical details are given in the appendix. We start with the barotropic
approximation. Here, an exact solution can be found. Baroclinic effects will
be included approximately.

Because of the cylindrical symmetry of the topography, eq. (2.41) can be
simplified by separation of the angular variable ¢,

o) = S

m

(rzw). (2.60)

Assuming a homogeneous upstream flow u° the remaining integral equation

for the components v, reads

2 2
P (rzw) = / dr'r s, (r'2' )f Nzw %Lm(rzr'z'w)

2'=—Hg+h

H0+h 2 __ 5
+/ f @’ u 7ra5!m|’1Lm(rzaz',w)

n / o d2'thon(02'0)Gm(rza'w). (2.61)
We have used the abbreviation
Gon(ror' 20) = —r'%Lm(rzr'z'w) 4 %mLm(rzaz'w). (2.62)
An explicit expression for G,, is
Gr(r2r'¥0) = 3 F(2)Fo()Gn(rr'), (2.63)
Gon(r1'es) = O =102 (1) + 0" — 1G5, (') (2.64)

with

Q;n(rr’w) - [(m(ran) (Tlanlm-l—l (T/Cl{n) +m (1 - i) [m('r,an)) y
w

Gs (rr'w) = In(ray) (—r'an[&’mﬂ(r’an) +m (1 — i) Km(r'ozn)> .
»)
(2.65)
Gon has the important property

G (aaw) — G5, (aaw) = 1. (2.66)
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2.5.1 The barotropic solution

As a first example we consider the barotropic approximation. It follows from
eq. (2.61) in the limit N2 — 0. The baroclinic components of the Green
function are proportionally to the baroclinic Rossby radius R; and vanish in the
limit N? — 0. For the derivatives of the Bessel functions in G,,, the limit N? —
0 must be performed before setting eventually » = a. The baroclinic part of
the first contribution of eq. (2.61) does not become zero in the limit N? — 0
because the bottom geometry is expressed also in terms of the eigenfunctions
F,. The details are given in Appendix A.

Since the flow is independent of the depth z the barotropic equations are
valid rather for the vertically integrated velocity (transport) than for the ve-
locity itself. The number of degrees of freedom in the linear barotropic approx-
imation is to small to adjust the velocity field to the shape of the topography.
As a consequence the boundary conditions (2.31) have to be replaced by the
weaker condition of a continuous transport perpendicular to the gradient of
the topography. This happens automatically if the barotropic limit is carried
out in eq. (2.61). For a cylindrical obstacle this boundary condition reads in

terms of the radial velocity component at the obstacle edge
uT(a)Hy = u'"(a)(Ho — h). (2.67)

u(®9)7 is the velocity outside and over the obstacle.

The barotropic solution for the pressure perturbation forced at a cylindrical
obstacle can be calculated exactly. The details are given in Appendix B. The
resulting pressure perturbation over the obstacle 1 and beside the obstacle
)® reads
——HLOC’uKm (cor) Iy, (Ba) D},

s (rw) ) , (2.68)

L o(rw) _%C”Kmi_aoczgm (Br) Dy (2.69)
with "

Co = z‘fZ;‘t’zu%a(s,ml,l, (@20)

Do = aflpmjs1 (Ba) K (a0a) + acolm (Ba) Kjmj11 (0a) , (2.71)

@ = e, = (272)

H() - 127
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and
h h
Omo(w) =1 — oo <—aa0Km+1 (coa)
+m (1 - g) K., (ozga))Im (Ba) D4 (2.73)

The eq.s (2.68) and (2.69) are valid for obstacles with arbitrary height A
including the island case, h = Hy. The results as given above are very similarly
to the findings of HUTHNANCE (1974) for topographic wave excited by tides
at Rockall Bank. However, the tidal forcing couples the modes with m = +1
to the m = 0 mode so that an additional contribution appears in his solution
and the wave spectrum is different.

The frequency spectrum of the pressure perturbation 1 corresponds to the
singularities of eq.s (2.68) and (2.69) respectively. It consists of a continuous

part in the superinertial frequency range
[ <|o] < oo, ~ (2.74)
and a discrete part at frequencies wy,g in the subinertial domain
—f<o<f. (2.75)

For the continuous spectrum, |©] > f,;the modified Bessel functions I,, and
K., can be rewritten as oscillating Bessel functions H{") and J,,. % describes
the radiation of inertial waves which decay asymptotically as ﬁ—l. In the
frequency domain —f < w < f the modified Bessel function K,, decreases
exponentially for large r and 1 describes waves trapped at the obstacle.

The discrete frequencies ;o are determined by the zeros of the denomina-
tor of eq.s (2.68) and (2.69),

Omo(w) = 0. (2.76)

We can restrict the discussion to positive values of the angular mode number

m, the case of negative m can be treated with the relation

Temo(w) = Opmo(—w). (2.77)
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For the spectrum the damping v is of minor importance, since 0,0 depends
on @ only. The corresponding complex frequency values accounting for the

damping explicitly can be calculated by

Wy, = Wy, — V. (2.78)
We start the discussion with the island case. In the limit A — Hy we obtain
—Cu K (agr) I (a0a)
a - , 2.79
Q/)mO(Tw) SmO(w) ( )
mo(rw) = 0. (2.80)

(The latter equation is valid with the exception of the point r = a.) Spo is
the remainder of 7,0 in the island case. To find the discrete spectrum, i.e. the

trapped waves, we have to solve the equation

Smolw) = (agl&’m+l(aa0) —m (1 _ Z]:’) Km(aao)) In(ac) =0.  (2.81)

The factor I,,(acg) has been introduced for convenience and does not influence
the spectrum.

The zero at @ = —sig(m)f corresponds to a free wave. There is at least
one additional zero lomo| < f. For positive values of m it follows @, < 0.
According to eq. (2.77) every solution @, for positive m has a complementary
solution —&,,, for negative m.

A criterion for the existence of this second zero can be derived considering

the slope of S, in the point @ = —sig(m)f. There is a critical radius a% for

the trapping of waves at a cylindrical island, LoNcUET-HIGGINS (1969),

agy = \/Im|(Im] — 1) Ro. (2.82)

For a > a7t trapped waves can exist but not for a < a&i. Obviously, for the
island case all vertical modes separate and the above result can be generalized

for the baroclinic modes

g = \/Im|(Im] = 1) Ry (2.83)

Often one has the situation that Ry < a <« Ry so the barotropic mode is
untrapped, whereas near the island trapped baroclinic modes may exist. If

a > a?" a rough estimate for @,,, reads

R,
By, 0 — [ (2.84)

a
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This frequency belongs to waves with phases
O~ m (w + f&t> , (2.85)
a
i.e. a Kelvin like wave with a wavenumber

kp=—— (2.86)

0.0

Re Sm

n

1.0 0.0 ' 2.0 TTTEO

Figure 1: The real part of Sy, as a function of @ (left figure) and the Kelvin
wave frequency @, as a function of - for different values of m (right figure).

The filled squares mark the critical radius aZ'.

There is no trapped solution for m = 0. For m = £1 the critical radius
is zero. As a special property of this mode which is forced by a homogeneous
upstream flow a trapped solution exists also for islands with a small radius.
However, the trapping is weak, since for Ry > a the wave frequency is approx-
imately

2
B (o)

o~ —f + QfE—QQe (2.87)

So the arguments of the Bessel functions are small and decrease slowly even
for large radii.

The left part of Fig. 1 shows the real part of Sy, as a function of @ for

different values of £-. All graphs run through the point @ = —f. If the
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ratio - 1s large, a well distinct second zero exists corresponding to a trapped

(Kelvin) wave. The right part of Fig. 1 shows the value of this Kelvin wave

frequency as function of 7~ for different values of the angular mode number

m. The squares mark the crltlcal radius a¢’¥.

0.0 T —— y T T T T 0.0
Q o
g9 gg
B o5} B o5t
a/Re=0.1 g L s 3/Ry=0.1
x—x—x—x—xa/Ro 0.5 x—x—u—x—xa/Ro_Oﬁ
F H—H—fa/Rozl 1 3 +—+—-H—+a/Ro:1
e - a/R0:2 a/Ro
—— a/Ro—- 1 T r— a/RO_
T T s T 1o Qo 05 1o

h/H, h /H,

Figure 2: The topographic frequency @:7° as a function of ;- T for different val-
ues of - & <1 left: m =1, right: m = 2 The dotted line is the approximation

accordmg to eq. (2.92) for a < Ry

Now we let the island “sink down” and get a seamount. The change in
} the spectrum can be understood from Fig. 1 and eq. (2.73). The curves for
’ Sm(w) are shifted upwards. If there is a well distinct Kelvin wave trapped
| at an island, its frequency value is lowered with decreasing obstacle height A.
If the obstacle radius is small, i.e., if there are near inertial waves generated
at the island, the change in the frequency spectrum is more dramatic with
decreasing h. The zero at the inertial frequency moves rapidly to lower values
of @, i.e. the waves become trapped.

Rewriting the denominator of ¢ as

@O mo(w)Dimo = I/V|m|(w) (w + mf i (%‘;Tm[l(( )(ozoa)) ’ (2.88)

Wimi(w) = aoa (1] (Ba) K (c0a) — L (Ba) K}, (a0a)) (2.89)

the structure is more transparent. W),,|(w) is positive definite. There is one so-

lution @27 corresponding to a trapped wave which will be called subsequently




23

"topographic frequency”. The subscript ; stands for ”barotropic approxima-
tion“ in the sense of "depth independent® rather than for ”barotropic mode*.
Fig. 2 shows the topographic frequency calculated numerically from eq. (2.88)
as function of the relative topographic height —[% The modulus of the fre-
quency decreases with A, the frequency of a Kelvin wave trapped at an island
with radius a appears as an upper bound for the topographic frequency of
waves trapped at a cylindrical obstacle.

For the two limiting cases fa < Rp and a > Ry analytical approximations

—topo

b can be found. If the obstacle radius is small compared to the Rossby

for @

radius, Ba < Ry, the topographic frequency reads for m = +1

h H s s?
—topo . 2 _ e
0,0 meHO—h(1+2H0—h4 (47 1—|—21n<4))>, (2.90)

f2 -top02 2
¢ = ( f2R(2J )a. (2.91)

s% tends to zero if the island radius is small compared to the Rossby radius
and the rigid Iid approxifnation is valid. In this case the right hand side of eq.
(2.90) is independent of @:%° and the topographic frequency depends on the
inertial frequency f and the relative helght of the obstacle only,

—topo
Wb

R~ ——mf2H0 — for a < Ro. (2.92)

;
The above rigid lid approximation provides an upper limit for the modulus of

the topographic frequency.
If the relative height of the obstacle is small, the topographic frequency is
much smaller than f. This allows an iterative solution of eq. (2.88). The first

order approximation is valid for Hio < 1 and reads

N o (R)f ( >~ ,
- Mo g (BT (5 o () — Il B K (%)
(2.93)
< _mfl%fm (ﬁRO> K, (é‘z) . (2.94)

Fig. 2 gives a guide, where this approximation is applicable. The rigid lid

approximation eq. (2.92) follows as a special case of eq. (2.93) for Ba < Rq.
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For a > Ry the topographic frequency is proportionally to the frequency of a
Kelvin wave trapped at the obstacle edge

Y

h
DlP0 oy =~ Wmo for a > Ro. 2.95
mb [{0 1 +ﬂ 0 0 ( )

—topo

The topographic frequency @,.;° depends on the relative obstacle height
—I%)— only but is independent of the total depth Hy and the obstacle height
h itself. This stems from the fact that the topographic waves propagate as
vorticity waves generated by compressing or stretching of vorticity lines at the

gradients of the bottom topography.

Imw Imw
£ (00 f Bee A |00 [ Rew
) e ¢ . =] 006 (=
Wmol€ W_mo . Wnote Womo

Figure 3: The relevant singularities and the integration path in the complex
w plane.

%

Let us now discuss the time evolution of the flow pattern. This requires the
inverse Fourier transformation of eq.s (2.68) and (2.69) which can be performed
using Cauchys theorem. To get a closed integration path in the complex w-
plane we complete the integral along the real axis by a semicircle in the upper
or lower half plane. It depends on the behavior of ¢(w) for w — £ico whether
the integration path can be closed in the upper or the lower halfplane. Setting

w = 1q we find

| (=5)s
e Wt (raw) ~ (2.96)
q
—twt, /1 e(t_ ;Egé)q
e Polraw) ~ ——— (2.97)
q
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This expression tends to zero if

N\

t> 5 for ¢— —o0

r>a
<=2 for — 00
FRo q J
;
t> }1325 for ¢— —o0
r<a.
t < ;;5’ for ¢— o0

Fig. 3 shows the relevant singularities. Closing the integration path in the

upper half plane it can be contracted to a point without enclosing a singularity.

Consequently, the Fourier transform of ¢, vanishes for ¢ < TR~ Fort > TR 1t
can be expressed by a Cauchy integral closed in the lower half plane. A similar
behavior can be found for ¢ ;. Besides the poles with |o] < f corresponding
to the trapped waves we have to consider the bfanch points of /f2 —&? at

w = X f —iv. Rewriting

QO:R%)\/f—w—iy\/f—l—quiy (2.98)

it turns out that we need two cuts to make ap unique. Choosing the cuts
parallel to the real axis according to Fig. 3 the imaginary part of ay is always
positive and the cut of the Hankel function needs no special consideration.
However, we are not allowed to cross the line I'm(w) = —iv at |Re(w)| > f.
The integral over the cuts which have been added to close the contour does
not vanish and we have to subtract this contribution from the total integral
over the closed contour. The second part of Fig. 3 shows the remaining
path integrals after contracting the whole contour to separate contour lines
encircling the singularities.

Subsequently, we will consider only the trapped waves, 1.e., we take into
account only the integrals encircling the singularities at @ = 0 and @ = olore,
However, this approximation has to be considered with some caution if the
frequency of the trapped waves is near the inertial frequency, i.e. if h ~ Hy
and a < Ry. Although the approximation (2.93) is suitable to calculate the

spectrum, the calculation of the residuum is more delicious and requires a
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detailed discussions of all parts of the spectrum. Especially for islands with
a small radius, ¢ < Ry, the integral along the cuts compensates partially the
contribution of the trapped waves. This problem will be discussed elsewhere.

Here, we restrict ourselves to situations where the frequency of the trapped
waves is well distinct from the inertial frequency, i.e. fa < Ro or a > Ry.
For reasons of consistency we neglect in all expressions @ in comparison with
f, 1.e., in the numerator of ¢ and in the arguments of the Bessel functions and
calculate the topographic frequency from the approximation eq. (2.93). This
is necessary to fulfill the boundary condition (2.67) for the radial transport.
The denominator of ¢ reads approximately

b ffm (B) Kn (&) (o — maler). (2.99)

0 — mo
i s 15

(I)O'mg((.d)Dmo ~ —

For the Fourier transformation the upstream flow has to be specified. We
consider the example of a flow switched on at ¢ = 0 and staying constant
thereafter. The Fourier transformed reads

.

w 1€
(Other examples, i.e. an oscillating upstream flow, but within a perturbational
solution scheme valid for small topography, has been considered by FENNEL
and SCHMIDT (1991).) uo is undamped, and the frequency w has to be distin-
guished carefully from . t

The pressure perturbation is a product of an amplitude function I'(r) de-
scribing the radial shape of 1 and a factor Q(¢t) standing for a angular wavelike

time evolution of 1.

#oet) = 0(t-T22) fthar Qe 2101
Prgt) = e(t——/’égf’") FUpal*(r)Qpt). (2.102)
The radial function I' reads
K (%)
Fa(,r,) — 0 , (2103)
K (%)

Ti(r) = m—-—; (2.104)
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Outside of the obstacle I'(r) decreases exponentially for distances larger than
the barotropic Rossby radius. Over the obstacle the pressure perturbation is

also trapped at the edge but the characteristic distance

Bo L Jopy [Ho—h _ VoUo =) (2.105)
Jo} f Hy f

is a reduced Rossby radius corresponding to the reduced depth over the obsta-
cle, Hy — h. If the radius of the obstacle a is much smaller than this Rossby

radius the pressure perturbation decreases linearly from the edge to the obsta-
cle center.

Initially, after the upstream flow has been switched on, the information
on the obstacle perturbing the upstream flow spreads by inertial waves over
the whole basin. Outside the obstacle their phase speed is Rpf, over the
obstacle the phase speed is reduced by a factor f~1. The inertial waves are
not considered explicitly and the step functions in the expression for i are the
remainder of this initial process.

In addition to this radially spreading wave front there is a topographic
wave orbiting clockwise round the obstacle. This wave process is represented

by the factor

topo

. Wiy topo )
Qet) = Zrot s (4H7ax(o ) + valent) (2.106)
with the abbreviations i
q:(p,1) = sinp — e “sin (c,o — w.fzpot> , (2.107)
g(p,t) = cosep — e cos (4,9 — wfzp°t> . (2.108)

The radial and angular components of the velocity field (transport) are

related to the pressure perturbation via

: , 10 d,, m

Up = Uyt f2 — @2 ( ;)r B @1{¢m) (2.109)
o=y w ia¢”1 _m

Um = Ugy, + f2 _ &_)2 ((,(_J aT r ¢m> (2.110)

For a homogeneous upstream flow,

Uy, = UQTO|mf1, (2.111)

UGy = WWTOmps2g(m), (2.112)
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the time evolution of the flow near the obstacle is governed by topographic

. topo
waves with the frequency wy,",

W (rpt) ~ Uy cos (g(t) .y (t _ TR_O;) gI‘(r))

topo
— r—a fl_ _ aWrp _8_1:) —vt . __, topo
+Ug0 (t Rof ) (rF(r) 7o <e cos (c,o wiy t)

v topo :
+W552—2 VCosw +wy, Sy
wyp TV

—e™V (1/ cos (go — wi;pot) + Wi sin (c,o — wizpot»)) , (2.113)

; — ar
u?(rot) = —Upsing (9(1‘,) .y (t _ TROfa) aE)
—_— topo )
—Uyl (t 7 a) ( al'  awyy F(T)) (e—ut sin (Lp _ wi?,“t)

T Ref J\"Or T Tf
+—t—-Z—-— v sin @ — wit?’ cos ¢
wiy "+ v .
_e—ut (1/ sin (99 — wizpot) i wizpo cos (99 _ wifgpoﬂ)))' (2'114)

The rigid lid result as discussed by JOHNSON (1984) is reclaimed in the limit
Bﬁ% < 1 and for small topography, th_o < 1. Since this case occurs frequently in
oceanography, it should be discussed in miore detail. For B 7 <1 the velocity

components u” and u¥ are

a? a? Wiepe 1
u* (rot) = Ulf(t 1— = Jcosp+4+ — {1422
( QO) 0 ()(( 7,2> ¥ 7'2 ( f wilfgpo2+y2

t .
(1/2 cos p + vwy’ sin

el Pe (wizpo cos (go - w§§p°t> — vsin (c,o - wi‘é”ot)))) ,
(2.115)
topo
. w 1
u' (rot) ~ Upb(t 1—
((10) 0()(( f >w§2p02+y2

t .
(1/2 cos @ + vwiy sin @

topo

e Wi (wizpo Cos (ap - wizp°t> — vsin (c,o — Wy, t)))) ,

(2.116)
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a a? . a? wtopo 1
u (p(T(,Qt) ~ —Uge(t) <(1 + ”7?2‘) SIHSD - ;:5 (1 + 14; ) w?;po? + 1/2

2 .. topo
vosim e — Wiy V COs @

i (it sin (o — wifPt) + v cos (¢ - wi?’pot)))) ’

(2.117)
topo
. w 1
W (rpt) & +URH(E) | (1 — 222
(ret) 00(( ) o g
(—1/2 sin ¢ + vwi cos ¢
et (w7 sin (i — wf77t) + v cos (10— wi‘?’"t)))) |
(2.118)

Fig. 4 shows a sketch of six snapshots of the flow over the obstacle during
one cycle of the topographic wave in the inviscid case, v = 0. The perturbation
in the sea level has a maximum at the obstacle edge and travels clockwise
round the obstacle. The corresponding flow field follows the isobars. There are

ageostrophic flow components which, however, do not alter the flow direction

—h
2Hy—h"

Outside of the obstacle the flow is a linear superposition of the upstream

but decrease the magnitude by a factor ~ 1 —

flow and a dipole like perturbation. Over the topography the flow is homo-
geneously. The modulus is independént of time, whereas the flow direction
rotates with the frequency —wi%°. The radial transport is continuously at the
edge of the obstacle but the angular transport exhibits a jump corresponding
to a vorticity sheet at r = «. Partially closed streamlines occur independent
of the obstacle height and the upstream velocity.

If viscosity is present, i.e. v > 0, the time dependent flow part tends to
zero after some oscillations and the vorticity production at the obstacle edge is
balanced by dissipation. The flow is controlled by friction and approximately
geostrophically balanced. The zeroline of the stationary dipole like pressure
field 1s twisted by an angle

Voo = arctan (~w—:;p—0> (2.119)

1b
compared to the direction of the upstream flow.
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Figure 4: First cycle of the evolution of the topographic waves in time steps
of wi?°t = Z. Isolines of the sealevel and the flow velocity are shown. The
parameters are HLO = 0.667, obstacle radius ¢ = 20 km, Ry ~ 140 km, fric-

tion parameter v = 0. The topographic frequency is wit?® = —0.48f. The
geostrophic upstream flow coming from the left hand side is set to 1 cm s™?.

If the friction parameter is of the same order of magnitude as the topo-

graphic frequency, the stationary flow over the obstacle is of the same order
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of magnitude as the upstream flow too. This may be the case especially for
small seamounts where the topographic frequency is small. If the friction pa-
rameter v is much smaller than the topographic frequency wis*® the stationary
flow remaining over the obstacle is much smaller than the upstream flow and
the angle ¢, tends to zero. Almost all water particles originating upstream
pass the topography at a path beside the obstacle. Examples for frictionally
controlled stationary states are shown in Fig. 5. The stationary pressure
perturbation following from eq. (2.102) is equivalent to the result of HICKIE
(1972).

These stationary states are sometimes related to Taylor columns and called
"frictionally balanced Taylor columns”. However, this may be missleading
because no closed streamlines occur and the underlying physics is completely

different.

y / km
y / km

Figure 5: Stationary states controlled by friction for v = 5—’; (left picture) and

v = lwi‘;po! (right picture). The parameters are the same as in Fig. 4.

The consideration of the case Ry < a is of rather theoretical value, since the
assumption of a homogeneous upstream flow with a horizontal extend larger
than the barotropic Rossby radius is more or less artificial. However, this limit
shows the influence of the trapping of the pressure perturbation at the obstacle
edge which plays an important role also for the baroclinic modes. The result

may be considered as the lowest order term of a decomposition into angular

modes.
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Considering the lowest order of Rf the radial and vertical velocity simplifies

for the inviscid case

u™(rt) = Ug(t) cos o — Uyh (t - a)

Rof
a _r—a fa a h [;’ topo
se (; Cos @ — (r 2 iTﬁ) cos (ga wiy t)) ) (2.120)
; a—r Li(pgr
uzr(ﬂpt) U()@\f cos @ — Uyl ( Rof ) (:Jl((ga; oS p—
Cl]l(ﬁT) h ( ) topo
N (r]l(ﬂa) T E +ﬁ[1( )> co (99 Wi t)) (2.121)

u™(rot) m —Ugf(t) sin

a \\ _r—a ¢

—Ut [+ - T8 \/ o - fepoy)) 2.122
Uy ( Rl ) e i (suup sin ((p Wiy )) ( )
u(rpt) & —Upf(t) sin

sa—rY ~a I(fr)
Ul (t‘ﬂRTf) ¥ & 1h(Ba)

The flow perturbation is trapped within a distance of Ry at the edge of the

(singo sin (go wfzpot))‘ (2.123)

obstacle and rotates clockwise with a frequency wi°. An approximation for
the frequency is given as a function of Hio by eq. (2.95). Fig. 6 shows two
examples for the evolution of the flow at the obstacle in the frictionless limit.

Remarkably, the radial flow generated at the obstacle is of higher order in
%l than the angular flow. Consequently, the flow perturbation consists of well
pronounced angular jets corresponding to a vorticity sheet at r = a. At the
obstacle edge the radial flow is purely oscillating. The order of magnitude is U,
and the average over one cycle of the radial transport vanishes. The angular
flow is of the order 7 and is strongly enhanced. Since the radial derivative of
u” 1s larger by a factor 7 than the angular derivative of u¢ by, both velocity
components contribute with the same order of magnitude to the horizontal
flow divergence.

The angular jets at the edge of the topography are fed by the water masses
which do not pass over the topography. Beside the obstacle the amplitude of
the jet is independent of the obstacle height. Over the obstacle the trapping
radius becomes smaller with increasing height so the flow perturbation for

high obstacles is confined to a thin area at the edge. In the island limit the
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Figure 6: Surface elevation and flow field for |wyy°[t = 2% and |w;™[t = L.

The parameters are HLO = 0.667, obstacle radius ¢ = 320 km, Ry = 140 km,
friction parameter » = 0. The topographic frequency is wie?® = 0.17f. The

geostrophic upstream flow coming from the left hand side is set to 1 cm s™*.
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Figure 7: Stationary states controlled by friction for v = £ (left picture) and
v = |wi°| (right picture). The parameters are the same as in Fig. 6.

16
vertically integrated radial velocity vanishes at the edge of the obstacle as well
as over the obstacle itself. The angular velocity over the obstacle at r = a,
u'(a), is not well defined and becomes infinitly large for h — Hy. However,

the vertically integrated flow vanishes.

In the viscous stationary state the radial velocity component vanishes at
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the edge of the obstacle for small v. Then, the flow beside and over the
obstacle is separated by the vorticity sheet. Nevertheless, the flow over the
obstacle does not vanish as in the viscous rigid lid case. On the contrary,
the pressure perturbation is trapped within a distance AR, at the obstacle
edge and the flow over the center of the obstacle is approximately the original
upstream flow. The streamlines are closed by the inner jets at the edge of the
topography. These jets at the inner edge keep the inner flow running even
in the viscous case. The jet itself is in geostrophic balance with the radial
pressure gradient. This stationary state is shown in the left part of Fig. 7.
The right part of this Fig. 7 corresponds to the case v = |wi°|.

The present calculation does not distinguish vertical and lateral friction.
It can be expected, that the vorticity sheet is smoothed if lateral friction is
included. However, it remains an open question, whether the motion over the

obstacle is only diminished by lateral momentum exchange or if the flow over

the topography is completely spun down.

2.5.2 Baroclinic approximations

In this section the considerations for the barotropic approximation are general-
ized to include the influence of stratification. The changes due to stratification
concern both the spectrum of the topographic waves as well as the flow pat-
tern.Two approximation schemes for solving the baroclinic equation are dis-
cussed. One is based on the assumption that the pressure perturbation at the
sidewall of the obstacle is approximately constant, i.e. (2 < —Ho + h) =
Ym(—Ho + h). This approximation may be justified if the stratification is
weak or the topography is of small height. The other approximation scheme
is based on a decomposition of ¥,,(z) into vertical eigenfunctions. Since all
vertical modes are coupled via the bottom boundary condition the integral
equation for the pressure is transformed into a linear system of equations of
rank infinity which has to be reduced to a finite amount of equations. This
approximation is good, if only a small amount of vertical modes is necessary
to approximate the complete solution. For high seamounts it is an alternative
for the first approximation scheme which fails in this case. In both schemes

the first term in eq. (2.61) is calculated by iteration starting with the onset
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of a pressure perturbation over the topography proportional to the barotropic
solution.

We begin the discussion with the iterative solution scheme. Details are
given in Appendix C.1. As in the barotropic case, the spectrum follows from
the zeros of the denominator of the pressure perturbation. This approxima-
tion allows for one topographic mode. Assuming a constant Brunt Vaisala
frequency, for an obstacle with a diameter much smaller than the barotropic
Rossby radius, Ry > a, but larger than the baroclinic Rossby radius, R; < a,
the pressure perturbation at r = a simplifies considerably, all mode sums can

be performed analytically (Appendix C.1). The topographic frequency reads

approximately
oo h(sgn(m)+m—2fl(1—ln(2fﬁ ))
WP oy 2Ho —h— hlml2R1 (1 T (%)) . (2.124)

This approximation is valid for HLO <

Appendix C.1.

For weak stratification the barotropic result for Ry > a, eq. (2.92) is
retained. Stratification increases the frequency of the trapped wave because a
pycnocline acts in a similar manner as the sea surface and yields an effective
decrease of the total depth.

To avoid confusion we have to distinguish the wave modes corresponding
to barotropic and baroclinic vertical 'eigenfunctions with respect to the flat
bottom ocean from the topographic wave modes. Except Kelvin waves trapped
at an island each topographic mode is build up by contributions coming from all
flat bottom vertical eigenfunctions, i.e., from the barotropic and all baroclinic
modes.

At an island with steep sidewalls besides the barotropic Kelvin wave a
large variety of baroclinic Kelvin waves may be excited. The vertical struc-
ture of these waves is governed by the baroclinic vertical eigenfunctions for a
flat bottom ocean. It is natural to ask which topographic wave modes corre-
spond to the baroclinic Kelvin waves if the island is replaced by a finite height
seamount. Picking up a special mode in the island case and replacing the
island by a seamount, the change of the wave frequency can be traced. Thus,

the topographic modes may be labeled by the mode numbers of the vertical
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modes in the island case. The iterative approximation scheme as given above
allows for only one topographic mode in the first iteration step. Other modes

can be found by further iteration.

Now we consider the alternative solution method by decomposition into
vertical eigenfunctions. The integral equation (2.61) is transformed into a
linear system of equations of rank infinity, eq. (C.34). The details are given
in Appendix C.2. The equation for 1) has been rearranged in such a way, eq.
(C.10), that all contributions are well convergent sums. Thus, the linear system
of rank infinity can be replaced approximately by a system of finite rank.
If the number of modes involved is n, there are n zeros of the determinant
of the homogeneous system, eq. (C.41), which define the spectrum of the
topographic waves. In the island case the coefficient matrix 1s diagonal and
the frequency spectrum of Kelvin waves trapped at the island is retained.
Since the vertical modes separate, the truncation of the mode sums does not

influence the remaining wave spectrum.

For an obstacle each topographic mode consists of a superposition of all
flat bottom vertical eigenfunctions. The larger the mode coupling, i.e. the
smaller the height of the seamount is, the more vertical modes have to be
included. This stems from the coupling matrix M,;. Comparing diagonal
and off-diagonal matrix elements, for high seamounts the diagonal elements
dominate, whereas for seamounts of small height both are of the same order
of magnitude. This may be of importance for the interpretation of numerical
results from finite difference models. Due to the finite horizontal and vertical
resolution those schemes filter out higher modes. We will come back to this

point in section 3.

Eq. (C.41) has been solved including the barotropic and 19 baroclinic
eigenfunctions. Thus, for each value of '}ITZJ 20 topographic modes can be found.
In Fig. 8 the frequency of the five lowest topographic modes is shown as a
function of the relative height HLO It has been tested that the inclusion of ad-
ditional vertical modes does not alter the frequency of these topographic wave
modes. In the island limit, TI}LT) = 1, the topographic waves are going over into
the barotropic and the first four baroclinic Kelvin waves. The dotted line is

the barotropic approximation which is obtained, if only the barotropic vertical
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mode is included. It is equivalent to the barotropic result as discussed in the
previous section. The difference between the barotropic approximation and
the baroclinic result shows that stratification may increase the topographic
frequency considerably. Since mode coupling is growing with decreasing ob-
stacle height, the frequency enhancement is most obvious for small obstacles.

The dashed line shows the iterative approximation based on eq. (C.15).
It may be used as a guide for the order of magnitude of baroclinic effects but
fails for seamounts with a height ‘H@g > % The value of the crossihg point with
the barotropic approximation at F}ILE = % stems from the special choice of the

stratification.

Figure 8: The spectrum of baroclinic topographic waves at a cylindrical
seamount. Parameters: obstacle radius ¢ = 6 km, Ry ~ 140 km, R; ~ 2
km. Dotted line (- - -): barotropic approximation, dashed line(— — —): iter-
ative solution according to eq. (C.15), (e — e): most prominent topographic
mode corresponding to a barotropic Kelvin wave in the island limit, other
symbols: topographic modes corresponding to baroclinic Kelvin waves

The threedimensional baroclinic pressure perturbation and the correspond-
ing flow field can be calculated also from the aforementioned approximation

schemes. Here, only the vertical structure of the pressure perturbation as well
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as the vertical displacement of isopycnals is discussed basing on the iterative
approximation scheme.

We start from eq.s (C.2) and (C.3). Considering the case that the to-
pographic frequency is much smaller than the inertial frequency the approx-
imation o, & R;' is justified, whereby, R, denotes the internal Rossby ra-
dius corresponding to the n’th vertical (flat bottom) eigenfunction. As in the
barotropic case a two-step solution is possible. In the first step an approxima-
tion for (a,—Ho + h), eq. (C.14), can be found by iteration. This result is
reinserted as an approximation for 1{az) at the right hand side of eq.s (C.2
and (C.3). The details are given in Appendix C.1.

Since the iterative solution allows for only one topographic mode, the in-
verse Fourier transformation can be performed in the same manner as in the
barotropic case. For simplicity we assume Ry > R;, which will be justified for

the most applications. The pressure perturbation has the general form

P(rozt) & Usfal'vr(rz)Q(ot). (2.125)

The function Q(¢t) differs from the barotropic approximation eq. (2.106)
only by the value of the topographic frequency. The baroclinic amplitude
function I'y; has a complicated structure. Here we discuss only the simple

approximation »
i

S SR A2 Py(2) Fo(2)0 (t = 522) g3, (ra)
Son [t d2 Fo(2') Fo(—Ho + h)gmn(aq)

Ieli(rz) ~ , (2.126)

which is valid for small topography, § = ag, and follows from eq. (C.32).
In comparison with the barotropic approximation the barotropic contribution
is supplemented by similar baroclinic contributions localized at the obstacle
edge.

Fig. 9 shows the amplitude function I'yx(rz) for different values of the
baroclinic Rossby radius. If the stratification is weak, (left picture), the pres-
sure perturbation is mainly depth independent. Baroclinic effects are visible
near the obstacle edge. If stratification is increased, the pressure perturba-
tion becomes more and more bottom trapped whereas the surface elevation is

reduced.
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Figure 9: The baroclinic amplitude function I';x(rz) according to eq. (2.126).
The relative topographic height is 0.2, the obstacle radius is 6 km. The baro-
clinic Rossby radius is varied from 0.8 km (left), 2.1 km (middle) to 4 km

(right).

z/Hy

Figure 10: The displacement of isopycnals for several values of the baroclinic
Rossby radius. The parameters are the same as in Fig. 9.

The baroclinic pressure perturbation corresponds to a vertical velocity
W= ——=1). (2.127)

Within the linearized theory the above equation can be integrated to calculate
the vertical displacement of isopycnals A, '

1

V. (2.128)
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There is also a barotropic contribution, since the derivative of the barotropic

eigenfunction reads for constant Brunt Vaiséla frequency

0 1 N2 z
SR~ - (1 + ‘ﬁ;) . (2.129)

For z = 0 A is the surface elevation. As shown in Fig. 10 the maximum

displacement of isopycnals is found near the edge of the obstacle. The weaker
the stratification is the more the displacement is concentrated near the ob-
stacle edge whereas the amplitude of the displacement is increasing and the
perturbation penetrates more to the surface. However, although % is a smooth
function of z at z = —Hg + h the vertical displacement at r = a is logarithmi-
cally divergent. This divergence does not vanish even for small stratification.
The reason for this shortcoming is ambiguous. It may be either a consequence
of the approximation made in the integral over the top of the obstacle. Alter-
natively it may result from the simple ansatz for the pressure at the sidewall
which yields a concentration of all wave energy in a single topographic mode.
Higher order approximations which possibly remove this singularity have not

been tested.

3 Comparison with a numerical model

The analytical results are compared with the outcome of a free surface version
of the GFDIL-model. The details of the model implementation can be found in
the report of KILLWORTH et al. (1989). The model is based on the nonlinear,
hydrostatic Boussinesq equations and realized as a finite difference scheme
on an Arakawa B-grid. The model topography was prepared with the same
idealized shape as used in the analytical theory, i.e., a cylindrical obstacle of
radius ¢ and height A is placed in a homogeneous upstream flow. However, the
steep obstacle sidewalls are simple approximations for an analytical treatment
but a finite difference scheme may run in difficulties because of large vertical
velocity values.

The numerical model includes nonlinear advective terms. These contribu-
tions could be removed to compare with the linear analytical results. However,
since the model should be tested ”as it is”, linear condition are established ap-

proximately by small values of the upstream flow. Choosing Uy = 1cms™! the
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typical time which is necessary to move a water particle over an obstacle of 20
km diameter is about 500 h and linear approximations are well justified.
Another problem is the treatment of friction. In analytical approaches the
frictionless case is the most simple approximation, whereas friction is essential
ingredient for the numerical stability of finite difference schemes. In the present
experiments horizontally and vertically constant turbulent mixing coefficients
are used. The model consists of a zonally periodic channel with 300 x 300
horizontal grid points with a gridspacing of 1 km and 15 vertical levels of 2 m
thickness. To keep the horizontal advection-diffusion scheme stable a minimum

value of the vertical mixing coeflicient of
AT = 0.5ulAz ~ 5 - 10%cm?s™! (3.130)

is required. The vertical mixing coefficient should have the order of magnitude

Az
A;Agm ~ 210" em?sL. (3.131)

MAN
AT

These values permit a maximum timestep of 240 s for the baroclinic mode and
12 s for the barotropic part of the model.

To initialize the homogeneous upstream flow a slight modification of the
model code is necessary. In the beginning of the experiments a homogeneous
barotropic flow Uy is set at all wet points. To prevent a spin down of the flow by
lateral friction a small amount of morientum is added to the barotropic mode
which exactly compensates the loss of momentum at the sidewalls. This small
momentum correction can be calculated approximately from an analytical so-
lution of the stationary barotropic momentum equation with lateral friction
for a flat bottom. The flow correction vanishes everywhere with the excep-
tion of thin boundary layers at the sidewalls. Bottom friction is switched off.
Then, in the central part of the flow where the obstacle is placed the upstream
flow is homogeneously for a long time. For the timescales under consideration
the flow perturbation remains trapped at the obstacle. The amplitude of the
inertial waves irradiated from the obstacle is small and they do not interact
with the obstacle via the periodic boundary conditions. Thus, the model setup
reflects the same idealized boundary and initial conditions as in the analytical

theory.
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The model does not explode numerically as a consequence of the rough
treatment in the initial time step. Due to the large ratio of the horizontal grid
spacing to the vertical scale, the horizontal divergence of the flow is small even

at the steep rise of the topography.

The first experiment concerns the case of weak stratification. The model
runs with all baroclinic components but with constant salinity and only a small
vertical gradient in the initial temperature field. The corresponding baroclinic
Rossby radius of RB; = 800 m is not resolved by the model. The barotropic
Rossby radius of 141 km is much larger than the obstacle radius of 20 km.
The constant turbulent mixing coefficients for heat and salt are 0.01 cm?s™!
for the vertical mixing and 5 - 10%cm?s™! for the horizontal mixing. Several
values for the relative height of the obstacle HLO have been tested. Fig. 11
is an example for 7% = 0.667. The time series of the surface elevation and
the velocity field during the first orbit of the topographic wave round the
obstacle is very similarly to the analytical result as shown in Fig. 4. The most
obvious difference is the more pronounced enhancement of the flow over the
seamount in the numerical experiment. For topography with smaller height the
correspondence to the analytical result is improved. Fig. 12 shows numerical
results from a model run with @ > Ry corresponding to Fig. 6. To ensure
numerical stability for the gridspacing of 8 km used in this experiment the
horizontal mixing parameter has to be increased to Ay = 4 -10%cm?s™!. Since
in the first wave cycle strong inertial oscillations can be observed, the examples

in Fig. 12 are taken from the second wave cycle.

If bottom friction is added, the topographic waves are damped and a sta-
tionary state is established after some time. A rough estimate for the equiv-
alent friction constant v used in the numerical experiment is v = —5{—). This is
much smaller than the topographic frequency and the stationary flow velocity

over the obstacle becomes very small. An example is shown in Fig. 13.

The topographic frequency can be estimated from time series of the angle
of the zero line of the pressure perturbation with the upstream flow. Fig. 14
compares the topographic frequency as it follows from the numerical experi-
ments in comparison with analytical results derived from the zeros of 19, €q.

(2.76). The overall agreement is sufficient for seamounts with a radius much
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Figure 11: First cycle of the evolution of the topographic waves. The timesteps
are 4h, 10h, 14h, 20h, 24h and 28h. The parameters are the same as in Fig. 4,
a small viscosity is needed for numerical stability. The wave period is about

28.5h.

smaller than the barotropic Rossby radius but also for seamounts with a larger

radius.

To make the numerical experiments with a baroclinic flow comparable with
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Figure 12: Surface elevation and flow field for ¢ = 108k and ¢ = 132h. The

parameters are the same as in Fig. 6: ﬁha = 0.667, obstacle radius a = 320

km, Ro ~ 140 km. The topographic frequency is wi?° = 0.17f.

y / km

Figure 13: Stationary state controlled by friction for Cp & 0.007. The param-
eters are the same as in Fig. 4. -

the analytical results of the previous section a linear vertical temperature and
salinity profile has been chosen. As in the barotropic case the pressure pertur-
bation is governed by one topographic wave clockwise encircling the obstacle.
This supports the applicability of the iterative solution eq. (2.125) which
allows for one topographic mode only. Contrary to the barotropic case the

pressure perturbation is bottom intensified, the signal in the surface elevation
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Figure 14: The analytically calculated wave spectrum, (——), and the results
from the GFDL-model, (¢ — o): # = 0.14, (0 —o): £ = 0.57, (m — m):
7 = 114 The barotropic Rossby radius is Kg &~ 140 km

is much weaker whereas internal up- and downwelling develops at the obsta-
cle edges. The baroclinic signal is trapped horizontally within one baroclinic
Rossby radius. Thus, stratification cénfines the pressure perturbation verti-
cally and horizontally near the obstacle edge. Fig. 15 shows vertical sections
of the temperature deviation from the stratification far upstream. Since the
vertical temperature gradient is constant in the fluid at rest, the temperature
deviation is proportionally to the vertical displacement of isopycnals and can
be compared directly with Fig. 10. The enhanced bottom trapping with in-
creasing stratification is obvious. The amount of the numerically calculated
displacement of some dm is of the same order of magnitude as in the analytical

theory.

Fig. 16 gives an example for one cycle of the topographic wave, which
can be seen in the best way from the temperature perturbation immediately
over the obstacle. The wave starts with upwelling upstream and downwelling

downstream and finishes one cycle if the upwelling area has travelled towards
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Figure 15: Vertical sections of the temperature deviation (in K) from the state
of rest. The relative topographic height is 0.2, the obstacle radius is 6 km. The
vertical salinity gradient is varied so that the baroclinic Rossby radius is 2.1 km
(left) and 3.8 km (right). The displacement can be estimated approximately
from the vertical temperature gradient, % = —0.25Km™.

the downstream side of the seamount.

Whereas in the analytical approach with small friction the pressure per-
turbation vanishes completely after one cycie, there is a small residual in the
numerical experiments which stems possibly from nonlinear effects, friction,
higher topographic modes and numerical effects as from the approximation of
the cylindrical obstacle by a polygon in the model grid. Additionally, espe-
cially in the initial phase of the experiments inertial waves of small amplitude
can be observed leaving the obstacle as spiraling waves. Another source of flow
is the different vertical diffusion over and beside the obstacle which generates
radial pressure gradients and a baroclinic circular flow with vertically chang-
ing orientation. However, here this effect is kept small by very small vertical
mixing coeflicients but it may drive flows of some cms™! in realistic models.

For a quantitative comparison of numerical and analytical results we con-
sider the topographic frequency. Fig. 17 shows the relative frequency shift

of the gravest topographic mode due to baroclinic effects as a function of
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Figure 16: Series of snapshots representing the first cycle of a baroclinic to-
pographic wave in equidistant time steps. The temperature deviation from
the state of rest is shown. The obstacle radius: 12 km, relative height: 0.267,
baroclinic Rossby radius: 2 km, wave period: 72 h

the relative topographic height. The analytical values are gained basing on
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Figure 17: The relative frequency shift in the most prominent topographic
mode due to baroclinic effects as function of the relative topographic height.
The full lines, (——), stand for analytical results, the filled circles, (o — o),
for numerical model results with a horizontal grid spacing of Az = 1 km, the
circles, (o — o), for Az = 0.5 km. The barotropic Rossby radius is Ry ~ 140
km, the baroclinic Rossby radius R; = 2.1 km, the obstacle radius a = 6 km.

a decomposition of the pressure perturb;,tion in vertical eigenfunctions, eq.
(C.41). The different curves correspond to different levels of approximation,
i.e. a varying number of vertical eigenfunctions is used. This illustrates the
mode number dependence of the topographic frequency as discussed in section
2.5.2. In the analytical theory for high seamounts the mode coupling is weak
and a small number of modes is sufficient to describe the pressure perturbation.
For small seamounts strong mode coupling requires a large number of baro-
clinic modes. This picture is sui_aported by the numerical experiments. Since
the horizontal grid resolves only the first baroclinic Rossby radius the finite
difference scheme suppresses strongly the higher vertical modes. Indeed, the
values of the topographic frequency are close to the analytical approximation
including only the first baroclinic vertical eigenfunction. Doubling the hori-

zontal model resolution, i.e. resolving the second baroclinic Rossby radius, the

; |
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numerically determined frequency values are increased towards the analytical

results including two vertical eigenfunctions.

4 Summary

The excitation of topographic waves at a cylindrical obstacle by a homoge-
neous flow has been studied by both, analytical calculations and numerical
experiments. For conditions of small advection the analytical theory can start
with the linearized Boussinesq equations. A Green function technique is used
to derive perturbational solution methods. The solutions apply for seamounts
of small height as well as for tall seamounts and islands. Both barotropic and
baroclinic conditions have been investigated. For the barotropic case an ex-
act solution can be found. If stratification is present, approximate solution
techniques have been developed.

Within a homogeneous upstream flow suddenly switched on at ¢ = 0 topo-
graphic waves trapped at the obstacle edge can be observed. The perturbation
of the pressure field has dipole form and encircles the obstacle clockwise (in
the northern hemisphere). In all cases under consideration one topographic
wave mode is dominating. If the obstacle radius is small compared to the
barotropic Rossby radius the wave frequency is proportionally to the inertial
frequency and to the relative topographic height HLO The topographic wave
frequency decreases with increasing obstacle radius. Stratification leads to an
enhancement of the topographic frequency.

The analytical results are compared with numerical experiments based on
the GFDL-model. In the barotropic case the analytically calculated and the
numerically gained topographic frequency agree excellently. If stratification is
present, there is good correspondence of both approaches for tall seamounts
but a discrepancy for small obstacles. This can be traced back to the lim-
ited horizontal resolution of the numerical model suppressing higher baroclinic
partial waves which are necessary to compose the topographic wave modes.
However, this is a minor shortcoming since at obstacles of small height the
wave period is much larger than the inertial period and other processes may

destroy the waves quickly. The influence of the finite grid spacing on the
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amount of internal upwelling has not been investigated.

In most the examples considered the flow is in geostropic balance with the
pressure gradients, ageostrophic components as inertial oscillations are of some
importance only in the initial phase of the experiment and for obstacles with
a radius comparable with the barotropic Rossby radius. Even when the flow is
controlled by friction, the geostrophic flow components dominate. By friction
the flow perturbation at the obstacle becomes stationary. Contrary to Taylor
columns the .production of vorticity is balanced by dissipation. If friction is
small, the flow over the obstacle vanishes approximately. Especially in shallow
seas the flow variability is to high to allow for the observation of these stagnant
conditions in nature, but as a tendency an influence on material transport and
sedimentation is expected.

The analytical results are easy to implement on a PC and may give a quick
orientation on the spectrum of topographic waves near obstacles. Although the
results correspond to idealized conditions the comparison with the numerical
model shows that major pg(;perties are well described. Improvements of the
theory are possible. Using the homogeneous upstream flow as the reference
state for linearizing the basic equations, a quasi-linear theory can be derived
which includes the damping of topographic waves due to advection. Horizontal
and vertical turbulent mixing as well as bottom friction may be discussed sep-
arately and in more detail. However, thig would make the analytical equations

intractable and a numerical investigation should be preferred.
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A The approximation of weak stratification

We consider the limit N? — 0 or equivalently a; — co. Using the asymptotic
representation for the modified Bessel functions K, and I, the baroclinic

components of the Green function are

0(r — r)en (=) 1 g(r" — r)eonlr=r")

e,/ rr!

gmn(rr') P , (A.l)

i.e., the baroclinic part of the Green function vanishes for weak stratification.

The first term in eq. (2.61)

L (raw) = — /a dr'r', (r'Z'w) fowt —?——L (rzr'z'w) (A.2)

i 0 m N2 0z m #=—Hg+h )
is proportionally to N=% and has to be considered separately. We consider the
barotropic and the baroclinic part of the Green function separately. This is
possible since the Green function corresponds to the flat bottom case and can

be decomposed naturally into vertical eigenfunctions F,,. We use the identity

2 2 —Hg+h
o' o :/ T 2 F(2)

N2 5; n(Z)

z=—Ho+h
—Ho+h
- - / dze2 Fy(2). (A.3)

The integrand of the baroclinic part in eq. (A.2) is different from zero only
in a small area round the point »' = r. Thus, the ' integration can be carried
out, -

2 2
0 (rr'w)

Pl (raw) & —i /a dr'r'p (r', —Ho + h’w)f—ﬂﬁg—gm
—Hy+h

(a—r) Z/ 42" Fo(2) Fu(2 )b (r, — Ho + By ). (A.4)

By the completeness of the eigenfunctions F), the sum can be performed and

the barotropic approximation for 1* reads

2,2

Plrzw) ~ — / dr'r'an,(r', —Ho + h’w)fszg gm(rr'w)

—0(a — r)qﬁ(n ~Hy + h,w) (0( z— Ho+h)— %) (A.5)
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Never stepping into the bottom 4’ is independent of z and the barotropic

equation reads

h a 2 _ 2
Ymo(rw) = A (/0 dr'r'?,/)mo(r'w)ff—zég—gmg(rr'w) ~ 0(a — 7)Pmo(rw)
-}—z'f ;w uowa6|m1,1gmo(raw) — gmo(raw)zbmo(aw)). (A.6)

B Exact solution of the barotropic equation

The barotropic equation for r < a, i.e. in the area over the topography, reads

Pi o(rw) = Chl, (aor)
—ha? /T dr'v'pt (r'w) I (cor’) K (or)
0

+hal /a dr'r't o (r'w) Ly, (o) K (cor’)

(B.1)
where
- h
"= H Tk
C = —CuKpn (xa)
+ (—aaoKm+1 (a) +m (1 — {;) K, (aga)) Ymolaw).
? (B.2)
The subscript 0 mean barotropic approximation. This equation is solved by
the ansatz
mo(rw) ~ In (Br). (B.3)

All integrals can be performed analytically,

mo(rw) = hCIn (Br) Dy, (B4)
Do = aBlimp1 (Ba) K (a0a) + acoln (Ba) Kimj41 (@0a) (B.5)

2 Hy
,32 — aOHO — (B6)

At r = a 1 reads
—ﬁhECuKm (@) In, (Ba) Dy

T mo(w)

Pmolaw) = (B.7)
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The denominator

h
Omo(w) =1— FO
_.Zz_lio_ (—aaoKm.H (CYOG:) +m (1 — £> I{m (ozoa)> I”"’ (ﬂa) D;"%J

(B.8)

determines the spectrum of 1. The complete solution over the topography is

—T%CuKm (o) I (BT) Dy

: = B.9
Pholrw) " (B9
Inserting this result in the pressure equation for r > a it follows
— 2 CuK o (aor) I, (Ba) Dt
T, Yuilm m m0
a — 0 . BlO
2olre) o (B.10)
C The baroclinic approximation
With the ansatz
) . I, (Br
B () = o) 20T (©1)

I (Ba)
an baroclinic approximation for 9., (A.2) can be found. The r' integral can
be performed analytically. For the pressure perturbation over and beside the

obstacle it follows an integral equation in terms of z,

. —Ho+h .
P! (rzw) & —/_ 0 i dz' > Fo(2)Fo(2)
ot 1% (@) Dy = T (67
O B
FCutialra) = G (ra) (024 (©2)
~Ho+h :

vtz — [ SRR

(1/);1(@ —Hy + h)ﬂ2 _”a%

Ko (anr) (ﬁal|ml+1 (Ba) I (ana) — analy, (Ba) Limj41 (ana)>

I (Ba)

Cagi(ra) — g;mm(az'w)) (©3)
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Do is the direct generalization of D, in Appendix B.
® is a smooth function at both z = —Hg + h and r = a. To show this, we
consider the matching condition of the inner and the outer solution at r = a,
—H()+h

P2 (azw) — Pi (azw) = /_ dz' Z Fu( 2l (az'w). (C.4)

Hy

which follows from the relation
Gro(aa) — Grylaa) =1 (C.5)

as well as from the analytical properties of the modified Bessel function. Above
the level z > —Hy + h 4 is a continuous function at r = a whereas below that
level there is a step in 3 at the sidewall of the obstacle. This follows from the

completeness of the eigenfunctions,
L F()Fu() = 8z = #), (C.6)

i.e., the right hand side of eq. (C.4) becomes zero for z > —Ho + h.
The behavior of 2 at z'= —Hy+ h can be derived analytically in the limit
Ry — 0. The lowest order in R; 1s /

' —~Ho+h
pitraw) == [ d B ()

n>0

_ﬁ’_ an(a—r) 7 _ . e
Ve (e, —Ho i ) = 94, (a2'0))

+barotropic terms. (C.7)

(Note, that this approximation is valid only if §* << o}, in the near island
case some baroclinic modes have to be treated separately!). The higher order
terms converge as n~ 2. From the completeness of the eigenfunctions it follows
that the above expression is smoothly even for r = a.

The integral equation (C.3) for 12 (r, z,w) can be solved in two steps. The
first step is the solution for r = a. Since 9% (z) is smoothly at z = —Ho + h it
has not to be specified whether the point z = —~Ho+h+6or 2 =—Ho+h—§
is considered. Using the equation for ! one has to consider the point above
the top of the obstacle, i.e. z = —Hp+h+ 6, and not to step into the bottom.
As the next step the solution 12 (azw) is reinserted into eq. (C.3) to get the

complete solution.
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The integral equation for ¥, (azw) reads

—Ho+

Ym(azw) & ——/ clz ZF (2)F, ( Cugpnn(aa)

—Hy

o2 I (0n@) D,
+hm(a, —Ho + h) 5 ( L. (Ba) —1>
—gmawm(az'«u).)
(C.8)

To avoid the occurrence of slowly converging sums the above equation has to

be rearranged. From the asymptotic result for large n

@i (@na) Ky (@na) ana — % (C.9)

it follows that there are sums converging very slowly as the power series of a
step like function. Separating these terms the above equation can be rewrit-
ten in such a way that all series converge at least as n™2. Additionally,
Ym(a, —Hp + h) is eliminated and the resulting equation for ,(azw) looks
much more complicated but is suitable for a perturbational treatment since all
contributions are well defined convergent sums,

tl2) (1= 2000~ Ho— 7)) = 9, (z) — g, SO T 2O o =)

_Z/ dz'F (2")Brtpm(2") (Fn(Z) — F, A(z) + %f(—f/—l Hy — z))

(C.10)
with the functions
—Ho+h
e = - f Fo(2) Fa(') Cugon(a0) (C.11)
—H0+
Alz) = /_H dz’ZFn(z)F Z)A
B a? I, (ana) 1 1 p?
A = (52*@% (Imwa) D “i) 262—a2>
B, = ——% + apaly, (ana) Kyt (ana)
—m (1 - {;) Iy (ana) K, (aa) . (C.12)

The functions A, ¥° and F,, without arguments denote the function value at

z = —Hy + h.
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C.1 Solution by iteration

The integrand at the right hand side of eq. (C.3) has its maximum value at
2’ = z. Thus, as a first order approximation 12 under the integral is replaced

by the constant value
Pm(az'w) & Y (a, —Ho + h,w). (C.13)

This approximation will be excellent in the near barotropic case and for to-
pography of small relative height.
The result is a closed equation for ¥2 (a, —Hy + hw). The solution reads

P2 (—Ho + h)
1 + f H0+h dz! Zn Fn(_HO -+ h)Fn(Z,) (An + Bn)

m(—Ho + k) = (C.14)

The topographic frequency follows from the zeros in the denominator of

eq. (C.14). Resolving for w the topographic frequency reads

m [Tt d2' ¥, Fo(—Ho + h)Fo(2') In (00) K (0tna)

N T A Gy R~ Hot R @
(C.15)
- a? I, (aya) B )
O = ﬂ—a2(1 Ba) !
—ana Ky, (ana) Inyr (ona) — mly, (ana) Ky (aga) . (C.16)

;
Eq. (C.15) can be evaluated numerically. An analytical result can be found

for aga < 1 and aja > 1. As shown for the barotropic case the topographic
frequency is much smaller than f for h < Hy. Then, the right hand side of

eq. (C.15) becomes independent of w with the approximation

a

Al 2 = (C.17)

A selfconsistent solution may be of some interest for the weakly stratified
case, where the assumption ¥, (az'w) & ¥, (a, —Ho + h,w) is justified for high
seamounts also.

For the modified Bessel functions the approximations

ﬁ + O ((apa)?) forn =0,

+ O ((ana)™?) forn > 1, (618)

I, (ana) Ky, (aga) = {

Zana
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are valid and @, reads approximately

0. =~ -1+ 0(ada?) forn=0,
" Im| —i—(’)(%a yforn >1

2aa

(C.19)

It is independent of h. If the Brunt Vasiala frequency is constant, the vertical

eigenfunctions are

Fo(z) = (C.20)

(). o

The 2’ integral can be performed.

e
—~~
N
g
|
|
o

h

d2'Fo(2') = { s

~—sin (2””"> forn>1

for n = 0,

Fu(~Ho+4) [ e (C.22)

—4i1g
The topographic frequency reads with the above approximations for Q,,

(it + 5 (3)

WP g — (C.23)
1 - m - 27|ra1|ac (%)
The sum
Clz)=3" smgx) 0<z<m) (C.24)
n>1

h . .
denotes Clausen’s integral. For z < Z, i.e. 7 < %, it reads approximately
C(z) ~ z (1 —In(z)). (C.25)

The spatial structure of the pressure perturbation follows if eq. (C.14) is
reinserted at the right hand in eg.s (C.2) and (C.3) as an approximation of
Y(az'w). In the most cases the barotropic Rossby radius is much larger than

the baroclinic Rossby radius, Rg > R;, and the approximation

Ho—h —
2 Zo=2 for n =0,
I (C.26)

B2 — o2
—1 forn > 1.

permits a considerable simplification. With the Wronskian of the modified

Bessel functions,

Tt (€) Ko (2) + Koy (2) I (&) = é (C.27)
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the pressure perturbation can be written as

i _ wpeP°
Py (rzw) ~ Cuw%—
(In(Br) — Im(cor) Do) LS (a, —Ho + h) + In(aoa) Do LS (12)

Lm(a,—Ho + h)1,(Ba) (@ - w;}gm) )

(C.28)
P (rzw) = Cuzi)u};i:‘)
[E;(rz) + (I—Z:—Eéi—()z)ﬂalm(aoa) — aoaIm_,_l(aoa))
(L5 (rz)Km(aoa) — L7 (a, —Ho + h)](m(ozgr))]/
[ﬁm(a, —Hy+h) (GJ — wf?;’p")} ,
(C.29)
with
L2 (rz) = Z[;ZOM d2'Fo(2')Fo(2) g3, (ra). (C.30)

For coﬁsistency the topographic frequency has to be calculated on the same

level of approximation as v,

Lm(a,—Ho + h)
Wt 8 = s : : (C.31)
m Im(coa Ly1(Ba)
I (Ba) Do — ( Im(ﬁff) Ba + m) Ly(a,—Ho+ h)

For small topography, i.e. 8 = ag, the above result may be simplified to

Cyuowtore LZ(rz)

i(rzw) w , C.32

¢m ( ) fm Em (a, _HO + h) ((IJ _ wfgpo) ( )
with

Wi & — fm £m(a,=Ho +H) (C.33)

1— (I_’;—nfzétg%;—)aoa + m) Lm(a, —Ho + h)'

C.2 Decomposition into vertical eigenfunctions

The perturbational result as given in the previous appendix C.1 filters out

only one mode of the topographic waves. Eq. (C.10) can be decomposed into

|

i
1
1
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vertical eigenfunctions. Multiplying with an eigenfunction F,, and integrating

over the interval (—Ho, —Hp + k) the following matrix equation is obtained

]
The inhomogeneity I,, depends on %°,
0
=200 — —Y (Mo 425 M MeoA C.35
(2 (1—|—A)F0<O+zk: kkok) ( )
the matrix 7., reads
T, =ﬂ(M + 2> MuMioAy | — 2My B (C.36)
nl (1+A)F0 On a nkiVLEQ L) nl D] .
with
—Ho+h
bo = [ R ()(a), (C.37)
——IOIQ-l—h
My = / T dE(2)F(2), (C.38)
F, = F,(—Ho+h). ‘ (C.39)

The angular index m has been suppressed to avoid confusion with the vertical
mode numbers. The other quantities are defined in eq. (C.12).

For constant Brunt Vaisala frequency the matrix M, reads

F}ILE forn=0,l=0
gsin(%’?) § forn=0,1>1
M, = 4 (C.40)
T%-l—i%sin(ﬁ%ﬁ) forn=101>1
sin (n=Urh sin (n+)wh
%( (n_Hlo )—I— (nflo )) for n,1>1

The set of equations (C.35) is of rank oco. Since Ty, is a diagonal matrix in
the island case truncation of the sums at some maximum value n,,,, does not
influence the result for the modes included. Thus, the approximation of the
infinite set (C.35) by a finite number of equations is a good approximation for
high seamounts.

The spectrum defined by the zeros of the determinant of the homogeneous

system of equations,

Det(1-7)=0. (C.41)
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