Meereswissenschaftliche Berichte MARINE SCIENCE REPORTS

No. 23

Anorganischer Kohlenstoff im Oberflächenwasser der Ostsee

von

Helmuth Thomas

Institut für Ostseeforschung Warnemünde 1997 Die vorliegende Arbeit ist die inhaltlich unveränderte Fassung einer Dissertation, die von 1994 - 1996 im Institut für Ostseeforschung Warnemünde angefertigt und von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock angenommen wurde.

Sie wurde in den Jahren 1994/95 im Rahmen des deutschen JGOFS-Projektes unter dem Förderkennzeichen 03F0108F durch das Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie gefördert.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Inhaltsverzeichnis

1	Ei	nleitung	1
2	Th	eoretische Grundlagen	3
	2.1	Ozeanisches Karbonatsystem	3
	2.1.1	Gleichgewichtschemie von CO ₂	3
	2.1.2	Analytische Bestimmung des Karbonatsystems	5
	2.1.3	Kinetische Aspekte der Lösungsgleichgewichte - der Faktor α	8
	2.1.4	Salzgehalts- und Temperaturabhängigkeit der	
		Gleichgewichtskonstanten	9
	2.1.5	Einfluß von TCO ₂ und Alkalinität auf den pCO_2	3
	2.2	Ozeanischer Kohlenstoffkreislauf	4
	2.2.1	Ozeanische Pumpen	5
	2.2.2	Saisonale Pumpen 1	6
	2.2.3	CO ₂ -Pumpen in der Ostsee 1	7
	2.3	CO ₂ -Austausch zwischen Meeresoberfläche und Atmosphäre . 1	9
	2.3.1	Grenzfläche Atmosphäre/Wasser	9
	2.3.2	Bestimmung der Austauschkoeffizienten k _{ex} für CO ₂	2
	2.3.2.1	Temperaturunabhängige Austauschkoeffizienten	2
	2.3.2.2	Temperaturabhängige Austauschkoeffizienten	4
3	Ex	perimenteller Teil	7
	3.1	Expeditionen und deren Zielsetzung	7
	3.2	Experimentelle Bestimmung der Meßgrößen	ĥ
	3.2.1	Kontinuierliche Bestimmung des CO ₂ -Partialdrucks im	5
		Meerwasser	0
	3.2.2	Interkalibrierung auf See	1
	3.2.3	Bestimmung von TCO ₂ und Nährstoffen im Meerwasser 34	4
4	Ph	inomenologische Asnekte des Karbonatsystoms im	
•	Oh	erflächenwasser der Ostsoo	2
	4 1	Räumliche Veränderlichkeit des TCO	כ ד
	4.2	Characterizianting deg Oberflächermostering den menten $1 - 0$)
	4.2	mittele TCO and Alleslinitie	_
	4.2	$\begin{array}{c} \text{Initials ICO}_2 \text{ und Alkalinitat} \\ Solutional behaviority of the second $)
	4.5	Salzgenaltsabhangige, saisonale Veranderlichkeit von TCO_2 und	_
		Aikaimitat)
	4.4	pCO_2 -Verteilung in der zentralen Ostsee	2
	4.4.1	Großräumige Tendenzen der pCO_2 -Verteilung	2
	4.4.2	Regionale Einflüsse 46	5

I

Π

5	Berechnung der Jahresgänge von TCO_2 und pCO_2	48
5.1	Konzeption der Berechnung	. 48
5.2	Jahresgänge der Hilfsgrößen	52
5.3	Jahresgänge von TCO_2 und pCO_2	58
5.3.1	Gesamtkarbonat (TCO ₂)	58
5.3.2	pCO ₂	63
5.3.3	Salzpumpe	65
6	Berechnungen zum CO ₃ -Haushalt des Oberflächenwassers	67
6.1	Saisonale TCO ₂ -Änderungen	67
6.2	CO ₂ -Fluß zwischen Atmosphäre und Meeresoberfläche	68
6.3	Neue Produktion	70
6.4	Nährstoffbedarf der neuen Produktion	71
6.5	Zusammenfassung der Ergebnisse der CO ₂ -Flußberechnungen	74
6.6	CO_{2} -Flüsse berechnet nach Peng und Takahashi (Taps et al. 1990)	, ,
0.0	sowie Liss und Merlivat (1986)	75
7	Diskussion der Ergebnisse	77
7.1	Bewertung der Modellrechnungen anhand gemessener Daten	77
7.2	Vergleich mit Literatur-Daten	79
8	Schlußbetrachtungen	81
9	Aushlick	83
,		05
10	Literaturverzeichnis	84
Anhang I	Ableitung des Geschwindigkeitsgesetzes für die Änderung der	
	CO ₂ (aq)-Konzentration	92
Anhang II	Berechnung des CO_2 -Flusses durch die Grenzfläche Wasser-Luft .	93
Anhang III	Stationsliste der Fahrten "F.S. Validivia" $1/8/2$ und	
Annang III	"F.S. Alkor" 79	95
Anhang IV	Koordinaten des Gitters über der Ostsee	96
		70
Anhang V	Eingangswerte der Modellrechnungen	97
Anhang VI	Jahresgänge des TCO ₂	98
Anhang VII	pCO ₂ -Jahresgänge	102
Anhang VIII	Jahresgang von $\delta TCO_{2,(Biologie)}$	106

Verzeichnis der Abkürzungen

X	=	Molenbruch der Teilchenart i			
α	=	Faktor für chemische Beschleunigung			
μ_{i}	=	chemisches Potential der Teilchenart i			
μ^{0}	=	chemisches Standardpotential der Teilchenart i			
v V	==	kinematische Viskosität			
v _i		Stöchiometriezahl der Teilchenart i			
а	_	Jahr (annum)			
a,	=	Aktivität der Teilchenart i			
aq		in wässriger Lösung (aqueous)			
atm	=	Atmosphäre			
C,	=	Konzentration der Teilchenart i			
f.	=	Aktivitätskoeffizient der Teilchenart i			
iul.	=	iulianisch			
k	=	Geschwindigkeits- oder Reaktionskonstante			
	=	Austauschkoeffizient			
k		Nettotransfergeschwindigkeit			
kung	=	Transfergeschwindigkeit durch den luftseitigen Film			
k _w		Transfergeschwindigkeit durch den wasserseitigen Film			
1 wasser		flüssig (liquid)			
n	=	Teilchenzahl			
n	=	Druck			
P nCO.	=	COPartialdruck			
nH		$nH-Wert -log a(H_{2}O^{+})$			
nnmv	_	millionstel Volumenanteile (parts per million by volume)			
s bburg	_	fest (solid)			
sm		Seemeile			
5111	_	Seewagger			
t		Zeit			
ι 11		Windgeschwindigkeit			
u		windgesenwindigken			
А	=	präexponentieller Faktor der Arrheniusgleichung			
Α	=	Fläche			
Ac	=	Karbonatalkalinität			
A	=	Gesamtalkalinität (total alkalinity)			
B	=	Bulk			
BMP	=	Baltic Monitoring Program			
D	=	Diffusionskoeffizient			
DWD	=	Deutscher Wetterdienst			
°E	=	östliche Breite			
E₄		Aktivierungsenergie			
En		molare Aktivierungsenergie der Diffusion			
F	=	Stofftransport, -fluß			
		-			

1 V		
Н	=	dimensionslose Henrykonstante
IfM-K	=	Institut für Meereskunde an der Universität Kiel
IR	=	Infrarot
IOW	=	Institut für Ostseeforschung, Warnemünde
Κ		Kelvin
\mathbf{K}_{0}		Löslichkeitskonstante
K [*]	=	stöchiometrische Gleichgewichtskonstante
К* _н	=	stöchiometrische, dimensionsbehaftete Henrykonstante bzgl. CO ₂ *(aq)
K [*] L	=	stöchiometrisches Löslichkeitsprodukt
\mathbf{K}_{0}^{*}	=	stöchiometrischer, dimensionsloser Verteilungskoeffizient von CO ₂ *(aq)
K [*] ₁	===	erste stöchiometrische Dissoziationskonstante von $CO_2^*(aq)$
K*2	=	zweite stöchiometrische Dissoziationskonstante von CO ₂ [*] (aq)
°N	=	nördliche Breite
Pg	==	Phasengrenze
PSU	=	practical salinity unit
R	=	molare Gaskonstante
R _{ges}	=	Gesamtdurchtrittswiderstand
R _{Luft}	==	luftseitiger Durchtrittswiderstand
R _{wasser}	=	wasserseitiger Durchtrittswiderstand
S	=	Salzgehalt
Sc	=	Schmidtzahl
Т	=	Temperatur
TCO ₂	=	Gesamtkarbonat (total carbonate)
-		

Mathematische und chemische Gleichungen, Abbildungen und Tabellen sind mit der Seitenzahl des ersten Auftretens numeriert. Fortlaufend für jeweils eine Seite werden mathematische und chemische Gleichungen mit großen römischen Ziffern (8.II), Tabellen mit kleinen (Tab. 8.a) und Abbildungen mit großen Buchstaben (Abb. 8.A) benannt.

Diese Arbeit wurde zeitweise durch den Bundesminister für Bildung, Wissenschaft, Forschung und Technologie im Rahmen des JGOFS-Projektes "Das Meer als Senke/Quelle für atmosphärisches CO_2 : einander ergänzende Studien im Nordatlantik und in der Ostsee" unter dem Kennzeichen 03F0108F gefördert.

IV

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Dietwart Nehring, der es mir ermöglichte, diese Arbeit selbständig durchzuführen und ihren Fortgang stets hilfsbereit und mit wertvollen Anregungen unterstützte.

Weiterhin bedanke ich mich für die Übernahme der Korreferate bei Herrn Prof. Dr. Jan C. Duinker, Prof. Dr. Peter Gründler und Herrn Prof. Dr. Venugopalan Ittekkot.

Herzlicher Dank gilt auch Herrn Dr. Christoph Osterroht und den TeilnehmerInnen der Reisen Valdivia 148/2 und Alkor 79 für die gute, freudebringende Zusammenarbeit.

Bedanken möchte ich mich auch bei den KollegInnen der Sektion Meereschemie sowie des Instituts für Ostseeforschung Warnemünde für das angenehme Arbeitsklima. Besonderer Dank gilt dabei den MitarbeiterInnen der EDV- und haustechnischen Abteilung sowie der Bücherei und der Werkstatt für die stete Bereitschaft zur kooperativen Hilfe. Den Besatzungen der Forschungsschiffe "Alkor", "Valdivia" und "Alexander-von-Humboldt" danke ich für die Unterstützung während der Seereisen.

Frau Dr. Bettina Meyer-Harms, Frau Carolin Petry, Frau Dr. Maren Voß, Herrn Prof. Dr. Bodo von Bodungen, Herrn Dr. Christoph Humborg und Herrn Dr. Uli Wolf gilt der Dank für ungezählte Anregungen bei der Anfertigung der Arbeit.

Herzlichst bedanke ich mich bei Frau Nicole Gronau für die motivierende Mitarbeit.

Ganz besonders bedanke ich mich bei Herrn Dr. Bernd Schneider für die intensive Betreuung und für die oft stundenlangen Diskussionen, die meine Arbeit in Warnemünde begleiteten.

Zusammenfassung

In der vorliegenden Arbeit erfolgt eine eingehende Analyse des Karbonatsystems im Oberflächenwasser der eigentlichen Ostsee unter saisonalen und regionalen Aspekten basierend auf umfangreichen, im Sommer und im Winter gewonnenen Datensätzen. Diese Zeitpunkte stellen vom hydrographischen Standpunkt aus betrachtet die winterlichen und sommerlichen Eckpunkte eines Jahresgangs dar.

Es werden erstmalig räumlich hochaufgelöst die Verteilungsmuster des CO_2 -Partialdrucks (p CO_2) und des Gesamtkarbonatgehalts (T CO_2) während einer Sommer- und einer Wintersituation aufgezeigt. Anhand von TCO_2 /Salzgehaltsbeziehungen werden die Zuströme salzärmeren Wassers in die zentrale Ostsee charakterisiert. Das aus dem Finnischen und Bottnischen Meerbusen einströmende salzarme Wasser weist geringere Gesamtkarbonatgehalte auf, als im Oberflächenwasser der zentralen Ostsee beobachtet werden. Im Gegensatz dazu ist das aus der Rigaer Bucht einströmende Wasser durch höhere TCO_2 -Konzentrationen geprägt. Die salzgehaltsabhängigen TCO_2 -Änderungen und deren regional unterschiedliche Auswirkungen auf den CO_2 -Haushalt sind charakteristisch für die Ostsee stellen den wesentlichen Unterschied zum Karbonatsystem der Ozeane dar.

Der CO₂-Austausch zwischen Atmosphäre und Meeresoberfläche sowie die neue Produktion und Remineralisierung organischen Materials sind neben den salzgehaltsabhängigen Prozessen bestimmend für den Kohlenstoffhaushalt des Oberflächenwassers der eigentlichen Ostsee. Zur Quantifizierung dieser Prozesse werden Modellrechnungen entwickelt, die die Jahresgänge der beiden Größen pCO₂ und TCO₂ zwischen den Meßzeitpunkten zeitlich hochaufgelöst interpolieren. Kerngedanke der Modellrechnungen ist es, die saisonalen Veränderlichkeiten des pCO₂ auf der Grundlage des Karbonatsystems und die saisonale Veränderlichkeit des TCO₂ im Oberflächenwasser durch die drei obengenannten Prozesse zu berechnen. Dabei erfolgt die Parametrisierung der zeitlichen Verläufe der neuen Produktion organischen Materials im Sommerhalbjahr mit Hilfe der Sauerstoffsättigung und der Remineralisierung im Winterhalbjahr mittels der Zunahme der Phosphatkonzentrationen. Abschließend wird eine CO₂-Bilanz für das Oberflächenwasser der eigentlichen Ostsee erstellt. Mit einer jährlichen CO₂-Aufnahme von 0.9mol/m²*a stellt die Ostsee eine ausgeprägte Senke für atmosphärisches CO₂ dar, da etwa 30% der mittleren neuen Produktion (3.0molC/m²*a) aus der euphotischen Schicht exportiert werden. Für ozeanische Gebiete wird angenommen, daß nur etwa 10% der neuen Produktion exportiert werden. Die Ursachen für die hohen Exportraten sind in der haloklinen Sperrschicht in der Ostsee zu suchen. Es kann folglich vermutet werden kann, daß in ozeanischen Gebieten wie der Arabischen See und dem Schwarzen Meer, wo ebenfalls eine Sperrschicht unterhalb der euphotischen Schicht auftritt, ähnlich hohe Exportraten zu beobachten sind. Die in der Ostsee quantifizierten Prozesse können in den flächenmäßig erheblich größeren Gebieten durchaus Einfluß auf die globalen atmosphärischen CO₂-Konzentrationen ausüben.

VI

Summary

This paper presents a detailed analysis of the carbonate system in the surface waters of the Baltic Proper taking into account seasonal and regional variabilities. The analysis is based on two extended data sets recorded during two cruises in summer 1994 and in winter 1995. From the hydrographic point of view, these times represent the extrema of the annual cycles.

For the first time the distribution of the partial pressure of CO_2 (p CO_2) and dissolved inorganic carbon (TCO₂) recorded with high spatial resolution during a summer and a winter situation are shown. The inflow of low salinity waters into the Baltic Proper are characterized by TCO₂/salinity relationships. The low salinity waters from the Bothnian Sea and the Gulf of Finland reveal low TCO₂ concentrations than observed in the Baltic Proper. On the other side, the inflowing water from the Gulf of Riga is characterized by higher TCO₂ concentrations than in the Baltic Proper.

The salinity dependend changes of TCO_2 are characteristic for the Baltic Sea and are the main difference to the carbonate system of the oceans.

There are three processes influencing the the CO_2 budget of the Baltic Sea surface waters: the air-seaexchange of CO_2 , the new production and remineralisation of organic matter and the changes in salinity. To quantify these processes model calculations are developed with high temporal resolution filling the gaps in the annual cycles of pCO_2 and TCO_2 between the experimental data. The basic idea of this model is to caculate the seasonal variability of the pCO_2 with respect to the carbonate chemistry in the surface waters. Furthermore the seasonal variability of TCO_2 is described referring to the three processes. The temporal changes of the new production of organic matter during spring and summer are parameterized on the basis of the oxygen saturation. The remineralisation during autumn and winter is described by the changes in the phosphate concentrations of the surface waters. Finally the CO_2 budget is calculated for the surface waters of the Baltic Proper.

The annual uptake of CO_2 from the atmosphere ammounts to 0.9 molCO₂/m2*a and the new production of organic matter is approximately 3 mol C/m2*a. This means, that the Baltic Sea is a significant sink for atmospheric CO₂, because 30% of the new production is exported into the deep waters. In oceanic regions normally about 10% of the new production are exported to the deep waters. The high exports of organically fixed CO₂ are caused by the permanent halocline of the Baltic Sea. Consequently, also in oceanic regions characterized by a similar halocline like the Arabian Sea or the Black Sea high export rates could be possible. In these large areas the processes quantified in the Baltic Sea can influence the global atmospheric CO₂ budget.

Einleitung und Problemstellung

Die Entwicklung von Leben auf der Erde wird durch den natürlichen Treibhauseffekt ermöglicht, der eine Erhöhung der Durchschnittstemperatur auf der Erdoberfläche von -18°C auf derzeit 15°C bewirkt. Die Rückstrahlung der solaren Wärmeenergie in den Weltraum wird durch die folgenden Treibhausgase reduziert, die hier mit ihrem Beitrag zur Gesamtverringerung genannt sind (Barry und Chorley, 1995): Wasserdampf H₂O (64%), Kohlendioxid CO₂ (21%), Ozon O₃ (6%), Distickstoffoxid N₂O und Methan CH₄ (N₂O und CH₄ zusammen 9%). Wesentlichen Einfluß auf die Entwicklung des Klimas auf der Erde haben die Weltozeane durch die Steuerung des atmosphärischen CO₂-Gehalts (u.a. Duinker und Wefer, 1994). Diese Steuerung wird durch zwei "CO₂-Pumpen" bewirkt, die an die ozeanische Zirkulation gekoppelt sind. Der Prozeß des physikalischen CO₂-Transportes wird "Löslichkeitspumpe" genannt. Die hohe Löslichkeit von CO₂ bei niedrigen Wassertemperaturen bewirkt in Bildungsgebieten von Tiefenwasser, insbesondere im Nordatlantik, eine Aufnahme von atmosphärischem CO₂, das durch die ozeanische Zirkulation in die Tiefe und nach Süden abtransportiert wird (Broecker und Peng, 1992; Broecker, 1991; Maier-Reimer und Hasselmann, 1987; Chen, 1993). Die "biologische Pumpe" umfaßt sowohl die Prozesse der CO₂-Aufnahme des Ozeans durch neue Produktion und anschließenden Export von partikulärem, organischem Material in das Tiefenwasser (organische Pumpe) als auch die Auswirkungen der Kalkschalenbildung auf den CO₂-Haushalt der Ozeane (CaCO₃-Pumpe) durch das Phytoplankton. Beide Pumpen gewährleisten jedoch nur vorübergehend (in ozeanographischen Zeitskalen, 500-2000 Jahre) die Speicherung des CO₂ im Tiefenwasser, sofern das CO₂ nicht durch Sedimentation dem Kreislauf längerfristig entzogen wird. In Auftriebsgebieten gelangt das Tiefenwasser wieder an die Meeresoberfläche und kann CO₂ an die Atmosphäre abgeben.

Der natürliche Treibhauseffekt wird seit Beginn der Industrialisierung durch anthropogene Emissionen von Treibhausgasen durch die Energieerzeugung aus fossilen Brennstoffen (50%), die chemische Industrie bei der Produktion und Anwendung von halogenierten Kohlenwasserstoffen (20%), die Vernichtung des tropischen Regenwaldes (15%) sowie die Landwirtschaft (15%) verstärkt (Deutscher Bundestag, 1990). Es besteht noch Unsicherheit darüber, wie schnell sich die Temperatur der Erdatmosphäre durch den anthropogenen Treibhauseffekt erhöht. Sicher ist, daß die Erwärmung erheblich schneller abläuft als bisher bei natürlichen Klimaänderungen beobachtet wurde, und daß mit teilweise dramatischen Folgen für die Umwelt zu rechnen ist (Deutscher Bundestag, 1990; Houghton et al., 1990, 1992, 1995; Peters und Lovejoy, 1992; Barry und Chorley, 1995). Zur Änderung der Strahlungsbilanz durch erhöhte atmosphärische Konzentrationen der Treibhausgase für die Jahre 1980 bis 1990 tragen CO₂ mit 55%, die FCKW mit 24% sowie N₂O und CH₄ zusammen mit 21% bei (Houghton et al., 1990). Hier wird die hervorragende Bedeutung des CO₂ für den anthropogenen Treibhauseffekt deutlich. Die Zunahme der atmosphärischen CO₂-Konzentration von etwa 280ppmv vor Beginn der Industrialisierung auf über 360ppmv in der heutigen Zeit kann anhand von Eiskernuntersuchungen rekonstruiert (Barnola et al., 1987; Raynaud et al., 1993) und durch langjährige Messungen in neuerer Zeit verfolgt werden (Keeling et al., 1985; Bacastow et al., 1985; Chan und Wong, 1990). Aus diesen Beobachtungen lassen sich derzeit jährliche Steigerungen der atmosphärischen CO_2 -Konzentrationen von etwa 1.8ppmv/a (0.5%/a) ableiten (Houghton et al., 1995). Die CO₂-Emissionen, die durch den Menschen verursacht werden, werden auf 7 \pm 1.2Gt C/a

geschätzt. Die Aufnahme von atmosphärischem CO₂ durch den Ozean, die den anthropogenen Treibhauseffekt dämpft, beträgt verschiedenen Modellrechnungen oder auf Messungen basierenden Abschätzungen zufolge 2 ± 0.8 Gt C/a (Houghton et al., 1990). Neuere Modellrechnungen ergeben eine CO₂-Aufnahme des Ozeans von 2.1 ± 0.9 Gt C/a (Heimann und Maier Reimer, 1996).

2

Ausführliche Diskussionen über globale CO_2 -Bilanzen im Hinblick auf die ozeanische CO_2 -Senke sind mit Verweisen auf Originaldaten unter anderem bei Houghton (1990, 1992, 1995), Sarmiento et al. (1992), Sarmiento und Sundquist (1992), Sundquist (1993), Siegenthaler und Sarmiento (1993) und Francey et al. (1995) zu finden.

Da die neue Produktion partikulären, organischen Materials durch Phytoplankton nicht CO_2 -limitiert ist, sollte die biologische Pumpe in erster Näherung nicht durch veränderte atmosphärische CO_2 -Konzentrationen beeinflußt werden (Smetacek, 1991; Falkowski und Wilson, 1992). Die physikalische CO_2 -Aufnahme wird durch Erhöhung der atmosphärischen CO_2 -Konzentrationen hingegen gesteigert. Die Einzelheiten und das Ausmaß beider Prozesse sind noch weitgehend ungeklärt. Sie sind Gegenstand gegenwärtiger internationaler Forschungsaktivitäten, die eine umfassende Beschreibung der Steuerung des atmosphärischen CO_2 -Gehalts durch den Ozeans zum Ziel haben.

Vor diesem Hintergrund soll diese Arbeit zur Kenntnis der ozeanologischen Prozesse beitragen, die die atmosphärischen CO_2 -Konzentrationen beeinflussen und somit für die Entwicklung des Klimas auf der Erde mitverantwortlich sind. Ziel ist eine zeitlich und räumlich hochauflösende, prozeßorientierte Untersuchung des Karbonatsystems der Ostsee. Obwohl sie als Nebenmeer aufgrund ihrer Größe nur eine untergeordnete Rolle bei der Abschätzung globaler CO_2 -Bilanzen spielen kann, bietet sie sich gerade wegen ihrer Größe und ihrer Nähe für prozeßorientierte Studien an, die in den Weltmeeren nur mit großem Aufwand durchzuführen wären. Begünstigt werden diese Studien durch die langen Verweilzeiten des Wassers in der zentralen Ostsee. Deshalb soll hier der anorganische Kohlenstoffkreislauf im Oberflächenwasser der Ostsee unter Einbeziehung biologischer, hydrographischer und hydrochemischer Prozesse saisonal analysiert werden.

Da der Partialdruck des CO_2 (p CO_2) im Oberflächenwasser den Austausch von CO_2 zwischen Atmosphäre und Meeresoberfläche steuert, sollen im Rahmen dieser Arbeit seine saisonalen und regionalen Veränderlichkeiten erstmalig in der Ostsee untersucht werden. Zunächst sind räumlich hochaufgelöste Bestimmungen des p CO_2 und der Gesamtkarbonatgehalte (T CO_2) zu verschiedenen Jahreszeiten im Oberflächenwasser erforderlich. Durch die Ergänzung der p CO_2 - und T CO_2 -Verteilungen mit hydrographischen Daten soll das Karbonatsystem unter regionalen Gesichtspunkten phänomenologisch analysiert werden.

Diese phänomenologische Analyse dient als Basis für die Entwicklung realitätsnaher Modellrechnungen, die die Jahresgänge von pCO₂ und TCO₂ zeitlich höher aufgelöst beschreiben als experimentelle Daten. Da rein empirische Parametrisierungen des pCO₂ durch nicht- oder nur bedingtkausale Zusammenhänge lediglich grobe Abschätzungen liefern können, soll hier versucht werden, den pCO₂ anhand der Größen zu berechnen, die ihn steuern. Grundlage dafür ist die Kenntnis der Jahresgänge der hydrographischen Größen, der Alkalinität und des TCO₂. sowie der räumlichen und saisonalen Veränderlichkeiten der Umsatzgrößen, die den Kohlenstoffhaushalt des Oberflächenwassers bestimmen, zu charakterisieren und zu bilanzieren. Dies sind der CO₂-Austausch zwischen Atmosphäre und Oberflächenwasser, die neue Produktion organischen Materials und der Zustrom salzärmeren Wasser. Nach der Ermittlung der Jahresgänge der Größen, die den pCO₂ und den TCO₂ beeinflussen, können beide zeitlich hochaufgelöst beschrieben werden.

Anhand der entwickelten Modellrechnungen sollen die Zusammenhänge des Karbonatsystems im Oberflächenwasser der Ostsee umfassend dargelegt sowie eine erweiterte Interpretation der klassischen CO_2 -Pumpen gegeben werden.

2 Theoretische Grundlagen

2.1 Ozeanisches Karbonatsystem

In diesem Kapitel werden der theoretische Hintergrund und die experimentellen Bestimmungen des ozeanischen Karbonatsystems erörtert. Ausführliche Behandlungen werden unter anderem bei Broecker und Peng (1982), Millero und Sohn (1992) und Millero (1995) gegeben, auf die im wesentlichen zurückgegriffen wird und für weitergehende Fragen verwiesen sei.

2.1.1 Gleichgewichtschemie von CO₂

Stöchiometrische Gleichgewichtskonstanten

Das chemische Potential einer Teilchenart i in idealer Lösung ist definiert als (Möbius und Dürselen, 1989):

$$\mu_{i} = \mu_{i}^{0} + RT + \ln c_{i}$$
(3.1)

 μ_i = chemisches Potential der Teilchenart i

 μ_i^0 = chemisches Standardpotential der Teilchenart i

 $c_i = Konzentration der Teilchenart i$

T = Temperatur

R = Gaskonstante

Die Abweichungen vom idealen Verhalten, die in realer Lösung auftreten, werden durch Einführung des Aktivitätskoeffizienten f korrigiert,

$$a_i = f_i * c_i \Leftrightarrow f_i = \frac{a_i}{c_i}$$
 (3.II)

a_i = Aktivität der Teilchenart i

 f_i = Aktivitätskoeffizient der Teilchenart i ; $0 < f_i \le 1$

so daß das chemische Potential allgemein definiert ist als:

$$\mu_{i} = \mu_{i}^{\circ} + RT * \ln a_{i}$$
(3.111)

In idealen Lösungen gilt dann : $c_i = a_i$ oder $f_i = 1$.

Für die Bestimmung der Gleichgewichtskonstanten der Spezies des Karbonatsystems im realen Medium Meerwasser wird für den Standardzustand ein Salzgehalt von 35PSU festgelegt. Die Aktivitätskoeffizienten f_i^0 für diesen Standardzustand werden aufgrund der geringen Konzentrationen der Spezies des Karbonatsystems als konstant betrachtet und somit als Teil des Standardpotentials μ_i^0 definiert.

$$f_i^0$$
 = konstant; für alle i (i = Spezies des Karbonatsystems) (3.IV)

Aus der Definition des Standardzustands ergibt sich aufgrund der nicht konstanten Salzgehalte im

Meerwasser eine Salzgehaltsabhängigkeit der resultierenden, stöchiometrischen, d.h. aus Konzentrationen ermittelten Gleichgewichtskonstanten K^{*}.

$$\prod (c_i^{|\nu_i|}) = \left\{ \frac{c_i^{|\nu_i|} c_j^{|\nu_j|} \dots}{c_l^{|\nu_l|} c_J^{|\nu_j|} \dots} \right\} = K^* (T, p, S)$$

K^{*} = stöchiometrische Gleichgewichtskonstante

i, j = Produkte

I, J = Edukte

 ν = Stöchiometriezahl

p = Druck

S = Salzgehalt

Chemische Gleichgewichte

Die Reaktionen an der Grenzfläche Atmosphäre/Meerwasser, in wässriger Lösung und die Bildung oder Lösung von CaCO₃(s) sind durch chemische Gleichgewichte charakterisiert.

Der Austausch zwischen Meeresoberfläche und Atmosphäre wird durch das Gleichgewicht

$$CO_2(g) \rightleftharpoons CO_2(aq)$$
 (4.II)

bestimmt. Die Gleichgewichtslage wird durch die dimensionslose Henrykonstante H beschrieben:

 $\frac{\mathrm{CO}_{2}(\mathrm{aq})}{\mathrm{CO}_{2}(\mathrm{g})} = \frac{1}{\mathrm{H}}$ (4.III)

H = dimensionlose Henrykonstante

In Lösung wird CO₂(aq) zu Kohlensäure hydratisiert:

$$CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$$
 (4.IV)

Im Gleichgewicht überwiegen deutlich die Konzentrationen der Edukte, es werden Werte für die Hydratationskonstante K_{Hydr} von Greenwood und Earnshaw (1988) mit etwa 1/600, von Millero und Sohn (1992) mit 1/670 angegeben. Da $CO_2(aq)$ und $H_2CO_3(aq)$ analytisch nur schwer zu unterscheiden sind, wird vereinbarungsgemäß die Summe der beiden Spezies $CO_2^*(aq)$ verwendet:

$$[CO_{2}(aq)] + [H_{2}CO_{2}(aq)] = [CO_{2}^{*}(aq)]$$

Analog zu 3.I-3.III und 4.I ergibt sich die stöchiometrische, dimensionsbehaftete, auf CO_2^* bezogene Henry-Konstante K_{H}^* , die Gleichgewichtslage zwischen dem Partialdruck von CO_2 in der Gasphase (pCO₂) und der Konzentration des CO₂ in der Lösung [CO₂*(aq)] beschreibt:

$$\frac{[CO_2^*(aq)]}{pCO_2} = K_H^*(T, p, S) = \frac{K_0^*(T, p, S)}{R * T}$$
(4.VI)

 K_{H}^{*} = stöchiometrische, dimensionsbehaftete Henrykonstante bzgl. CO_{2}^{*}

 K_0^* = stöchiometrischer, dimensionsloser Verteilungskoeffizient von CO_2^*

Aus dem pCO₂ kann die Fugazität fCO₂, die das chemische Potential von CO₂ in der Gasphase beschreibt, nach Weiss (1974) berechnet werden. In der Praxis ist diese Korrektur bei den zu Flußberechnungen benutzten Partialdruckdifferenzen ΔpCO_2 vernachlässigbar.

(4.I)

(4.V)

In Lösung erfolgt die zweistufige Dissoziation von $CO_2^*(aq)$:

$$\operatorname{CO}_{2}^{*}(\operatorname{aq}) + 2 \operatorname{H}_{2}\operatorname{O}(\operatorname{I}) \rightleftharpoons \operatorname{H}_{3}\operatorname{O}^{+}(\operatorname{aq}) + \operatorname{HCO}_{3}^{-}(\operatorname{aq})$$
 (5.1)

$$HCO_{3}^{-}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + CO_{3}^{2^{-}}(aq)$$
 (5.11)

Die stöchiometrischen Gleichgewichtskonstanten ergeben sich dementsprechend zu:

$$\frac{[H_3O^*] \ [HCO_3^-]}{[CO_2^*]} = K_1^* \ (T, p, S)$$

$$\frac{[H_3O^*] \ [CO_3^{2^-}]}{[HCO_3^-]} = K_2^* \ (T, p, S)$$
(5.IV)

 K_1^* = erste stöchiometrische Dissoziationskonstante von CO_2^* (aq)

 K_2^* = zweite stöchiometrische Dissoziationskonstante von CO_2^* (aq)

Einfluß auf die Gleichgewichtschemie des CO_2 im Meerwasser haben weiterhin die Bildung und Lösung von Calciumkarbonat $CaCO_3(s)$, die durch die Löslichkeitsprodukte der beiden vorkommenden Modifikationen Calcit (Kalkspat) und Aragonit beschrieben werden:

$$Ca^{2*}(aq) + CO_{3}^{2^{-}}(aq) \rightleftharpoons CaCO_{3}(s)$$

$$[Ca^{2*}] [CO_{3}^{2^{-}}] = K_{L}^{*}(T, p, S)$$
(5.V)
(5.VI)

K_L^{*} = stöchiometrisches Löslichkeitsprodukt

Die Gleichgewichtskonstanten, die in der vorliegenden Arbeit für die Berechnungen des Karbonatsystems verwendet werden, sind von Dickson und Millero (1987) sowie Weiss (1974) entnommen. Die Benennung der Gleichgewichtskonstanten in der Literatur ist uneinheitlich. Dies gilt besonders für die mit dem Henry'schen Gesetz in Zusammenhang stehenden Konstanten. So wird für die dimensionslose Henrykonstante H (4.III) häufig auch der Kehrwert der hiergegebenen Definition benutzt. Die stöchiometrische, dimensionsbehaftete Henrykonstante K_{H}^{*} (4.VI) u.a. auch als Löslichkeitskonstante K₀ bezeichnet.

2.1.2 Analytische Bestimmung des Karbonatsystems

Da die chemischen Spezies des Karbonatsystems $CO_2^*(aq)$, $HCO_3^-(aq)$, $CO_3^{-2}(aq)$ und $H_3O^+(aq)$ nur zum Teil analytisch direkt zugänglich sind, kann ihre Bestimmung und somit die des Karbonatsystems nur auf indirektem Wege erfolgen. Die analytisch bestimmbaren Größen, aus denen die chemischen Spezies unter Verwendung der Gleichgewichtsbeziehungen berechnet werden können, sind:

- pH-Wert, pH

- Alkalinität, A_T

- CO₂-Partialdruck, pCO₂

- Gesamtkarbonat, TCO₂.

Sind mindestens zwei dieser Größen bekannt, kann mit Hilfe der thermodynamischen Beziehungen das Karbonatsystem vollständig beschrieben werden.

Gemäß der Verwendung stöchiometrischer Gleichgewichtskonstanten wird der pH-Wert definiert als

 $pH = -\log c(H^*) \tag{6.1}$

Um die Größe aus Potentialmessungen zu erhalten, werden Eichlösungen bei S=35PSU verwendet, und somit vom Standardzustand abweichende Aktivitätskoeffizienten vermieden. Die erhaltenen pH-Werte beziehen sich auf die "freie Protonen Skala", die naturgemäß von sonst verwendeten pH-Skala des National Bureau of Standards (NBS) abweicht. Die verschiedenen Skalen können ineinander umgerechnet werden (Dickson, 1984 und 1993 a, b). Ferner ist eine photometrische Bestimmung der Wasserstoffionenkonzentration möglich, die sich als weniger störungsanfällig zu erweisen scheint (Byrne und Breland, 1989; DOE, 1994; Millero, 1995).

Die Alkalinität ist definiert als Menge an Protonen, die nötig ist, um den Überschuß von Protonenakzeptoren (korrespondierende Basen schwacher Säuren pK_s > 4.5; das heißt: pK_B < 9.5) gegenüber Protonendonatoren (Säuren mit pK_s < 4.5) auszugleichen (Dickson, 1981; Millero und Sohn, 1992):

$$A_{T} = [HCO_{3}] + 2 * [CO_{3}^{2-}] + [B(OH)_{4}] + [OH^{-}] + [SiO(OH)_{3}] + [HPO_{4}^{2-}] + 2 * [PO_{4}^{3-}] + [HS^{-}] + [NH_{3}] + \dots - [H_{3}O^{+}] - [HSO_{4}] - [HF] - [H_{3}PO_{4}] - \dots$$
(6.II)

Für die meisten Gewässer sind HCO_3^{-2} , $CO_3^{-2}^{-2}$ und $B(OH)_4^{-1}$ die in den höchsten Konzentrationen auftretenden Basen, in sub- oder anoxischen Bereichen, also auch in der Ostsee, spielen auch NH_3 und HS^{-1} eine Rolle. Die Karbonatalkalinität ist definiert als

$$A_{c} = [HCO_{3}] + 2 * [CO_{3}^{2}]$$
(6.III)

und errechnet sich in erster Näherung aus

 $A_{\rm c} = A_{\rm T} - \Sigma B_{\rm i}$ (6.IV)

 $\Sigma B_1 = [B(OH)_4] + Summe aller schwachen Basen außer HCO_3 und CO_3^{2-1}$

Die Einheit der Alkalinität ist μ mol/kg, die ältere, aber auch noch übliche Einheit μ eq/kg. Die Bestimmung erfolgt überwiegend durch potentiometrische Titration mit Salzsäure.

Der Gesamtkarbonatgehalt (TCO₂) des Meerwassers ist definiert als die Summe der gelösten anorganischen Kohlenstoffspezies (weitere übliche Bezeichnungen: DIC (dissolved inorganic carbon), C_T , ΣCO_2):

$$TCO_2 = [CO_2^*(aq)] + [HCO_3^-] + [CO_3^{2-}]$$
 (6.V)

Die Einheit ist μ mol/kg. Auf die Bestimmung wird in Kapitel 3 eingegangen.

Der CO_2 -Partialdruck (p CO_2) ergibt sich gemäß dem allgemeinen Gasgesetz als das Produkt aus dem Gesamtdruck und dem Molenbruch des in der Gasphase (hier: Luft über der Meeresoberfläche) vorhandenen CO_2 :

(6.VI)

$$p_{CO_1} = X_{CO_2} * p_{gesamt}$$

 X_i = Molenbruch der Spezies i

Der pCO₂ wird üblicherweise in Einheiten von μ atm angegeben. Auf die experimentelle Bestimmung des pCO₂ wird ebenfalls in Kapitel 3 näher eingegangen.

Der Gleichgewichtspartialdruck des CO_2 (p $CO_{2,sw}$), der über die Henrykonstante K_H^* durch $CO_2^*(aq)$ bestimmt wird (Gleichung 4.VI), ist eine Eigenschaft des Wasserkörpers und wird geprägt durch

dessen Temperatur (T), Salzgehalt (S), TCO₂ und Alkalinität (A_T):

 $pCO_2 = f(CO_2^*(aq) * K_H^*(T, p, S), TCO_2, A_T)$ (7.1) In der Realität weicht der atmosphärische CO₂-Partialdruck (pCO_{2,atm}) jedoch von dem pCO_{2,sw} ab, da die Veränderlichkeit der Größen, die den pCO_{2,sw} steuern, hoch ist. Außerdem ist der CO₂-Austausch zwischen Atmosphäre und Meeresoberfläche langsam, so daß das Gleichgewicht gemäß K_H^{*} häufig nicht eingestellt ist. Die Partialdruckdifferenz ΔpCO_2 zwischen pCO_{2,sw} und pCO_{2,atm} ist die treibende Kraft des CO₂-Austausches zwischen Meeresoberfläche und Atmosphäre.

$$pCO_{2 \text{ sw}} - pCO_{2 \text{ atm}} = \Delta pCO_{2}$$
(7.II)

Zusammenfassend werden im folgenden die analytischen Unsicherheiten bei der Bestimmung der Parameter des Karbonatsystems diskutiert. Eine Abschätzung der Reproduzierbarkeit und Genauigkeit der Messung der einzelnen Parameter zeigt Tabelle 7.a:

Tabelle 7.a:Abschätzung der analytischen Unsicherheiten bei der Bestimmung der Parameter des
Karbonatsystems (Millero, 1995).

Bestimmung	Reproduzierbarkeit	Genauigkeit
pH (photometrisch)	±0.0004	± 0.002
A _T (potentiometrisch)	$\pm 2\mu$ mol/kg	$+4\mu$ mol/kg
TCO ₂ (coulometrisch)	$\pm 1 \mu$ mol/kg	$\pm 2\mu$ mol/kg
pCO ₂ (infrarot)	$\pm 0.5 \mu$ atm	$\pm 2\mu$ atm

Eine im Feldexperiment vorgenommene Überbestimmung des Systems (Millero et al., 1993) erlaubt die Fehlerabschätzung für die aus den Meßwerten errechneten Größen (Tab. 7.b). Die aufgeführten Unsicherheiten der berechneten Größen ergeben sich dabei aus den Meßunsicherheiten der experimentell bestimmten Parameter.

 Tabelle 7.b:
 Fehlerabschätzung für die berechneten Werte des Karbonatsystems (Millero, 1995)

Abweichungen der berechn			berechneten Grö	ßen
gemessene Größen	dpH	dA _T	dTCO ₂	dpCO ₂
pH, A _T	-	-	$\pm 3.8 \mu$ mol/kg	$\pm 2.1 \mu$ atm
pH, TCO ₂	-	$\pm 2.7 \mu$ mol/kg	-	$\pm 1.8 \mu$ atm
pH, pCO ₂	-	$\pm 21 \mu mol/kg$	$\pm 18 \mu mol/kg$	-
pCO ₂ , TCO ₂	±0.0025	$\pm 3.4 \mu$ mol/kg	-	-
pCO_2, A_T	±0.0026	-	$\pm 3.2 \mu$ mol/kg	-
A _T , TCO ₂	± 0.0062	-	-	$\pm 5.7 \mu$ atm

Wie Tabelle 7.b zeigt, ist das in dieser Arbeit verwendete Wertepaar pCO_2/TCO_2 zu bevorzugen, um das CO_2 -System im Meerwasser zu untersuchen, da bei der Berechnung der anderen Größen die

geringsten Fehler auftreten. Darüberhinaus beziehen sich diese beiden Größen direkt auf das CO_2 -System und sind die entscheidenden Größen für die CO_2 -Bilanzrechnungen.

2.1.3 Kinetische Aspekte der Lösungsgleichgewichte - der Faktor α

In diesem Abschnitt wird auf kinetische Aspekte der Gleichgewichtschemie von CO₂ eingegangen. Im Blickpunkt stehen dabei die Reaktionswege, die zur Einstellung des Gleichgewichts 5.I bzw. 5.III führen, weil sie Einfluß auf die Geschwindigkeit der Konzentrationsänderung von CO₂(aq) haben. Da CO₂(aq) an der Phasengrenze für den Austausch mit der Atmosphäre verantwortlich ist, sollten Reaktionen, die die Konzentration von $CO_2(aq)$ an der Phasengrenze beeinflussen, von Bedeutung für den CO₂-Austausch zwischen Atmosphäre und Meeresoberfläche sein. Eine mögliche Beschleunigung des Austausches durch chemischen Reaktionen wird in den später folgenden Berechnungen der Transfergeschwindigkeit durch die Einführung des Faktors α zum Ausdruck gebracht. Die Einstellung des zweiten Dissoziationsgleichgewichts 5.IV erfolgt als reine Ionenreaktion spontan. Durch ihre hohe Geschwindigkeit hat diese Reaktion keinen Einfluß auf die Reaktionen an der Phasengrenze. Die Beziehungen 5.I und 5.III stellen zusammenfassend das erste Dissoziationsgleichgewicht der Kohlensäure bzw. von CO₂(aq) dar. Die Einstellung dieses Gleichgewichts im Meerwasser erfolgt auf drei Reaktionswegen. Nach Eigen et al. (1961) dissoziiert $H_2CO_3(aq)$ zu $H_3O^+(aq)$ und $HCO_3(aq)$ nach vorangegangener Hydratation von $CO_2(aq)$ (a) sowie direkt durch Hydrolyse (b) von $CO_2(aq)$ zu HCO_3 (aq) und H_3O^+ (aq). Ein weiterer Reaktionsweg ist die alkalische Hydrolyse von CO_2 (aq) durch OH (aq) (c) (Johnson, 1982). Die Reaktionswege sind in Abb. 8.A dargestellt.

$$\begin{array}{c} & \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Abb. 8.A: Reaktionswege zur Einstellung des ersten Dissoziationsgleichgewichts von CO₂(aq)

Die Geschwindigkeitskonstanten k_{12} und k_{21} der reinen Ionenreaktionen, die zur Einstellung des Dissoziationsgleichgewichtes 5.III führen, sind bis zu sieben Größenordnungen größer als die Konstanten der Hydratations- und Dehydratationsreaktionen (Eigen et al., 1961). Die Reaktionen k_{13} und k_{31} sind über das stets eingestellte Dissoziationsgleichgewicht mit den Reaktionen k_{32} und k_{23} gekoppelt und können nicht voneinander getrennt betrachtet werden. Deswegen werden die Geschwindigkeitskonstanten für die Abnahme von $CO_2(aq) k_{31}$ und k_{32} und für die Bildung von $CO_2(aq)$ k_{13} und k_{23} jeweils als Summe zu k_{CO2} und k_d (d für Dehydratation) zusammengefaßt (Johnson, 1982):

$$k_{CO_{2}} = k_{31} + k_{32}$$

$$k_{d} = k_{13} + \frac{k_{23}}{2}$$
(9.I)
(9.II)

$$\frac{[H_3O^+] [HCO_3^-]}{[H_2CO_3]} = K_{1 H_2CO_3}^* \equiv [H_2CO_3] = \frac{[H_3O^+] [HCO_3^-]}{K_{1 H_2CO_3}^*}$$
(9.III)

Dementsprechend ergibt sich das Geschwindigkeitsgesetz, das in Anhang I abgeleitet wird, für die Reaktionen von CO₂ unter Einbeziehung der Reaktionen k_{OH} und k_{HCO3} - (Abb. 8.A (c)):

$$\frac{\delta[CO_2(aq)]}{\delta t} = -\left(k_{CO_2} + k_{OH^-} * [OH^-(aq)]\right) * [CO_2(aq)] + (k_d * [H_3O^+(aq)] + k_{HCO_3}) * [HCO_3(aq)]$$
(9.IV)

Die in 8.A geschilderten Mechanismen zeigen die Reaktionswege, die zur Einstellung des Gleichgewichts 5.I bzw. 5.III führen. Das abgeleitete Geschwindigkeitsgesetz 9.IV verdeutlicht die Faktoren, die die Geschwindigkeiten der chemischen $CO_2(aq)$ -Änderungen steuern:

- die Konzentrationen von CO₂(aq) und HCO₃ (aq),
- der pH-Wert bzw. die Konzentrationen von $H_3O^+(aq)$ und OH (aq),
- die Temperatur T, deren Einfluß auf die Geschwindigkeitskonstante k durch die Gleichung von Arrhenius beschrieben wird (Schwetlick et al., 1989):

$$\mathbf{k} = \mathbf{A} \ast \mathbf{e}^{-\frac{\mathbf{E}_{A}}{\mathbf{R} \ast \mathbf{T}}} \tag{9.V}$$

 E_A = Aktivierungsenergie

A = präexponentieller Faktor der Arrhenius-Gleichung

R = Gaskonstante

Die Partialdruckdifferenzen ΔpCO_2 (7.II), die Ausdruck des Ungleichgewichts von 4.VI sind, werden durch den $CO_2^*(aq)$ -Transport von oder zu der wasserseitigen Phasengrenzfläche aufrecht erhalten, so daß dort eine $CO_2^*(aq)$ -Akkumulation oder -Verarmung verhindert wird. Dieser Transport kann auf physikalischem Wege (Diffusion) und auf chemischen Wege stattfinden. Die Geschwindigkeiten der Gleichgewichtseinstellungen haben somit direkten Einfluß auf den CO_2 -Fluß zwischen Atmosphäre und Meeresoberfläche, dessen Berechnung Gegenstand des Kapitels 2.3 ist.

2.1.4 Salzgehalts- und Temperaturabhängigkeit der Gleichgewichtskonstanten

Im folgenden werden die Salzgehalts- und Temperaturabhängigkeit der Gleichgewichtskonstanten K_1^* , K_2^* und K_0^* des Karbonatsystems und ihre Wirkung auf den pCO₂ dargelegt. In der Ostsee weist der Salzgehalt erheblich stärkere räumliche und zeitliche Veränderlichkeiten auf als in den Ozeanen. Es

werden Salzgehalte von < 1PSU in den Mündungen der Flüsse bis zu 32PSU im Kattegat beobachtet. Im Oberflächenwasser der eigentlichen Ostsee liegt der mittlere Salzgehalt bei 8 ± 2 PSU. Es werden dort saisonale Salzgehaltsschwankungen von etwa 1PSU beobachtet, die jedoch in den Übergangsgebieten zur Nordsee erheblich zunehmen (Matthäus, 1978). Auch die saisonalen Veränderlichkeiten der Temperatur im Oberflächenwasser der Ostsee sind mit etwa 20K höher als in den Ozeanen vergleichbarer Breite.

K_1^* und K_2^*

Um die Auswirkungen von Salzgehalt und Temperatur auf die Gleichgewichtskonstanten zu verdeutlichen, werden zwei hypothetische Systeme angenommen, die durch unveränderliche, für die Ostsee typische Gesamtkarbonat- (TCO₂ = 1562.2 μ mol/kg) und Karbonatalkalinitätsgehalte (A_C = 1567 μ mol/kg) charakterisiert sind. Das erste System ist durch einen konstanten Salzgehalt von 6.66PSU und eine veränderliche Temperatur von 0-25°C, das zweite durch die konstante Temperatur von 10°C und einen veränderlichen Salzgehalt von 0-35PSU geprägt. Salzgehalt- und Temperaturerhöhung bewirken jeweils eine Erhöhung von CO₂^{*}(aq) und CO₃⁻²(aq) und eine HCO₃ (aq)-Abnahme. Durch die Betrachtungen der relativen Änderungen wird der große Einfluß geringer Verschiebungen des Gesamtsystems auf die Konzentrationen von CO₂^{*}(aq) bzw. CO₃⁻²(aq) deutlich, die sich um 30-50% ändern, wohingegen die relative Änderung der dominierenden Spezies HCO₃ (aq) nur etwa 1-2% beträgt (Abb. 10.A und 11.A).

Abb. 10.A: Salzgehaltsabhängigkeit der Lösungsgleichgewichte

Abb. 11.A: Temperaturabhängigkeit der Lösungsgleichgewichte

Diese gleichsinnig verlaufenden Änderungen der Konzentrationen von $CO_2^*(aq)$ und $CO_3^{2-}(aq)$ bei gegenläufiger Änderung der $HCO_3^-(aq)$ -Konzentrationen sind auf die Kopplung der beiden Gleichgewichte K_1^* und K_2^* zurückzuführen. Diese wird deutlich aus der Verknüpfung der Gleichungen 5.III und 5.IV:

Abb. 11.B:

Salzgehalts- und Temperaturabhängigkeit des Quotienten K₂^{*}/K₁^{*}

Sowohl bei Erhöhung des Salzgehaltes wie auch bei Erhöhung der Temperatur steigt der Quotient der Gleichgewichtskonstanten (Abb. 11.B), so daß die Konzentrationen von $CO_2^*(aq)$ und $CO_3^{-2}(aq)$ im Vergleich zu der von $HCO_3^{-1}(aq)$ zunehmen.

K₀^{*} und pCO₂

Auf den pCO_{2,sw}, der im weiteren als pCO₂ bezeichnet wird, haben nicht nur die salzgehalts- und temperaturabhängigen Änderungen der Gleichgewichtskonstanten K₁^{*} und K₂^{*} Einfluß sondern auch Änderungen der Henrykonstanten K_H^{*}. Abbildung 12.A zeigt die Zunahme des pCO₂ in Abhängigkeit von K_H^{*} als reinen Löslichkeitseffekt bei Salzgehalts- und Temperaturerhöhung, dargestellt durch die Funktionen pCO₂ = $f(K_H^*(S \text{ bzw. T}))$. Ebenfalls abgebildet sind die pCO₂-Änderungen, die durch Änderungen aller drei Gleichgewichtskonstanten K_H^{*}, K₁^{*} und K₂^{*} bewirkt werden. Es wird deutlich, daß die durch Temperaturerhöhung ausgelösten Änderungen bei K_H^{*} in derselben Größenordnung liegen wie bei K₁^{*} und K₂^{*}. Die Salzgehaltsabhängigkeit der Dissoziationskonstanten K₁^{*} und K₂^{*} ist jedoch erheblich stärker ausgeprägt als bei der Henrykonstanten K_H^{*}. Die relativen Änderungen des pCO₂ bis über 200% belegen die empfindliche Reaktion dieser Größe auf Änderungen im Gesamtsystem, die sich schon bei den Änderungen der mit dem pCO₂ über K_H^{*} verknüpften Größe CO₂^{*}(aq) zeigte.

Abb. 12.A: Einfluß von Temperatur- und Salzgehaltserhöhung auf den pCO₂

Intensive Untersuchungen zur Temperaturabhängigkeit des pCO_2 wurden u. a. von Gordon und Jones (1973), Copin-Montegut (1988, 1989) sowie Goyet et al. (1993) durchgeführt.

2.1.5 Einfluß von TCO₂ und Alkalinität auf den pCO₂

Nach Gleichung 7.I wird der pCO₂ nicht durch Temperatur und Salzgehalt gesteuert, sondern auch durch TCO₂ und Alkalinität, die gemäß den Gleichungen 6.II und 6.V mit den Gleichgewichten des Karbonatsystems in Verbindung stehen. Abbildung 13.A zeigt die reinen Abhängigkeiten des pCO₂ von TCO₂ oder der Karbonatalkalinität A_c, wobei die übrigen Einflußgrößen T, S und TCO₂ bzw. A_c konstant gehalten werden. Durch die Erhöhung des TCO₂ steigt auch CO₂^{*}(aq) an, was wiederum nach Gleichung 4.VI den pCO₂ erhöht. Bei konstantem TCO₂ muß eine Erhöhung der Alkalinität gemäß Gleichung 6.II und 6.V zu einer Abnahme von CO₂^{*}(aq) und somit auch des pCO₂ führen. Auch hier sind die relativen Änderungen des pCO₂ viel höher als die Änderungen von TCO₂ und A_c, was die empfindliche Reaktion dieser Größe auf Änderungen des Gesamtsystems unterstreicht.

Die in Kapitel 2.1.4 und 2.1.5 diskutierten Abhängigkeiten des pCO_2 von Temperatur, Salzgehalt, TCO_2 und Alkalinität sind monokausal dargestellt. In der Natur ändern sich diese Größen gemeinsam, und folglich wird der pCO_2 nicht monokausal gesteuert. So gehen Salzgehaltsänderungen mit Änderungen von TCO_2 und A_T einher. Dies gilt besonders in der Ostsee, da ihr Wasserhaushalt entscheidend von Flußwasserzufuhren geprägt wird, und diese sowohl den TCO_2 als auch die Alkalinität des Ostseewassers beeinflussen. Der Einfluß der Flußwasserzufuhren ist jedoch regional so unterschiedlich, daß in der Regel eine Vorhersage des dominierenden Effektes nicht möglich ist.

2.2 Ozeanischer Kohlenstoffkreislauf

Der Kohlenstoffkreislauf zwischen Ozean und Atmosphäre wird als CO_2 -Pumpe bezeichnet, wenn er an die globale, ozeanische Zirkulation gekoppelt ist. CO_2 sinkt als organisches Material gebunden oder in Tiefenwasserbildungsgebieten als TCO_2 gelöst in die Tiefe, wird durch die thermohaline Zirkulation zu Auftriebsgebieten transportiert und dort wieder an die Oberfläche gebracht. Tiefenwasserbildungsgebiete sind der für die ozeanische Zirkulation verantwortliche Nordatlantik sowie das Weddelmeer in der Antarktis. Auftrieb findet in Gebieten des Pazifischen und Indischen Ozeans sowie in Bereichen mit Ostrandströmungen statt, ist aber nicht so exakt lokalisierbar wie die Tiefenwasserbildung. Dieses klassische Modell der ozeanischen Pumpe beschreibt einen globalen CO_2 -Transport mittels des Tiefenwassers in ozeanographischen Zeitskalen von etwa 500-2000 Jahren. Es wird um die Vorstellung der saisonalen Pumpe erweitert, die ortsfest ist und die saisonalen Pumpeffekte im Austauschkreislauf Atmosphäre/Oberflächenwasser beschreibt. Die Abbildung 14.A verdeutlicht diese Modellvorstellung.

ozeanische Pumpe

Abb. 14.A: Ozeanische CO₂-Pumpe

Der Mechanismus des ozeanischen CO_2 -Transportes wird wiederum mit den Modellvorstellungen dreier Pumpen beschrieben:

- die Löslichkeitspumpe
- zwei biologische Pumpen:
 - die organische Pumpe
 - die CaCO₃-Pumpe

Der Oberbegriff "biologische Pumpen" umfaßt sowohl die organische als auch die $CaCO_3$ -Pumpe, da die $CaCO_3$ -Pumpe die CO_2 -Bindung durch Kalkschalenbildner und nicht den anorganisch-chemischen Ausfall von Calcit oder Aragonit beschreibt. Lediglich der Prozeß der Wiederauflösung der Kalkschalen ist chemischer Natur. Es werden zunächst die Mechanismen der ozeanischen Pumpe erläutert und dann auf die saisonale Pumpe übertragen.

2.2.1 Ozeanische Pumpen

Die Löslichkeitspumpe

Die Abhängigkeit des CO_2 -Partialdrucks von Temperatur und Salzgehalt des Meerwassers wurde ausführlich im Abschnitt 2.1.4 diskutiert. So ist der pCO₂ bei niedrigen Temperaturen und Salzgehalten erheblich niedriger als bei hohen Werten dieser Zustandsvariablen. Für den Kohlenstoffkreislauf bedeutet das, daß in Kaltwasser- und somit auch in Tiefenwasserbildungsgebieten die Löslichkeit von CO_2 hoch, der pCO₂ niedrig und damit CO_2 aus der Atmosphäre entfernt wird. Durch die ozeanische Zirkulation wird das im Zuge der Tiefenwasserbildung abgesunkene, CO_2 -reiche Wasser zu den Auftriebsgebieten transportiert und dort als CO_2 -reiches Tiefenwasser wieder an die Oberfläche befördert. Als Folge der dortigen Erwärmung kommt es zu hohen CO_2 -Partialdrücken und somit zur Abgabe von CO_2 an die Atmosphäre.

Die organische Pumpe

Durch biologische Produktion wird organisches Material aus anorganischem Kohlenstoff und Nährstoffen gebildet. Dieses organische Material ist in konstanten Verhältnissen u.a. aus Kohlenstoff, Stickstoff und Phosphor aufgebaut (Redfield, 1963). Dem Oberflächenwasser wird nun durch neue Produktion CO₂ entzogen, was zu einer Abnahme des TCO₂ und somit des pCO₂ führt (Abb. 13.A), so daß CO₂ aus der Atmosphäre aufgenommen wird. Verstärkt wird die Abnahme des pCO₂ durch die Alkalinitätserhöhung, die durch den NO₃⁻-Verbrauch der neuen Produktion ausgelöst wird. Aus Gründen der Ladungsneutralität geht mit dem Verbrauch von Nitrat die Abnahme von H₃O⁺(aq) einher, so daß gemäß 6.II die Alkalinität zunimmt. Durch das Absinken des partikulären organischen Materials, das nicht schon im Oberflächenwasser remineralisiert wird, findet ein CO₂-Export in das Tiefenwasser statt. Dieses Wasser wird während des Transportes durch Remineralisierung organischen Materials mit CO₂ angereichert. In den Auftriebsgebieten gelangt es mit erhöhten CO₂-Partialdrücken wieder an die Oberfläche und gibt CO₂ an die Atmosphäre ab.

Die CaCO₃-Pumpe

Die zweite biologische Pumpe, die auf den Kohlenstoffhaushalt wirkt, ist die CaCO₃-Pumpe. Im Oberflächenwasser der Ozeane ist in der Regel das Löslichkeitsprodukt des CaCO₃ für beide vorkommenden Formen, den stabilen Calcit und den metastabilen Aragonit überschritten, so daß Kalkschalenbildung begünstigt wird. Die Bildung von Korallenriffen in warmen und salzreichen tropischen Gewässern ist auf die Abnahme der Löslichkeitsprodukte von Calcit und Aragonit (Millero und Sohn, 1992) sowie auf die in 2.1.4 diskutierte Erhöhung der CO_3^2 -Konzentrationen mit steigenden Temperaturen und Salzgehalten (Abb. 10.A und 11.A) zurückzuführen. Die Bildung von CaCO₃(s) bewirkt eine Alkalinitätsverringerung gemäß 6.II, die ein Ansteigen des pCO₂ und somit eine Abgabe von CO₂ an die Atmosphäre nach sich zieht (Abb. 13.A). Der umgekehrte Prozeß läuft bei der Auflösung der Kalkschalen unterhalb der Lysokline im Tiefenwasser ab, da dort das Ionenprodukt von Ca²⁺(aq) und CO₃²⁻(aq) kleiner wird als die Löslichkeitsprodukte von Calcit und Aragonit. Das wird sowohl durch die mit zunehmendem Druck und abnehmender Temperatur steigenden Löslichkeitsprodukte von CaCO₃ als auch durch die Abnahme der CO₃²⁻(aq)-Konzentration verursacht, die sich aus der Kopplung der Dissoziationsgleichgewichte 5.III und 5.IV (11.I) als Folge der CO₂*(aq)-Zunahme durch Remineralisierung organischen Materials ergibt. Durch die Lösung von Kalkschalen wird die Alkalinität erhöht und der pCO₂ somit erniedrigt.

Die beiden organischen Pumpen wirken auf den pCO₂, der letztlich für den CO₂-Austausch mit der

Atmosphäre verantwortlich ist, gegenläufig. Da jedoch global erheblich mehr organisches Material als Kalkschalen gebildet werden, überwiegt die Wirkung der organischen Pumpe, so daß die CaCO₃-Pumpe lediglich dämpfend auf die organische Pumpe wirkt. Tabelle 16.a faßt die Wirkungen der ozeanischen Pumpen auf den pCO_2 zusammen. In Exportgebieten wird CO_2 in gelöster oder gebundener Form aus dem Oberflächenwasser in das Tiefenwasser exportiert.

Tabelle 16.a:	Einfluß der	ozeanischen	Pumpen	auf den	pCO ₂
---------------	-------------	-------------	--------	---------	------------------

		Exportgebiete	Auftriebsgebiete
	Löslichkeitspumpe	Senkung des pCO ₂	Erhöhung des pCO ₂
Biologische	Organische Pumpe	Senkung des pCO ₂	Erhöhung des pCO ₂
Pumpen	CaCO ₃ -Pumpe	Erhöhung des pCO ₂	Senkung des pCO ₂

2.2.2 Saisonale Pumpen

Die Löslichkeitspumpe

Durch die in 2.1.4 erläuterten Temperatureffekte sinkt in gemäßigten Klimazonen in kaltem Winterwasser der pCO_2 (Abb. 12.A), in wärmerem Wasser steigt er dagegen an. Deutlich werden die Auswirkungen der saisonalen Löslichkeitspumpe (Abb. 17.A) in tropischen und subtropischen Regionen, da dort keine allzu starken saisonalen Schwankungen in der Produktion zu erwarten sind (Lalli und Parsons, 1994). Dies wird zum Beispiel von Weiss et al. (1982) für den äquatorialen Pazifik für etwa 15°N und 15°S. Der sommerliche pCO_2 ist gegenüber dem winterlichen erhöht, es findet im Winter eine CO_2 -Aufnahme und im Sommer eine CO_2 -Abgabe des Ozeans statt.

Die organische Pumpe

Ein Teil des durch biologische Produktion gebildeten partikulären organischen Materials wird schon im Oberflächenwasser remineralisiert, bevor es in das Tiefenwasser gelangt ist. Die Remineralisierung findet also in einem Tiefenbereich statt, die durch die sommerliche thermische Schichtung vorübergehend keinen Kontakt mehr mit der Atmosphäre hat, diesen jedoch durch die herbstliche und winterliche Konvektion wieder erlangt. Gelangen diese mit CO_2 angereicherten Wassermassen durch die winterliche Konvektion wieder an die Oberfläche, haben sie einen erhöhten p CO_2 und geben CO_2 an die Atmosphäre ab (Abb. 17.A).

Die CaCO₃-Pumpe

Die $CaCO_3$ -Pumpe hat keine ortsfesten saisonalen Auswirkungen, da die Lysokline, unterhalb der die Wiederauflösung der Kalkschalen stattfindet, in Tiefen von 1500m und darunter verläuft. Diese Tiefen werden von der winterlichen Konvektion nicht erreicht, so daß die Auflösung von Kalkschalen das Oberflächenwasser nicht beeinflußt.

Die organische Pumpe arbeitet gegenläufig zur Löslichkeitspumpe. Im Frühjahr und Sommer steigt der pCO_2 durch erhöhte Temperaturen, aber die neue Produktion senkt den pCO_2 durch TCO_2 -

Verbrauch. Im Herbst und Winter verringern zurückgehende Temperaturen den pCO_2 , während durch Remineralisierung freigesetztes CO_2 den pCO_2 erhöht. Abgesehen von den äquatorialen Meeresgebieten dominiert die saisonale organische Pumpe.

Abb. 17.A: Saisonale CO₂-Pumpen

Die Tabelle 17.a faßt die Wirkungen der saisonalen Pumpen auf den pCO₂ zusammen.

Tabelle 17.a: Einfluß der salsonalen Pumpen auf den pC	Cabelle 17.a: Ein	fluß der	saisonalen	Pumpen	auf den	pCO_2
---	-------------------	----------	------------	--------	---------	---------

		Sommer	Winter
	Löslichkeitspumpe	Erhöhung des pCO ₂	Senkung des pCO ₂
Biologische	Organische Pumpe	Senkung des pCO ₂	Erhöhung des pCO ₂
Pumpen	CaCO ₃ -Pumpe		

2.2.3 CO₂-Pumpen in der Ostsee

Da die Ostsee ein fast abgeschlossener kleiner Ozean ist (Fennel, 1996), lassen sich die Vorstellungen der ozeanischen Pumpen nicht auf die Ostsee übertragen. Es findet im Tiefenwasser der Ostsee eine Anreicherung von TCO₂ statt, die durch die Remineralisierung des unter die Halokline abgesunkenen organischen Materials verursacht wird (Abb. 18.A). Eine Beeinflussung des Tiefenwassers erfolgt fast ausschließlich durch laterale Prozesse, insbesondere durch Salzwassereinbrüche, während der diffusive Transport durch die Halokline von untergeordneter Bedeutung ist. Die Wirkungsweise der saisonalen Pumpen in der Ostsee ist mit denen in den Ozeanen vergleichbar. Die Einflüsse der Löslichkeitspumpe sind in der Ostsee wegen der höheren saisonalen Temperaturdifferenzen größer als in den Ozeanen vergleichbarer Klimazonen. Große Auswirkungen auf den CO₂-Haushalt der Ostsee hat eine der Löslichkeitspumpe verwandte Pumpe, die nicht durch Temperatureffekte, sondern durch salzgehaltsbedingte Änderungen von TCO₂ und Alkalinität, verursacht durch Flußwassereinträge, auf den pCO₂ wirkt (siehe 2.1.5). Diese Pumpe wird im folgenden *Salzpumpe* genannt und ist Gegenstand eingehender Betrachtungen in den Kapiteln 4 und 5.

Abb. 18.A: CO₂-Pumpen in der Ostsee

Von zentraler Bedeutung ist ferner die saisonale organische Pumpe. Das CO_2 , das im Oberflächenwasser zwischen der Thermokline und der Halokline durch Remineralisierung freigesetzt wurde, verbleibt zunächst dort und wird durch winterliche Konvektion wieder mit der Atmosphäre in Kontakt gebracht. Dagegen verhindert die Halokline den Austausch von TCO₂ mit dem Tiefenwasser.

In der Ostsee findet Kalkschalenbildung nur in geringem Ausmaße statt, da die Konzentrationen von Ca^{2+} und CO_3^{2-} so niedrig sind, daß das Löslichkeitsprodukt nicht überschritten wird. Der Effekt der Kalkschalenbildung auf das Karbonatsystem der Ostsee ist somit vernachlässigbar gering.

(P

2.3 CO₂-Austausch zwischen Meeresoberfläche und Atmosphäre

In diesem Kapitel wird ein kurzer Überblick über Modellvorstellungen und Berechnungen des CO_{2} -Austausches zwischen Meeresoberfläche und Atmosphäre gegeben, da er ein zentrales Thema dieser Arbeit ist. Dieser Überblick orientiert sich im wesentlichen an einer Zusammenfassung der Problematik von Liss und Merlivat (1986).

2.3.1 Grenzfläche Meerwasser/Atmosphäre

Gemäß dem ersten Fickschen Gesetz ist der diffusive Stofftransport F, das heißt, die Änderung der Teilchenzahl n pro Fläche A und Zeit dt, proportional dem auf eine Strecke dx wirkenden Konzentrationsunterschied dc (Schwetlick et al., 1989):

$$F = \frac{1}{A} \frac{dn}{dt} = -D * \frac{dc}{dx}$$
(19.1)

Um den Transport von Gasen durch die Grenzfläche zwischen Meeresoberfläche und Atmosphäre zu beschreiben, wird am häufigsten das einfache, auf der Theorie von Withman (1923) beruhende Zwei-Film-Modell von Liss und Slater (1974) benutzt. Abbildung 19.A beschreibt schematisch die Vorgänge an der Phasengrenze.

Das Zwei-Film-Modell beschreibt als Hauptwiderstände des Gasaustausches gemäß dem ersten Fickschen Gesetz die Diffusion durch die räumlich und zeitlich unveränderlichen Filme, die sich wasser- und luftseitig der Phasengrenze ausbilden.

Es wird angenommen, daß sich an der Phasengrenze pCO_2^{Pg} und $CO_2^{*,Pg}(aq)$ im Gleichgewicht befindet (4.VI). Der Quotient der "Bulk"-Konzentrationen $CO_2^{*,B}(aq)$ und pCO_2^{B} wird im Gleichgewicht ebenfalls durch K_H^* beschrieben. $CO_2^*(aq)$ kann mit 4.VI als $pCO_{2,sw}$ ausgedrückt werden, so daß an der Phasengrenze und im Gleichgewichtszustand $pCO_{2,aun} = pCO_{2,sw}$ und $\Delta pCO_2 = 0$ werden. Es findet kein Nettotransport statt. Im Falle des Ungleichgewichts, wie es in der Regel über der Meeresoberfläche herrscht, wird die Geschwindigkeit des Gasaustausches durch die Widerstände, die der Überwindung der wasser- und luftseitigen Filme entgegen wirken, kontrolliert. Der Gesamtdurchtrittswiderstand R_{ges} setzt sich aus den beiden Einzelwiderständen zusammen:

$$R_{ges} = R_{Luft} + R_{Wasser}$$
(20.1)

Beim Transport von Gasen, die mit Wasser reagieren, also auch CO_2 , durch den wasserseitigen Film ist weiterhin zu berücksichtigen, daß die Konzentrationsänderung von $CO_2^*(aq)$ an der Phasengrenze nicht nur auf physikalischem Wege (Diffusion), sondern auch auf chemischem durch Hydratation und Hydrolyse oder deren Umkehrreaktionen erfolgen kann. Der dadurch möglichen Erhöhung der Transfergeschwindigkeit durch den wasserseitigen Film wird durch Einführung des Faktors α als Maß für chemische Beschleunigung Rechnung getragen. Die Nettotransfergeschwindigkeit k_{ges} ist beschreibbar durch den reziproken Gesamtdurchtrittswiderstand $1/R_{ges}$,

$$R_{ges} = \frac{1}{k_{ges}}$$
(20.II)

Da die Filme luft- und wasserseitig der Grenzfläche weder eine Quelle noch eine Senke für das transportierte CO_2 darstellen, ist der Stofffluß durch beide Filme gleich und kann gemäß dem ersten Fickschen Gesetz ausgedrückt werden (dx = konstant):

$$F_{ges} = F_{W} = F_{L} \equiv k_{Wasser} * \alpha * (c_{W}^{B} - c_{W}^{Pg}) = k_{Luft} * (c_{L}^{Pg} - c_{L}^{B})$$
 (20.III)

 $F_{ges} = Gesamtfluß$

 $F_{W, L} = Fluß$ durch den wasser- bzw. luftseitigen Film $k_{Wasser, Luft} = Transfergeschwindigkeit im wasser- bzw. luftseitigen Film$ $<math>\alpha = Faktor für chemische Beschleunigung$ $<math>c_{W, L}^{B} = wasser- bzw.$ luftseitige Bulkkonzentrationen $CO_{2}^{*B}(aq)$ bzw. $pCO_{2, atm}^{B}$ $c_{W, L}^{Pg} = wasser- bzw.$ luftseitige Phasengrenzkonzentrationen $CO_{2}^{*Pg}(aq)$ bzw. $pCO_{2, sw}^{Pg}$

Mit Hilfe der Henrykonstanten H (4.III) und K_{H}^{*}

$$\frac{[CO_2^*(aq)]}{pCO_2} = K_H^*$$
(4.VI)

und 20.III ergibt sich der wasserseitige Fluß durch die Grenzfläche zu

$$F = \frac{1}{\frac{H}{k_{\text{wasser}} * \alpha} + \frac{1}{k_{\text{Luft}}}} * K_{\text{H}}^{*} * \left(pCO_{2, \text{sw}}^{B} - pCO_{2, \text{atm}}^{B} \right)$$
(20.1V)

Die Rechnung ist in Anhang II dargestellt.

Der Gesamtwiderstand und somit die Nettotransfergeschwindigkeit sowie die Einzelwiderstände werden gegeben durch

$$R_{ges} = \frac{1}{k_{ges}} = \frac{H}{k_{wasser} * \alpha} + \frac{1}{k_{Luft}}$$
(21.I)

$$F = \frac{1}{R_{ges}} * dc$$
(21.II)

$$R_{\text{wasser}} = \frac{1}{k_{\text{wasser}} * \alpha}$$
(21.III)

$$R_{Luft} = \frac{1}{k_{Luft}}$$
(21.IV)

Diese Betrachtung zeigt, daß die Nettotransfergeschwindigkeit und somit der Gesamtfluß von beiden Einzeltransfergeschwindigkeiten $k_{Wasser}^* \alpha$ und k_{Luft} abhängig ist. Es sind sowohl die Durchgangswiderstände durch den wasserseitigen Film wie auch durch den luftseitigen Film für den Nettotransfer zu berücksichtigen.

Eine Klassifizierung der Gase vereinfacht diese Abhängigkeit. Für inerte, wenigreaktive und -lösliche Gase wie zum Beispiel die Edelgase, N₂, O₂, CO₂ oder CH₄, die im allgemeinen durch niedrige K_H oder K₀ charakterisiert sind, wird $R_{ges} = R_{Wasser} > R_{Luft}$. Somit wird die Diffusion durch den wasserseitigen Film zum geschwindigkeitsbestimmenden Schritt des Austausches. Umgekehrt ist für gutlösliche und in Wasser hochreaktive Gase mit großem K₀ wie zum Beispiel H₂O, SO₂, HCl oder NH₃ R_{Luft} > R_{Wasser}.

Aus diesen Überlegungen geht hervor, daß für die meisten Gase und auch für CO_2 die Transfergeschwindigkeit k_{wasser} den Austausch kontrolliert und der Konzentrationsausgleich im luftseitigen Film spontan stattfindet. Durch die Vernachlässigung von k_{Luft} und die Annahme, daß k_{ges} = k_{wasser}* α ist, wird impliziert, daß kein Gradient zwischen dem pCO₂ an der Phasengrenze und dem atmosphärischen "Bulk"-pCO₂ besteht.

 $pCO_2^{Pg} = pCO_2^{B}.$

Ein Konzentrationsgradient dc ist somit nur in dem wasserseitigen Film zu berücksichtigen.

$$dc = CO_2^{Pg}(aq) - CO_2^{B}(aq)$$
(21.IV)

Gemäß 4.VI sind $CO_2^{Pg}(aq)$ aus $pCO_{2, atm}$ und $CO_2^{B}(aq)_{Bulk}$ aus $pCO_{2, sw}$ zugänglich sind. Der Konzentrationsgradient dc aus Gleichung 19.I ist somit durch den ΔpCO_2 ausdrückbar:

$$dc = pCO_{2,Luft} - pCO_{2,sw} = \Delta pCO_2$$
(21.V)

Daraus folgt für den zu berechnenden Fluß:

$$F = \frac{1}{R_{\text{Wasser}}} * dc = k_{\text{Wasser}} * \alpha * K_{\text{H}}^* * \Delta p CO_2$$
(21.VI)

Daraus ergibt nach Einführung des Austauschkoeffizienten k_{ex} der Fluß zu:

$$F = k_{ex} * \Delta p CO_2$$
(21.VII)

$$\mathbf{k}_{\text{wasser}} * \alpha * \mathbf{K}_{\text{H}}^{*} = \mathbf{k}_{\text{ex}}$$
(21.VIII)

Nach dieser vereinfachten Interpretation des Film-Modells ist der geschwindigkeitsbestimmende Schritt des Austausches von CO_2 zwischen Atmosphäre und Meeresoberfläche die Diffusion von

 $CO_2^*(aq)$ durch den wasserseitigen Film. Daraus folgt nach dem ersten Fickschen Gesetz die direkte Proportionalität von k_{ex} zum Diffusionskoeffizienten D.

(22.I)

 $k_{ex} \propto D$

Eine gedankliche Weiterentwicklung des Film-Modells (Higbie, 1935, Danckwerts, 1951) beschreibt als austauschbestimmenden Schritt die ständige Erneuerung dieser Grenzschicht aus der Hauptwassermasse. Hierbei wird k_{wasser} proportional zu D^{1/2}.

Das Grenzflächen-Modell von Deacon (1977) leitet den Gasaustausch aus meteorologischen Modellen zum Impuls und Wärmetransport ab und beschreibt die Abhängigkeit $k_{Wasser} \propto D^{2/3}$. Die beiden letztgenannten Modelle liefern Ergebnisse, die bei glatter Oberfläche gut mit den Experimenten übereinstimmen, aber bei rauher See oder bei Bläschenbildung den Austausch deutlich unterschätzen.

2.3.2 Bestimmung der Austauschkoeffizienten k_{ex} für CO₂

Ein umfassender Überblick aus jüngerer Zeit über die Bestimmung der Austauschkoeffizienten wird von Wanninkhof (1992) gegeben. Die Ausführungen von Liss und Merlivat (1986) werden durch Aspekte daraus ergänzt.

Die Methoden beruhen im wesentlichen auf Labor- bzw. Windtunneluntersuchungen oder auf Feldmessungen. Erste Berechnungen basieren auf der Verteilung von radioaktiven ¹⁴CO₂ zwischen Ozean und Atmosphäre, dessen Quellen natürlich und anthropogen (Atombomben) sind. In neuerer Zeit wurden die Verteilungen zwischen Oberflächenwasser und Atmosphäre von experimentell ausgesetzten Tracern wie SF₆ genutzt, um Austauschkoeffizienten zu bestimmen (Wanninkhof et al., 1985). In Windtunneluntersuchungen konnten Broecker und Siems (1984) eine dreigeteilte Abhängigkeit des Austausches von der Windgeschwindigkeit feststellen: ein Regime bei glatter, eines bei rauher Meeresoberfläche und eines bei sehr hohen Windgeschwingkeiten mit Bläschenbildung in der Meeresoberfläche. Der Bildung von Gasblasen wird bei der Berechnung des Gasaustausches bei hohen Windgeschwindigkeiten erhebliche Bedeutung zugemessen. Eine exakte Quantifizierung des Beitrags der Gasbläschen scheint aber schwierig. Ausführliche Diskussionen zu diesem Thema finden sich bei Merlivat und Memery (1983), Memery und Merlivat (1985) sowie in den neueren Arbeiten von Wallace und Wirick (1992), Keeling (1993) und Asher et al. (1996).

2.3.2.1 Temperaturunabhängige Austauschkoeffizienten

Liss und Merlivat (1986) leiten in einer Synthese aus Ergebnissen von Feld- und Laboruntersuchungen einen der in dieser Arbeit benutzten Ansätze zu Berechnung des CO_2 -Austausches her. Sie übernehmen die aus Laborexperimenten gewonnene Teilung in drei Windgeschwindigkeitsregime, allerdings mit Anpassung der jeweiligen Regime an Ergebnisse aus Feldexperimenten. Der Ansatz beschreibt folgende Abhängigkeit der Austauschkoeffizienten k_{ex} von der Windgeschwindigkeit:

 $\begin{array}{ll} k_{ex} = 0.17 * u, & \mbox{für } u \leq 3.6\mbox{m/s} & (23.I) \\ k_{ex} = 2.85 * u - 9.65, & \mbox{für } u = 3.6 < u \leq 13\mbox{m/s} & (23.II) \\ k_{ex} = 5.9 * u - 49.3, & \mbox{für } u > 13\mbox{m/s} & (23.III) \end{array}$

u = Windgeschwindigkeit [m/s]

 k_{ex} = Austauschkoeffizient [mol CO₂ * m⁻² * a⁻¹ * μ atm⁻¹]

Weiterhin wird in dieser Arbeit zur Berechnung der Austauschkoeffizienten der aus ¹⁴CO₂-Untersuchungen abgeleitete, lineare Ansatz von Peng und Takahashi (Tans et al., 1990, ref. 20) verwendet. Er vernachlässigt den CO₂-Austausch bei Windgeschwindigkeiten, die kleiner als 3 m/s sind. Es ergibt sich folgende Abhängigkeit der Austauschkoeffizienten k_{ex} von der Windgeschwindigkeit:

$$\begin{aligned} k_{ex} &= 0 & \text{für } u < 3\text{m/s} \\ k_{ex} &= 0.016 * (u - 3), \quad \text{für } u \ge 3\text{m/s} \end{aligned}$$
 (23.IV) (23.V)

u = Windgeschwindigkeit [m/s]

 k_{ex} = Austauschkoeffizient [mol CO₂ * m⁻² * a⁻¹ * μ atm⁻¹]

Die Abbildung 23.A zeigt die Abhängigkeit der Austauschkoeffizienten von der Windgeschwindigkeit beider Ansätze im Vergleich.

Die in beiden Ansätzen vernachlässigte Temperaturabhängigkeit der Autauschkoeffizienten 21.VIII beruht auf folgender Annahme. Gemäß den in Kapitel 2.1.4 diskutierten Überlegungen geht mit der Temperaturerhöhung eine Erhöhung des pCO_2 einher, die auf die Temperaturabhängigkeit der Gleichgewichtskonstanten zurückzuführen ist. Nach einer empirischen Beziehung von Takahashi et al. (1993) läßt sich diese Änderung direkt errechnen:

$$pCO_2^2 = pCO_2^1 * e^{0.0423} * (T_2 - T_1)$$

(23.VI)

Für kleine Temperaturänderungen beträgt die pCO₂-Änderung in guter Näherung 4.23%/K. Die Temperaturabhängigkeit der Transfergeschwindigkeit k_{wasser} kann nach 22.I durch die Temperaturabhängigkeit des Diffusionskoeffizienten wiedergegeben werden. Diese kann durch eine Funktion beschrieben werden, die Form der Arrheniusgleichung hat (Schwetlick et al., 1989):

$$D(T) = D_0 e^{-\frac{E_0}{RT}}$$
(24.1)

 $E_{\rm D}$ = molare Aktivierungsenergie der Diffusion

Die Vernachlässigung der Temperaturabhängigkeit beruht auf der Annahme, daß im Falle der $CO_{2^{-}}$ Untersättigung des Oberflächenwassers die Erhöhung der Transfergeschwindigkeit k_{wasser} durch die temperaturbedingte p $CO_{2,sw}$ -Erhöhung (Abb. 12.A, $K_{H}^{*}(T)$) ausgeglichen wird. Dadurch zeigt der Austauschkoeffizient k_{ex} und somit der Gesamtfluß keine Temperaturabhängigkeit.

2.3.2.2 Temperaturabhängige Austauschkoeffizienten

Der dritte Ansatz, der zur Berechnung der Transfergeschwindigkeit in der vorliegenden Arbeit benutzt wird, ist der temperaturabhängige Ansatz nach Wanninkhof (1992). Danach ist die Transfergeschwindigkeit eine Funktion der Windgeschwindigkeit, der chemischen Beschleunigung und dem Verhältnis der kinematischen Viskosität ν des Meerwassers zu dem Diffusionskoeffizienten D von $CO_2(aq)$, der Schmidtzahl Sc:

$$k_{600} = [2.5 * (0.5246 + 1.6256 * 10^{-2} * T + 4.9946 * 10^{-4} * T^{2}) + 0.3 * u^{2}] * \left[\frac{Sc}{600}\right]^{-\frac{1}{2}} (24.II)$$

(24.III)

 $Sc = 1911.1 - 118.11 * T + 3.4527 * T^2 - 0.04132 * T^3$

- k₆₀₀ = Transfergeschwindigkeit[cm/hr]
- T = Temperatur [°C]
- u = Windgeschwindigkeit [m/s]
- Sc = Schmidtzahl = $\frac{\nu}{D}$
- ν = kinematische Viskosität [cm²/s]
- D = Diffusionskoeffizient [cm²/s]

Die Salzgehaltsabhängigkeit der Schmidtzahl wird nach Wanninkhof (1992) durch Veränderung des Polynoms 24.III berücksichtigt. Die hier dargestellte Berechnung der Schmidtzahl Sc₆₀₀ gilt für den Salzgehalt von 0PSU nach Wilke und Chang (1955). Alternativ ist die analoge Berechnung der Schmidtzahl Sc₆₆₀ für Meerwasser (Salzgehalt = 35PSU) nach Jähne et al. (1987) möglich. Der Index gibt den Wert der Schmidtzahl bei 25°C an.

Der erste Term der Gleichung 24.II beschreibt den Einfluß der chemischen Beschleunigung. Die Transfergeschwindigkeit k_{600} ist in Abbildung 25.A bei 20°C mit und ohne den Einfluß der chemischen Beschleunigung dargestellt. Besonders deutlich wird ihre Wirkung im Bereich der geringen Windgeschwindigkeiten, dargestellt als Ausschnitt für die Windgeschwindigkeiten von 0-10m/s. Da die Ostsee mit mittleren Windgeschwindigkeiten im Winter um 9m/s und im Sommer um 7m/s eher als Gebiet mit geringeren Windstärken zu betrachten ist, sind die Auswirkungen auf die CO₂-Flußberechnungen von Bedeutung, wie auch die Ergebnisse in Kapitel 4 und 5 zeigen werden. Nach Wanninkhof (1992) liegen die unter Berücksichtigung der chemischen Beschleunigung

berechneten Transfergeschwindigkeiten für mittlere Windgeschwindigkeiten um 4.7m/s, wie sie für Äquatorialregionen typisch sind, um etwa 20% höher als ohne Berücksichtigung der chemischen Beschleunigung. Die Bedeutung der chemischen Beschleunigung für Regionen mit niedrigen Windgeschwindigkeiten und/oder hohen Wassertemperaturen werden durch neuere Untersuchungen belegt (Wanninkhof und Knox, 1996)

Der zweite Term der Gleichung 24.II beschreibt die Abhängigkeit der Transfergeschwindigkeit von der Windgeschwindigkeit, die hier quadratisch parametrisiert ist. Der Verlauf der Funktion liegt in etwa zwischen den Funktionen, die nach Liss und Merlivat (1986) sowie Peng und Takahashi (Tans et al., 1990, ref. 20) berechnet werden.

Die kinematische Viskosität beschreibt die "Zähigkeit" des Meerwassers, die der Beweglichkeit des $CO_2(aq)$ (ausgedrückt durch den Diffusionskoeffizienten) entgegen wirkt. Das Verhältnis der beiden, die Schmidtzahl Sc, gibt den gemeinsamen Effekt beider Eigenschaften auf die Bewegungsgeschwindigkeit des CO_2 im Wasser wieder. Mit steigendem Diffusionskoeffizienten und abnehmender kinematischer Viskosität erhöht sich folglich die Transfergeschwindigkeit.

Die Größe k₆₀₀ stellt also gemäß

$$k_{wasser} * \alpha = \frac{1}{R_{wasser}}$$
(20.III)

 $1/R_{Wasser}$ dar, der sich aus k_{Wasser} und α zusammensetzt. Zur Berechnung des Austauschkoeffizienten k_{ex} gemäß

$$k_{\text{Wasser}} * \alpha * K_{\text{H}}^{*} = k_{\text{ex}}$$
(21.VII)

muß der Ausdruck k₆₀₀ mit der Henrykonstanten K_H^{*} multipliziert werden.

Die Bedeutung der chemischen Beschleunigung für den CO_2 -Austausch in Gebieten mit geringeren mittleren Windstärken wird auch bei Betrachtung der Transfergeschwindigkeit k₆₀₀ in Abhängigkeit von Temperatur und Windgeschwindigkeit deutlich. Unter Annahme einer für die Ostsee realistischen

mittleren Windgeschwindigkeit von 8m/s sind die Transfergeschwindigkeiten bei einer Wassertemperatur von 20°C etwa dreimal so groß wie bei einer Wassertemperatur von 0°C (Abb. 26.A).

3 Experimenteller Teil

Der experimentelle Teil gliedert sich in 2 Abschnitte. Im ersten werden die Fahrten, deren Zielsetzungen sowie die bestimmten Größen aufgeführt. Im zweiten wird näher auf die Bestimmung der Meßgrößen und eine pCO₂-Interkalibrierung auf See eingegangen.

3.1 Expeditionen und deren Zielsetzung

Ziel der Expeditionen war es, eine räumlich und saisonal möglichst hoch aufgelöste Beschreibung des Karbonatsystems im Oberflächenwasser der Ostsee zu erhalten. Kernstück der Untersuchungen sind die Sommerfahrt 148/2 des Forschungsschiffes "F.S. Valdivia" und die Winterfahrt 79 mit "F.S. Alkor" (Tab. 27.a) mit erstmaligen kontinuierlichen pCO_2 - und räumlich hochaufgelösten TCO_2 -Bestimmungen (Tab. 27.b).

Schiff (Fahrt)	Zeitraum
"F.S. Valdivia" 148/2	28. August - 14. September 1994
"F.S. Alkor" 79	27. Februar - 16. März 1995

.

Begleitend wurden Nährstoffe ebenfalls mit sehr hoher räumlicher Auflösung im Oberflächenwasser gemessen (Tab. 27.b).

Tab. 27.b:	Räumliche	Auflösung	der	im	Oberflächenwasser	bestimmten	Größen
------------	-----------	-----------	-----	----	-------------------	------------	--------

Fabrt	Meßgrößen und räumliche Auflösung									
1 amt	pCO ₂	TCO ₂	_NH ₄	NO ₂	NO ₃	PO ₄	SiO ₄			
Valdivia 148/2 (Sommer)	0.3sm	30sm	-	1.5sm		1.5s	1.5sm			
Alkor 79 (Winter)	0.3sm	20sm	6sm	6sm	6sm	6sm	6sm			

Zusätzlich zu der quasi-kontinuierlichen Beprobung des Oberflächenwassers wurden auf den Stationen die Vertikalverteilungen dieser Größen mit Ausnahme von pCO_2 bestimmt. Die Route der beiden Fahrten sowie die beprobten Stationen, deren Koordinaten in Anhang III aufgelistet sind, werden in Abbildung 28.A dargestellt. Die Beschreibung der Datenerhebung und die ausführliche Interpretation der während der Sommerfahrt beobachteten Nährstoffsituation sind von Osterroht et al. (1996) gegeben. Detaillierte Beschreibungen des hydrographisch-chemischen Zustandes der Ostsee in den Untersuchungsjahren 1994 und 1995 liefern Nehring et al. (1995 und 1996).

Zur Abschätzung des CO_2 -Budgets in der gesamten Wassersäule der östlichen Gotlandsee wurde während der Winterfahrt (Alkor 79) ein engmaschiges Stationsgitter beprobt, das in Abbildung 29.A gezeigt ist. Es wurden ebenfalls die Vertikalverteilungen der obengenannten Größen mit Ausnahme von p CO_2 bestimmt. Weiterhin sind in Abb. 29.A die Stationen eingezeichnet, die sowohl während der Winterfahrt 1995 sowie während der Winterfahrt 1996 (Schneider et al., 1996) beprobt wurden.

Abb. 28.A: Route und beprobte Stationen während der Fahrten "F.S. Valdivia" 148/2 (Aug./Sep. 1994) und "F.S. Alkor" 79 (Feb./März 1995)

Stationsgitter der Winterfahrt "F.S. Alkor" 79 (Feb./März 1995) in der östlichen Abb. 29.A: Gotlandsee

3.2.1 Kontinuierliche Bestimmung des CO₂-Partialdrucks im Meerwasser

Abb. 30.A: Meßanordnung zur kontinuierlichen Bestimmung des pCO₂

Das Prinzip der pCO_2 -Messung ist die kontinuierliche Einstellung des Gleichgewichtspartialdrucks $pCO_{2.sw}$. Dazu wird in einem geschlossenen Kreislauf Luft durch einen mit Meerwasser durchströmten Equilibrator gepumpt. Die Bestimmung des pCO_2 wird infrarotspektrometrisch durchgeführt (Abb. 30.A).

Die Wasserversorgung erfolgt durch eine im hydrographischen Schacht des Schiffes angebrachte Tauchpumpe. Durch den Einsatz einer Tauchpumpe wird das Wasser den ganzen Weg durch Überdruck befördert, so daß ein Entgasen durch die Saugwirkung einer Pumpe vermieden wird. Der Schlauch ist vollständig wärmeisoliert, um Temperaturänderungen auf dem Weg von der Pumpe zum Equilibrator so gering wie möglich zu halten. Diesem Zweck dient auch der hohe Wasserfluß von etwa 60-80dm³/min, der bis wenige Zentimeter vor dem Equilibrator aufrechterhalten wird. Dort wird der Wasserfluß durch zwei Bypasse geteilt, so daß durch den Equilibrator 1-2dm³/min fließen. Die Differenz zwischen in situ- und Equilibratortemperatur wird so auch bei sehr niedrigen Wassertemperaturen deutlich unter 1°C gehalten. Die Luft, in der der Gleichgewichtspartialdruck über dem Meerwasser eingestellt wird, wird in einem geschlossenen Kreislauf durch den Equilibrator und das Spektrometer gepumpt. Druckschwankungen im Equilibrator werden durch Arbeiten in einem gegenüber der Atmosphäre offenen System vermieden. Um die Kontaminationsgefahr durch Einströmen von Umgebungsluft in den Equilibrator zu unterbinden, ist dieser an den druckseitigen Ausgang der Pumpe geschaltet, so daß die aus dem IR-Spektrometer zurückkehrende Luft stets in den Equilibrator gedrückt wird. Eine Überprüfung des Differenzdrucks zwischen Equilibrator und Atmosphäre ist durch einen parallel geschalteten Differenzdruckmesser möglich. Die Beschreibung des Equilibrators ist bei Schneider et al. (1992) gegeben. Das geringe Wasservolumen des Equilibrators von etwa 0.15dm³ und der hohe Wasserfluß von 1-2dm³/min erlauben einen etwa zehnfachen Wasseraustausch pro Minute. Durch diese hohe Austauschgeschwindigkeit und das klein gehaltene Volumen des zirkulierenden Luftstroms, das mit dem Gasraum des Equilibrators und dem Volumen des Meßkreises etwa 0.1dm³ beträgt, wird eine sehr schnelle Equilibrierung möglich. Aus den im Rahmen einer Interkalibrierung auf See (Körtzinger et al., 1996) bestimmten Zeitkonstanten von 60s läßt sich bei 10kn Schiffsgeschwindigkeit eine räumliche Auflösung von etwa 300m errechnen. Dadurch sind auch pCO₂-Messungen in Gebieten mit hoher räumlicher Veränderlichkeit des pCO₂ wie in der Ostsee oder in Küstenregionen problemlos durchführbar. Eine ausführliche Beschreibung des Gerätes zur pCO₂-Bestimmung ist bei Körtzinger et al. (1996) gegeben.

3.2.2 Interkalibrierung auf See

Zur Sicherung der Vergleichbarkeit der pCO₂-Daten ist eine Übereinstimmung der mit verschiedenen Meßsystemen gewonnenen Daten von besonderer Wichtigkeit. Um die Qualität der hier erzeugten Daten zu überprüfen, wurde während des letzten Fahrtabschnittes der Sommerfahrt (Valdivia) zusätzlich das pCO₂-Meßsystem des Instituts für Meereskunde Kiel (IfM-K) installiert. Um den Vergleich auf die Unterschiede der beiden Equilibrationssysteme zu konzentrieren und externe Abweichungen auszuschließen, wurden Wasser-, Außenluft, Eich- und Nullgasversorgung, die externen Daten wie Wassertemperatur, Salzgehalt, atmosphärischer Luftdruck sowie die mathematische Behandlung der erzeugten Rohdaten vereinheitlicht. Unterschiedliche Erwärmungen des Wassers auf dem Weg von der Pumpe zu den Equilibratoren wurden minimiert, indem die Wasserversorgung erst wenige Zentimeter vor den beiden Systemen getrennt wurde.

Der 21-stündige Vergleich wurde in der Nordsee zwischen Nordjütland und dem Elbeästuar durch-

geführt (Abb. 28.A). Die gewonnenen Daten sind in Abhängigkeit von der Zeit und nicht zur geographischen Position aufgezeichnet und dargestellt, um sie direkt vergleichen zu können. Während des Vergleichs wurden pCO₂-Werte von 230-700 μ atm bestimmt. Beide Systeme zeigen auch in diesem weiten Meßbereich keine nennenswerten Abweichungen. Trotz der sehr hohen räumlichen Veränderlichkeit mit pCO₂-Gradienten bis zu 14 μ atm/min sind die in Abbildung 32.A dargestellten Kurven nahezu deckungsgleich. Die aus allen Oberflächen-pCO₂-Meßwerten errechneten Mittelwerte unterscheiden sich um 0.15 μ atm (IOW 310.16 ± 29.79 μ atm, IfM 310.32 ± 29.59 μ atm). Die Systeme zeigen somit keine systematischen Abweichungen. Die Standardabweichung der Differenzen liegt bei 1.2 μ atm. Auch der Vergleich der gemessenen atmosphärischen pCO₂-Werte zeigt gute Übereinstimmung. Die Abweichung während der gesamten Meßperiode beträgt 0.40 μ atm (IOW: 341.84 ± 0.11 μ atm; IfM: 342.24 ± 0.35 μ atm).

Abb. 32.A: pCO₂-Profile des IOW- und IfM-K-Systems

Die Gegenüberstellung der pCO₂-Gradienten, die aus den Differenzen der minütlich vorliegenden Werte des IfM-K-Systems berechnet wurden, mit den absoluten Differenzen der beiden Systeme zeigt in Abbildung 33.A, daß die Abweichungen zwischen beiden Systemen bei hohen Gradienten am höchsten sind. Der Ausschnitt des in Abb. 32.A dargestellten Profils verdeutlicht diesen Befund (Abb. 33.B). Bei extremen pCO₂-Gradienten zeigt das IOW-System eine leicht integrierende Wirkung, so daß die Extremwerte nicht so ausgeprägt erfaßt werden. Erklärbar wären diese Unterschiede durch eine etwas größere Zeitkonstante des IOW-Systems, obwohl die Bestimmung der Zeitkonstanten gegenteilige Ergebnisse liefert (IOW = 46 ± 1 s, IfM-K = 75 ± 6 s). Die Gründe dieses vernachlässigbaren Widerspruchs liegen wahrscheinlich bei den Unsicherheiten der Zeitkonstanten, da sie bei unterschiedlichen experimentellen Bedingungen bestimmt wurden (IOW: an Bord, IfM-K: im Labor).

Abb. 33.A: Gegenüberstellung der pCO₂-Gradienten mit den Abweichungen der Systeme

Abb. 33.B: 165min- Ausschnitt aus Abb. 32.A zur Darstellung der Feinstruktur

Allerdings erreicht diese Analyse die Grenzen des Experiments, das nicht dafür ausgelegt war, die hier gezeigten Feinstrukturen und Zeitkonstanten zu vergleichen. Die gefundenen mikroskaligen Abweichungen sind für die hier durchgeführten Messungen ohne jegliche Bedeutung. Die beiden Systeme zeigen bei den hier beobachteten, für ozeanische Verhältnisse ungewöhnlich hohen Veränderlichkeiten eine hervorragende Übereinstimmung.

3.2.3 Bestimmung von TCO₂ und Nährstoffen im Meerwasser

Die TCO₂-Bestimmungen wurden mit der coulometrischen Standardmethode nach Johnson et al. (1985, 1993) und Johnson und Sieburth (1987) vorgenommen. Die in Lösung vorliegenden TCO₂-Spezies HCO₃ (aq) und CO₃² (aq) werden durch Ansäuern der Proben mit 1-2cm³ 8.5% iger Phosphorsäure in CO₂(aq) überführt. Dieses wird dann mit dem ursprünglich vorliegenden CO₂(aq) mit einem Stickstoffgasstrom aus der Probe in die Meßzelle gespült, wo dann die coulometrische Bestimmung des CO₂ erfolgt. In der Meßzelle reagiert das CO₂ mit Ethanolamin zur entsprechenden Carbaminsäure, die durch elektrochemische Titration bestimmt wird. Zur Kalibrierung des Systems werden internationale Meerwasserstandards benutzt, die eigens für ozeanische TCO₂-Messungen entwickelt wurden (CRM, hergestellt und vertrieben durch A. Dickson, Scripps Institution of Oceanography, San Diego, USA). Die aus Reproduzierbarkeitsmessungen bestimmte Meßunsicherheit liegt bei $\pm 1-2\mu$ mol/kg.

Gelöster Sauerstoff (O₂) sowie die Nährstoffe Ammonium (NH₄⁺), Nitrat (NO₃), Nitrit (NO₂), Phosphat (PO₄³⁻) und Silikat (SiO₄²⁻) wurden nach Rhode und Nehring (1979) bzw. Grasshoff et al. (1983) bestimmt. Die analytischen Meßunsicherheiten sind für O₂ $\pm 0.9\mu$ M, für NO₃⁻ $\pm 0.1\mu$ M, für NO₂⁻ $\pm 0.01\mu$ M, für NH₄⁺ $\pm 0.1\mu$ M, für PO₄³⁻ $\pm 0.01\mu$ M und für SiO₄²⁻ $\pm 0.1\mu$ M.

Phänomenologische Beschreibung des Karbonatsystems im Oberflächenwasser der Ostsee

Schwerpunkt der Untersuchungen bildet die Analyse des Karbonatsystems im Oberflächenwasser der *eigentlichen* Ostsee. Sie umfaßt die Arkona- und Bornholmsee sowie die Gotlandsee mit ihren östlichen, nördlichen und westlichen Becken (Nehring und Francke, 1981). Ergänzend werden die Einflüsse des Bottnischen und Finnischen Meerbusens, der Rigaer Bucht sowie der angrenzenden Übergangsgebiete zur Nordsee (Beltsee und Kattegat) diskutiert. Anhand der Winter- (Alkor) und der Sommerfahrt (Valdivia) werden die horizontalen TCO₂-Verteilungsmuster in der eigentlichen Ostsee aufgezeigt. Nach der Charakterisierung des Oberflächenwassers der Ostsee mittels einer Analyse der TCO₂-Salzgehaltsbeziehungen im zweiten Teil wird der Zusammenhang zwischen den saisonalen Veränderlichkeiten des TCO₂ sowie der Alkalinität und den saisonalen Salzgehaltsveränderungen hergestellt. Abschließend erfolgt die Beschreibung der pCO_2 -Verteilung mit regionaler Interpretation.

4.1 Räumliche Veränderlichkeit des TCO₂

Zunächst wird die großräumige TCO_2 -Verteilung während der Winter- sowie der Sommersituation in der zentralen Ostsee erörtert. Abbildung 35.A zeigt den Verlauf der TCO_2 -Oberflächenkonzentration in der Ostsee südlich von 56°N.

Abb. 35.A: TCO₂-Oberflächen Schnitt durch die südliche Ostsee von 10°E bis 20°E

Der TCO₂-Gehalt nimmt ausgehend von der Kieler Bucht (10°E) in östliche Richtung kontinuierlich dem Salzgehalt folgend bis zur Darßer Schwelle (etwa 13°E) ab. Östlich der Darßer Schwelle, die die Übergangsgebiete von der eigentlichen Ostsee trennt, sinkt der Salzgehalt sprunghaft um etwa

3PSU. Die TCO₂-Konzentrationen bleiben im Winter östlich der Darßer Schwelle auf annähernd gleichmäßigem Niveau von etwa 1570 μ mol/kg, während im Sommer niedrigere Konzentrationen von etwa 1500 μ mol/kg beobachtet werden. Die sommerlichen Konzentrationen weisen höhere räumliche Inhomogenitäten auf als die winterlichen. Im Sommer ist ein leichter Anstieg des TCO₂ im östlichen Teil zu erkennen. Als wesentliche Merkmale dieses Schnittes sind die gleichmäßigen Konzentrationen östlich der Darßer Schwelle und die deutlich ansteigenden Konzentrationen westlich der Darßer Schwelle netwenten.

Abbildung 36.A zeigt die TCO_2 -Verteilung in der Ostsee östlich von 15°E in Abhängigkeit von der Breite unter Einbeziehung des Finnischen und Bottnischen Meerbusens sowie der Rigaer Bucht.

Das gleichmäßige winterliche Niveau des TCO_2 -Gehaltes um 1570 μ mol/kg wird in der Ostsee zwischen 55°N und 62°N ebenso sichtbar wie auf dem Schnitt durch die südliche Ostsee (Abb. 35.A). Abnehmende Konzentrationen sind lediglich bei der Annäherung an den Bottnischen und Finnischen Meerbusen zu beobachten. Im Sommer hingegen nehmen die Konzentrationen nördlich von etwa 56°N von etwa 1500 μ mol/kg bis zu 1300-1200 μ mol/kg in Finnischem und Bottnischem Meerbusen ab. Im Gegensatz dazu sind die Konzentrationen in der Rigaer Bucht deutlich erhöht. Charakteristisch für diesen Schnitt ist die winterliche Gleichverteilung und die sommerliche kontinuierliche Abnahme nach Norden hin, das heißt, zwischen Sommer und Winter tritt eine grundlegende Änderung der TCO₂-Verteilung in der zentralen Ostsee ein.

4.2 Charakterisierung des Oberflächenwassers der eigentlichen Ostsee mittels TCO₂ und Alkalinität

Das Oberflächenwasser der eigentlichen Ostsee läßt sich als ein Wasserkörper beschreiben, der durch Salzgehalte von $8\pm 2PSU$ charakterisiert ist (Matthäus, 1996). Er wird durch Zufuhr von Wasser

geringeren Salzgehalts aus dem Finnischen und Bottnischen Meerbusen sowie aus der Rigaer Bucht beeinflußt. Weiterhin wird das Oberflächenwasser der eigentlichen Ostsee durch salzreiches Wasser aus den Übergangsgebieten zur Nordsee geprägt. Die sich dabei ausbildenden Mischungsregime können anhand des TCO₂-Salzgehaltsdiagramms identifiziert werden (Abb. 37.A).

Abb. 37.A: TCO₂-Salzgehalts-Diagramm des Oberflächenwassers der Ostsee

Das TCO₂-ärmste Wasser gelangt aus dem Bottnischen Meerbusen in die zentrale Ostsee. Die vier größten Flüsse des Bottnischen Meerbusens haben ein Einstromvolumen von $62 \text{km}^3/a$ (Fennel, 1996). Für Süßwasser mit dem Salzgehalt von 0PSU ergibt sich unter der Annahme der konservativen Vermischung aus der Regression der entsprechenden Meßwerte ein TCO₂-Gehalt von 174±13 μ mol/kg (S=0PSU). Ebenso gelangt aus dem Finnischen Meerbusen TCO₂-armes Wasser in die zentrale Ostsee. Von herausragender Bedeutung ist der Zustrom aus der Newa, die mit einem Einstromvolumen von 77.6km³/a die größte Süßwasserquelle der Ostsee ist. Die Regression ergibt für die Newa einen TCO₂-Gehalt von $629 \pm 7 \mu$ mol/kg (S=0PSU). Im Gegensatz dazu gelangt aus der Rigaer Bucht, in die die Daguva als größter Fluß mit einem Einstromvolumen von 20.8km³/a mündet, TCO₂-reiches Wasser in die zentrale Ostsee. Für die Daguva wird ein TCO₂-Gehalt von 2800±8.5 μ mol/kg (S=0PSU) berechnet.

Weiterhin zeigt sich in dem Diagramm die Vermischung des Wassers der eigentlichen Ostsee mit dem TCO_2 -reichen Wasser aus den Übergangsgebieten zur Nordsee. Im Kattegat werden TCO_2 -Gehalte um 2050 μ mol/kg (S=32PSU) im Sommer und TCO_2 -Gehalte um 2150 μ mol/kg (S=32PSU) im Winter beobachtet. Die saisonalen TCO_2 -Differenzen von etwa 100 μ mol/kg, die durch die Parallelverschiebung der beiden Äste der Mischungsgeraden ausgedrückt werden, sind gegenüber ozeanischen Werten um etwa 50-70 μ mol/kg erhöht (Schneider und Thomas, 1996).

Die berechneten Gesamtkarbonatgehalte für Süßwasser (Salzgehalt S=0PSU) zeigen zwei unterschiedlich geprägte Einzugsbereiche des die Ostsee speisenden Wassers: felsige, kalkarme Gesteine bzw. Böden der skandinavischen Halbinsel und kalkreiche Gesteine bzw. Böden im südbaltischen und weissrussischen Raum. Das Oberflächenwasser der zentralen Ostsee wird also charakterisiert durch salz- und TCO_2 -reiches Wasser aus den Übergangsgebieten zur Nordsee und TCO_2 -armes Süßwasser aus dem Bottnischen und Finnischen Meerbusen sowie TCO_2 -reiches Süßwasser aus der Rigaer Bucht. Die drei letztgenannten Gebiete nehmen etwa 72% aller Festlandsabflüsse auf (Nehring und Francke, 1981), die in die zentrale Ostsee gelangen, und sind somit von entscheidender Bedeutung für den Wasserhaushalt der Ostsee.

Eine Betrachtung der Alkalinitäts-Salzgehaltsbeziehung liefert das entsprechende Ergebnis. Aus TCO_2 -, pCO_2 -, Salzgehalts- und Temperaturwerten wurden mit Hilfe der Konstanten von Weiss (1974) und Dickson und Millero (1987) Karbonatalkalinitäten A_C (6.III) berechnet. Zur Bestimmung der Alkalinitäten A_T (6.II) wurde ergänzend die Boratalkalinität hinzugefügt, die unter Berücksichtigung der positiven Anomalie im Alkalinitäts-Salzgehaltsverhältnis in der Ostsee (Nehring und Rhode, 1967; Kremling, 1972) mit den Gleichgewichtskonstanten nach DOE (1994) berechnet wurde. Die Proportionalität von TCO_2 - und Alkalinitätswerten (Abb. 38.A) ermöglicht die Beschreibung der Alkalinitäts-Salzgehaltsverhältnisse des Oberflächenwassers der Ostsee anhand von Abb. 37.A.

Abb. 38.A: TCO₂-Alkalinitätsbeziehung im Oberflächenwasser der Ostsee

Aus der hier nicht dargestellten Analyse der Alkalinitäts-Salzgehaltsverhältnisse lassen die Alkalinitäten für den Bottnischen Meerbusen von 144 μ mol/kg bei S=0PSU, für den Finnischen Meerbusen von 484 μ mol/kg bei S=0PSU, für die Rigaer Bucht 3186 μ mol/kg bei S=0PSU und für das Kattegat 2330 μ mol/kg (32PSU) berechnen. Die Parallelverschiebung der beiden Geraden ist wiederum auf die saisonalen TCO₂-Differenzen zurückzuführen. Somit strömt TCO₂- und alkalinitätsarmes Wasser aus dem Finnischen und Bottnischen Meerbusen in die eigentliche Ostsee, wohingegen TCO₂- und alkalinitätsreiches Wasser aus der Rigaer Bucht einströmt. In den Übergangsgebieten zur Nordsee wird die Zunahme des Salzgehalts von der Erhöhung von TCO₂ und Alkalinität begleitet.

Ohlson und Anderson (1990) gelangen mittels der hier nur skizzierten Alkalinitäts-Salzgehaltsbetrachtung, die gemäß Abb. 38.A direkt mit der TCO₂-Salzgehaltsbetrachtung in Abb. 37.A vergleichbar

ist, im Ansatz zu ähnlichen Ergebnissen. Im Gegensatz zu der oben vorgestellten Beschreibung liefern die Autoren jedoch nur ein Mischungsdiagramm mit zwei Ausgangswasserkörpern. Es werden das Nordseewasser als salz- und alkalinitätsreicher Wasserkörper und ein salz- und alkalinitätsarmer (gemischter) Wasserkörper aus dem Bottnischen und Finnischen Meerbusen genannt. Allerdings verlangt die Form des Mischungsdiagramms einen alkalinitätsreichen Süßwasserkörper, denn bei nur zwei Ausgangswasserkörpern und zum Salzgehalt konservativer Alkalinität ergäbe sich eine einfache Mischungsgerade. Die in der vorliegenden Arbeit vorgestellte Analyse identifiziert den in der Untersuchung von Ohlson und Anderson (1990) fehlenden Wasserkörper als den Einstrom aus der Rigaer Bucht und unterscheidet die Wasserkörper des Finnischen und Bottnischen Meerbusens. Die hier vorgestellten TCO₂-Salzgehaltsbeziehungen erweisen sich somit als ein sehr geeignetes Instrument zur Charakterisierung des Mischwasserkörpers "Oberflächenwassers der zentralen Ostsee" und seiner wichtigsten Ausgangswasserkörper.

4.3 Salzgehaltsabhängige, saisonale Veränderlichkeit von TCO₂ und Alkalinität

In diesem Abschnitt wird der Zusammenhang zwischen den salsonalen Salzgehaltsdifferenzen und denen von TCO_2 und Alkalinität hergestellt, um den salzgehaltsabhängigen Anteil der salsonalen Veränderlichkeit von TCO_2 und Alkalinität zu beschreiben. Unter salsonalen Differenzen sind die Differenzen zu verstehen, die auf der gleichen Station zwischen der Winter- und der Sommerfahrt festgestellt wurden.

Die Ableitung der saisonalen TCO2-und Alkalinitätsdifferenzen aus den in Abb. 38.A entwickelten salzgehaltsabhängigen Funktionen scheitert, weil alle Meßpunkte des Oberflächenwassers der eigentlichen Ostsee (Salzgehalte von 6-8PSU) um den Schnittpunkt der drei Mischungsgeraden streuen, und somit eine eindeutige Zuordnung zu einer der Geraden nicht mehr möglich ist. Weiterhin ist festzustellen, daß ihre räumliche Zuordnung während einer Jahreszeit von der Zuordnung der anderen Jahreszeit abweicht. So lassen sich zum Beispiel die Winterwerte von TCO_2 und Alkalinität der Station F8 in der südöstlichen Gotlandsee mit den Funktionen beschreiben, die sich aus der Vermischung des Oberflächenwassers der zentralen Ostsee mit dem salzreichen Wasser der Übergangsgebiete zur Nordsee ergeben. Im Sommer jedoch läßt sich diese Station durch die Funktionen charakterisieren, die aus der Vermischung des Wassers aus der Rigaer Bucht mit dem Oberflächenwasser der zentralen Ostsee folgen. Eine Beschreibung der saisonalen TCO₂- und Alkalinitätsdifferenzen anhand des Salzgehaltes gemäß Abb. 37.A ist daher nicht möglich. Dies ist auf die bereits in Abschnitt 4.1 anhand Abb. 36.A erläuterte grundlegende Anderung der Verteilungsmuster von TCO₂ zurückzuführen. Zu erklären ist diese Änderung durch unterschiedliche Strömungsoder Wassermassencharakteristiken im Sommer und im Winter. Das Oberflächenwasser der zentralen Ostsee ist im Frühjahr und Sommer wesentlich durch die Flußwasserzuströme geprägt, die im Frühjahr ihr Maximum haben (Nehring und Francke, 1981). Die Sommerfahrt fand nahezu zeitgleich mit dem Eintreten der jährlichen Salzgehaltsminima statt (Matthäus, 1978), so daß das während dieser Fahrt aufgenommene Bild zugleich die maximale Auswirkung der Flußwasserzuströme auf das Oberflächenwasser der zentralen Ostsee zeigt. Umgekehrt fand die Winterfahrt nahezu zeitgleich mit dem Salzgehaltsmaximum (Matthäus, 1978) statt. Das zu dieser Zeit aufgenommene Bild zeigt also die maximalen Auswirkungen der herbst- und winterlichen Konvektion auf das Oberflächenwasser bei gleichzeitig geringer Flußwasserzufuhr. Deutlich wird dies auch an der bereits geschilderten gleichmäßigen Verteilung des winterlichen TCO_2 (Abb. 36.A).

Es wird deshalb der Versuch unternommen, einen Zusammenhang zwischen den saisonalen Salzgehaltsdifferenzen und denen des TCO₂ sowie der Alkalinität herzustellen. Die Abbildungen 40.A und 40.B zeigen die Korrelationen der saisonalen TCO₂- (Δ (TCO₂)) und Alkalinitätsdifferenzen (Δ (A_T)) mit den saisonalen Salzgehaltsdifferenzen (Δ (Salzgehalt)).

Die Abbildung 40.A zeigt, daß für die westliche Gotlandsee, die östliche Gotlandsee und die südliche Ostsee charakteristische lineare Beziehungen zwischen $\Delta(\text{TCO}_2)$ und $\Delta(\text{Salzgehalt})$ existieren. Hieraus läßt sich schließen, daß sich der Einfluß der verschiedenen Komponenten salzärmeren Wassers innerhalb dieser Regionen beim Übergang vom Winter zum Sommer in ähnlicher Weise ändert. Dieses kann durch saisonale Änderungen des Zirkulationsmusters erklärt werden. Die Steigung der berechneten Regressionsgeraden charakterisiert die salzgehaltsbedingte saisonale TCO₂-Änderung für die betreffenden Regionen. Der Achsenabschnitt kann als saisonale TCO₂-Änderung für den hypothetischen Fall erklärt werden, daß keine saisonale Salzgehaltsänderung auftritt und somit lediglich die unterschiedlichen TCO₂-Gehalte der unterschiedlichen Komponenten salzärmeren Wassers zur Wirkung kommen. Es ist jedoch zu berücksichtigen, daß sich der TCO₂ auch durch biologische Prozesse und atmosphärischen Austausch saisonal ändert, so daß der Achsenabschnitt diese Effekte mit beinhaltet. In ähnlicher Weise läßt sich die Darstellung von $\Delta(A_T)$ als Funktion von $\Delta(\text{Salzgehalt})$ deuten. Unter der Annahme, daß die Alkalinität nur vom Salzgehalt abhängt, beschreiben die Gleichungen (Steigung und Achsenabschnitt) der entsprechenden Regressionsgeraden die saisonalen Alkalinitätsdifferenzen. Auf diese Annahme wird näher in Kapitel 5.2 eingegangen.

Mathematisch ergeben sich folgende Zusammenhänge:

Westliche Gotlandsee: $\Delta(\text{TCO}_2) = \Delta(\text{Salzgehalt})$ $\Delta(\text{A}_T) = \Delta(\text{Salzgehalt}) *$	* $(224.28 \pm 21.3) + (38.0 \pm 10)$ $(241.5 \pm 12.5) - (49.9 \pm 5.5)$	(41.I (41.II
Östliche Gotlandsee: $\Delta(TCO_2) = \Delta(Salzgehalt)$ $\Delta(A_T) = \Delta(Salzgehalt) *$	* $(126.4 \pm 7.1) + (5 \pm 11.0)$ $(214.7 \pm 26) - (114.4 \pm 12)$	(41.III) (41.IV)
Südliche Ostsee: $\Delta(TCO_2) = \Delta(Salzgehalt)$ $\Delta(A_T) = \Delta(Salzgehalt) *$	* $(44.7 \pm 0.12) + (52.8 \pm 0.38)$ $(34.5 \pm 1.1) - (13.7 \pm 3.6)$	(41.V) (41.VI)

Diese Funktionen beschreiben die eingangs erwähnten Zusammenhänge zwischen den saisonalen Veränderlichkeiten von TCO_2 sowie Alkalinität und Salzgehalt. Die gesuchten, rein salzgehaltsabhängigen Anteile der saisonalen Veränderlichkeiten ergeben sich aus den Steigungen der Funktionen 41.I-41.VI. Die rein salzgehaltsabhängigen TCO_2 -Veränderungen werden im weiteren "Salzeffekt" genannt.

4.4 pCO₂-Verteilung in der zentralen Ostsee

Nachfolgend werden die großräumigen Verteilungsmuster des pCO_2 in der zentralen Ostsee, die durch kleinskalige Veränderlichkeiten überlagert sind, anhand zweier Nord-Süd-Schnitte durch die westliche und östliche Gotlandsee diskutiert, die jeweils während einer Winter- und einer Sommersituation aufgenommen wurden. Weiterhin werden die Einflüsse des Bottnischen und Finnischen Meerbusens sowie der Rigaer Bucht aufgezeigt, da sich dabei die bereits oben erläuterten Einflüsse der unterschiedlichen Charakteristiken der Festlandsabflüsse widerspiegeln.

4.4.1 Großräumige Tendenzen der pCO₂-Verteilung

Sommer

Im Sommer weist der pCO_2 in der zentralen Ostsee mit Werten um 220μ atm (Abb. 43.A) erheblich niedrigere Werte auf als der Nordatlantik, wo etwa 310μ atm zu erwarten sind (Schneider und Thomas, 1996). Im Bereich der südlichen Küstengewässer der Ostsee sind gebietsweise noch niedrigere Werte (um 200μ atm) gefunden worden. Damit stellt die eigentliche Ostsee im Sommer eine signifikante Senke für atmosphärisches CO_2 dar. Die Prozesse, die den pCO_2 in der Ostsee steuern, sind Gegenstand eingehender Diskussion in Kapitel 5, das sich mit der Berechnung der Jahresgänge von TCO_2 und pCO_2 befaßt.

Die Abbildung 43.A zeigt pCO_2 -, Temperatur- und Salzgehaltsverlauf auf den Nord-Süd-Schnitten durch die zentrale Ostsee von 55°N - 59°N. Weiterhin ist in der Verlängerung des westlichen Schnittes der Übergang zum Bottnischen Meerbusen dargestellt, der später zusammen mit dem Finnischen Meerbusen und der Rigaer Bucht behandelt wird.

Der östliche Schnitt zeigt in nördlicher Richtung einen deutlich zunehmenden pCO_2 , einen kontinuierlich abnehmenden Salzgehalt und etwas abnehmende Temperaturen. Die Zunahme des pCO_2 kann auf die nach Norden hin abnehmende neue Produktion (Lenz, 1996) zurückgeführt werden. Die Ursachen dafür sind klimatologischer Art: geringere jährliche Lichteinstrahlung und später einsetzende und geringere Erwärmung des Wassers im nördlichen Teil der zentralen Ostsee. Als Folge davon wird durch neue Produktion weniger CO_2 zu biologischem Material umgesetzt, wodurch der pCO_2 nicht soweit absinkt wie in produktiveren Regionen. Dieser Effekt dominiert über die pCO_2 -Erniedrigung, die aufgrund des Temperaturrückgangs zu erwarten ist.

Das bestimmende Charakteristikum des westlichen Schnittes während der Untersuchungen sind die äußerst hohen Veränderlichkeiten in pCO₂ und Temperatur. Im Salzgehalt ist die schon auf dem östlichen Schnitt beobachtete Abnahme in nördlicher Richtung erkennbar. Diese hohen Veränderlichkeiten sind auf Einflüsse durch nährstoffreiche Festlandsabflüsse zurückzuführen. Die sprunghafte Abnahme des pCO₂ um etwa 100 μ atm und des Salzgehaltes um fast 1PSU sowie der Anstieg der Temperatur um 3K bei etwa 57.8°N werden von erhöhten PO₄-Konzentrationen von fast 0.2 μ M und Nitrat-Konzentrationen von über 1 μ M begleitet (Osterroht et al., 1996). Die dadurch mögliche neue Produktion bewirkt die drastische Abnahme des pCO₂. Der im östlichen Schnitt beobachtete Anstieg des pCO₂ in nördlicher Richtung ist lediglich erkennbar, wenn man die Endpunkte des Schnittes durch die westliche zentrale Ostsee bei 55°N und 59°N betrachtet.

Abb. 43.A: Sommerliche Nord-Süd-Schnitte für pCO₂, Temperatur und Salzgehalt durch die westliche und östliche Gotlandsee und Teile des Bottnischen Meerbusens

Winter

Im Winter weist der pCO_2 in der zentralen Ostsee Werte zwischen 400 μ atm und 500 μ atm auf, im Bereich der südlichen zentralen Ostsee Werte um etwa 420 μ atm (Abb. 45.a). Das winterliche Oberflächenwasser ist somit deutlich an CO₂ übersättigt und stellt in dieser Jahreszeit eine signifikante Quelle für atmosphärisches CO₂ dar. Der Vergleich mit nordatlantischen Werten zeigt auch hier, daß die Extremwerte in der Ostsee deutlicher ausgeprägt sind. Der Nordatlantik stellt im Gegensatz zur Ostsee auch im Winter mit CO₂-Partialdrücken um 340 μ atm eine leichte Senke für atmosphärisches CO₂ dar (Schneider und Thomas, 1996).

Im östlichen wie im westlichen Teil der Gotlandsee nimmt der pCO_2 nach Norden hin kontinuierlich ab (Abb. 45.A). In der südwestlichen zentralen Ostsee wurden mit über 500 μ atm die höchsten CO_2 -Partialdrücke gemessen. Die Temperaturen liegen zwischen 55.5°N und 58°N bei etwa 3°C, weiter nördlich gehen sie zurück. Die gleichmäßige Temperatur und die nur schwach ausgeprägten Abnahmen in pCO_2 und Salzgehalt deuten auf eine starke horizontale Vermischung besonders in der östlichen Gotlansee hin. Der westliche Schnitt zeigt in allen drei Parametern eine deutliche Front bei 55.8°N, der pCO_2 steigt um etwa 100 μ atm, wohingegen die Temperatur um etwa 0.5K und der Salzgehalt um etwa 0.4PSU abnehmen. Nördlich von 55.8°N weisen alle drei Parameter eine kontinuierliche Abnahme in nördlicher Richtung auf. Diese Front verschiebt sich in stark abgeschwächter Form auf dem östlichen Schnitt nach Süden, was durch den zurückgehenden Einfluß des salzreichen Nordseewassers in östlicher Richtung zu erklären ist.

Das gegenläufige Verhalten - Abnahme des pCO_2 in nördliche Richtung im Winter und Abnahme des pCO_2 in südlicher Richtung im Sommer - wird durch zwei, einander verstärkende Faktoren verursacht. Durch die nach Norden abnehmende neue Produktion sinkt zum einen der sommerliche pCO_2 nicht soweit wie in den südlichen Gebieten. Zum anderen wird dort folglich auch nur weniger organisches Material remineralisiert, wodurch der pCO_2 im Winter nicht soweit ansteigt wie im Süden. Weiterhin wird CO_2 zwischen der Thermokline und der haloklinen Sperrschicht, also im Baltischen Zwischenwasser, während der produktiven Jahreszeit durch Remineralisierung von organischem Material bereits wieder angereichert (Abb. 44.A, schraffierte Fläche). Durch die winterliche Konvektion wird das CO_2 -reiche Wasser in die durchmischte Oberflächenschicht gebracht und der pCO_2 erhöht.

Abb. 44.A: TCO₂-Profile der Station GO33 [271] in der östliche Gotlandsee

Abb. 45.A: Winterliche Nord-Süd-Schnitte für pCO₂, Temperatur und Salzgehalt durch die westliche und östliche Gotlandsee

Je tiefer die winterliche Konvektion reicht, desto mehr CO_2 -reiches Wasser wird in die Oberflächenschicht eingemischt und läßt dadurch den p CO_2 ansteigen. Die in südlicher Richtung zunehmende winterliche Durchmischungstiefe (Matthäus, 1977) bewirkt damit eine Zunahme der winterlichen p CO_2 -Erhöhung.

Die pCO_2 -Verteilung in der zentralen Ostsee ist durch hohe saisonale pCO_2 -Amplituden geprägt, die von Süden nach Norden hin abnehmen. Auch im westlichen Teil der zentralen Ostsee bleiben diese Verteilungsmuster erhalten, wenngleich sie stark durch lokale Effekte gestört werden (Tab.46.a).

	westlicher Schnitt		östlicher Schnitt			
Station Position	F5 (süd) 55.28°N 15.96°E	F11a.2 (nord) 59.23°N 19.53°E	F8 (süd) 55.70°N 18.63°E	F9 57.05°N 19.83°E	F13 (nord) 58.88°N 20.32°E	
pCO ₂ [μatm] Sommer	406.1	379.5	440.2	404.8	373.4	
pCO ₂ [µatm] Winter	203.8	265.1	197.6	254.1	265.5	
saisonale pCO ₂ - Differenz	202.3	114.4	242.6	150.7	108.0	

Tab. 46.a:	Großräumige	Muster der	pCO ₂ -V	^v erteilung	in der	zentralen	Ostsee
------------	-------------	------------	---------------------	------------------------	--------	-----------	--------

4.4.2 Regionale Einflüsse

Die regional unterschiedlichen Einflüsse der Übergänge zum Finnischen und Bottnischen Meerbusen sowie zu der Rigaer Bucht auf den pCO₂ werden anhand der pCO₂-Salzgehaltsdiagramme gezeigt (Abb. 47.A). In den Übergangsbereichen von der zentralen Ostsee zum Bottnischen und Finnischen Meerbusen ist eine Abnahme des pCO₂ mit dem Salzgehalt zu beobachten. Im Gegensatz dazu steigt der pCO₂ mit abnehmendem Salzgehalt im Übergangsgebiet zwischen der zentralen Ostsee und der Rigaer Bucht. Jedoch sind diesen Beziehungen andere Einflüsse überlagert, so daß eine große Streuung der Werte zu beobachten ist. Eine mögliche Interpretation dieser gegensätzlichen Trends in den Übergangsgebieten liefert Abb. 37.A. Danach sind die Zuströme aus dem Finnischen und Bottnischen Meerbusen TCO₂- und alkalinitätsarm, das aus der Rigaer Bucht einströmende Wasser jedoch TCO₂- und alkalinitätsneich. In beiden Fälle scheint sich die TCO₂-abhängige pCO₂-Veränderung gegenüber alkalinitätsabhängigen durchzusetzen (Abb. 13.A). So ist in den Übergangsbereichen zum Finnischen und Bottnischen Meerbusen gemäß der TCO₂-Abnahme eine pCO₂-Erniedrigung und keine alkalinitätsabhängige pCO₂-Erhöhung zu beobachten, in der Rigaer Bucht eine dem TCO₂-folgende pCO₂-Erhöhung und keine alkalinitätsabhängige pCO₂-Abnahme.

Abb. 47.A:

pCO₂-Salzgehaltsdiagramme für die Übergangsgebiete zwischen der Gotlandsee und dem Finnischen und Bottnischen Meerbusen einerseits sowie der Rigaer Bucht andererseits

48 5

Berechnung der Jahresgänge von TCO₂ und pCO₂

Ziel der nachfolgenden Überlegungen ist es, die Jahresgänge der Größen TCO_2 und pCO_2 zu berechnen. Da letztlich die Frage im Vordergrund steht, ob und in welchem Ausmaß die Ostsee eine Senke für atmosphärisches CO_2 darstellt, wird der pCO_2 , der den Austausch mit der Atmosphäre steuert, von hervorgehobener Bedeutung sein. In diesem Kapitel wird zunächst die Konzeption vorgestellt, die hinter den Berechnungen der Jahresgänge von TCO_2 und pCO_2 steht, und der Rechenweg schematisch erläutert. Nach Bestimmung der Hilfsgrößen, die zur Parametrisierung oder Berechnung von pCO_2 und TCO_2 verwendet werden, werden im dritten Teil dann die Berechnungen der Jahresgänge der Zielgrößen TCO_2 und pCO_2 eingehend beschrieben.

5.1 Konzeption der Berechnung

Die eigentliche Ostsee und der angrenzende Finnische Meerbusen werden in 32 Gitterelemente eingeteilt (Abb. 48.A).

Abb. 48.A: Einteilung der eigentlichen Ostsee in 32 Gitterelemente

Die Gitterelemente sind so gewählt, daß jedes Element durch mindestens einen Wert jeder Meßgröße charakterisiert ist (Tab. 27.b). Begrenzender Faktor sind die TCO₂-Oberflächenproben. Die Berechnungen beschränken sich auf die Seegebiete der eigentlichen Ostsee. Dies sind die Arkona- und die Bornholmsee (Gitterelemente 1-5 und 29-32), die westliche und nördliche Gotlandsee (Gitterelemente 6-14) sowie die östliche Gotlandsee und das Danziger Becken (Gitterelemente 20-28). Diese Gliederung berücksichtigt die Besonderheiten des Karbonatsystems der Ostsee gemäß Kapitel 4.1 - 4.3. Die Berechnungen basieren auf den Daten der Winter- und der Sommerfahrt. Die Jahresgänge des pCO₂ und des TCO₂ werden für zwei Perioden berechnet. Im Frühjahr und Sommer (1. März bis 1. September), den produktiven Jahreszeiten, überwiegt die Produktion organischen Materials gegenüber der Remineralisierung. Im Herbst und Winter (1. September bis 1. März) überwiegt die Remineralisierung organischen Materials gegenüber der Produktion. Die für jedes Gitterelement gemittelten Werte der Winterfahrt werden als Startwerte der Berechnungen benutzt und auf den 1. März datiert. Die Werte der Sommerfahrt (1. September) finden indirekt Eingang in die Berechnungen, da sie in Kapitel 4.3 zusammen mit den Winterwerten zur Ermittlung der saisonalen Differenzen von TCO₂ und Alkalinität herangezogen wurden. Die Berechnungen der zeitlichen Veränderungen des Karbonatsystems basieren im wesentlichen auf Änderungen des TCO₂ durch Salzeffekte, durch atmosphärischen CO2-Austausch und durch biologische Prozesse. Im Sommerhalbjahr wird der Einfluß der neuen Produktion dabei so angepaßt, daß die Rechnungen zum Meßwert für den pCO₂ im Sommer (1. September) führen. Analog wird im Winterhalbjahr das Ausmaß der Remineralisierung so angepaßt, daß die Ausgangswerte des Sommerhalbjahrs (1.März) wieder erreicht werden. Da die Jahresgänge der Hilfsgrößen langjährig gemittelt sind, werden daraus folglich ebenfalls mittlere Jahresgänge von pCO₂ und TCO₂ berechnet, deren winterliche Startwerte aktuell sind. Ein Zeitschritt in der Berechnung der Jahresgänge ist ein Monatsdrittel, so daß sich 36 Schritte im Jahr mit einer mittleren Länge von 10 Tagen ergeben. Diese Zeitschritte und die damit verbundenen Temperaturschritte sind klein genug, um auf eine Integration nicht-linearer Zusamenhänge wie etwa der Temperaturabhängigkeit der Gleichgewichtskonstanten und somit auch des pCO₂ sowie des zeitlichen Verlaufs des CO₂-Austausches mit der Atmosphäre verzichten zu können.

TCO₂

Die Gesamtänderung des TCO_2 im Oberflächenwasser von einem Zeitschritt zum nächsten (ΔTCO_2) setzt sich aus folgenden Einzeländerungen zusammen:

1: 0	STCO _{2,(Austausch)} :	CO ₂ -Austausch zwischen Atmosphäre und Oberflächenwasser					
2: 0	STCO _{2,(Salz)} :	salzgehaltsbedingte	TCO ₂ -Änderungen	durch	laterale	und	konvektive
		Prozesse (Salzeffekte	e).				
3: 6	STCO _{2.(Biologie)} :	TCO ₂ -Änderungen d	urch neue Produktion	und Re	mineralisi	erung	organischen
		Materials.				-	•

Daraus ergibt sich die Gesamt-TCO₂-Änderung als Summe der Einzeländerungen:

$$\delta TCO_{2, (Austausch)} \qquad \delta TCO_{2, (Salz)} \qquad \delta TCO_{2, (Biologie)} \qquad (49.I)$$

$$\Delta TCO_{2} \qquad \checkmark \qquad \checkmark \qquad \checkmark$$

$$\Delta TCO_2 = \delta TCO_{2, (Austausch)} + \delta TCO_{2, (Salz)} + \delta TCO_{2, (Biologie)}$$
(49.II)

Bei dieser Vorgehensweise wird durch die Aufsummierung der Einzeländerungen δTCO_2 eine realitätsnahe Beschreibung des TCO₂ und pCO₂ erhalten, die die tatsächlichen Abhängigkeiten widerspiegelt. Da $\delta TCO_{2,(Salz)}$ durch die Beziehungen zum Salzgehalt (41.I, 41.III und 41.V) bestimmt ist, und sich $\delta TCO_{2,(Austausch)}$ als "reagierende Größe" aus dem im Zeitschritt zuvor berechneten pCO₂ ergibt, ist noch $\delta TCO_{2,(Biologie)}$ saisonal zu parametrisieren. Dies geschieht im produktiven Halbjahr anhand der Sauerstoffsättigung, im Herbst- und Winterhalbjahr anhand der Phosphatkonzentrationen des Oberflächenwassers. Von entscheidender Bedeutung für eine realistische Beschreibung von $\delta TCO_{2,(Austausch)}$ und somit auch für $\delta TCO_{2,(Biologie)}$ sind die Austauschkoeffizienten k_{ex}, da sie über die Größe $\delta TCO_{2,(Austausch)}$ direkt Einfluß auf die Berechnungen des CO₂-Haushalts des Oberflächenwassers nehmen.

pCO₂

Der pCO_{2.sw} wird durch TCO₂, Alkalinität, Salzgehalt und Temperatur gesteuert:

$$pCO_2 = f(CO_2^*(aq) * K_H^*(T, p, S), TCO_2, A_T)$$
 (7.1)

Dementsprechend wird der pCO₂ nicht eigenständig parametrisiert. Die Berechnung für jeden Zeitschritt erfolgt als Ergebnisgröße anhand der ihn steuernden Größen TCO₂, Alkalinität, Salzgehalt und Temperatur. Zu diesem Zwecke ist die Parametrisierung der Alkalinität notwendig.

Die Parametrisierung von Salzgehalt, $\delta TCO_{2.(Salz)}$ und Alkalinität

Das Schema der Parametrisierung von Salzgehalt, δTCO_{2.(Salz)} und Alkalinität zeigt Abbildung 50.A.

Stationswerte: Salzgehalt: Stationswert_{Winterfahrt} - Stationswert_{Sommerfahrt} => saisonale Salzgehaltsdifferenz TCO₂: $Stationswert_{Winterfahrt}$ - $Stationswert_{Sommerfahrt}$ => saisonale TCO₂-Differenz Alkalinität: Stationswert_{Winterfahrt} - Stationswert_{Sommerfahrt} => saisonale Alkalinitätsdifferenz Abgeleitete Funktionen: d (saisonale TCO₂-Differenz) => salzgehaltsabhängiger Teil der saisonalen TCO₂-Differenz d(saisonale Salzgehaltsdifferenz) d(saisonale Alkalinitätsdifferenz) => salzgehaltsabhängige Amplitude des Alkalinitätsjahresgangs d(saisonale Salzgehaltsdifferenz) Externe Größe: langjährig gemittelte Amplitude des Salzgehaltsjahresgangs Berechnete Größen aus Mittelwerten der Gitterelemente: Salzgehalt: Salzgehalt + Amplitude des Salzgehaltsjahresgangs => Salzgehaltsjahresgang der Gitterelemente TCO₂: salzgehaltsabh. Teil der saisonalen TCO_2 -Differenz + Salzgehaltsjahresgang => δTCO_2 . (Salz) Alkalinität: Amplitude des Alkalinitätsjahresgangs + Salzgehaltsjahresgang => Jahresgang der Alkalinität Abb. 50.A: Schema der Parametrisierung von Salzgehalt, STCO_{2.(Salz)} und Alkalinität Die in Kapitel 4.1 ermittelten Beziehungen zwischen den saisonalen TCO₂- sowie Alkalinitäts-

änderungen und den Salzgehaltsänderungen (41.I-VI) sind aus den Meßwerten der jeweiligen Stationen ermittelt. Die Salzgehaltsdifferenzen, die in die Modellrechnungen eingehen, werden aus langjährig gemittelten Werten berechnet (Matthäus, 1978), wie im folgenden Kapitel 5.2 erläutert wird. Ausgehend von den für jedes Gitterelement gemittelten Winterwerten erfolgt dann die Berechnung der Jahresgänge von Alkalinität (Kap. 5.2) mit Hilfe der aus Stationswerten gewonnenen Funktionen 41.II, 41.IV und 41.VI und den mittleren Salzgehaltsdifferenzen. Analog dazu erfolgt die Bestimmung des salzgehaltsabhängigen Teils der saisonalen TCO₂-Änderung δ TCO_{2,(Salz)} aus den Steigungen der Funktionen 41.I, 41.III und 41.V und den mittleren Salzgehaltsdifferenzen (Kap. 5.3). Durch die Einführung der Gittermittelwerte und der mittleren Salzgehaltsdifferenzen werden Werte für die Gitterelemente erzeugt, die die räumlich stark veränderlichen Stationswerte durch repräsentative Mittelwerte ersetzen.

Abb. 51.A: Schema zur Berechnung der Jahresgänge von pCO₂ und TCO₂

Das Schema (Abb. 51.A) zeigt die Abhängigkeiten der einzelnen Größen voneinander so, wie sie in den Modellrechnungen berücksichtigt werden. Deutlich werden der Summencharakter des TCO_2 gemäß 49.I und 49.II sowie die Abhängigkeit des pCO₂ von TCO₂, A_T, Salzgehalt und Temperatur gemäß 7.I. Weiterhin erkennbar ist die gegenseitige Beeinflussung von pCO₂ und TCO₂ durch den Austausch zwischen Atmosphäre und Oberflächenwasser über das Bindeglied $\delta TCO_{2,(Austausch)}$. Die gestrichelten Linien deuten an, daß die dadurch verbundenen Größen und deren saisonale Veränderlichkeiten unabhängig von den aus ihnen berechneten Größen TCO₂ und pCO₂ sind. Es gibt keine Rückkopplung, wie sie zwischen TCO₂ und pCO₂ durch δ TCO_{2,(Austausch)} auftritt. Die gepunktete Linie zwischen Salzgehalt und Alkalinität sowie δ TCO_{2,(Salz)} besagt, daß diese beiden Größen salzgehaltsabhängig parametrisiert sind. Auf die Parametrisierungen der Größen im einzelnen wird in den folgenden Kapiteln 5.2 und 5.3 eingegangen.

5.2 Jahresgänge der Hilfsgrößen

Unter Hilfsgrößen sind die Größen zu verstehen, die zur Berechnung von TCO_2 und pCO_2 nötig sind. Dies sind nach Gleichung 7.I Temperatur, Salzgehalt und die davon abhängige Alkalinität. Für die Berechnungen der CO_2 -Flüsse zwischen Atmosphäre und Meeresoberfläche sind das die Windgeschwindigkeitsverteilung, Austauschkoeffizienten sowie die Tiefe der durchmischten Schicht.

Windgeschwindigkeitsverteilung und Austauschkoeffizienten k_{ex}

Die Windgeschwindigkeitsverteilungen wurden aus den Daten der Station Arkona berechnet (DWD, 1990). Die Daten der Jahre 1980-1990, die im Dreistundentakt vorliegen, wurden in 1m/s-Schritten zusammengefaßt und die monatlichen Häufigkeiten festgestellt. Das heißt, für jeweils drei Zeitschritte des Modells gilt dieselbe Windgeschwindigkeitsverteilung. Abbildung 52.A zeigt die Windgeschwindigkeitsverteilung für exemplarisch für vier Monate:

Windgeschwindigkeit [m/s]

Abb. 52.A: Ausgewählte Windgeschwindigkeitsverteilungen in den Monaten März, Juni, September und Dezember

Ein Vergleich mit geostrophisch berechneten Windgeschwindigkeiten vom dänischen hydrographischen Institut ergab, daß die Daten der Station Arkona als repräsentativ für die zentrale Ostsee betrachtet werden können.

Die Berechnung der Austauschkoeffizienten k_{ex} (21.VII) erfolgt nach den in Kapitel 2 diskutierten

drei Ansätzen von Liss und Merlivat (1986), Peng und Takahahshi (Tans et al., 1990) sowie Wanninkhof (1992). Für die Berechnung nach dem Ansatz von Liss und Merlivat wurden die Windgeschwindigkeiten in drei Klassen geteilt: <4 m/s, 4-13 m/s und >13m/s. Daraus wurden nach den Gleichungen 23.I-III für die Geschwindigkeitsklassen die Austauschkoeffizienten berechnet. Diese wurden gemäß der Windgeschwindigkeitsverteilung gewichtet gemittelt. Für die Berechnung der Austauschkoeffizienten nach den Ansätzen von Peng und Takahashi bzw. Wanninkhof wurden die gewichteten Mittelwerte aus der gesamten Windgeschwindigkeitsverteilung gebildet. Mit Hilfe von 23.IV/V wurden die Austauschkoeffizienten nach Peng und Takahashi ermittelt.

In die Berechnung des Austauschkoeffizienten nach Wanninkhof (1992) geht die salzgehalts- und temperaturabhängige Schmidtzahl ein. Diese kann alternativ für Salzgehalte von 35psu (Sc₆₆₀) nach Jähne et al. (1987) oder für Süßwasser (Sc₆₀₀) nach Wilke und Chang (1955) berechnet werden. Weil der mittlere Salzgehalt der zentralen Ostsee bei 6-8PSU liegt, wurde in den folgenden Berechnungen die Schmidtzahl Sc₆₀₀ für Süßwasser verwendet. Da die Schmidtzahl nach 24.II stets mit ihrem Wert bei 25° C (Sc₆₆₀=660, Sc₆₀₀=600) normiert wird, sind die Unterschiede geringfügig. Die Temperaturabhängigkeit der Berechnung der Austauschkoeffizienten nach Wanninkhof (1992) äußert sich bei der Berechnung der Löslichkeitskonstanten K_H^{*}, der chemischen Beschleunigung sowie der Schmidtzahl Sc. Die Temperatur wurde dazu für jeden Zeitschritt über alle 32 Gitterelemente gemittelt. Es ergibt sich im Gegensatz zu den anderen Ansätzen für jeden Zeitschritt ein individueller Austauschkoeffizient k_{ex}, obwohl die Windgeschwindigkeit immer für jeweils drei Zeitschritte gleich ist. Abbildung 53.A zeigt deutlich die Unterschiede, die sich bei der Berechnung der Autauschkoeffizienten mit den drei Ansätzen ergeben.

Abb. 53.A: Austauschkoeffizienten k_{ex} für CO₂ (Die y-Achse ist logarithmisch skaliert.)

In den Sommermonaten liefert die Berechnung nach Wanninkhof die niedrigsten Koeffizienten, die aber nur geringfügig niedriger sind als die der beiden anderen Ansätze. Der wesentliche Unterschied zwischen den drei Ansätzen ist die extrem hohe Bewertung der Wintermonate von Peng und Takahashi. Die von ihnen berechneten Austauschkoeffizienten betragen im Sommer nur etwa 1/8 (!), die Koeffizienten der anderen beiden Ansätze etwa 1/3 des Winterwertes. Die im folgenden dargestellten Jahresgänge von TCO₂ und pCO₂ sowie die resultierenden CO₂-Flüsse wurden mit den temperaturabhängigen Austauschkoeffizienten nach Wanninkhof (1992) ermittelt, da diese aus einer theoretisch gestützten Weiterentwicklung der beiden anderen, rein empirischen Ansätze hervorgehen.

Salzgehalt

Die Salzgehaltsdifferenzen Δ (Salzgehalt) zwischen dem winterlichen Maximum und dem sommerlichen Minimum in der zentralen Ostsee wurden nach Matthäus (1978) berechnet. Es wurde folgende Abhängigkeit zur geographischen Breite ermittelt:

 Δ (Salzgehalt) = [°N] * 0.1925 - 10.53 (54.I)

Die experimentellen Salzgehaltsdifferenzen zeigen in Anbetracht der vielfach erwähnten hohen räumlichen Veränderlichkeit des Salzgehaltes, die in der Größenordnung der saisonalen Veränderlichkeit liegt, eine sehr gute Übereinstimmung mit der nach Matthäus berechneten Funktion (Abb. 54.A).

Abb. 54.A: Abhängigkeit der Salzgehaltsdifferenzen von der geographischen Breite

Für das Gitterelement 28, Station F7 in der Danziger Bucht, wurde nach Matthäus (1978, Station P_1) folgende Salzgehaltsdifferenz zwischen Wintermaximum und Sommerminimum angenommen:

 Δ (Salzgehalt) = 0.31

Für die Gitterelemente 1-5 und 30-32, die die Verbindung zwischen der zentralen Ostsee und den Übergangsgebieten zur Nordsee darstellen, wurden die Salzgehaltsdifferenzen nach folgender, aus eigenen Daten abgeleiteten Beziehung berechnet:

$$\ln \Delta(\text{Salzgehalt}) = [^{\circ}\text{E}] * -0.625 + 8.247$$
(54.III)

Das Salzgehaltsmaximum wurde für alle Gitterelemente auf den 1. März, die Salzgehaltsminima wurden wie folgt datiert (Matthäus, 1978):

- Gitterelemente 1-5, 30-32:	1.September
- Gitterelemente 6-11, 21-27, 29:	10. August
- Gitterelemente 12-14, 20:	1. August
- Gitterelement 28:	1.Juli

54

(54.II)

Zur Berechnung des Jahresgangs wurden die Meßwerte der Winterfahrt als Startwert verwendet und die Salzgehaltsminima mit den Formeln 55.I-III berechnet. Der Verlauf zwischen den Extrema wurde jeweils als halbe Cosinusperiode angenommen, so daß entsprechend der Eintrittsdaten der Salzgehaltsminima unsymmetrische Verläufe resultieren können. Die berechneten Salzgehaltsjahresgänge stehen in guter Übereinstimmung mit den von Matthäus (1978) beschriebenen. Eine sichere Beschreibung der Salzgehaltsjahresgänge sowohl in Amplitude wie auch in zeitlichem Verlauf ist von grundlegender Bedeutung für die Modellrechnungen, da, wie später folgt, anhand des Salzgehaltes Amplitude und Verlauf der Jahresgänge der Alkalinität und $\delta TCO_{2,(Salz)}$ parametrisiert werden. Diese beiden Größen wirken direkt auf die pCO₂- und TCO₂-Berechnungen, so daß Fehleinschätzungen des Salzgehaltsjahresgangs zu gravierenden Fehlern in der Berechnung des Karbonatsystems führen.

Abb. 55.A: Jahresgänge des Salzgehaltes in der eigentlichen Ostsee

Abbildung 55.A zeigt deutlich die Unterschiede in den Salzgehaltsjahresgängen in der eigentlichen Ostsee. Die Salzgehaltsdifferenzen steigen mit zunehmender Annäherung an die wichtigsten Süßwasserquellen durch sommerliche Verdünnung (Gitterelemente 5, 8, 11 oder 20, 24, 27) sowie mit zunehmender Annäherung zur ozeanischen Salzwasserquelle - Nordsee und Übergangsgebiete zur Nordsee - durch winterliche "Salzgehaltserhöhung" (Gitterelement 1). Gut sichtbar sind die nahezu konstanten Salzgehalte im Übergangsbereich zwischen beiden Einflußgebieten (Gitterelemente 5, 27).

Temperatur

Aus den langjährig gemittelten Daten (IOW, 1996) wurde ein Temperaturjahresgang für die Station GO33 [271] in der östlichen Gotlandsee abgeleitet (Abb. 56.A), der den Zeitschritten der Modellrechnungen entspricht. Der saisonale Verlauf der Temperatur zwischen den für jedes Gitterelement gemittelten Werte der Winterfahrt (1. März) und der Sommerfahrt (1. September) wurde anhand dieses Jahresgangs berechnet.

Abb. 56.A: Temperaturjahresgang in der östlichen Gotlandsee (Gitterelement 24)

Tiefe der durchmischten Schicht

Abb: 56.B:

Jahreszeitlicher Verlauf der Tiefe der durchmischten Schicht

Die durch die Grenzfläche Atmosphäre/Meerresoberfläche ausgetauschte CO_2 -Menge (mol/m²) muß zur Berechnung der dadurch verursachten Konzentrationsänderungen (mol/dm³) im Oberflächenwasser auf die durchmischte Schicht verteilt werden. Ebenso wird die Tiefe der durchmischten Schicht für die Umrechnungen der TCO₂-Änderungen im Oberflächenwasser auf flächenbezogene Werte benötigt. Die jahreszeitliche Veränderlichkeit der Tiefe der durchmischten Schicht in der eigentlichen Ostsee wird nach Matthäus (1977) und Franck (1985) ermittelt und ist in Abbildung 56.B für vier Gitterlemente exemplarisch dargestellt.

Alkalinität

Der mittlere winterliche Nitratgehalt von etwa 5μ M und eine Vernachlässigung der Kalkschalenbildung, gerechtfertigt durch das Ionenprodukt von Ca²⁺ und CO₃²⁻, das deutlich unter dem Löslichkeitsprodukt von Calcit und Aragonit liegt, erlauben die alkalinitätsneutrale Betrachtung der neuen Produktion. Folglich läßt sich die Alkalinität für die einzelnen Seegebiete als Funktion des Salzgehaltes beschreiben. Die Kopplung zwischen Alkalinitäts- und Salzgehaltsänderung wurde in Kapitel 4.3 ausführlich behandelt.

Abb. 57.A: Jahresgänge der Alkalinität in der eigentlichen Ostsee

Die Eintrittsdaten der Extrema sowie die Kurvenverläufe zwischen ihnen entsprechen denen des Salzgehaltes. Als Startwerte (1. März) wurden für jedes Gitterelement aus den gemittelten Salzge-

halts-, Temperatur, TCO_2 - und pCO_2 -Werten die zugehörigen Alkalinitätswerte berechnet. Die Differenzen zwischen den Extrema wurden für die Gitterelemente wie folgt ermittelt:

- Gitterelemente 1-4, 29-32:	gemäß Gleichung 41.VI
- Gitterelemente 5-14:	gemäß Gleichung 41.II
- Gitterelemente 20-28:	gemäß Gleichung 41.IV

Abbildung 57.A zeigt die unterschiedlichen saisonalen Veränderlichkeiten der Alkalinität in der eigentlichen Ostsee. Für den Einflußbereich von Finnischem und Bottnischem Meerbusen werden sommerliche Alkalinitätsabnahmen bis zu 150 μ mol/kg berechnet, in den hier dargestellten Gitterelementen 11 und 20 in der nördlichen Gotlandsee sind es etwa 120 μ mol/kg bzw. 50 μ mol/kg. Im Gegensatz dazu werden für das Danziger Becken (Gitterelement 27) sommerliche Alkalinitätszunahmen bis zu 70 μ mol/kg ermittelt. In der Bornholmsee und der östlichen Gotlandsee sind nur noch geringe Alkalinitätszunahmen im Sommer zu beobachten (Gitterelemente 5 und 24). Geringe Alkalinitätsabnahmen im Sommer werden für die Arkonasee, die im direkten Einflußbereich der Übergangsgebiete zur Nordsee liegt, und für die südwestliche Gotlandsee (Gitterelemente 1, 8) errechnet. Anhand dieser Abbildung werden die in Kapitel 4.2 und 4.3 diskutierten unterschiedlich geprägten Zuströme von Oberflächenwasser in die eigentliche Ostsee deutlich. Eine mit abnehmendem Salzgehalt abnehmende Alkalinität (sommerliche Alkalinitätsabnahme) wird in den Einflußbereichen der nördlichen und westlichen Zuströme beobachtet, wohingegen eine mit abnehmendem Salzgehalt steigende Alkalinität (sommerliche Alkalinitätszunahme) in den Einflußbereichen der östlichen Zuströme auftritt.

5.3 Jahresgänge von TCO₂ und pCO₂

5.3.1 Gesamtkarbonat (TCO₂)

Die Gesamtänderung des TCO₂ von einem Zeitschritt zum nächsten (Δ TCO₂) wird aus den Einzeländerungen δ TCO_{2,(Austausch}), δ TCO_{2,(Salz}) und δ TCO_{2,(Biologie}) berechnet (49.II). δ TCO_{2,(Austausch}) resultiert jeweils aus dem pCO₂ des vorangegangenen Rechenschrittes unter Einbeziehung der Austauschkoeffizienten und braucht somit nicht parametrisiert zu werden (reagierende Größe). Folglich ist noch die Beschreibung der saisonalen Veränderlichkeit von δ TCO_{2,(Salz}) und δ TCO_{2,(Biologie}) notwendig.

Beschreibung der saisonalen Veränderlichkeit von $\delta TCO_{2,(Salz)}$

Der zeitliche Verlauf von $\delta TCO_{2,(Salz)}$ entspricht dem des Salzgehalts. Die in Kapitel 4.3 ermittelten Funktionen zur saisonalen Veränderlichkeit des TCO₂ liefern die Kopplung zwischen der Salzgehaltsund der TCO₂-Änderung (Abb. 40.A). Die Steigungen der ermittelten Geradengleichungen 41.I, 41.III und 41.V beschreiben demnach den nur von den Salzgehaltsänderungen abhängigen Teil der Gesamtänderung ΔTCO_2 und stellen somit den gesuchten Term $\delta TCO_{2,(Salz)}$ der Gleichung 49.II dar. Aus den oben errechneten saisonalen Salzgehaltsdifferenzen werden demzufolge die salzgehaltsabhängigen TCO₂-Differenzen $\delta TCO_{2,(Salz)}$ entsprechend der in Kapitel 4.3 entwickelten geographischen Zuordnungen berechnet:

Gitterelemente 1-4, 29-32: gemäß Gleichung 41.V
Gitterelemente 5-14: gemäß Gleichung 41.I
Gitterelemente 15-28: gemäß Gleichung 41.III

Die saisonalen Auswirkungen der salzgehaltsabhängigen TCO_2 -Änderungen auf den Gesamt- TCO_2 sind wie die Salzgehaltsänderungen regional unterschiedlich. So werden im Bereich der südlichen zentralen Ostsee weniger als 10μ mol/kg und im Bereich der nördlichen zentralen Ostsee bis zu 200μ mol/kg gefunden.

Beschreibung der saisonalen Veränderlichkeit von $\delta TCO_{2,(Biologie)}$

Die durch den Salzgehalt bedingte Veränderung des TCO₂ (δ TCO₂,(Salz)) ist nicht die einzige Ursache für die saisonale Veränderlichkeit des TCO₂, sondern sie wird ergänzt durch die Bildung von organischem Material aus anorganischem Kohlenstoff und dessen Remineralisierung. Da aber nur ein indirekter Zusammenhang zwischen Salzgehaltsänderungen und neuer Produktion oder Remineralisierung besteht, wurde die saisonale Veränderlichkeit von δ TCO₂,(Biologie) zeitlich salzgehaltsunabhängig parametrisiert. Dazu wurde der Jahresgang von δ TCO₂,(Biologie) in ein "produktives" Halbjahr und in eines durch die Remineralisierung charakterisiertes Halbjahr geteilt. Während des produktiven Halbjahres im Frühling und im Sommer wird dem Oberflächenwasser durch neue Produktion organischen Materials CO₂ entzogen, im Herbst und im Winter wird CO₂ durch Remineralisierung an das Oberflächenwasser abgegeben. Eine eventuelle Herbstblüte blieb unberücksichtigt.

Zeitlicher Verlauf der neuen Produktion

Zur zeitlichen Beschreibung der neuen Produktion bieten sich aus chemischer Sicht die Änderungen der Nährstoffkonzentrationen (Abb. 60.B) oder der Sauerstoffsättigung (Abb. 60.A) im Oberflächenwasser an.

Grundgedanke bei der Beschreibung der neuen Produktion mit Hilfe der Nährstoffkonzentrationen ist, daß das organische Material aus Kohlenstoff, Sauerstoff, Stickstoff und Phosphor (u.a.) in festen Verhältnissen aufgebaut ist (Redfield et al., 1963). Zur zeitlichen Beschreibung der Abnahme des Kohlenstoffgehaltes des Oberflächenwassers durch neue Produktion (STCO2, (Biologie)) sollten demnach die zeitlichen Änderungen der Nährstoffkonzentrationen geeignet sein. Dazu stehen die Stickstoffkomponenten NH4, NO2 und NO3 oder aber PO4 zu Verfügung. Eine Abschätzung des zeitlichen Verlaufs der neuen Produktion anhand der Nährstoffkonzentrationen ist mit Unsicherheiten verbunden, da ständig Nährsalze in das Oberflächenwasser eingetragen werden. Phosphat hat den Vorteil, daß sein atmosphärischer Eintrag vernachlässigbar gering ist, wohingegen der atmosphärische Stickstoffeintrag in die Meeresoberfläche eine erhebliche Bedeutung für dem Stickstoffhaushalt besitzt (Nehring, 1996) . Ferner stellt die sommerliche Stickstoffixierung durch Cyanobakterien eine schwer zu quantifizierende Größe dar. Bei Benutzung des Phosphats als Maß für die biologische Aktivität stellt sich das Problem des schnellen Recyclings (Nehring, 1981) in der Oberflächenschicht durch nahezu kohlenstoffneutralen Zerfall oder Abbau phosphatreichen Materials wie zum Beispiel ATP (v. Bodungen, pers. comm.). Ein weiteres Problem bei der Abschätzung der neuen Produktion anhand von Nährstoffkonzentrationen als "biologische Uhr" ist jedoch die Bilanzierung der Nährstofffrachten der Flußwassereinträge. Die Nährstoffgehalte, die tatsächlich die freie Ostsee erreichen und somit der neuen Produktion zur Verfügung stehen, sind schwer zu erfassen, und außerdem haben die Flußwassereinträge gerade in der produktiven Jahreszeit ihr Maximum (Nehring und Francke, 1981). Die Änderungen der Nährstoffkonzentrationen können nicht als Umsatzgrößen benutzt werden, denn sie geben nur Nettoänderungen an und machen dadurch besonders im Frühling und Sommer keine Aussagen über den tatsächlichen Umsatz. Am deutlichsten wird dies durch Erreichen des Nährstoffminimums schon Ende Mai oder Anfang Juni, wohingegen neue Produktion noch bis September stattfindet. Die Parametrisierung der Kohlenstöffaufnahme durch neue Produktion anhand des Verlaufs der Nährstoffkonzentrationen erscheint daher nicht sinnvoll.

Eine andere Möglichkeit, den zeitlichen Verlauf der neuen Produktion bzw. von $\delta TCO_{2,(Biologie)}$ zu beschreiben, bietet die Sauerstoffsättigung im Oberflächenwasser. Neue Produktion setzt Sauerstoff frei und führt somit zu einer Übersättigung des Wassers mit O₂ in der euphotischen Zone.

Abb. 60.A: Jahresgang der Sauerstoffsättigung im Oberflächenwasser an der BMP-Station K1 in der südöstlichen Gotlandsee [55°33'N, 18°24'E] (HELCOM, 1996)

Abb. 60.B: Phosphatjahresgang im Oberflächenwasser an der Station GO33 [271] (IOW, 1996)

Da die Einstellung des Sauerstoffpartialdruckgleichgewichts zwischen Atmosphäre und Oberflächenwasser im Zeitbereich von wenigen Tagen stattfindet, zeigt die Sauerstoffsättigung unter Berücksichtigung der Zeittaktlänge der Modellrechnungen (10 Tage) die biologische Aktivität ohne

60

Verzögerung an und ist dadurch ein geeignetes Maß zur zeitlichen Beschreibung der neuen Produktion. Es wurde aus der Sauerstoffsättigung jedoch keine Aussage zur absoluten Größe der neuen Produktion abgeleitet. Zur Ermittlung des relativen Beitrags eines Zeitschritts an der Gesamtgröße $\delta TCO_{2,(Biologie)}$ wurden demnach die entsprechenden Sättigungswerte ermittelt und aus den zeitlichen Integralen (durchgezogene Linien) die relativen Beiträge der einzelnen Zeitschritte zur gesamten neuen Produktion berechnet (Abb. 60.A). Die Abbildungen 60.A und 60.B zeigen deutlich, daß durch die Änderungen der Phosphatkonzentrationen weder das Produktionsmaximum wiedergegeben noch die neue Produktion nach Erreichen des Nährstoffminimums Ende Mai bzw. Anfang Juni beschrieben werden können. Die Sauerstoffsättigung zeigt jedoch deutlich noch biologische Aktivität nach Erreichen des Nährstoffminimums und bewirkt eine Abnahme des TCO₂ über das Nährstoffminimum hinaus. Der zeitliche Verlauf von $\delta TCO_{2,(Biologie)}$ wurde folglich für das produktive Halbjahr mittels der Sauerstoffsättigung des Oberflächenwassers parametrisiert.

Die absolute Größe von $\delta TCO_{2,(Biologie)}$ wurde für jedes Gitterelement individuell durch Iteration so angepaßt, daß der für jedes Gitterelement gemittelte pCO₂ der Sommerfahrt durch die Modellrechnungen erreicht wurde.

Die Berechnungen des TCO₂ und pCO₂ für das produktive Halbjahr orientieren sich also für jedes Gitterelement ausgehend von den gemittelten Winter-pCO₂- und TCO₂-Werten an den gemittelten Sommer-pCO₂-Werten. Die Anpassung erfolgte anhand der veränderlichen Größe δ TCO₂.(Biologie).

Zeitlicher Verlauf der Remineralisierung

Der Anstieg des TCO₂ bis zum Wintermaximum wird nicht allein durch Salzeffekte und atmosphärischen CO₂-Austausch verursacht, sondern auch durch Remineralisierung organischen Materials. Dieser Prozeß wird in den Modellrechnungen im Herbst und Winter ebenfalls durch den Term δ TCO_{2.(Biologie)} ausgedrückt. Der zeitliche Verlauf dieser zusätzlichen CO₂-Zufuhr beginnt mit dem Wiederansteigen der Phosphatkonzentrationen im September und endet mit dem Nährstoffmaximum Ende Februar (Abb. 60.B). Die zeitliche Parametrisierung der Remineralisierung mittels der PO₄-Konzentrationen ist hier möglich, da aufgrund der vernachlässigbaren neuen Produktion und der im Herbst und Winter stark zurückgehenden Flußwassereinträge (Wyrtki, 1954) die Änderung der PO₄-Konzentrationen in erster Näherung allein der Freisetzung von PO₄ durch Remineralisierung organischen Materials zugeschrieben werden kann.

Zur Berechnung wurden anhand der obigen Abbildung aus der Differenz zwischen PO_4 -Minimum und -Maximum die relativen Änderungen der PO_4 -Konzentrationen für jeden Zeitschritt ermittelt. Die Gesamtgröße für jedes Gitterelement wird iterativ so angepaßt, daß ausgehend vom Sommerwert (1. September) der Ausgangswert des pCO₂ (1. März) erreicht wird.

Die Modellrechnungen ergeben für die zentrale Ostsee einen starken Rückgang der TCO₂-Konzentrationen vom Einsetzen der neuen Produktion im März bis zum TCO₂-Minimum Ende Juni bzw. Anfang Juli, das nicht mit dem Salzgehaltsminimum zusammenfällt. Danach erfolgt ein langsamerer Wiederanstieg der TCO₂-Werte bis zum winterlichen Maximum. Lediglich für den Bereich des Danziger Beckens wird ein steiler Anstieg bis zu dem frühen Maximum im Oktober vorhergesagt. Die größten saisonalen Schwankungen werden für das Einstromgebiet des Bottnischen Meerbusens in die nordwestliche Gotlandsee mit mehr als 250μ mol/kg (Gitterelemente 11-13) berechnet, die in südliche Richtung bis etwa 100μ mol/kg (Gitterelement 5) abnehmen. Die nordöstliche Gotlandsee zeigt ebenfalls hohe saisonale TCO₂-Schwankungen von etwa $100-130\mu$ mol/kg (Gitterelement 20). Für die Bornholm- und Arkonasee werden zurückgehende saisonale TCO₂-Differenzen bis etwa 70μ mol/kg (Gitterelement 1) berechnet (Abb 62.A).

Abb. 62.A:

TCO₂-Jahresgänge in der eigentlichen Ostsee

Zusammenfassung der Parametrisierung von TCO₂

- Die saisonalen Veränderlichkeiten der TCO₂-Oberflächenkonzentration ΔTCO₂ werden als Summe aus den Einzeländerungen δTCO_{2,(Austausch)}, δTCO_{2,(Salz)} und δTCO_{2,(Biologie)} berechnet.
 STCO rein salzgeholtschhöngig hereghnet
- 2: $\delta TCO_{2,(Salz)}$ rein salzgehaltsabhängig berechnet.
- 3: $\delta TCO_{2,(Biologie)}$ wird zweigeteilt in Abhängigkeit des Verhältnisses von neuer Produktion zu Remineralisierung organischen Materials berechnet. Im Frühling und Sommer überwiegt die neue Produktion gegenüber der Remineralisierung. Die zeitliche Beschreibung erfolgt in dieser Jahreszeit anhand der Sauerstoffsättigung des Oberflächenwassers, die Größe wird iterativ an den gemessenen Sommer-pCO₂ angepaßt. Während Herbst und Winter dominiert die Remineralisierung, die mittels der PO₄-Konzentrationen zeitlich parametrisiert und iterativ an den Winter-pCO₂ (Startwert) angepaßt wird.
- 4: $\delta TCO_{2,(Austausch)}$ wird aus den Modellrechnungen für jeden Zeitschritt aus dem pCO₂ des vorangegangenen Zeitschritts ermittelt.
- 5: Die niedrigsten TCO₂-Konzentrationen werden Ende Juni bzw. Anfang Juli in einem ausgeprägten Minimum berechnet. Die Maximalwerte im Februar mit Ausnahme der südöstlichen Gotlandsee liegen auf einem gleichmäßigen winterlichen Niveau von Januar bis zum Beginn der TCO₂-Abnahme im März.

5.3.2 pCO₂

Der Jahresgang des in Abbildung 64.A dargestellten atmosphärischen $pCO_{2,aun}$ wird aus den gemittelten Werten der Winter- (1. März) und der Sommerfahrt (1. September) berechnet. Die Zeiträume zwischen winterlichem Maximum (356.2 μ atm) und sommerlichem Minimum (338.7 μ atm) werden cosinusförmig ergänzt.

Der pCO_{2,sw} eines jeden Zeitschritts ergibt sich zwangsläufig nach Gleichung 7.I

$$pCO_2 = f(CO_2^*(aq) * K_H^*(T, p, S), TCO_2, A_T)$$
(7.1)

als Funktion von TCO₂, Alkalinität, Salzgehalt und Temperatur, deren Jahresgänge im vorangegangenen beschrieben sind. Temperatur und Salzgehalt gehen in die von ihnen abhängigen Löslichkeits- und Gleichgewichtskonstanten K_{H}^{*} , K_{1}^{*} und K_{2}^{*} ein.

Die in Abbildung 64.A dargestellten pCO₂-Jahresgänge spiegeln das Verhältnis der beiden steuernden Größen TCO₂ und Temperatur wider (TCO₂- und Temperaturkontrolle). Der ähnliche Verlauf der pCO₂- und TCO₂-Jahresgänge läßt auf eine deutliche Dominanz der TCO₂-Kontrolle über die Temperaturkontrolle schließen. Diese Dominanz tritt in Gebieten mit hoher, saisonal geprägter biologischer Aktivität wie in den Ozeanen höherer Breiten auf (Schneider und Morlang, 1995). Eine Temperaturkontrolle hingegen ist nur in Gebieten mit ganzjährig gleichmäßiger biologischer Aktivität wie zum Beispiel in den äquatorialen Regionen zu erwarten (Weiss et al., 1982). Diese Effekte wurden bei der Beschreibung der Löslichkeitspumpe (Kap. 2.2) ausführlich diskutiert.

Mit Einsetzen der Frühjahrsblüte im März findet eine starke Abnahme des pCO₂ bis etwa Juni durch Bildung organischen Materials ($\delta TCO_{2,(Biologie)}$) statt. Diese pCO₂-Abnahme wird unterstützt durch den mit dem Salzgehalt abnehmenden TCO₂ (δ TCO_{2.(Salz})). Die pCO₂-Abnahme wird durch atmosphärischen CO₂-Eintrag und durch temperaturbedingte pCO₂-Erhöhung abgeschwächt. Wenn etwa Ende Mai $\delta TCO_{2,(Biologie)}$ und $\delta TCO_{2,(Salz)}$ an Wirksamkeit verloren haben, das heißt, wenn die Änderungen, die sie auslösen, klein werden, treten für den pCO₂ die niedrigsten Werte auf. Aufgrund von steigendem TCO₂ und weiterhin steigenden Wassertemperaturen beginnt Ende Juni bzw. Anfang Juli der Wiederanstieg des pCO₂, der sich nach Erreichen des Temperaturmaximums etwas verlangsamt. Dies wird besonders deutlich an den pCO₂-Verläufen der südlichen und östlichen zentralen Ostsee (Gitterelemente 1, 5, 20-27). Mit Beginn der herbstlichen Konvektion wird dann der Anstieg bis zum Erreichen des winterlichen Niveaus durch steigenden TCO2 und zurückgehende Temperaturen wieder steiler. Auch bei dem herbstlichen Anstieg des pCO₂ dominiert die TCO₂-Kontrolle über die Temperaturkontrolle. Die Differenzen zwischen Wintermaximium und Frühjahrsminimum liegen in der zentralen Ostsee zwischen 300µatm in der östlichen Gotlandsee (Gitterelemente 20, 24) und etwa 400μ atm in der westlichen und südöstlichen Gotlandsee (Gitterelemente 8, 11, 27). Die Rechnungen ergeben minimale Werte von etwa 130-170µatm in der östlichen Gotlandsee, noch tiefere Partialdrücke um 110 μ atm werden für die nordwestliche Gotlandsee (Gitterelement 11) berechnet. Ähnlich ungewöhnlich niedrige CO_2 -Partialdrücke, teilweise mit Werten von weniger als 100 μ atm, sind Anfang August 1994 in der südlichen Bornholmsee und in dem Danziger Becken während einer vorausgegangenen Meßfahrt gemessen worden. Deutliche Abnahmen der Amplitude des pCO₂ werden bereits in Arkona- und Bornholmsee sowie in den Übergangsgebieten zur Nordsee beobachtet. Sie betragen dort nur noch etwa 120µatm (Gitterelement 1). Aus dem hiergesagten folgt, daß die in Kap. 4.4.1 (Tab. 46.a) ermittelten pCO₂-Unterschiede nicht die Differenzen zwischen Maximum und Minimum darstellen.

Abb. 64.A: pCO₂-Jahresgänge in der eigentlichen Ostsee

Die im Vergleich zu den Ozeanen auftretenden großen saisonalen Schwankungen in der Ostsee in pCO_2 und TCO_2 werden durch zwei einander verstärkende Faktoren verursacht. Der TCO_2 und somit auch der pCO_2 wird in der Ostsee stark durch Zufuhr salzarmen Wassers im Frühjahr und Sommer erniedrigt und durch winterliche Salzwasserzufuhr erhöht ($\delta TCO_{2,(Salz)}$). Durch diese Prozesse unterscheidet sich das Karbonatsystem der Ostsee von dem der Ozeane, da sie dort nicht zu beobachten ist. Weiterhin erfolgt im Frühjahr durch schnelle Ausbildung der thermischen Sprungschicht in etwa 20-25m Wassertiefe eine drastische Verringerung des für die Produktion zu Verfügung stehenden Kohlenstoffreservoirs, da die euphotische Zone nicht über diese Schicht hinausreicht. Gleichzeitig wird der bereits im Frühjahr und Sommer remineralisierte Kohlenstoff zwischen thermischer und haliner Sprungschicht bis zum Einsetzen der herbstlichen Konvektion gespeichert (Abb. 44.A). Mit Einsetzen der Konvektion wird das gespeicherte CO_2 wieder an die Oberflächenschicht abgegeben. In den Ozeanen reicht die durchmischte Schicht bis etwa 200m tief (Pickard und Emery, 1993), so daß bei neuer Produktion in vergleichbarer Größenordnung zum einen das zur Verfügung stehende Kohlenstoffreservoir viel größer ist, und zum anderen das durch Remineralisierung freigesetzte CO_2 sofort wieder in den Produktionskreislauf zurückgeführt wird.

5.3.3 Die Salzpumpe

Bertachtet man die im vorangegangenen diskutierten Einflüsse der salzgehaltsabhängigen TCO_2 -Änderungen auf den Gesamt- TCO_2 und den pCO_2 unter dem Aspekt der CO_2 -Pumpen, so läßt für die Ostsee die Vorstellung der "saisonalen Salzpumpe" entwickeln.

Zwar wird in den hier vorgestellten Modellrechnungen davon ausgegangen, daß der Salzeffekt $\delta TCO_{2,(Salz)}$ im Jahresmittel keine Nettoänderung des TCO₂ im Oberflächenwasser bewirkt. Die salzbedingten Änderungen des TCO₂ beeinflussen jedoch auch den pCO₂ und somit den CO₂-Austausch zwischen Atmosphäre und Oberflächenwasser. Um die Auswirkungen der Salzpumpe auf die Jahresgänge von TCO₂ und pCO₂ zu verdeutlichen, wurden die Modellrechnungen mit und ohne Berücksichtigung des Terms $\delta TCO_{2,(Salz)}$ durchgeführt. Alle anderen Größen blieben unverändert. Die mit und ohne $\delta TCO_{2,(Salz)}$ für das Gitterelement 24 (östliche Gotlandsee) berechneten Jahresgänge von TCO₂ und pCO₂ sind vergleichend in den Abbildungen 66.A und 66.B dargestellt. Der mit Salzeffekten berechnete pCO₂ zeigt erheblich niedrigere sommerliche Werte und einen deutlichen Anstieg im Herbst. Im Gegensatz dazu ist das sommerliche Minimum des ohne Salzeffekte berechneten pCO₂ deutlich erhöht und der herbstliche Anstieg nur sehr schwach ausgeprägt. Die Ursache dafür sind die TCO₂-Gehalte, die im Sommerhalbjahr deutlich durch die Salzeffekte erniedrigt werden. Darüberhinaus verläuft der herbstliche Anstieg des TCO₂ ohne Salzeffekte deutlich langsamer, so daß der pCO₂ fast konstant bleibt. Die Salzeffekte bewirken im Sommer eine verstärkte CO₂-Untersättigung des Oberflächenwassers, im Winter allerdings bewirken sie ein Ansteigen des pCO₂ in den Bereich der Übersättigung. Die Salzpumpe verursacht also im Sommer eine erhöhte CO₂-Aufnahme durch das Oberflächenwasser, im Winter hingegen eine CO₂-Abgabe an die Atmosphäre. Die salzbedingten TCO₂-Änderungen können somit indirekt über ihre Beeinflussung des pCO₂ jährliche Nettoänderungen des Oberflächen-TCO₂ auslösen.

Die (hypothetischen) verringerten Amplituden der ohne Salzeffekte berechneten Jahresgänge sind mit den im Nordatlantik beobachteten vergleichbar. Der herbstliche Einfluß der Salzpumpe steht in Übereinstimmung mit den in Abb. 44.A gemachten Beobachtungen, daß sich im Baltischen Zwischenwasser während des Frühjahrs und des Sommers TCO₂ anreichert. Dieses liegt somit als Salzbestandteil vor und wird im Zuge der konvektiven Salzgehaltserhöhung wieder ins Oberflächenwasser gemischt. Die herbst- und winterlichen Auswirkungen von $\delta TCO_{2,(Biologie)}$ sind im Vergleich zu denen im produktiven Halbjahr gering, da der größte Teil des organischen Materials bereits im Frühjahr und im Sommer in der Zwischenschicht zu CO₂ (u.a.) remineralisiert wird und dort als Salzbestandteil bis zum Einsetzen der Konvektion verbleibt. Unterstützt werden diese Überlegungen durch die im folgenden Kapitel diskutierten saisonalen TCO₂-Änderungen.

Abb. 66.A: pCO₂-Jahresgang mit und ohne Salzpumpe

Abb. 66.B: TCO₂-Jahresgang mit und ohne Salzpumpe

Nach Bestimmung der Jahresgänge von TCO₂ und pCO₂ ist es möglich, die saisonalen Änderungen des Kohlenstoffhaushalts des Oberflächenwassers der zentralen Ostsee zu bestimmen. Zunächst werden die zeitlichen Verläufe der TCO₂-Änderungen gemäß Gleichung 49.II erläutert. Danach erfolgen die Bestimmung des CO₂-Austausches zwischen Atmosphäre und Oberflächenwasser sowie eine Abschätzung der neuen Produktion.

6.1 Saisonale TCO₂-Änderungen

Die Abbildung 67.A zeigt den zeitlichen Verlauf der saisonalen TCO_2 -Änderungen im Oberflächenwasser der zentralen Ostsee exemplarisch anhand des Gitterelements 24 in der östlichen Gotlandsee. Dargestellt sind gemäß Gleichung 49.II die differentiellen Einzeländerungen $\delta TCO_2/\Delta t$ sowie die differentielle Gesamtänderung des $\Delta TCO_2/\Delta t$ für das Gitterelement 24.

Abb. 67.A: Saisonale, differentielle TCO₂-Änderungen in der östlichen Gotlandsee

Das TCO₂-Maximum im Oberflächenwasser (Nulldurchgang der Kurve der Gesamtänderung) ist im Februar erreicht, danach beginnt der TCO₂ aufgrund der Abgabe von CO₂ an die Atmosphäre zu sinken. Verstärkt wird der Rückgang des TCO₂ im März durch Einsetzen der frühjährlichen salzgehaltsbedingten TCO₂-Abnahme (Verdünnung). Zeitgleich mit dem Beginn der neuen Produktion im März sinkt der pCO₂ in den Bereich der Untersättigung. Die Abnahmegeschwindigkeit des TCO₂ steigt bis zum Maximum im Mai. Durch den abnehmenden TCO₂ des Oberflächenwassers sinkt der pCO₂ soweit, daß die CO₂-Flüsse aus der Atmosphäre die TCO₂-Abnahme verlangsamen. Das TCO₂-Minimum ist Ende Juni erreicht, danach wird der atmosphärische Eintrag größer als die TCO₂-

Abnahme durch die zurückgehende neue Produktion und salzgehaltsbedingte Verdünnung, so daß der TCO, wieder zu steigen beginnt. Die salzgehaltsbedingte TCO₂-Erhöhung beginnt im September. Sobald die neue Produktion Ende September zum Erliegen kommt, wird das Oberflächenwasser mit CO₂ übersättigt. Durch CO₂-Abgabe an die Atmosphäre wird der TCO₂-Anstieg bis zum Erreichen des Maximums flacher. Deutlich erkennbar ist die Abhängigkeit des CO₂-Austausches zwischen Atmosphäre und Oberflächenwasser von der neuen Produktion. Mit dem Einsetzen der Produktion erfolgt eine CO₂-Aufnahme durch das Oberflächenwasser, und mit dem Erliegen der Produktion erfolgt die CO₂-Abgabe an die Atmosphäre. Das im Oberflächenwasser durch Remineralisierung organischen Materials (positive neue Produktion) freigesetzte CO_2 leistet nach den hier vorgestellten Modellrechnungen einen vernachlässigbar geringen Beitrag zur herbst- und winterlichen TCO₂-Erhöhung. Das bedeutet, daß der überwiegende Teil des organischen Materials, das nicht in das stagnierende Tiefenwasser sinkt, bereits im Frühjahr und im Sommer im Baltischen Zwischenwasser remineralisiert wird. Im Herbst und im Winter erfolgt dann die konvektive Einmischung des freigesetzten CO₂ als Salzbestandteil ins Oberflächenwasser. Diese TCO₂-Änderung wird somit nicht durch $\delta TCO_{2,(Biologie)}$ sondern durch $\delta TCO_{2,(Salz)}$ wiedergegeben (Abb. 67.A). Dieses Ergebnis deutete sich auch schon bei der Diskussion der Salzpumpe an, da der pCO₂ bei der Berechnung ohne Salzeffekte fast keinen herbst- und winterlichen Anstieg zeigt (Abb. 66.A). Die vernachlässigbare Größenordnung der TCO₂-Zunahme des Oberflächenwassers durch Remineralisierung organischen Materials wird durch Bestimmung von partikulärem organischem Kohlenstoff (POC) im Oberflächenwasser im Oktober (AvH95) und dem darauffolgenden Februar bestätigt (Schneider et al., 1996).

Abb. 68.A: CO₂-Flüsse zwischen Atmosphäre und Meeresoberfläche

Abbildung 68.A zeigt die über das Jahr aufsummierten CO_2 -Flüsse für die einzelnen Gitterelemente. Sie sind aus den Jahresgängen des p CO_2 mit Hilfe der Transfergeschwindigkeiten nach Wanninkhof (1992) berechnet (schraffierte Fläche in Abb. 67.A). Die über alle Gitterelemente in der zentralen Ostsee einschließlich Bornholm- und Arkonasee flächengewichteten Mittelwerte für die CO_2 -Aufnahme (Fläche von 125319km²) betragen

1.1*10 ¹¹ mol CO ₂ /a	$(1.3*10^{12} \text{g C/a})$	oder
0.9 mol CO ₂ /m ² *a	$(10.8 \text{g C/m}^{2} \text{*a}).$	

Die zentrale Ostsee ist somit im Jahresmittel eine Senke für atmosphärisches CO_2 . Das Niveau ist trotz der hohen räumlichen Veränderlichkeit der gemessenen p CO_2 -Verteilung gleichmäßig. Lediglich für den nördlichen Teil der westlichen Gotlandsee (58°N - 59°N, Gitterelemente 11, 12) werden höhere Werte bis zu 2.7 mol/m²*a erhalten. Erhöhte CO_2 -Aufnahmen bis zu 1.7 mol CO_2/m^2 *a wurden auch für die Bornholm- und die Arkonasee berechnet. Im Gegensatz dazu wurden für die flacheren Gebiete der nordöstlichen Bornholmsee bzw. der südwestlichen Gotlandsee (Gitterelemente 6 und 7) deutliche CO_2 -Abgaben an die Atmosphäre von etwa 2mol/m²*a berechnet. Die Abbildung 69.A zeigt die mittlere räumliche Verteilung der Aufnahme von atmosphärischem CO_2 durch das Oberflächenwasser der eigentlichen Ostsee.

Abb. 69.A: Räumliche Verteilung der CO₂-Aufnahme durch die eigentliche Ostsee im Jahresmittel

6.3 Neue Produktion

Die Abbildung 70.A zeigt die berechneten Produktionswerte für die einzelnen Gitterelemente, sehr hohe jährliche Werte für die neue Produktion mit 4-4.5mol $C/m^{2*}a$ werden im Bereich der schwedischen Ostseeküste (Gitterelemente 8-12) gefunden.

Charakteristisch für die räumliche Verteilung der neuen Produktion (Abb. 71.A) in der östlichen zentralen Ostsee ist die Zunahme von geringen Werten von $0.6mol \ C/m^{2*}a$ in der nordöstlichen Gotlandsee zu höheren Werte bis $3.6mol \ C/m^{2*}a$ in der südöstlichen Gotlandsee und dem Danziger Becken. Diese Befunde stehen in guter Übereinstimmung mit Primärproduktionswerten nach Lenz (1996) und Lassig et al. (1978), die sowohl den Nord-Süd-Trend wie auch die hohen Produktionswerte im Nordwesten bestätigen.

Die flächengewichteten Mittelwerte der neuen Produktion für die zentralen Ostsee betragen:

3.8*10 ¹¹ mol C/a	(4.6*10 ¹² g C/a)	oder
3 mol C/m ² *a	$(36g C/m^2*a).$	

Abb. 71.A: Räumliche Verteilung der neuen Produktion in der eigentlichen Ostsee im Jahresmittel

6.4 Nährstoffbedarf der neuen Produktion

Die neue Produktion läßt sich in die "Redfieldproduktion" und die "Überschußproduktion" unterteilen. Die Redfieldproduktion beschreibt den Anteil der neuen Produktion, der anhand der Änderungen der Nährstoffkonzentrationen berechenbar ist. Die Überschußproduktion ist auf zusätzliche Nährstoffquellen zurückzuführen. die nicht durch die Änderungen der Nährstoffkonzentrationen erfaßt werden können, da dies eine Nettogröße und keine Umsatzgröße ist (siehe auch Kap. 5.3.2, zeitlicher Verlauf der neuen Produktion). Zur Abschätzung der Überschußproduktion wurde die Abnahme der Nährstoffkonzentrationen vom Wintermaximum bis Erreichen des Minimums etwa Ende Mai über die Mischungsschichtiefe integriert und unter Annahme, daß sich in dem gebildeten organischen Material C:N:P wie 106:16:1 (Redfield et al., 1963) verhält, in Kohlenstoffanteile umgerechnet. Zur Verdeutlichung des Ergebnisses sind in Abbildung 72.A die Redfieldproduktionen, die mit PO₄ und den Stickstoffkomponenten $\Sigma(NH_4+NO_2+NO_3)$ (weiterhin als NO₃ bezeichnet) als Nährstoffe berechnet werden, sowie die neue Produktion dargestellt.

Durch die Änderung der Phosphatkonzentrationen können 74 %, durch die Änderungen der Stickstoffnährsalzkonzentrationen 45% der neuen Produktion beschrieben werden (Tab. 72.a).

 Tabelle 72.a:
 Anteile der Redfieldproduktion an der neuen Produktion in der eigentlichen Ostsee (flächengewichteten Mittelwerte)

Nährstoff (C:P/N)	Anteil der Redfieldproduktion
PO ₄ (106:1)	74%
$\Sigma(NH_4 + NO_2 + NO_3)$ (6.6:1)	45%

Zu einer ähnlichen Abschätzung kommt Nehring (1981), der ausgehend von einer mittleren Primärproduktion von etwa 8.3mol C/m²*a (100mg C/m²*a) zu einem 20% igen Anteil der Redfieldproduktion an der Primärproduktion kommt. Umgerechnet auf die hier bestimmte neue Produktion von 3mol C/m²*a bedeutet dies ein Anteil der auf PO₄ bezogenen Redfieldproduktion von 55% an der neuen Produktion. In dieser Darstellung wird die Überschußproduktion allein durch sofortige Remineralisierung in der euphotischen Zone gedeckt. Diese Remineralisierung muß aber kohlenstoffneutral, das heißt ohne Freisetzung von CO₂ und somit also unvollständig, ablaufen, da sonst keine neue Produktion stattfände. Diese unvollständige Remineralisierung im Oberflächenwasser kann anhand der Abbildung 73.A belegt werden. Deutlich wird die Anreicherung von TCO₂ während der produktiven Jahreszeit im Baltischen Zwischenwasser, die bereits anhand von Abb. 44.A diskutiert wurde. Im Gegensatz dazu ist beim Nitrat nur eine geringe Erhöhung der Konzentrationen zu beobachten, die aber keinesfalls das Niveau der Winterwerte erreicht oder übersteigt.

Baltisches Zwischenwasser

Abb. 73.A: Saisonale Unterschiede von TCO₂, Nitrat, Phosphat und Salzgehalt im Baltischen Zwischenwasser an der Station GO33 [271]

Weniger ausgeprägt gilt dies auch für Phosphat, wenngleich in der Nähe der Halokline eine Konzentrationserhöhung über das winterliche Niveau auftritt. Vergleicht man die Zunahmen von TCO₂ und PO₄ gegenüber den Winterwerten, so ergibt sich in grober Abschätzung ein C:P-Verhältnis von 470:1. Das heißt, die Kohlenstoffzunahme ist in Relation zur PO₄-Zunahme im Baltischen Zwischenwasser erheblich höher als es dem Redfieldverhältnis für die Bildung von organischem Material (C:P=106:1) entspräche. Da Kohlenstoff langsamer als Phosphor und Stickstoff remineralisiert wird, müssen PO₄ und NO₃ als Endprodukte der Remineralisation bereits im Oberflächenwasser freigesetzt werden und stehen somit der neuen Produktion wieder zur Verfügung. Die Zunahme von PO4 im Vergleich zu NO₃ kann durch die Stickstofflimitation in der Ostsee sowie durch schnellere turn-over-Raten des PO₄ (Parsons et al., 1984) erklärt werden. Auf eine vom Redfieldverhältnis abweichende Produktion unter besonderen Umständen weisen auch extrem niedrige TCO₂- und pCO₂-Werte hin, die während der Fahrt im Sommer 1994 in der südlichen Bornholmsee und dem Danziger Becken gemessen wurden. Da weder Stickstoffnährsalze noch PO₄ in der euphotischen Schicht nachweisbar waren, und die extrem niedrigen TCO₂-Werte nur durch neue Produktion erklärbar sind, muß demnach das produzierte organische Material eine kohlenhydratähnliche Zusammensetzung mit sehr hohen C:P- und C:N-Verhältnissen aufweisen.

Der geringere Anteil der anhand der Stickstoffkomponenten berechenbaren Redfield-Produktion mit 45% kann auf den atmosphärischen Eintrag und auf die Stickstoffixierung mariner Organismen (Cyanobakterien) zurückgeführt werden. Beide Prozesse können durch die Betrachtung der Stickstoffnährsalzkonzentrationen nicht erfaßt werden. Der atmosphärische N-Eintrag (ohne N₂-Fixierung), der bei 0.05mol/m²*a liegt (Schneider, pers comm.) betrüge damit etwa 25% (30% nach HELCOM, 1996) der für die Redfieldproduktion zu Verfügung stehenden Stickstoffverbindungen des Oberflächenwassers (0.2 mol/m²). Dadurch können anhand der gemessenen Konzentrationen und des atmosphärischen N-Eintrags etwa 55% des N-Bedarfs der neuen Produktion gedeckt werden. Die immernoch bestehende Differenz zu der aus PO₄ berechneten Redfield-Produktion kann ebenfalls als Folge der Stickstofflimitaton und -fixierung interpretiert werden.

Gerade in der produktiven Jahreszeit könnten aber auch die hohen Flußwassereinträge eine weitere Nährsalzquelle darstellen, wenn man annimmt, daß nicht die gesamten Nährstofffrachten bereits in den küstennahen Gebieten aufgezehrt würden.

Die vollständige Bilanzierung des Nährstoffbedarfs der neuen Produktion geht über den Rahmen dieser Arbeit, es konnte jedoch mit Hilfe von Abb. 73.A gezeigt werden, daß durch kohlenstoffneutrales Recycling und in geringerem Maße auch durch zusätzliche Flußwasserfrachten die bestehenden Fehlbeträge an Nährsalzen gedeckt werden können.

6.5 Zusammenfassung der Ergebnisse der CO₂-Flußberechnungen

Die Tabelle 74.a stellt im Überblick die Ergebnisse der Berechnungen der CO₂-Flüsse dar.

Tabelle 74.a:	Ergebnisse o	ier Flußberechnungen
---------------	--------------	----------------------

	CO ₂ -Aufnahme	neue Produktion				
[mol/a]	1.1*1011	3.8*10 ¹¹				
[mol/m ² *a]	0.9	3.0				

Unter der Annahme, daß sich das Oberflächenwasser im stationären Zustand befindet und demzufolge keine Nettoänderung des TCO_2 -Gehaltes während eines Jahresgangs auftritt, ist die Aufnahme von atmosphärischem CO₂ einem Export von CO₂ aus dem Oberflächenwasser in die tieferen Schichten gleichzusetzen. Dieser Export äußert sich durch eine TCO_2 -Anreicherung im Tiefenwasser (Abb. 44.A) und durch Sedimentation partikulären organischen Kohlenstoffs. Durch neue Produktion werden 3.0mol CO₂/m²*a als organischer Kohlenstoff gebunden. Um den Nettoimport von CO₂ aus der Atmosphäre auszugleichen, müßten davon 0.9mol C/m²*a (30%) als organisches Material in die tieferen Wasserschichten exportiert werden, und 2.1 mol/m²*a (70%) des organisch gebundenen CO₂ würden oberhalb der Halokline wieder remineralisiert. Unterstützt wird diese Abschätzung durch die in der gesamten Wassersäule während eines Jahres beobachteten Anreicherung von TCO₂. Bei den Stationen im Gotlandbecken, die sowohl während der Winterfahrt 1995 (Alkor) als auch 1996 (Schneider et al., 1996) beprobt wurden (Abb. 29.A), wurden die TCO₂-Gehalte über die Wassersäule integriert (Tab. 74.b).

Station	Tiefe [m]	ΔTCO ₂ [mol/m ² *a]	Station	Tiefe [m]	ΔTCO ₂ [mol/m ² *a]
GO33 [271]	235	6.2	GO13	131	2.1
F9	192	3.7	GO31	111	0.3
GO ₂ 8	183	0.2	GO11	110	1.5
g012	156	3.7	GO16	80	1.7
GO34	176	2.7	GO35	70	6.2
GO32	148	2.0	GO17	54	-1.9
GO14	140	3.3	GO36	20	0.6
GO15	140	3.6	Mittelwert:		2.4

 Tabelle 74.b:
 Jährliche TCO₂-Zunahme in der östlichen Gotlandsee

Die große Variabilität der Werte ist systematischer Natur. Das absinkende organische Material wird in größere Tiefe getragen, so daß dort mehr remineralisiert wird als in der Oberfläche produziert wird. Umgekehrt gelangt ein Teil des in den flacheren Gebieten produzierten organischen Materials in die tieferen Gebiete, so daß dort weniger remineralisiert wird als in der Oberfläche produziert

wurde. Der Mittelwert ergibt eine Zunahme von 2.4 mol $TCO_2/m^{2*}a$ für die gesamte Wassersäule. Dieser stimmt größennordnungsmäßig mit dem von dem Modell berechneten Export von CO_2 (als organischer Kohlenstoff gebunden) aus dem Oberflächenwasser überein.

Die zentrale Ostsee stellt nach diesen Berechnungen eine signifikante Senke für atmosphärisches CO_2 dar. Die jährliche CO_2 -Aufnahme liegt bei **0.9mol** $CO_2/m^{2*}a$, die mittlere neue Produktion liegt bei etwa **3.0mol** $C/m^{2*}a$ oder **36g** $C/m^{2*}a$. Das heißt, daß etwa 30% der neuen Produktion aus der euphotischen Schicht exportiert werden, wohingegen für ozeanische Gebiete nur etwa 10% angenommen werden. Die Ursachen für die hohen Exportraten sind in der haloklinen Sperrschicht der Ostsee zu suchen, die eine Wiedereinmischung des im Tiefenwasser akkumulierten CO_2 , das durch die Remineralisierung abgesunkenen Materials freigesetzt wurde, in die euphotische Schicht verhindert.

6.6 CO₂-Flüsse berechnet nach Peng und Takahashi (Tans et al., 1990) sowie Liss und Merlivat (1986)

Abbildung 75.A zeigt vergleichend die pCO_2 und TCO_2 -Jahresgänge für das Gitterelement 24 in der östlichen Gotlandsee, die anhand der Austauschkoeffizienten nach Wanninkhof (1992) und sowie Peng und Takahashi berechnet worden sind. Auf eine Darstellung der nach Liss und Merlivat berechneten Jahresgänge wird verzichtet, weil sie fast deckungsgleich mit den Wanninkhof'schen sind (vgl. Abb. 58.A).

Abb. 75.A: Jahresgänge von TCO_2 und pCO_2 berechnet mit den Ansätzen nach Wanninkhof sowie Peng und Takahashi für die östliche Gotlandsee (Gitterelement 24)

Die höheren Austauschkoeffizienten des Ansatzes von Peng und Takahashi bewirken eine Erhöhung der Amplitude der Jahresgänge von pCO_2 und TCO_2 . Die Modellrechnungen ergeben daher erheblich

höheren CO_2 -Flüsse zwischen Atmosphäre und Meeresoberfläche, die durch erhöhte Werte für $\delta TCO_{2,(Biologie)}$ ausgeglichen werden müssen. Dementsprechend werden im Sommer mit dem Ansatz nach Peng und Takahashi niedrigere TCO_2 -Werte berechnet. Zum Vergleich werden in Tabelle 76.a die Ergebnisse der Flußberechnungen dargestellt, die auf der Grundlage der Ansätze von Peng und Takahashi (Tans et al., 1990; ref. 20) sowie von Liss und Merlivat (1986) gewonnen wurden. Die Anpassung der Modellrechnungen erfolgt dabei wie sie oben ausführlich beschrieben wurde. Es wurden die Austauschkoeffizienten geändert und anschließend $\delta TCO_{2,(Biologie)}$ iterativ angepaßt. Die Berechnungen des CO_2 -Austausches und der neuen Produktion führt zu folgenden Ergebnissen (Tab. 76.a).

Tabelle 76.a:	Nach Liss und Merlivat (1986), Peng und Takahashi (Tans et al., 1990; ref. 2	0)
	sowie Wanninkhof (1992) berechnete CO ₂ -Flüsse	

	Liss und Merlivat	Peng und Takahashi	Wanninkhof
CO ₂ -Aufnahme [mol CO ₂ /m ² *a]	1.0	-1.4	0.9
neue Produktion [mol C/m ² *a]	3.4	3.7	3.0

Die Berechnungen nach Liss und Merlivat sowie Wanninkhof liefern ähnliche Ergebnisse. Die etwa 10% ige Erhöhung der Ergebnisse nach Liss und Merlivat gegenüber denen von Wanninkhof ist durch Abb. 53.A erklärbar, wo die stets etwas höheren Koeffizienten nach Liss und Merlivat abgebildet wurden. Die Windgeschwindigkeitsabhängigkeit als dominierende Größe wird bei der Berechnung der Koeffizienten von beiden Ansätzen ähnlich berücksichtigt. Da jedoch der neuere Ansatz nach Wanninkhof (1992) eine gedankliche Weiterentwicklung des Ansatzes von Liss und Merlivat (1986) darstellt, der die komplexe Temperaturabhängigkeit von k_{ex} und die chemische Beschleunigung mit einbezieht, wird dieser in der vorliegenden Arbeit zur Berechnung der CO₂-Flüsse eingesetzt.

Aufgrund der starken Überbewertung hoher Windgeschwindigkeiten, die bei CO2-Übersättigung des Oberflächenwassers im Winter auftreten, wurden mit dem ältesten, auf ¹⁴CO₂-Berechnungen beruhenden Ansatz von Peng und Takahashi (Tans et al., 1990; ref. 20) im Jahresmittel eine CO₂-Abgabe an die Atmosphäre ermittelt. Das Oberflächenwasser der zentralen Ostsee wäre demnach eine Quelle für atmosphärisches CO₂. Unter Vernachlässigung des tatsächlich beobachteten CO₂-Exports in das Tiefenwasser und der Annahme des stationären Zustandes (des Oberflächenwassers) entstünde ein CO₂-Bedarf des Oberflächenwassers von 1.4mol CO₂/m²*a. Dagegen spricht aber die Beobachtung, daß der TCO₂-Gehalt des Oberflächenwassers der Ostsee im allgemeinen mit steigendem Salzgehalt zunimmt. Wenn ein Netto-Import von CO₂ in die eigentliche Ostsee durch salzärmeres Wasser stattfände, um die CO₂-Bilanz auszugleichen, dürfte keine TCO₂-Erhöhung in salzreicherem Wasser zu beobachten sein. Die Modellrechnungen liefern somit keine schlüssigen Ergebnisse bei Anwendung der Austauschkoeffizienten nach Peng und Takahashi (Tans et al., 1990; ref. 20), sondern ziehen eher deren realistische Beschreibung der Austauschvorgänge in Zweifel. Verdeutlicht wird die Fragwürdigkeit dieses Ansatzes durch den Vorzeichenwechsel der CO₂-Flüsse zwischen Sommer und Winter, da sich dadurch die Bilanz dieses Ansatzes wesentlich von der der beiden anderen Ansätze unterscheidet (Tab. 76.a). Zu hinterfragen sind daher auch globale Berechnungen wie die von Tans et al. (1990), die unkritisch dem Ansatz von Peng und Takahashi den Vorzug geben.

7 Diskussion der Ergebnisse

7.1 Bewertung der Modellrechnungen anhand gemessener Daten

Es folgen zwei Betrachtungen, mit Hilfe derer die Güte der Modellrechnungen bewertet wird. Die erste - systemimmanente - Bewertung dient zur Konsistenzprüfung der ermittelten Jahresgänge untereinander. Die Validierung vergleicht die vorhergesagten Ergebnisse einer Herbstsituation mit experimentell gewonnenen Daten.

Systemimmanente Bewertung

Die Parametrisierung der Salzgehaltsdifferenzen mittels der geographischen Funktionen 54.I-III wird anhand der Abweichungen der Felddaten der Sommerfahrt von den Modelldaten für diese Zeit überprüft.

Onterenent

Abb. 77.A: Vergleich der Salzgehalte aus Feldmessungen und Modellrechnungen

Die mittlere Abweichung der berechneten von den gemessenen Salzgehalten zeigt keine Tendenz zu höheren oder niedrigeren Salzgehalten. Die Standardabweichung der Differenz ist mit ± 0.18 PSU kleiner als die Standardabweichung der für die Gitterelemente gemittelten Salzgehalte (± 0.3 PSU). Die hohen räumlichen Veränderlichkeiten innerhalb der Gitterelemente (Fehlerbalken), die fast in der Größenordnung der saisonalen Schwankungen liegen, sind charakteristisch für die Ostsee (vgl. Matthäus, 1978; Nehring und Francke, 1981). Die Salzgehaltsjahresgänge werden in Anbetracht der hohen räumlichen Veränderlichkeiten sehr gut durch die in Kapitel 5.2 vorgenommene Parametrisierung beschrieben und bieten somit eine sichere Grundlage für die auf dem Salzgehalt beruhende Parametrisierung der Alkalinität des $\delta TCO_{2,(Salz)}$.

Die Modellrechnungen wurden anhand des TCO_2 durch den Term $\delta TCO_{2,(Biologie)}$ an die pCO_2 -Werte der Sommerfahrt angepaßt. Da die Alkalinitätswerte unabhängig davon durch den Salzgehalt parametrisiert wurden, spiegeln sich in den Abweichungen des TCO_2 zwangsläufig auch die der

Alkalinitätswerte wider. Es kann somit mit Hilfe der Abweichnungen der TCO_2 -Werte auch eine Bewertung der Funktionen 41.II, 41.IV und 41.VI, die zur Parametisierung der Alklinität herangezogen wurden, vorgenommen werden. Da TCO_2 die experimentell bestimmte Größe ist, werden hier die Abweichungen TCO_2 -Felddaten von den Modellergebnissen gezeigt.

Die Modellergebnisse weichen im Mittel nicht von den experimentell bestimmten Gittermittelwerten ab. Die hohe (aber unsystematische) Variabilität ist durch die hohen räumlichen Inhomogenitäten zu erklären. Das große Seegebiet der östlichen und südlichen Gotlandsee (Gitterelemente 22-29) weist nur sehr geringe Abweichungen auf, so daß die Beschreibung des sommerlichen TCO₂ durch die Modellrechnungen als sehr zufriedenstellend angesehen werden kann. Die gute Übereinstimmung der TCO₂-Daten zeigt auch die Schlüssigkeit der Modellrechnungen in sich und belegt mit Blick auf die Alkalinität somit das gute Zusammenwirken der einzelnen Parametrisierungen.

Validierung der Ergebnisse anhand der Oktoberfahrt AvH95

Die Ergebnisse der Modellrechnungen für den Monat Oktober werden mit den experimentellen Daten der Oktoberfahrt 1995 des Forschungsschiffes "Alexander-von-Humboldt" (AvH95) verglichen (Schneider et al., 1996). Da sich die Untersuchungen während dieser Fahrt auf die östliche Gotlandsee beschränkten, liegen TCO₂-Daten nur für die Gitterelemente 23-25 vor. pCO₂-Daten existieren aber auch für den Anreise- und Abreiseweg, so daß hier ebenfalls ein Vergleich mit den Daten der südwestlichen Gotlandsee sowie der Bornholm- und Arkonasee möglich ist (Abb. 79.A.). Die berechneten TCO₂-Werte für die östliche Gotlandsee sind geringfügig höher als die im Oktober gemessenen Mittelwerte aber noch innerhalb der räumlichen Veränderlichkeiten. Die berechneten pCO₂-Werte für das während der Oktoberfahrt beprobte große Gebiet in der östlichen Gotlandsee zeigen hingegen kaum systematische Abweichungen ($7.6\pm33\mu$ atm). Die mittlere Abweichung ist geringfügig höher als die räumlichen Veränderlichkeit der gemessenen Werte ($\pm13\mu$ atm). Die pCO₂-Werte für das gesamte Untersuchungsgebiet liegen im Mittel etwas zu niedrig (-25 \pm 53 μ atm) und die Standardabweichung ist wiederum geringfügig höher als die Streuung der Felddaten ($\pm20\mu$ atm). Ursache hierfür und für die hohen Schwankungsbreiten sind die deutlichen Unterschätzungen des herbstlichen pCO₂ in der Arkona- und Bornholmsee. Die Differenzen liegen hier bei bis zu -90 μ atm und sind auf Festlandseinflüsse zurückzuführen und daher schwer systematisch erfaßbar.

Abb: 79.A: Vergleich der berechneten und gemessenen Oktoberwerte

Zusammenfassende Bewertung der Modellrechnungen

Die Modellrechnungen geben zufriedenstellend die im Oktober gemessenen Werte wieder. Größere Abweichungen ergeben sich für die stark durch Festlandseinflüsse geprägten Gebiete der Arkonasee und westlichen Bornholmsee. Für die flächenmäßig erheblich größeren Untersuchungsgebiete in der Gotlandsee ist die Übereinstimmung der berechneten Daten mit den experimentell ermittelten in Anbetracht der hohen räumlichen Veränderlichkeiten sehr gut.

Die Abweichungen von TCO_2 und pCO_2 wie auch von Alkalinität und Salzgehalt sind im allgemeinen geringer als 10% der saisonalen Veränderlichkeit zwischen maximalem und minimalem Wert, wie durch die Skalierung der y-Achsen in den Abbildungen 77.A-79.A angedeutet wird, und liegen in der Größenordnung der hohen räumlichen Veränderlichkeiten der gemessenen Größen.

7.2 Vergleich mit Literatur-Daten

Die berechneten saisonalen Amplituden von pCO₂ (300-400 μ atm) und TCO₂ (100-250 μ mol/kg) in der zentralen Ostsee sind erheblich höher als in vergleichbaren Breiten des Nordatlantiks. Dort werden Schwankungen zwischen Minimum und Maximum des pCO₂ von 50-70 μ atm und des TCO₂ von 50-70 μ mol/kg gefunden. Die Modellrechnungen sagen weiterhin den starken Rückgang des pCO₂ und des TCO₂ mit Einsetzen der Frühjahrsblüte bis zum Erreichen der Minima des TCO₂ und pCO₂ Ende Mai bzw. Anfang Juni vorher. Diese Ergebnisse werden durch die im Nordatlantik beobachteten TCO₂-und pCO₂-Jahresgänge bestätigt. (Peng et al., 1987; Watson et al., 1991; Robertson et al., 1993 und 1994; Schneider und Thomas, 1996). Ebenso belegen Modellrechnungen für diese Gebiete den großen Einfluß der Frühjahrsblüte auf den Kohlenstoffhaushalt (Peng et al., 1987; Taylor et al., 1992), der in der vorliegenden Arbeit durch den Ausdruck $\delta TCO_{2,(Biologie)}$ berücksichtigt wird.

Der berechnete Eintrag von atmosphärischem CO_2 in das Oberflächenwasser der zentralen Ostsee von 0.9 mol $CO_2/m^{2*}a$ bestätigt die grobe Abschätzung von Ohlson (1990), der einen Netto- CO_2 -Fluß von 1.1 mol C/m^{2*}a angibt.

Für die zentrale Ostsee wird von Nehring (1981) eine mittlere Primärproduktion von 8.3mol C/m²*a angeben. Lyche et al.(1996) liefern für die Umrechnung von Primärproduktion in neue Produktion Konversionskoeffizienten von 0.35-0.4, so daß aus der Primärproduktion von 8.3mol C/m²*a eine neue Produktion von 2.9-3.3mol C/m²*a resultiert. Das hier vorgestellte Modell ermittelt eine mittlere neue Produktion von 3.0mol C/m²*a und reproduziert somit genau den experimentellen Mittelwert für die zentrale Ostsee. Globale Zirkulationsmodelle berechnen mittlere Werte für die neue Produktion von 2.9-3.6mol C/m²*a und bestätigen somit die hier ermittelten Werte (Najjar et al., 1992).

Für Ozeane höherer Breiten werden von Tsunogai und Noriki (1991) mittlere Flüsse von organischem Material in das Tiefenwasser von 0.3-1.2 mol C/m²*a angeben, die in Küstengewässern auf bis zu 3 mol C/m²*a steigen. Die hier abgeschätzten Exporte liegen mit 0.9 mol/m²*a in der gleichen Größenordnung, die auch von Ohlson (1990) für die Ostsee bestätigt wird (1.3 mol C/m²*a).

Das Modell

8

Die Modellrechnungen beschreiben die Jahresgänge von pCO_2 und TCO_2 . Anhand dieser Größen wird eine CO_2 -Bilanz für das Oberflächenwasser der eigentlichen Ostsee erstellt. Die Basis dazu stellt ein während einer Sommer und einer Winterfahrt gewonnener, umfangreicher Datensatz dar, der vom hydrographischen Standpunkt aus betrachtet die winterlichen und sommerlichen Eckpunkte eines Jahresgangs wiedergibt. Kerngedanke der Modellrechnungen ist es, die saisonalen Veränderlichkeiten des pCO_2 auf der Grundlage des Karbonatsystems zu berechnen. Der Schlüssel zur Lösung des Problems ist daher die Beschreibung der saisonalen Veränderlichkeit der Alkalinität und des TCO_2 .

Grenzen des Modells

Eine zentrale Rolle in den Modellrechnungen spielt der Salzgehalt, anhand dessen die Amplitude und der zeitliche Verlauf des Jahresgangs der Alkalinität und der salzgehaltsbedingten Änderung $\delta TCO_{2,(Salz)}$ parametrisiert werden. Schon geringe Fehlbestimmungen des Salzgehaltsjahresgangs hätten aufgrund dieser zentralen Rolle weitreichende Auswirkungen auf die Ergebnisse der Modell-rechnungen. Die starke Salzgehaltsabhängigkeit der Modellrechnungen spiegelt die Salzgehaltsabhängigkeit der tatsächlich ablaufenden Prozesse wider, kann aber gleichzeitig eine große Fehlerquelle darstellen.

Weiterhin haben die Koeffizienten für die Berechnung des CO_2 -Austausches zwischen Atmosphäre und Oberflächenwasser maßgeblichen Einfluß, wie die Diskrepanz in den Ergebnissen zeigt. Da es sich bei den Koeffizienten um externe Größen handelt, läßt sich die aus ihnen erwachsende Unsicherheit im Rahmen dieser Arbeit nicht beseitigen. Insofern unterstreichen die hier vorgestellten Ergebnisse die Notwendigkeit der genaueren Bestimmung dieser Koeffizienten ihrer kritischen Betrachtung im Hinblick auf die Ergebnisse. Es erscheint an dieser Stelle unklar, wieso über dieses bekannte Problem (Broecker et al., 1986) in der Literatur weitestgehend hinweggegangen wird, obwohl die Austauschkoeffizienten ein wesentlicher Unsicherheitsfaktor bei den Berechnungen des atmosphärischen CO_2 -Austausches sind.

Die Modellrechnungen können weder eine Bilanz für laterale CO_2 -Transporte durch das Oberflächenwasser der zentralen Ostsee in Richtung Nordsee noch für CO_2 -Importe durch Flußwasserzufuhren erstellen. Ebenso unberücksichtigt bleiben diffusive TCO_2 -Transporte durch die permanente Halokline. Erste Abschätzungen haben jedoch ergeben, daß diese Stoffflüsse vernachlässigbare Auswirkungen auf den CO_2 -Haushalt des Oberflächenwassers der zentralen Ostsee haben (Schneider et al., 1996).

Bei den Abschätzungen des Exports von organisch gebundenem CO_2 in das Tiefenwasser werden laterale Transporte partikulären Materials vernachlässigt. Daß diese von Bedeutung sind, zeigt die tiefenabhängige Zunahme des TCO_2 in der Gotlandsee (Tab. 75.b). Derartige Abschätzungen liegen daher im Grenzbereich der Interpretierbarkeit der Modellrechnungen.

In den Gebieten der Arkona- und westlichen Bornholmsee, die durch starke Festlandeinflüsse charakterisiert sind, werden größere Abweichungen der Modellwerte von den gemessenen Werten beobachtet. Die Erfassung dieser unsystematischen Einflüsse durch die in den Modellrechnungen benutzten Parametrisierungen gelingt nur unvollständig, da saisonale und regionale Abhängigkeiten verwischt werden.

Möglichkeiten des Modells

Aufgrund der flächendeckenden Datendichte, die diesen Modellrechnungen zu Grunde liegt und der

gewählten Unterteilung der Ostsee können aus den hohen kleinskaligen Veränderlichkeiten durch die Einführung langjähriger Mittelwerte repräsentative regionale und saisonale Abhängigkeiten abstrahiert werden. So können großräumige Zusammenhänge unter Berücksichtigung regionaler Unterschiede beschrieben werden. Möglich ist sowohl die Analyse der regionalen und saisonalen Veränderlichkeit des TCO₂ als auch die Bestimmung der Teilgrößen δ TCO_{2,(Austausch}), δ TCO_{2,(Biologie}) und δ TCO_{2,(Salz}). Der Jahresgang des pCO₂ wird anhand der ihn in der Realität steuernden Größen ermittelt und ist somit zuverlässiger als die Parametrisierung des pCO₂ durch empirische, nicht- oder nur bedingtkausale Zusammenhänge. Das Modell liefert eine vollständige, räumlich hochaufgelöste Beschreibung der saisonalen Veränderlichkeiten des anorganischen Kohlenstoffhaushalts im Oberflächenwasser der eigentlichen Ostsee. Ferner gestattet es die Bestimmung des CO₂-Austausches zwischen Atmosphäre und Oberflächenwasser sowie die Berechnung der schwer zugänglichen Größe "neue Produktion". Die abgeleiteten Aussagen über den Nährstoffbedarf der neuen Produktion verlassen das Kerngebiet des Modells und müssen als Abschätzungen verstanden werden, wenngleich die gute Übereinstimmung mit experimentellen Befunden und Literaturdaten auf die Schlüssigkeit der Modell-rechnungen hinweist.

Für die Jahresgänge von pCO₂ und TCO₂ werden ausgeprägte Minima im Frühjahr vorhergesagt, die bereits kurz nach Einsetzen der neuen Produktion erreicht werden. Der Anstieg zu den winterlichen Maxima, die zeitlich ausgedehnter sind als die Minima, verläuft langsamer als die Abnahme im Frühjahr. Durch die Modellrechnungen kann der starke Einfluß des TCO₂ auf den pCO₂ verdeutlicht werden, der auf einander ergänzenden biologischen und salzgehaltsbedingten Effekten beruht. Die gegenseitige, positive Verstärkung dieser Effekte ist besonders im produktiven Halbjahr zu beobachten. Für das Winterhalbjahr kann gezeigt werden, daß kaum noch organisches Material im Oberflächenwasser remineralisiert wird und die TCO₂-Erhöhung somit weitgehend durch den Salzgehalt bedingt ist. Das organische Material, das nicht in das Tiefenwasser absinkt, wird bereits während der produktiven Jahreszeit im Baltischen Zwischenwasser remineralisiert. Die Auswirkungen des CO₂-Austausches mit der Atmosphäre auf den CO₂-Haushalt des Oberflächenwassers sind im allgemeinen gegenläufig und dämpfen somit die salzgehalts- und biologisch bedingten Einflüsse. Mit Einsetzen der neuen Produktion nimmt das Oberflächenwasser CO₂ aus der Atmosphäre auf, mit dem Ausklingen der biologischen Produktion im Herbst gibt es CO₂ an die Atmosphäre ab.

In den verschiedenen Regionen der eigentlichen Ostsee treten im Oberflächenwasser teilweise gegensätzliche saisonale Veränderlichkeiten in der Alkalinität auf, die ebenso wie die salzgehaltsbedingten TCO₂-Änderungen durch die Zufuhren salzärmeren Wassers geprägt werden. Dieser Zuströme wurden im Vorfeld der Modellrechnungen anhand der Analyse von TCO₂-Salzgehaltsbeziehungen charakterisiert.

Die winterliche konvektive Einmischung salzreichen Wassers in das Oberflächenwasser der eigentlichen Ostsee sowie die laterale Zufuhr salzärmeren Wassers im Sommerhalbjahr werden salzgehaltsabhängig parametrisiert. Die Komplexität dieser Prozesse wird durch das Modell gut erfaßt und kommt in den unterschiedlichen Funktionen für die einzelnen Regionen der eigentlichen Ostsee zum Ausdruck.

Ausblick

9

Die Ostsee spielt bei der Abschätzung globaler CO_2 -Bilanzen aufgrund ihrer geringen Größe eine untergeordnete Rolle. Statt dessen bietet sie geradezu ideale Voraussetzungen für prozeßorientierte Studien. Sie ist daher als kleiner, gut zugänglicher Modellozean zu betrachten, in dem das Karbonatsystem und seine Beeinflussung durch ozeanologische Prozesse gut studiert werden können.

Die Validierung der Modellergebnisse mit Frühjahrswerten ist erforderlich, um die vorhergesagten deutlichen Minima des TCO_2 und des pCO_2 zu überprüfen.

Das Oberflächenwasser der eigentlichen Ostsee wird wesentlich durch die regional unterschiedlichen Zuströme salzarmen Wassers geprägt. Gegenstand zukünftiger Arbeiten sollte daher die zeitlich und räumlich hochaufgelöste Analyse dieser Zuströme sein, um deren Auswirkungen auf das Karbonatsystem besser erfassen zu können.

Der Kohlenstoffhaushalt des Oberflächenwassers der eigentlichen Ostsee wird aber auch durch den lateralen An- oder Abtransport von partikulärem organischem Material beeinflußt. Um eine genaue Bilanz der CO_2 -Anreicherung in der Wassersäule aufzustellen, sollte die Charakterisierung dieser lateralen Transporte und ihre saisonale Veränderlichkeit Ziel weiterer Untersuchungen sein. Diese sollten auch die Sedimentation mit einbeziehen.

Die Modellrechnungen haben verdeutlicht, daß die Remineralisierung organisch gebundenen Kohlenstoffs hauptsächlich während der biologisch produktiven Jahreszeit im Baltischen Zwischenwasser stattfindet. Das vorgestellte Modell sagt jedoch nur indirekt etwas über den Kohlenstoffhaushalt dieses Teils des Oberflächenwassers aus, der zeitweilig nicht mit der Atmosphäre in Kontakt ist. Es sollten daher anhand des vorhandenen Datenmaterials Vorstellungen entwickelt werden, die diesen veränderlichen Wasserkörper in die Modellrechnungen einbeziehen. Ferner bedarf das unterschiedliche Verhalten von TCO_2 und den Nährstoffen einer weiteren Analyse, insbesondere auch von biologischer Seite.

Anhand der im Sommer und Winter gewonnenen Datensätze konnte das Karbonatsystem im Oberflächenwasser gut beschrieben werden. Es sollte daher eine weitere Interpretation dieser Datensätze unter Einbeziehung der Nährstoffe auch für die anderen Wasserschichten vorgenommen werden, da die Daten ein günstiges Verhältnis von hoher räumlicher Auflösung und der Beschreibung großräumiger Zusammenhänge aufweisen.

Unter dem Gesichtspunkt der ozeanologischen Prozesse sollten weitere Untersuchungen über die Einflüsse von biologischen Faktoren auf den Kohlenstoffhaushalt erfolgen, die in diesen Modellrechnungen nur mathematisch erfaßt wurden (vgl. Banse, 1991). Die mathematische Parametrisierung kann, auf den Ergebnisse dieser Untersuchungen aufbauend, durch eine Beschreibung der ablaufenden Prozesse ergänzt werden.

Die räumlich hoch aufgelöste Beschreibung des pCO_2 sollte mit Daten aus Herbst und Frühling ergänzt werden, um so mittels einer auch zeitlich höheren Auflösung unter Berücksichtigung biologischer Prozesse zu einer Parametrisierung des pCO_2 anhand von Satellitendaten zu gelangen.

10 Literaturverzeichnis

- Asher, W.E., L.M. Karle, B.J. Higgins, P.J. Farley, E.C. Monaham und I.S. Leifer (1996). The influence of bubble plumes on air-seawater gas transfer velocities. J. Geophys. Res., 101, C5, 12,027-12,041.
- Bacastow, R.B., C.D. Keeling und T.P. Whorf (1985). Seasonal amplitude increase in atmospheric CO₂ at Mauna Loa, Hawaii, 1959-1982. J. Geophys. Res., **90**, 10,529-10,540.
- Banse, K. (1991). False advertising in the greenhouse? Global Biogeochem. Cycles, 5, 305-307.
- Barnola, J.M., D. Raynaud, Y.S. Korotkevich und C. Lorius (1987). Vostock ice core provides 160.000-year record of atmospheric CO₂. *Nature*, **329**, 408-404.
- Barry, R.G. und R.J. Chorley (1995). Atmosphere, weather and climate. 6. Aufl., Routledge, London und New York.
- Broecker, H.C. und W. Siems, (1984). The role of bubbles for gas transfer from water to air at higher windspeeds. Experiments in the windwave facility in Hamburg. In: Gas Transfer at Water Surfaces, Hrsg. : W. Brutsaert und G.H. Jirka, Reidel, 479-493.
- Broecker, W.S. (1991). The great ocean conveyor. Oceanography, 4, 79-89.
- Broecker, W.S. und T.-H. Peng (1982). *Tracers in the Sea*, Lamont-Doherty Geological Observatory, Columbia University, Palisades, Eldigio Press, New York.
- Broecker, W.S., J.R. Ledwell, T. Takahashi, R. Weiss, L. Merlivat, L. Memery, T.-H. Peng,
 B. Jähne und K.O. Munnich (1986). Isotopic versus micrometeorologic ocean CO₂ fluxes: a serious conflict. J. Geophys. Res., 91, C9, 10,517-10,527.
- Broecker, W.S. und T.-H. Peng (1992). Interhemispheric transport of carbon dioxide by ocean circulation. *Nature*, **356**, 587-589.
- Byrne, R. H. und J.A. Breland (1989). High precision multiwavelength pH determination in seawater using cresol red. *Deep-Sea Res.*, **36**, 803-810.
- Chan, Y.H. und C.S. Wong (1990). Long-term changes in amplitudes of atmospheric CO₂ concentrations at ocean station P und Alert, Canada. *Tellus*, **00B**, 0-12.
- Chen, C.-T.A. (1993). The oceanic anthropogenic CO₂ sink. Chemosphere, 27, No. 6, 1041-1064.
- Copin-Montegut, C. (1988). A new formula for the effect of temperature on the partial pressure of CO₂ in seawater. *Mar. Chem.*, **25**, 29-37.
- Copin-Montegut, C. (1989). A new formula for the effect of temperature on the partial pressure of CO₂ in seawater, Corrigendum. *Mar. Chem.*, **27**, 143-144.

Danckwerts, P.V. (1951). Significance of liquid-film coefficients in gas absorption. Ind. Engng. Chem., 43, 1460-1467.

Deacon, E.L. (1977). Gas transfer to and across an air-sea interface. Tellus, 29, 363-374.

- Deutscher Bundestag (1990). Dritter Bericht der Enquête-Kommission "Vorsorge zum Schutz der Erdatmosphäre" zum Thema Schutz der Erde. Drucksache 11/8030, Bonner Universitätsdruckerei, Bonn.
- Dickson. A.G. (1981). An exact definiton of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. *Deep-Sea Res.*, **28A**, 609-623.
- Dickson, A.G. (1984). pH scales and proton transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta, 48, 2299-2308.
- Dickson, A.G. (1993 a). pH buffers for seawater media based on the total hydrogen ion concentration scale. *Deep-Sea Res.*, 40, 107-118.

Dickson, A.G. (1993 b). The measurement of sea water pH. Mar. Chem., 44, 131-142.

- Dickson, A.G. und F.J. Millero (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. *Deep-Sea Res.*, **34**, 1733-1743.
- DOE (1994). Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, Version 2, Hrsg.: A.G. Dickson und C. Goyet, ORNL/CDIAC-74.

Duinker, J.C. und G. Wefer (1994). Das CO₂-Problem und die Rolle des Ozeans. Naturwissenschaften, 81, 237-242.

DWD (1990). Winddaten der Station Arkona von 1980-1990. Deutscher Wetterdienst, Offenbach.

Eigen, M., K. Kustin und G. Maass (1961). Die Geschwindigkeit der Hydration von CO₂ in wässriger Lösung. Z. Physik. Chem. (N.F.), **30**, 130-136.

Falkowski, P.G. und C. Wilson (1992). Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO₂. *Nature*, **358**, 741-743.

- Fennel, W. (1996). Wasserhaushalt und Strömungen. In: Meereskunde der Ostsee. Hrsg.: G. Rheinheimer, Springer Verlag, Berlin-Heidelberg, 56-67.
- Francey, R.J., P.P. Tans, C.E. Allison, I.G. Enting, J.W.C. Withe und M. Troller (1995). Changes in oceanic and terrestial carbon uptake since 1982. *Nature*, **373**, 326-330.
- Franck, H. (1985). Zur jahreszeitlichen Variation des thermohalinen Geschehens im westlichen Bornholmbecken. Beiträge zur Meereskunde, H. 53, 3-16.

- Gordon, L.I. und L.B. Jones (1973). The effect of temperature on carbon dioxide partial pressure in seawater, *Mar. Chem.*, 1, 317-322.
- Goyet, C., F.J. Millero, A. Poisson und D.K. Shafer (1993). Temperature dependence of CO₂ fugacity in seawater. *Mar. Chem.*, 44, 205-219.
- Grasshoff, K., M. Ehrhardt und K. Kremling (1983). *Methods of seawater analysis*, 2nd edition, Verlag Chemie, Weinheim.
- Greenwood, N.N. und A. Earnshaw (1988). Chemie der Elemente, VCH Verlagsgesellschaft, Weinheim.
- Heimann, M. und E. Maier-Reimer (1996). On the relations between the oceanic uptake of CO_2 and its carbon isotopes. *Global Biogeochem. Cycles*, **10**, No. 1, 89-110.
- HELCOM (1996). Third periodic assessment of the state of the marine environment of the Baltic Sea, 1989-1993. Background document, im Druck.
- Higbie, R. (1935). The role of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Am. Inst. Chem. Engr., 35, 365-373.
- Houghton, J.T., G.J. Jenkins und J.J. Ephramus (Hrsg.) (1990). Climate Change. The IPCC scientific assessment., Cambridge University Press, Cambridge.
- Houghton, J.T., B.A. Callander und S.K. Varney (Hrsg.) (1992). Climate Change 1992. The supplementary report to the IPCC scientific assessment., Cambridge University Press, Cambridge.

Houghton, J.T., L.G. Meira Filho, J. Bruce, Hoesung Lee, B.A. Callander E. Haites, N. Harris und K. Maskell (Hrsg.) (1995). Climate Change 1994. Radiative forcing of climate change and an evaluation of the IPCC 1992 emission scenarios., Cambridge University Press, Cambridge.

IOW, (1996). Datenbank des Instituts für Ostseeforschung Warnemünde.

- Jähne, B., G. Heinz und W. Dietrich (1987). Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res., 92, C10, 10,767-10,776.
- Johnson, K.M., A.E. King und J.McN. Sieburth (1985). Coulometric TCO₂ analysis for marine studies; an introduction. *Mar. Chem.*, **16**, 61-82.
- Johnson, K.M. und J.McN. Sieburth (1987): Coulometric total carbon dioxide analysis for marine studies: automation and calibration. *Mar. Chem.*, **21**, 117-133.
- Johnson, K.M., K.D. Wills, D.B. Butler, W.K. Johnson und C.S. Wong (1993). Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector. *Mar. Chem.*, **44**, 167-187.

- Johnson, K.S. (1982). Carbon dioxide hydration and dehydration kinetics in seawater. Limnol. Oceanogr., 27(5), 849-855.
- Keeling, C.D. (1993). On the role of large bubbles in air-sea gas exchange and supersaturation of the ocean. J. Mar. Res., 51, 237-271.
- Keeling, C.D., T.P. Whorf, C.S. Wong und R.D. Bellagay (1985). The concentration of atmospheric carbon dioxide at ocean weather station P from 1969 to 1981. J. Geophys. Res., 90, D6, 10511-10,528.
- Körtzinger, A., H. Thomas, B. Schneider, N. Gronau, L. Mintrop und J.C. Duinker (1996). At-Sea intercalibration of two newly designed underway pCO₂ systems - Encouraging results. *Mar. Chem.*, 52, 133-145.
- Kremling, K.(1972). Untersuchungen über die chemische Zusammensetzung des Meerwassers aus der Ostsee. *Kieler Meeresforschungen*, **XXVIII**, H.2, 99-118.
- Lalli, C.M. und T.R. Parsons (1994). Biological Oceanography: An Introduction, Pergamon Press, Oxford.
- Lassig, J., J.M. Leppänen, Å. Niemi, G. Tamelander (1978). Phytoplankton primary production in the Gulf of Bothnia 1972-1975 as compared with other parts of the Baltic Sea. *Finn. Mar. Res.*, 244, 101-115.
- Lenz, J. (1996). Phytoplankton. In: *Meereskunde der Ostsee*. Hrsg.: G. Rheinheimer, Springer Verlag, Berlin-Heidelberg, 138-150.
- Liss, P.S. und P.G. Slater (1974). Flux of gases across the air-sea interface. Nature, 247, 181-184.
- Liss, P.S. und L. Merlivat (1986). Air-Sea gas exchange rates: Introduction and synthesis. In: *The Role of Air-Sea Exchange in Geochemical Cycling*. Hrsg.: P. Buat-Ménard, NATO ASI Series, C 185, Reidel, 113-127.
- Lyche, A., T. Andersen, K. Christoffersen, D.O. Hessen, P.H. Berger Hansen und A. Klysner (1996). Mesocosm tracer studies. 2. The fate of primary production and the role of consumers in the pelagic carbon cycle of a mesotrophic lake. *Limnol. Oceanogr.*, 41 (3), (475-487).
- Maier-Reimer, E. und K. Hasselmann (1987). Transport and storage of CO_2 in the ocean an inorganic ocean circulation model. *Climate Dynamics*, **2**, 63-90.
- Matthäus, W. (1977). Zur mittleren jahreszeitlichen Veränderlichkeit der Temperatur in der offenen Ostsee. *Beiträge zur Meereskunde*, **H. 40**, 117-155.
- Matthäus, W. (1978). Zur mittleren jahreszeitlichen Veränderlichkeit des Oberflächensalzgehaltes der Ostsee. Gerl. Beitr. Geophys., 87/5, 369-376.

- Matthäus, W. (1996). Temperatur, Salzgehalt und Dichte. In: *Meereskunde der Ostsee*. Hrsg.: G. Rheinheimer, Springer Verlag, Berlin-Heidelberg, 75-81.
- Memery, L. und L. Merlivat (1985). Modelling of gas flux through bubbles at the air-water interface. *Tellus*, **37B**, 272-285.
- Merlivat, L. und M. Memery (1983). Gas exchange across an air-water interface: experimental results and modeling of bubble contribution to transfer. J. Geophys. Res., 88, C1, 707-724.
- Millero, F.J. (1995). Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta, 59, No. 4, 661-677.

Millero, F.J. und M.L. Sohn (1992). Chemical Oceanography, CRC Press, Boca Raton.

- Millero, F.J., R.H. Byrne, R. Wanninkhof, R. Feely, T. Clayton, P. Murphy und M.F. Lamb (1993). The internal consistency of CO₂ measurements in the equatorial Pacific. *Mar. Chem.*, 44, 269-280.
- Möbius, H.H. und W. Dürselen (1988). *Chemische Thermodynamik*, Lehrwerk Chemie, Lehrbuch 4, 5., durchgesehene Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.
- Najjar, R.G., J.L. Sarmiento und J.R. Toggweiler (1992). Downward transport and fate of organic matter in the ocean: simulations with a general circulation modell. *Global Biogeochem. Cycles*, 6, No. 1, 45-76.
- Nehring, D. (1981). Die chemischen Bedingungen und ihre Veränderungen unter besonderer Berücksichtigung des Nährstoffregimes. In: Nehring, D. und E. Francke, Hydrographischchemische Untersuchungen in der Ostsee von 1969-1978, Geod. Geoph. Veröff., R. IV, H. 35, II.
- Nehring, D. (1996). Nährsalze. In: *Meereskunde der Ostsee*. Hrsg.: G. Rheinheimer, Springer Verlag, Berlin-Heidelberg, 97-103.
- Nehring, D. und K.H. Rhode (1967). Weitere Untersuchungen über anomale Ionenverhältnisse in der Ostsee. *Beiträge zur Meereskunde*, **20**, 11-33.
- Nehring, D. und E. Francke (1981). Die hydrographischen Bedingungen und ihre Veränderungen. In: Nehring, D. und E. Francke, Hydrographisch-chemische Untersuchungen in der Ostsee von 1969-1978, Geod. Geoph. Veröff., R. IV, H. 35, I.
- Nehring, D., W. Matthäus, H.U. Lass, G. Nausch und K. Nagel (1995). Hydrographisch-chemische Zustandseinschätzung der Ostsee 1994. *Meereswiss. Ber., Warnemünde*, 9, 1-71.
- Nehring, D., W. Matthäus, H.U. Lass, G. Nausch und K. Nagel (1996). Hydrographisch-chemische Zustandseinschätzung der Ostsee 1995. *Meereswiss. Ber., Warnemünde*, **16**, 1-43.

- Ohlson, M. (1990). Some aspects of a budget for total carbonate in the Baltic Sea. Proceedings of the 17th Conference of the Baltic oceanographers, Norrköping.
- Ohlson, M. und L. Anderson (1990). Recent investigation of total carbonate in the Baltic Sea: changes from the past as a result of acid rain? *Mar. Chem.*, **30**, 259-267.
- Osterroht, C., H. Thomas und T. Körner (1996). Quasi-synoptic measurements of hydrographic, hydrochemical and biological parameters in the Baltic Sea and a coastal area of the North Sea in August and September 1994. eingereicht bei: *Dt. Hydrogr. Z.*.
- Parsons, T.R., M. Takahashi und B. Hargrave (Hrsg.) (1984). Biological oceanographic processes. 3. Aufl., Pergamon Press, Oxford.
- Peng, T.H., T. Takahashi und W.S. Broecker (1987). Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and a model. *Tellus*, **39B**, 439-458.
- Peters, L.P. und T.E. Lovejoy (Hrsg.)(1992). Global warming and biological diversity. Yale University Press, New Haven und London.
- Raynaud, D., J. Jouzel, J.M. Barnola, J. Chappellaz, R.J. Delmas und C. Lorius (1993). The ice record of greenhouse gases. *Science*, **259**, 926-934.
- Pickard, G.L. und W.J. Emery (1993). Descriptive physical oceanography. An introduction. 5., erw. Aufl., Pergamon Press, Oxford.
- Redfield, A.C., B.H. Ketchum und F.A. Richards (1963). The influence of organisms on the composition of sea water. In: *The Sea*, Vol 2, Hrsg.: M.N. Hill, Interscience, New York, pp. 26-77.
- Rhode, K.H. und D. Nehring (1979). Ausgewählte Methoden zur Bestimmung von Inhaltsstoffen im Meer- und Brackwasser. *Geod. Geoph. Veröff.*, **R.IV. H.27**.
- Robertson, J.E., A.J. Watson, C. Langdon, R.D. Ling und J.W. Wood (1993). Diurnal variation in the surface pCO₂ and O₂ at 60°N, 20°W in the North Atlantic. *Deep-Sea Res.*, **40**, 409-422.
- Robertson, J.E., C. Robinson, D.R. Turner, P. Holligan, A.J. Watson, P. Boyd, E. Fernandez und M. Finch (1994): The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. *Deep-Sea Res.*, 41, 297-314.
- Sarmiento, J.L., J.C. Orr und U. Siegenthaler (1992). A pertubation simulation of CO₂ uptake in an ocean general circulation modell. J. Geophys. Res., 97, C3, 3621-3645.
- Sarmiento, J.L. und E.T. Sundquist (1992). Revised budget for the oceanic uptake of anthropogenic carbon dioxide. *Nature*, **356**, 589-593.

- Schneider, B., K. Kremling und J.C. Duinker (1992). CO₂ partial pressure in the Northeast Atlantic and adjacent shelf waters: Processes and seasonal variability. J. Mar. Syst., **3**, 453-463.
- Schneider, B. und J. Morlang (1995). Distribution of the CO₂ partial pressure in the Atlantic Ocean between Iceland and the Antarctic peninsula. *Tellus*, **47B**, 93-102.
- Schneider, B. und H. Thomas (1996). The seasonal cycle of pCO_2 in the Northern Atlantic: The results from five expeditions. *Caribbean Journal of science*, im Druck.
- Schneider, B., H. Thomas und A. Stamer (1996). The carbon budget in Gotlandsea surface waters: October to February. In: E. Hagen (Hrsg.), Gobex - Summary report, Meereswiss. Ber., Warnemünde, 19, 105-113.
- Schwetlick, K., H. Dunken, G. Pretzschner, K. Scherzer und H.-J. Tiller (1989). Chemische Kinetik, Lehrwerk Chemie, Lehrbuch 6, 5., durchgesehene Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.
- Siegenthaler, U. und J.L. Sarmiento (1993). Atmospheric carbon dioxide and the ocean. *Nature*, **365**, 119-125.
- Smetacek, V. (1991). Die Primärproduktion der marinen Plankton-Algen. Spektrum der Wissenschaft, 12/91, 52-62.

Sundquist, E.T. (1990). The global carbon dioxde budget. Science, 259, 934-941.

- Takahashi, T., J. Olafson, J.G. Goggard, D.W. Chipman und S.C. Sutherland (1993). Seasonal variation of CO₂ and nutrient salts in the high latitude oceans: a comparative study. *Global Biogeochem. Cycles*, 7, 843-848.
- Tans, P.P., I.Y. Fung und T. Takahashi (1990). Observational constraints on the global atmospheric CO₂ budget. Science, 247, 1431-1438.
- Taylor, A.H., A.J. Watson und J.E. Robertson (1992). The influence of the spring phytoplankton bloom on carbon dioxide and oxygen concentrations in the surface waters of the northeast Atlantic during 1989. Deep-Sea Res., 39, No. 2, 137-152.
- Tsunogai, S. und S. Noriki (1991). Particulate fluxes of carbonate and organic carbon in the ocean. Is the marine biological activity working as a sink of the atmospheric carbon? *Tellus*, **43B**, 256-266.
- Wallace, D.W.R. und C.D. Wirick (1992). Large air-sea fluxes associated with breaking waves. *Nature*, **356**, 694-696.
- Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, C5, 7373-7382.

- Wanninkhof, R., J.R. Ledwell und W.S. Broecker (1985). Gas exchange wind speed relation measured with sulfur hexafluoride on a lake. *Science*, **277**, 1224-1226.
- Wanninkhof, R. und M. Knox (1996). Chemical enhancement of CO₂ exchange in natural waters. *Limnol. Oceanogr.*, **41** (4), 689-697.
- Watson, A.J. C. Robinson, J.E. Robinson, P.J. le B. Williams und M.J.R. Fasham (1991). Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. *Nature*, 350, 50-53.
- Weiss, R.F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2, 203-215.
- Weiss, R.F., R.A. Jahnke un C.D. Keeling (1982). Seasonal effects of temperature and salinity on the partial pressure of CO₂ in seawater, *Nature*, **300**, 511-513.
- Wilke, C.R. und P. Chang (1955). Correlation of diffusion coefficients in dilute solutions. *AICheJ.*, 1, 264-270.

Withman, W.G. (1923). The two-film theory of gas absorption. Chem. metall. Engng., 29, 146-148.

Wyrtki, K. (1954). Schwankungen im Wasserhaushalt der Ostsee. Dt. Hydrogr. Z., 7, 91-129.

Anhang I Ableitung des Geschwindigkeitsgesetzes für die Änderung der CO₂(aq)-Konzentration

$$\begin{array}{c} & \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Abb. 8.A: Reaktionswege zur Einstellung des ersten Dissozoationsgleichgewichtes von $CO_2(aq)$ Daraus ergeben sich die Geschwindigkeitsgesetze für die Einzelreaktionen.

(a):
$$\frac{\delta [CO_2(aq)]_a}{\delta t} = -k_{32} * [CO_2(aq)] + k_{23} * [H_2CO_3(aq)]$$
 (92.1)

$$\frac{[H_3O^+] [HCO_3^-]}{[H_2CO_3]} = K_{1 H_2CO_3}^*$$
(9.III)

(a):
$$\frac{\delta[CO_2(aq)]_a}{\delta t} = -k_{32} * [CO_2(aq)] + \frac{k_{23}}{K_1^*_{H_2CO_3}} * [HCO_3^-(aq)]$$
 (92.II)

(b):
$$\frac{\delta[CO_2(aq)]_b}{\delta t} = -k_{31} * [CO_2(aq)] + k_{13} * [H_3O^+(aq)] * [HCO_3(aq)]$$
 (92.III)

(c):
$$\frac{\delta [CO_2(aq)]_c}{\delta t} = -k_{OH^-} * [OH^-(aq)] + k_{HCO_3^-} * [HCO_3^-(aq)]$$
(92.IV)

$$\frac{\delta[CO_2(aq)]_{a,b}}{\delta t} = -\left(k_{32} * [CO_2(aq)] + k_{31} * [CO_2(aq)]\right) + \left(\frac{k_{23}}{K_{H_2CO_3}^*} * [HCO_3^-(aq)] + k_{13} * [H_3O^+(aq)] * [HCO_3^-(aq)]\right)$$
(92.V)

$$k_{CO_2} = k_{31} + k_{32}$$

$$k_d = k_{13} + \frac{k_{23}}{k_{23}}$$
(9.1)

$$K_{1 H_{2}CO_{3}}^{-}$$

$$(9.II)$$

$$\frac{\delta[CO_2(aq)]_{a,b}}{\delta t} = -k_{CO_2} * [CO_2(aq)] + k_d * [H_3O^+(aq)] * [HCO_3^-(aq)]$$
(92.VI)

$$\frac{\delta [CO_2(aq)]_{a,b,c}}{\delta t} = -\left(k_{CO_2} + k_{OH^-} * [OH^-(aq)]\right) * [CO_2(aq)] + \left(k_d * [H_3O^+(aq)] + k_{HCO_3^-}\right) * [HCO_3^-(aq)]$$
(9.IV)

92

.....

Anhang II Berechnung des CO₂-Flusses durch die Grenzfläche Wasser-Luft

$$F_{ges} = F_{w} = F_{L} \equiv k_{wasser} * \alpha * (c_{w}^{Pg} - c_{w}^{Pg}) = k_{Laft} * (c_{L}^{Pg} - c_{L}^{B})$$
(20.III)
mit:

$$F_{ges} = \text{Gesamtfluß}$$

$$F_{w, L} = \text{Fluß durch den wasser- bzw. luftseitigen Film}$$

$$k_{wasser, Laft} = \text{Transfergeschwindigkeit im wasser- bzw. luftseitigen Film}$$

$$\alpha = \text{Faktor für chemische Beschleunigung}$$

$$c_{w, L}^{Pg} = \text{wasser- bzw. luftseitige Bulkkonzentrationen CO}_{2}^{*B}(aq) bzw. pCO_{2,am}^{B}$$

$$c_{w, L}^{Pg} = \text{wasser- bzw. luftseitige Phasengrenzkonzentrationen CO}_{2}^{*Pg}(aq) bzw. pCO_{2,aw}^{Pg}$$

$$k_{wasser} * \alpha * (c_{w}^{B} - c_{w}^{Pg}) = k_{Laft} * (c_{L}^{Pg} - c_{L}^{B})$$

$$k_{wasser} * \alpha * c_{w}^{B} - k_{wasser} * \alpha * c_{w}^{Pg} = k_{Laft} * c_{L}^{Pg} - k_{Laft} * c_{L}^{B}$$

$$k_{wasser} * \alpha * c_{w}^{B} + k_{Laft} * c_{L}^{B} = k_{Laft} * c_{L}^{Pg} + k_{wasser} * \alpha * c_{w}^{Pg}$$

$$\frac{CO_{2}(g)}{CO_{2}(aq)} = \frac{c_{L}^{Pg}}{c_{w}^{Pg}} = H$$

$$(4.III)$$

$$k_{wasser} * \alpha * c_{w}^{B} + k_{Luft} * c_{L}^{B} = k_{Laft} * c_{w}^{Pg} * H + k_{wasser} * \alpha * c_{w}^{Pg}$$

$$(93.I)$$

$$k_{wasser} * \alpha * c_{w}^{B} + k_{Luft} * c_{L}^{B} = c_{w}^{Pg} * (k_{Laft} * H + k_{wasser} * \alpha)$$

$$(93.II)$$

$$c_{W}^{Pg} = \frac{k_{Wasser} * \alpha * c_{W}^{B} + k_{Luft} * c_{L}^{B}}{k_{Luft} * H + k_{Wasser} * \alpha}$$
(93.III)

日本市営業の基本

他也是不是非是当此的事情的意味也是这些

時には語いへの意思となるなどの

のないというない。

$$F = k_{\text{Wasser}} * \alpha * (c_{W}^{B} - c_{W}^{Pg})$$
(93.1V)

$$F = k_{\text{Wasser}} * \alpha * \left[c_{W}^{B} - \frac{k_{\text{Wasser}} * \alpha * c_{W}^{B} + k_{\text{Luft}} * c_{L}^{B}}{k_{\text{Luft}} * H + k_{\text{Wasser}} * \alpha} \right]$$
(93.V)

$$F = k_{\text{Wasser}} * \alpha * \frac{c_{\text{W}}^{\text{B}} * k_{\text{Luft}} * \text{H} + c_{\text{W}}^{\text{B}} * k_{\text{Wasser}} * \alpha - c_{\text{W}}^{\text{B}} * k_{\text{Wasser}} * \alpha - k_{\text{Luft}} * c_{\text{B}}^{\text{L}}}{k_{\text{Luft}} * \text{H} + k_{\text{Wasser}} * \alpha}$$
(93.VI)

$$F = k_{\text{Wasser}} * \alpha * \frac{c_{\text{W}}^{\text{B}} * k_{\text{Luft}} * H - k_{\text{Luft}} * c_{\text{B}}^{\text{L}}}{k_{\text{Luft}} * H + k_{\text{Wasser}} * \alpha}$$
(93.VII)

$$F = k_{\text{Wasser}} * \alpha * \frac{c_{\text{W}}^{\text{B}} * H - c_{\text{L}}^{\text{B}}}{H + \frac{k_{\text{Wasser}} * \alpha}{k_{\text{Luft}}}}$$
(93.VIII)

$$F = \frac{k_{\text{Wasser}} * \alpha}{H + \frac{k_{\text{Wasser}} * \alpha}{k_{\text{Luft}}}} * \left(c_{w}^{B} * H - c_{L}^{B}\right)$$
(93.IX)

$$F = \frac{1}{\frac{H}{k_{wasser} * \alpha *} + \frac{1}{k_{Luft}}} * \left(c_w^B * H - c_L^B\right)$$
(93.X)

mit 4.VI ergibt sich der Fluß durch die Grenzfläche zu:

$$F = \frac{1}{\frac{H}{k_{wasser} * \alpha} + \frac{1}{k_{Luft}}} * K_{H}^{*} * (CO_{2}^{*B}(aq) * H - pCO_{2,atm}^{B})$$
(94.I)

$$F = \frac{1}{\frac{H}{k_{wasser} * \alpha} + \frac{1}{k_{Luft}}} * K_{H}^{*} * (pCO_{2,sw}^{B} - pCO_{2,atm}^{*B})$$
(21.VI)

94

ંન્ય

Anhang III Stationsliste der Fahrten "F.S. Valdivia" 148/2 und "F.S. Alkor" 79

Stationsbezeichnung	[°N]	[°E]	Stationsbezeichnung	[°N]	[°E]
F1	54.58	11.39	F13	58.87	20.32
F2	54.45	12.23	F10	58.00	19.91
F3	54.27	14.01	F10a	57.62	23.14
F4	55.42	14.53	GO33 (S1) [271]	57.30	20.08
F5	56.28	15.96	F9	57.05	19.83
BY38	57.09	17.74	GO21 (S2)	57.00	19.27
Fil	58.63	18.25	GO20 (S3)	56.68	19.08
F16a	62.15	19.74	F8	57.70	18.64
F16	61.19	20.15	F7	55.17	19.39
F18	59.72	24.01	F6	55.23	17.34
F19	59.85	24.84	F21	55.55	10.90
F20	59.92	25.60	F22	56.71	12.03
F14	59.30	21.58	F23	57.89	10.61

Stationsliste der Sommerfahrt Validivia 148/2

Stationsliste der Winterfahrt Alkor 79

Stati	onsbezeichnung	Stationsbezeichnung							
F / GO	Schneider et al. (1996)	[°N]	[°E]	F / GO	BY	Schneider et al. (1996)	°N	[°E]	
F1		54.61	11.11	GO20			56.74	19.01	
F2		54.47	12.21	GO11			56.87	18.90	
F3		55.02	14.10	GO12			56.83	19.18	
F4		55.39	14.60	F9			57.04	19.83	
• F5		55.28	15.96	GO31	BY13	20	57.40	19.42	
BY38		57.09	17.75	GO32	BY14	21	57.37	19.73	
Fila		58.57	18.29	GO33 [271]	BY15	22	57.30	20.07	
F18		59.71	24.00	GO34	BY16	23	57.30	20.35	
F19		59.88	24.96	GO35	BY17	24	57.27	20.64	
F20		59.91	25.60	GO36	BY18	25	57.22	20.93	
F14		59.22	21.33	GO17		37	56.67	20.62	
F13		58.86	20.32	GO16		36	56.70	20.32	
F10 = GO28	12	58.00	19.92	GO15		35	56.73	20.02	
G027		57.88	19.85	GO14		34	56.76	19.75	
GO26		57.75	19.74	GO13		33	56.80	19.46	
GO25		57.62	19.65	F8			55.70	18.64	
GO24		57.45	19.55	F7			55.08	19.17	
GO23		57.29	19.45	F6			55.23	17.34	
GO22		57.13	19.36	F21			55.57	10.91	
GO21		57.00	19.27	F22			56.72	12.03	
				F23			57.88	10.59	

Anhang IV Koordinaten des Gitters über der Ostsee

Gitterelement		Gitteree	ckpunkte	Gitterscl	werpunkt	Fläche	
	N [°N]	s [°N]	W [°E]	E [°E]	[°N]	[°E]	[km²]
1	55.25	54.7	13	14	54.975	13.5	3870.934
2	55.35	55	14	14.5	55.175	14.25	1228.568
3	55.8	55.3	14.5	15.75	55.55	15.125	4393.233
4	55.5	55	15.75	16.5	55.25	16.125	2655.859
5	56	55.5	15.75	. 17	55.75	16.375	4371.059
6	56	55.5	17	18	55.75	17.5	3496.864
7	56.5	56	16.5	18.5	56.25	17.5	6904.48
8	57	56.5	17	18	56.75	17.5	3407.533
9	57.5	57	17	18	57.25	17.5	3362.477
10	58	57.5	17	18	57.75	17.5	3317.165
11	58.5	58	17.5	19	58.25	18.25	4907.344
12	59	58.5	18	19.5	58.75	18.75	4838.623
13	60	59	19	20.5	59.5	19.75	9539.068
14	60	59	20.5	21.5	59.5	21	6359.453
20	59	58.5	19.5	21	58.75	20.25	4838.623
21	58.5	58	19	21	58.25	20	6543.021
22	58	57.5	19	20	57.75	19.5	3317.165
23	58	57.5	20	21	57.75	20.5	3317.165
24	57.5	57	19	20.5	57.25	19.75	5043.66
25	57	56.5	19	20.25	56.75	19.625	4259.396
26	56.5	56	18.5	20	56.25	19.25	5178.439
. 27	56	55.5	18	20	55.75	19	6993.547
28	55.5	55	18	20	55.25	19	7082.082
29	55.5	55	16.5	18	55.25	17.25	5311.641
30	55	54.4	15.75	16.5	54.7	16.125	3234.519
31	55	54.4	15	15.75	54.7	15.375	3234.519
32	55	54.4	14	15	54.7	14.5	4312.676

Gitterkoordinaten:

Anhang V Eingangswerte der Modellrechnungen

			_				_	-			
Winter (A	lkor 79)								•	Sommer (V	'aldivia 148/2):
Gitter- element	Tempera- tur [°C]	Salzgehalt [psu]	pCO2 [µatm]	pCO ₂ [µatm] (Stdabw)	NO2 [μM]	NH ₄ [μM]	NO3 [μM]	ΡΟ, [μΜ]	TCO ₂ [µmol/kg]	pCO ₂ [µatm]	pCO ₂ [µatm] (Stdabw)
1	3.19	8.79	362.2	6.1	0.54	0.06	4.68	0.35	1590.3	262.8	26.9
2	3.25	8.51	371.4	7.1	0.48	0.06	4.78	0.35	1584.8	249.3	16.4
3	3.41	7.89	400.4	6.8	0.13	0.06	4.68	0.48	1565.7	216.8	9.8
4	3.23	7.52	408.8	4.4	0.11	0.08	4.74	0.54	1558.8	218.4	17.7
5	3.31	7.69	428.1	31.3	0.09	0.03	5.11	0.64	1566.4	225.6	8.6
6	3.02	7.45	506.5	2.9	0.11	0.00	5.91	0.88	1560.4	237.3	9.8
7	2.97	7.32	494.4	13.4	0.11	0.05	5.65	0.89	1553.3	251.7	10.3
8	2.88	7.13	461.5	16.6	0.12	0.39	5.14	0.74	1549.3	232.7	5.5
9	2.90	7.05	438.3	12.9	0.09	0.05	5.20	0.64	1554.5	227.3	8.3
10	2.84	7.04	430.5	5.5	0.09	0.11	5.19	0.65	1548.7	245.4	16.1
11	2.89	6.96	408.4	11.9	0.09	0.09	5.31	0.56	1559.1	190.8	11.9
12	2.69	6.86	381.2	7.8	0.09	0.05	5.27	0.48	1549.1	209.0	25.1
13	2.19	6.50	384.1	12.7	0.06	0.04	5.08	0.46	1462.8	267.5	13.4
14	2.16	6.64	371.9	4.0	0.05	0.03	5.41	0.47	1508.9	318.0	21.2
20	2,69	6.94	378.9	5.5	0.07	0.06	5.06	0.45	1503.3	272.9	7.3
21	2.88	6.93	382.6	3.3	0.07	0.01	4.90	0.46	1562.2	277.5	9.2
22	3.14	7.06	394.1	2.1	0.08	0.02	5.03	0.45	1565.2	288.0	2.4
. 23	3.10	7.00	389.0	3.1	0.08	0.03	5.03	0.45	1566.3	268.2	32.7
24	3.06	7.15	404.5	8.7	0.08	0.04	4.60	0.44	1565.5	249.5	10.9
25	3.10	7.20	422.3	8.0	0.10	0.05	4.84	0.52	1563.0	236.3	4.7
26	3.03	7.21	419.1	5.7	0.12	0.03	5.14	0.58	1563.3	223.8	15.3
27	2.98	7.27	436.1	10.9	0.13	0.06	5.20	0.59	1548.4	217.0	23.8
28	3.22	7.39	395.3	14.1	0.23	0.04	5.61	0.42	1567.4	234.0	15.2
29	3.15	7.39	406.7	13.4	0.12	0.06	4.92	0.57	1548.4	254.1	12.4
30	3.35	7.57	382.3	6.2	0.14	0.10	4.48	0.45	1551.4	238.1	11.5
31	3.56	7.94	378.1	[.] 7.9	0.20	0.06	4.61	0.377	1567.5	245.1	24.9
32	3,56	8.09	380.6	3.7	0.28	0.09	4.54	0.364	1576.1	238.1	3.8

Startwerte der Modellrechnungen und Sommerwerte des pCO₂:

Anhang VI Jahresgänge des TCO₂

	Gitterlement								
jul. Tag	1	2	3	4	5.	6	7		
0	1580.7	1578.1	1562.1	1553.7	1563.8	1556.6	1544.4		
10	1583.6	1580.2	1563.2	1555.4	1565.3	1558.5	1547.7		
21	1586.2	1582.0	1564.0	1556.8	1566.1	1559.3	1549.8		
31	1587.9	1583.0	1563.9	1557.1	1566.1	1558.8	1550.4		
41	1589.5	1584.3	1564.9	1558.0	1566.4	1559.4	1551.9		
49	1590,4	1585.2	1566.0	1558.9	1566.6	1560.3	1553.2		
59	1590.3	1584.8	1565.7	1558.8	1566.4	1560.4	1553.3		
69	1589.7	1584.0	1563.7	1557.5	1564.6	1556.6	1549.6		
79	1588.4	1582.7	1561.7	1555.8	1562.2	1552.3	1544.9		
90	1586.0	1580.4	1558.7	1552.9	1558.6	1546.9	1538.9		
100	1582.4	1577.2	1555.3	1549.3	1554.7	1541.2	1532.2		
110	1577.5	1572.5	1550.0	1543.6	1549.3	1534.1	1523.9		
120	1568.9	1563.4	1539.0	1530.8	1539.5	1522.7	1511.7		
130	1557.9	1551.2	1523.9	1512.7	1526.6	1508.4	1496.7		
140	1548.1	1540.7	1510.9	1496.2	1514.9	1495.4	1482.9		
151	1539.5	1531.9	1500.5	1483.4	1505.6	1485.4	1471.9		
161	1531.3	1523.6	1490.6	1472.8	1498.1	1477.0	1462.5		
171	1524.6	1517.1	1483.0	1465.3	1492.3	1470.5	1454.9		
181	1519.2	1512.1	- 1477.6	1461.0	1488.1	1466.0	1449,4		
191	1515.4	1509.0	1474.9	1460.8	1486.1	1464.0	1446.5		
201	1512.9	1507.7	1474.5	1463.0	1485.8	1464.1	1445.6		
212	1512.2	1508.5	1477.4	1468.8	1488.0	1467.1	1447.8		
222	1512.5	1510.1	1481.1	1475.0	1490.9	1470.8	1450.8		
232	1514.2	1512.8	1485.7	1481.7	1495.0	1475.8	1455.4		
243	1517.6	1517.0	1491.7	1489.7	1500.6	1482.0	1461.3		
253	1522.6	1522.7	1499.2	1498.9	1507.8	1489.5	1468.5		
263	1528.0	1528.7	1507.0	1506.4	1515.1	1497.4	1476.1		
273	1534.4	1536.3	1518.3	1516.0	1523.4	1509.2	1487.7		
283	1541.1	1543.8	1528.6	1523.6	1531.0	1519.0	1497.4		
293	1546.1	1548.9	1535.4	1529.5	1537.2	1526.6	1505.2		
304	1551.0	1552.5	1537.8	1531,8	1541.3	1527.9	1507.5		
314	1556.6	1556.9	1541.1	1534.9	1545.7	1531.0	1511.9		
324	1561.7	1560.8	1544.0	1537.4	1549.2	1533.7	1516.1		
334	1567.6	1566.8	1551.7	1543.3	1554.3	1542.5	1526.1		
344	1572.7	1571.8	1557.5	1548.0	1558.4	1549.5	1534.4		
354	1577.1	1575,9	1561.6	1552.0	1561.9	1555.1	1541.4		

Jahresgänge des TCO₂ [μ mol/kg] Gitterelemente 1-7:

98

	Gitterlement								
jul. Tag	8	9	10	11	12	13	14		
0	1535.9	1535.4	1524.2	1533.3	1518.6	1442.1	1491.7		
10	1540.3	1541.4	1531.6	1541.3	1527.7	1449.0	1497.0		
21	1543.4	1546.0	1537.5	1547.6	1535.1	1454.0	1501.2		
31	1545.0	1549.0	1541.7	1552.2	1540.9	1458.4	1504.6		
41	1547.3	1552.0	1545.6	1556.2	1545.5	1461.4	1507.2		
49	1549.1	1554.3	1548.2	1558.7	1548.4	1462.5	1508.7		
59	1549.3	1554.5	1548.7	1559.1	1549,1	1462.8	1508.9		
69.	1545.5	1551.1	1545.6	1556.1	1546.4	1459.8	1507.2		
79	1540.3	1545.8	1539.9	1550.2	1539.8	1452.6	1503.2		
90 .	1533.4	1538.3	1531.6	1540.8	1528.9	1441.6	1497.0		
100	1525.3	1528.9	1521.2	1528.7	1514.4	1427.0	1488.6		
110	1514.7	1516.8	1507.8	1512.8	1495.6	1409.8	1478.7		
120	1497.9	1497.9	1488.0	1488.6	1468.5	1388.3	1466.8		
130	1476.4	1473.7	1463.3	1458.0	1435.0	1363.8	1453.7		
140	1456.2	1450.8	1439.7	1428.7	1402.9	1340.4	1441.1		
151	1439.8	1431.7	1419.8	1403.4	1375.2	1320.8	1430.2		
161	1425.4	1414.9	1402.1	1380.9	1350.9	1303.5	1420.1		
171	1414.5	1401.8	1388.1	1362.7	1331.5	1290.3	1411.8		
181	1407.3	1392.8	1378.3	1349.5	1318.0	1281.8	1405.5		
191	1405.1	1389.4	1374.0	1343.1	1312.0	1279.8	1401.4		
201	1406.0	1389.6	1373.3	1341.5	1311.8	1282.2	1399.1		
212	1411.3	1395.0	1377.8	1346.6	1318.9	1290.2	1398.8		
222	1417.9	1401.9	1384.0	1354.6	1328.7	1299.5	1399.4		
232	1425.8	1410.6	1391.9	1365.3	1340.5	1310.3	1402.2		
243	1435.2	1420.9	1401.6	1378.6	1354.7	1322.8	1406.9		
253	1445.9	1432.6	1412.5	1394.5	1371.0	1336.1	1413.0		
263	1455.8	1443.5	1422.8	1409.6	1386.5	1347.5	1419.3		
273	1469.3	1457.0	1435.7	1425.6	1402.0	1355.9	1425.9		
283	1480.2	1468.3	1446.6	1440.8	1417.0	1365.1	1433.0		
293	1488.7	1477.7	1456.4	1454.0	1430.8	1375.0	1440.3		
304	1491.6	1482.8	1462.6	1464.9	1443.4	1387.8	1448.2		
314	1497.6	1490.6	1471.9	1477.1	1457.2	1400.7	1457.0		
324	1503.4	1498.3	1481.2	1488.6	1470.3	1412.0	1465.0		
334	1515.3	1510.7	1494.9	1502.1	1484.2	1419.4	1472.5		
344	1524.5	1520.9	1506.6	1514.1	1497.0	1426.9	1479.5		
354	1532.3	1530.0	1517.1	1524.9	1508.8	1434.3	1486.0		

Jahresgänge des TCO₂ [μ mol/kg] Gitterelemente 8-14:
				Gitterlement			
jul. Tag	20	21	22	23	24	25	26
0	1489.7	1551.9	1559.2	1560.1	1563.8	1565.7	1569.9
10	1494.0	1555.3	1561.5	1562.5	1565.0	1565.8	1568.8
21	1497,3	1557.8	1562.9	1563.9	1565.3	1564.9	1567.0
31	1499.9	1559.8	1564.0	1565.0	1565.4	1564.0	1565.4
41	1502.0	1561.4	1565.0	1566.0	1565.8	1563.7	1564.5
49	1503.2	1562.2	1565.4	1566.4	1565.8	1563.4	1563.7
59	1503.3	1562.2	1565.2	1566.3	1565.5	1563.0	1563.3
69	1501.6	1560.6	1563.4	1564.6	1563.5	1560.7	1561.1
79	1497.8	1557.5	1560.4	1561.7	1560.5	1557.6	1558.5
90	1491.8	1552.7	1556.3	1557.4	1556.4	1553.7	1555.2
100	1483.7	1546.4	1551.0	1551.8	1551.3	1549.1	1551.3
110	1473.5	1538.4	1544.4	1544.6	1544.6	1543.2	1546.3
120	1458.9	1527.0	1535.5	1534.0	1534.1	1533.1	1536,9
130	1440.9	1513.1	1524.9	1520.7	1520.5	1519.8	1524.1
140	1424.1	1500.0	1515.1	1508.4	1508.1	1507.9	1512.7
151	1410.6	1489,4	1507.3	1498.8	1498.7	1499.1	1504.6
161	1398.9	1480.1	1500.5	1490.5	1490.7	1491.8	1498.1
171	1390.2	1472.9	1495.3	1484.4	1485.2	1487.1	1494.2
181	1384.8	1468.1	1491.9	1480.6	1482.3	1485.0	1492.9
191	1383.6	1466.2	1490.8	1480.0	1482.8	1486.6	1495.5
201	1384.9	1466.0	1490.8	1481.0	1485.1	1489.9	1499.8
212	1389.7	1468.3	1492.5	1484.4	1490.3	1496.3	1507.3
222	1394.9	1471.2	1494.5	1488.3	1495.6	1502.7	1514.7
232	1401.1	1475.8	1498.2	1493.5	1502.1	1510.0	1522.8
243	1408.7	1481.9	1503.3	1500.1	1509.8	1518.5	1531.9
253	1417.3	1489.2	1509.4	1507.7	1518.4	1527.8	1541.9
263	1424.9	1495.9	1515.0	1514.5	1525.8	1535.6	1550.0
273	1432.1	1502.3	1520.6	1520.5	1532.4	1542.8	1556.7
283	1439.3	1508.7	1526.0	1526.3	1538.3	1548.8	1562.2
293	1446.1	1514.5	1530.8	1531.3	1543.0	1553.0	1565.7
304	1452.8	1520.5	1535.3	1536.3	1546.7	1555.5	1567.8
314	1460,4	1527.3	1540.8	1542.1	1551.2	1558.7	1570.2
324	1467.2	1533.3	1545.4	1546.8	1554.7	1560.8	1571.2
334	1473.8	1538.8	1549.8	1551.0	1558.1	1563.5	1572.0
344	1479.7	1543.8	1553.6	1554.5	1560.6	1565.0	1571.8
354	1485.1	1548.2	1556.8	1557.7	1562.7	1566.0	1571.3

Jahresgänge des TCO₂ [μ mol/kg] Gitterelemente 20-26:

100

		Gitterlement							
jul. Tag	27	28	29	30	31	32			
0	1559.6	1570.0	1544.7	1548.2	1562.9	1570.3			
10	1557.3	1569.8	1546.0	1549.0	1564.3	1572.0			
21	1554.3	1569.1	1546.9	1549.6	1565.4	1573.5			
31	1551,7	1568.4	1546.9	1549.5	1565.8	1574.1			
41	1550.2	1568.1	1547.6	1550.6	1566.8	1575.3			
49	1548.9	1567.8	1548.6	1551.6	1567.7	1576.2			
59	1548.4	1567.4	1548.4	1551.4	1567.5	1576.1			
69	1545.8	1565.7	1546.9	1549.9	1566.5	1574.9			
79	1543.2	1562.9	1545,3	1548.6	1565.3	1573.3			
90	1540.2	1559.1	1542.9	1546.7	1563.2	1570.8			
100	1537.1	1554.3	1540.1	1544.1	1560.5	1567.5			
110	1533.0	1548.9	1535.6	1539.9	1556.2	1562.7			
120	1524.9	1539.3	1525.7	1530.8	1547.2	1552.9			
130	1513.5	1526.5	1511.8	1518.0	1535.0	1539.6			
140	1503.6	1515.5	1499.2	1507.4	1524.7	1528.3			
151	1497.0	1508.5	1489.9	1499.2	1516.5	1519.1			
161	1491.0	1502.2	1481.5	1491.3	1508.6	1510.3			
171	1487.7	1498.9	1475.8	1485.3	1502.6	1503.5			
181	1487.3	1498.7	1472.8	1481.1	1498.3	1498.4			
191	1491.1	1501.8	1473.3	1479.2	1496.0	1495.6			
201	1496.6	1506.3	1475.3	1479.0	1495.3	1494.6			
212	1504.9	1513.1	1479.7	1481.4	1497.1	1496.2			
222	1512.9	1519.8	1483.8	1484.2	1499.3	1498.5			
232	1521.5	1526.8	1488.6	1488.0	1502.6	1501.9			
243	1530.9	1534.5	1494.2	1492.9	1507.1	1506.6			
253	1541.1	1542.8	1500.7	1499.0	1512.8	1512.9			
263	1549.2	1550,1	1506.5	1505.3	1518.8	1519.4			
273	1556.1	1556.2	1514.7	1514.6	1526.8	1528.2			
283	1561.4	1560.7	1521.3	1522.8	1534.3	1536.4			
293	1564.2	1563.8	1526.0	1528.4	1539.3	1542.0			
· 304	1564.9	1565.8	1526.3	1530.0	1541.6	1545.2			
314	1565.9	1568.2	1528.4	1532.8	1544.9	1549.2			
324	1565.5	1569.4	1530.1	1535.1	1547.8	1552.8			
334	1565.4	1570.2	1536.0	1541.5	1553.6	1559.3			
344	1564.2	1570.5	1540.5	1545.8	1558.2	1564.5			
354	1562.5	1570.5	1544.0	1548.5	1561.7	1568.5			

Jahresgänge des TCO₂ [µmol/kg] Gitterelemente 27-32:

Anhang VII pCO₂-Jahresgänge

jul. Tag	1	2	3	4	5	6	7
0	369.7	381.2	419.2	406.9	439.0	527.9	515.2
10	371.3	382.3	417.3	412.4	444.8	533.1	519.7
21	370.2	380.5	412.2	414.0	444.4	526.6	512.4
31	364.3	372.8	398.7	406.0	433.9	506.3	494.0
41	366.7	375.7	401.8	409.2	434.3	506.7	495.0
49	367.0	377.4	405.8	412.9	432.5	509.8	498.9
59	362.2	371.4	400.4	408.8	428.1	506.5	494,4
69	355.9	362.7	382.5	395.6	409.4	468.6	459.0
79	353.2	358.2	371.0	385.1	392.9	435.6	427.4
90	356.4	359.5	365.5	377.9	380.2	409.3	403.0
100	352.2	353.9	354.9	364.3	363.0	381.1	375.2
110	342.1	341.1	335.6	338.9	338.6	346.8	342.1
120	314.9	306.9	288.6	280.3	294.5	294.9	293.6
130	280.8	265.5	236.1	217.4	246.2	242.0	244.0
140	262.4	242.8	207.4	181.5	217.2	210.9	214.8
151	254.8	233.0	194.0	164.8	203.5	197.3	202.9
161	245.8	222.5	181.4	153.3	193.9	187.2	193.6
171	244.8	220.4	177.3	150.4	191.6	185.0	192.1
181	249.8	224,7	179.5	154.3	195.1	189.0	197.1
191	256.2	231.3	185.1	163.3	201.2	196.3	205.6
201	266.2	242.0	195.2	176.7	211.3	208.3	219.0
212	279.5	257.2	211.3	197.2	226.1	226.6	239.2
222	269.7	251.1	210.5	201.5	222.7	226.6	240.0
232	263.1	247.3	211.1	207.0	221.8	229.1	243.6
243	262.7	248.9	216.5	217.5	226.5	237.1	252.7
253	272.3	260.0	231.1	237.8	241.4	255.0	271.5
263	282.7	272.3	248.0	255.3	258.4	276.0	292.7
273	296.3	291.7	280.4	283.4	281.5	318.8	335.8
283	314.0	314.8	317.8	310.0	308.2	362.9	377.2
293	317.1	321.8	336.9	325.0	325.2	392.1	402.1
304	306.3	308.4	320.3	310.4	321.5	367.7	372.6
314	320.7	320.9	331.1	322.2	342.5	379.9	383.1
324	332.5	330.9	339.6	330.7	359.3	389.1	390.6
334	347.8	352.6	378.0	358.8	386.9	443.6	441.4
344	361.1	370.9	409.0	383.9	412.1	492.0	485.7
354	369.3	382.9	429.0	404.4	432.2	530.7	520.7

pCO₂-Jahresgänge [µatm] Gitterelemente 1-7:

102

	Gitterelement						
jul. Tag	8	9	10	11	12	13	14
0	485.5	456.6	445.4	427.8	393.1	414.6	384.5
10	486.8	458.2	447.0	429.4	394.3	416.1	386.1
21	476.6	449.1	437.7	423.9	390.7	407.1	382.6
31	458.8	435.5	425.9	412.9	383.1	400.5	376.7
41	460.9	438.2	429.1	413.8	384.8	397.9	377.7
49	466.4	443.7	435.4	414.2	385.4	389.5	376.6
59	461.5	438.3	430.5	408.4	381.2	384.1	371.9
69	427.6	410.8	406.9	390.0	369.6	366.4	361.9
79	398.0	384.7	381.1	371.9	357.3	340.2	351.9
90	374.9	364.2	361.3	356.1	346.7	314.0	347.7
100	346.3	335.7	332.8	332.2	326.6	278.3	335.4
110	310.4	299.7	297.3	298.4	296.2	242.5	320.8
120	253.2	242.3	242.5	238.2	238.6	201.5	301.4
130	196.7	186.0	188.4	178.4	179.8	163.5	280.1
140	164.3	154.0	157.3	144.4	146.0	141.0	269.2
151	150.1	140.0	144.3	127.9	129.9	131.5	269.1
161	139.4	129.2	133.9	116.0	118.4	124.4	267.4
171	136.9	126.3	131.6	111.5	114.5	124.2	273.6
181	141.1	130.0	136.1	113.0	117.1	130.7	286.4
191	151.1	139.4	146.9	119.7	125.4	144.3	300.9
201	166.4	154.2	163.5	131.1	139.1	164.6	317.2
212	190.8	178.7	191.0	150.4	162.1	196.2	334.3
222	200.7	190.4	204.7	159.6	173.9	214.1	321.2
232	213.5	205.4	222.0	171.7	188.1	235.7	314.8
243	232.3	226.8	245.6	190.6	209.0	266.2	316.1
253	261.8	259.3	279.3	222.0	242.0	308.4	327.1
263	290.9	290.6	309.8	253.9	272.6	340.6	335.1
273	341.2	337.1	354.2	291.5	303.1	348.6	341.5
283	385.7	377.6	388.6	330.3	332.1	361.4	350.5
293	408.4	396.8	402.4	351.3	344.2	366.8	351.2
304	371.7	364.2	365.9	341.1	332.4	378.3	340.0
314	381.3	375.5	376.2	360.5	349.4	414.8	357.8
324	388.4	382.8	382.5	373.5	359.9	438.8	369.8
334	440.2	423.7	419.8	400.2	376.7	427.0	377.4
344	477.1	452.5	445.4	419.7	389.1	420.0	383.4
354	502.3	471.8	462.0	432.6	396.6	414.5	386.5

pCO₂-Jahresgänge [µatm] Gitterelemente 8-14:

	Gitterelement						
jul. Tag	20	21	22	23	24	25	26
0	391.8	398.7	413.6	406.8	426.8	449.0	445.5
10	393.8	400.5	415.5	408.7	428.9	451.2	447.9
21	390.3	395.9	409.9	403.5	422.4	443.0	439.6
31	383.8	388.8	401.5	395.9	412.7	431.0	428.4
41	384.8	389.5	401.8	396.2	412.6	430.3	427.4
49	383.8	387.8	399.6	393.8	409.9	427.4	423.5
59	378.9	382.6	394.1	389.0	404.5	422.3	419.1
69	367.4	369.9	378.2	374.3	385.5	398.1	395.3
79	354.5	357.2	362.8	359.2	366.0	373.6	370.0
90	344.7	349.2	352.8	348.3	350.2	353.0	347.9
100	326.0	332.9	335.4	329.3	326.9	325.7	318.6
110	301.7	311.6	314.4	305.4	298.6	293.7	284.9
120	261.0	277.8	285.2	269.2	257.0	248.6	238.3
130	217.0	240.4	253.6	230.2	214.0	203.4	192.6
140	191.0	218.0	235.1	206.8	188.4	176.8	165.9
151	180.6	209.6	229.2	197.6	177.5	165.1	154.0
161	172.9	202.5	223.6	190.1	169.1	156.2	145.0
171	173.7	203.7	226.0	190.7	168.5	155.0	143.3
181	182.1	212.1	235.4	198.3	174.7	160.3	147.9
191	196.9	225.4	248.6	211.0	186.2	170.8	157.5
201	217.0	242.5	265.0	227.8	202.1	185.8	171.5
212	245.0	265.0	285.2	250.6	224.8	207.7	192.5
222	251.4	264.3	280.7	251.9	229.0	213.2	198.5
232	259.5	267.4	280.7	256.7	236.3	221.6	207.6
243	273.2	276,7	287.5	267.7	249.9	236.5	223.2
253	296.5	296.0	304.4	288.9	274.3	262.7	250.3
263	313.9	312.4	319.1	307.5	296.9	288.0	277.3
273	328.3	326.3	333.3	323.3	318.8	315.4	304.2
283	343.6	342.1	349.6	341.2	342.5	344.8	334.4
293	348.6	347.4	355.7	348.4	354.2	361.3	352.3
304	338.6	339.2	346.7	341.9	348.5	356.0	352.1
314	357.2	360.0	368.0	364.4	372.3	381.0	380.6
324	369.8	374.7	383.5	380.7	. 390.0	400.0	402.3
334	380.6	386.0	397.7	392.9	407.3	423.3	422.5
344	388.8	395.0	408.7	402.4	420.4	440.5	437.5
354	393.8	400.2	415.4	408.0	428.7	451.9	447.2

pCO₂-Jahresgänge [µatm] Gitterelemente 20-26:

	Gitterelement						
jul. Tag	27	28	29	30	31	32	Atmosphäre
0	468.8	414.5	412.5	394.8	386.7	392.0	352.1
10	471.0	416.4	415.3	393.0	387.4	392.3	353.3
21	460.7	411.1	413.7	389.1	385.4	389.7	354.4
31	447.0	402.8	403.3	378.4	376.8	380.4	355.2
41	445.4	402.7	406.5	382.8	380.0	383.3	355.8
49	441.1	400.4	411.2	386.9	382.7	385.6	356.1
59	436.1	395.3	406.7	382.3	378.1	380.6	356.2
69	406.9	374.5	391.1	368.2	367.5	369.1	356.1
79	376.7	343.9	380.4	361.5	361.8	362.4	355.7
90	350.2	313.3	375.7	361.3	362.2	361.5	355.0
100	317.6	275.8	365.3	354.7	356.0	354.2	354.1
110	281.4	240.0	345.4	339.7	342.1	339.2	353.0
120	233.7	198.9	297.6	299.1	304.6	300.7	351.8
130	188.0	162.0	243.0	251.0	259.5	254.7	350.4
140	161.5	141.9	211.1	225.4	235.3	230.0	349.0
151	149.7	135.2	197.4	214.3	225.0	218.9	347.3
161	139.3	129.9	185.8	203.0	214.1	207.6	345.8
171	136.7	132.3	184.1	200.4	211.8	204.8	344.4
181	140.6	141.9	190.3	204.2	216.0	208.4	343.0
191	150.2	156.4	202.6	211.0	222.8	214.8	341.8
201	164.0	174.9	219.0	222.2	233.8	225.5	340.7
212	184.6	199.3	241.7	238.9	249.9	241.3	339.8
222	191.1	207.7	243.0	235.8	245.2	237.3	339.2
232	200.6	217.8	245.7	234.4	242.4	235.3	338.8
243	216.7	233.3	253.3	237.9	244.7	238.4	338.7
253	244.7	258.8	270.1	250.6	256.3	250.9	338.9
263	273.3	285.5	285.3	265.1	269.1	264.8	339.3
273	304.6	311.7	313.5	293.4	291.4	288.3	340.0
283	339.7	337.7	340.7	324.6	317.0	315.6	340.8
293	361.8	351.7	352.6	339.6	326.0	326.0	341.9
304	361.6	348.0	327.6	320.8	310.3	311.7	343.3
314	391.2	371.3	335.7	331.7	321.0	323.7	344.7
324	414.1	387.8	340.5	339.2	329.5	333.3	346.1
334	440.4	401.3	372.0	372.0	354.7	359,6	347.6
344	459.4	411.1	397.9	395.0	376.0	381.4	349.1
354	471.9	417.0	417.0	407.1	390.1	395.7	350.6

pCO₂-Jahresgänge [µatm] Gitterelemente 27-32 und Atmosphäre:

Anhang VIII Jahresgang von $\delta TCO_{2,(Biologie)}$.

				Gitterelement			
jul. Tag	1	2	3	4	5	6	7
0	0.038	0.081	0.171	0.235	0.137	0.382	0.361
10	0.038	0.081	0.171	0.235	0.137	0.382	0.361
21	0.038	0.081	0.171	0.235	0.137	0.382	0.361
31	0.024	0.051	0.108	0.149	0.087	0.243	0.229
41	0.024	0.051	0,108	0.149	0.087	0.243	0.229
49	0.024	0.051	0.108	0.149	0.087	0.243	0.229
59	0.002	0.019	0.083	0.100	0.119	0.294	0.263
69	0.000	0.000	0.000	0.000	0.000	0.000	0.000
79	-0.010	-0.013	-0.019	-0.042	-0.025	-0.025	-0.023
90	-0.028	-0.037	-0.051	-0.112	-0.068	-0.068	-0.060
100	-0.039	-0.051	-0.070	-0.140	-0.084	-0.084	-0.075
110	-0.069	-0.090	-0.125	-0.234	-0.142	-0.142	-0.126
120	-0.166	-0.216	-0.301	-0.531	-0.321	-0.321	-0.285
130	-0.229	-0.298	-0.416	-0.710	-0.429	-0.429	-0.381
140	-0.239	-0.312	-0.434	-0.625	-0.378	-0.378	-0.336
151	-0.229	-0.298	-0.416	-0.488	-0.295	-0.295	-0.262
161	-0.212	-0.276	-0.385	-0.422	-0.274	-0.274	-0.243
171	-0.189	-0.246	-0.343	-0.349	-0.243	-0.243	-0.216
181	-0.162	-0.211	-0.294	-0.276	-0.209	-0.209	-0.185
191	-0.135	-0.176	-0.245	-0.230	-0.174	-0.174	-0,154
201	-0.101	-0.132	-0.184	-0.172	-0.130	-0.130	-0.116
212	-0.061	-0.079	-0.110	-0.103	-0.078	-0.078	-0.069
222	-0.034	-0.044	-0.061	-0.057	-0.043	-0.043	-0.039
232	-0.024	-0.031	-0.043	-0.040	-0.030	-0.030	-0.027
243	-0.017	-0.022	-0.031	-0.029	-0.022	-0.022	-0.019
253	-0.007	-0.009	-0.012	-0.013	-0.009	-0.009	-0.008
263	0.003	0.006	0.013	0.010	0.006	0.017	0.016
273	0.027	0.058	0.121	0.106	0.062	0.173	0.163
283	0.048	0.104	0.218	0.118	0.068	0.192	0.181
293	0.048	0.104	0.218	0.129	0.075	0.211	0.198
304	0.008	0.018	0.037	0.024	0.014	0.039	0.037
314	0.008	0.018	0.037	0.026	0.015	0.042	0.040
324	0.008	0.018	0.037	0.030	0.018	0.049	0.046
334	0.060	0.128	0.270	0.284	0.165	0.463	0.437
344	0.060	0.128	0.270	0.319	0.186	0.520	0.490
354	0.060	0.128	0.270	0.350	0.204	0.570	0.537

$\delta TCO_{2,(Biologie)}$ [mol/m²/10d] Gitterelemente 1-7:

106

				Gitterelement			×
jul. Tag	8	9	10	11	12	13	14
0	0.288	0.230	0.213	0.117	0.071	-0.174	0.000
10	0.288	0.230	0.213	0.117	0.071	-0.174	0.000
21	0.288	0.230	0.213	0.117	0.071	-0.174	0.000
31	0.183	0.146	0.135	0.074	0.045	-0.110	0.000
41	0.183	0.146	0.135	0.074	0.045	-0.110	0.000
49	0.183	0.146	0.135	0.074	0.045	-0.110	0.000
59	0.200	0.151	0.160	0.080	0.039	0.004	0.008
69	0.000	0.000	0.000	0.000	0.000	0.000 ,	0.000
79	-0.029	-0.031	-0.028	-0.035	-0.034	-0.016	-0.005
90	-0.086	-0.091	-0.083	-0.103	-0.100	-0.044	-0.015
100	-0.115	-0.122	-0.112	-0.140	-0.135	-0.052	-0.018
110	-0.194	-0.205	-0.188	-0.234	-0.227	-0.094	-0.032
120	-0.439	-0.465	-0.426	-0.531	-0.514	-0.213	-0.072
130	-0.587	-0.622	-0.569	-0.710	-0.688	-0.285	-0.096
140	-0.517	-0.548	-0.502	-0.625	-0.606	-0.251	-0.085
151	-0.404	-0.428	-0.392	-0.488	-0.473	-0.196	-0.066
161	-0.349	-0.370	-0.339	-0.422	-0.409	-0.169	-0.057
171	-0.288	-0.305	-0.280	-0.349	-0.338	-0.140	-0.047
181	-0.228	-0.242	-0.221	-0.276	-0.267	-0.111	-0.037
191	-0.190	-0.201	-0.184	-0.230	-0.223	-0.092	-0.031
201	-0.143	-0.151	-0.138	-0.172	-0.167	-0.069	-0.023
212	-0.086	-0.091	-0.083	-0.103	-0.100	-0.041	-0.014
222	-0.048	-0.050	-0.046	-0.057	-0.056	-0.023	-0,008
232	-0.033	-0.035	-0.032	-0.040	-0.039	-0.016	-0,005
243	-0.024	-0.025	-0.023	-0.029	-0.028	-0.012	-0.004
253	-0.010	-0.011	-0.010	-0.012	-0.012	-0.005	-0.002
263	0.015	0.012	0.011	0.006	0.004	-0.009	0.000
273	0.142	0.113	0.105	0.058	0.035	-0.089	0.000
283	0.161	0.128	0.119	0.065	0.040	-0.099	0.000
293	0.180	0.143	0.133	0.073	0.044	-0.108	0.000
304	0.034	0.027	0.025	0.014	0.008	-0.020	0.000
314	0.039	0.031	0.029	0.016	0.010	-0.022	0.000
324	0.043	0.035	0.032	0.018	0.011	-0.024	0.000
334	0.351	0.280	0.260	0.142	0.087	-(). 194	0.000
344	0.386	0.308	0.285	0.157	0.095	-0.220	0.000
354	0.421	0.336	0.311	0,171	0.104	-0.238	0.000

$\delta TCO_{2,(Biologie)}$ [mol/m²/10d] Gitterelemente 8-14:

108

$\delta TCO_{2,(Biologie)}$ [mol/m²/10d] Gitterelemente 20-26:

	Gitterelement						
jul. Tag	20	21	22	23	24	25	26
0	0.019	0.008	0.021	0.004	0.029	0.058	0.025
10	0.019	0.008	0.021	0.004	0.029	0.058	0.025
21	0.019	0.008	0.021	0.004	0.029	0.058	0,025
31	0.012	0.005	0.013	0.003	0.019	0.037	0.016
- 41	0.012	0.005	0.013	0.003	0.019	0.037	0.016
49	0.012	0.005	0.013	0.003	0.019	0.037	0.016
59	0.020	0.026	0.045	0.038	0.065	0.101	0.096
69	0.000	0.000	0.000	0.000	0.000	0.000	0.000
79	-0.022	-0.015	-0.010	-0.016	-0.019	-0.021	-0.023
90	-0.060	-0.043	-0.030	-0.047	-0.056	-0.062	-0.067
100	-0.070	-0.058	-0.041	-0.063	-0.076	-0.084	-0.090
110	-0.127	-0.097	-0.068	-0.106	-0.127	-0.140	-0.152
120	-0.288	-0.220	-0.154	-0.239	-0.288	-0.318	-0.344
130	-0.385	-0.294	-0.206	-0.320	-0.385	-0.425	-0.460
140	-0.340	-0.259	-0,181	-0.282	-0.340	-0.374	-0.405
151	-0.265	-0.202	-0.142	-0.220	-0.265	-0.292	-0.316
161	-0.229	-0,175	-0.123	-0.190	-0.229	-0.253	-0.274
171	-0.189	-0.144	-0.101	-0.157	-0.189	-0.209	-0.226
181	-0.150	-0.114	-0.080	-0.124	-0.150	-0.165	-0.179
191	-0.125	-0.095	-0.067	-0.104	-0.125	-0.138	-0.149
201	-0.094	-0.071	-0.050	-0.078	-0.094	-0.103	-0.112
212	-0.056	-0.043	-0.030	-0.047	-0.056	-0.062	-0.067
222	-0.031	-0.024	-0.017	-0.026	-0.031	-0.034	-0.037
232	-0.022	-0.017	-0.012	-0.018	-0.022	-0.024	-0.026
243	-0.016	-0.012	-0.008	-0.013	-0.016	-0.017	-0.019
253	-0.007	-0.005	-0.004	-0.006	-0.007	-0.007	-0.008
263	0.001	0.000	0.001	0.000	0.001	0.003	0.001
273	0.010	0.004	0.010	0.002	0.014	0.029	0.012
283	0.011	0.005	0.012	0.002	0.016	0.033	0.014
293	0.012	0.005	0.013	0.003	0.018	0.036	0.016
304	0.002	0.001	0.002	0.000	0.003	0.007	0.003
314	0.002	0.001	0.003	0.001	0.004	0.008	0.003
324	0.003	0.001	0.003	0.001	0.004	0.009	0.004
334	0.022	0.010	0.025	0.005	0.036	0.071	.0.031
344	0.024	0.011	0.028	0.006	0.039	0.078	0.034
354	0.026	0.012	0.031	0.006	0.043	0.085	0.037

	Gitterelement						
jul. Tag	27	28	29	30	31	32	
0	0.054	0.019	0.217	0.115	0.107	0.107	
10	0.054	0.019	0.217	0.115	0.107	0.107	
21	0.054	0.019	0.217	0.115	0.107	0.107	
31	0.035	0.012	0.138	0.073	0.068	0.068	
41	0.035	0.012	0.138	0.073	0.068	0.068	
49	0.035	0.012	0.138	0.073	0.068	0.068	
59	0.125	0.046	0.098	0.052	0.040	0.043	
69	0.000	0.000	0.000	0.000	0.000	0.000	
79	-0.023	-0.025	-0.027	-0.015	-0.015	-0.015	
90	-0.066	-0.069	-0.080	-0.044	-0.041	-0.042	
100	-0.090	-0.081	-0.108	-0.060	-0.056	-0.057	
110	-0.150	-0.148	-0.181	-0.107	-0.099	-0.101	
120	-0.341	-0.334	-0.410	-0.276	-0.255	-0.262	
130	-0.456	-0.447	-0.548	-0.356	-0.329	-0.338	
140	-0.401	-0.394	-0.483	-0.371	-0.343	-0.352	
151	-0.351	-0.360	-0.422	-0.356	-0.329	-0.338	
161	-0.295	-0.318	-0.354	-0.330	-0.304	-0.313	
171	-0.235	-0.268	-0.282	-0.293	-0.271	-0.278	
181	-0.177	-0.217	-0.213	-0.251	-0.232	-0.238	
191	-0.148	-0.181	-0.177	-0.209	-0.193	-0.199	
201	-0.111	-0.136	-0.133	-0.157	-0.145	-0.149	
212	-0.066	-0.081	-0.080	-0.094	-0.087	-0.089	
222	-0.037	-0.045	-0.044	-0.052	-0.048	-0.050	
232	-0.026	-0.032	-0.031	-0.037	-0.034	-0.035	
243	-0.018	-0.023	-0.022	-0.026	-0.024	-0.025	
253	-0.008	-0.009	-0.010	-0.010	-0.010	-0.010	
263	0.003	0.001	0.011	0.012	0.008	0.008	
273	0.027	0.010	0.107	0.105	0.076	0.076	
283	0.030	0.011	0.121	0.147	0.137	0.137	
293	0.034	0.012	0.135	0.147	0.137	0.137	
304	0.006	0.002	0.025	0.025	0.023	0.023	
314	0.007	0.002	0.029	0.025	0.023	0.023	
324	0.008	0.003	0.033	0.025	0.023	0.023	
334	0.066	0.022	0.265	0.182	0.169	0.169	
344	0.073	0.024	0.291	0.182	0.169	0.169	
354	0.079	0.026	0.318	0.182	0.169	0.169	

$\delta TCO_{2,(Biologie)}$ [mol/m²/10d] Gitterelemente 27-32:

Meereswissenschaftliche Berichte MARINE SCIENCE REPORTS

1	(1990)	Postel, Lutz:
		Die Reaktion des Mesozooplanktons, speziell der Biomasse, auf küstennahen Auftrieb vor Westafrika (The mesozooplankton response to coastal upwelling off West Africa with particular regard to biomass)
2	(1990)	Nehring, Dietwart:
		Die hydrographisch-chemischen Bedingungen in der westlichen und zentralen Ostsee von 1979 bis 1988 – ein Vergleich (Hydrographic and chemical conditions in the western and central Baltic Sea from 1979 to 1988 – a comparison)
		Nehring, Dietwart; Matthäus, Wolfgang: Aktuelle Trends hydrographischer und chemischer Parameter in der Ostsee, 1958 – 1989 (Topical trends of hydrographic and chemical parameters in the Baltic Sea, 1958 – 1989)
3	(1990)	Zahn, Wolfgang: Zur numerischen Vorticityanalyse mesoskaler Strom- und Massen- felder im Ozean (On numerical vorticity analysis of mesoscale current and mass fields in the ocean)
4	(1992)	Lemke, Wolfram; Lange, Dieter; Endler, Rudolf (Eds.): Proceedings of the Second Marine Geological Conference – The Baltic, held in Rostock from October 21 to October 26, 1991
5	(1993)	Endler, Rudolf; Lackschewitz, Klas (Eds.): Cruise Report RV "Sonne" Cruise SO82, 1992
6	(1993)	Kulik, Dmitri A., Harff, Jan:
		Physicochemical modeling of the Baltic Sea water-sediment column: I. Reference ion association models of normative seawater and of Baltic brackish waters at salinities 1–40 ‰, 1 bar total pressure and 0 to 30 °C temperature
7	(1994)	(system Na-Mg-Ca-K-Sr-Li-Rb-Cl-S-C-Br-F-B-N-Si-P-H-O) Nehring, Dietwart: Matthäus, Wolfgang: Lass, Hans-Ulrich: Nausch,
		Günther: Hydrographisch-chemische Zustandseinschätzung der Ostsee 1993
8	(1995)	Hagen, Eberhard: John, Hans-Christian:
		Hydrographische Schnitte im Ostrandstromsystem vor Portugal und Marokko 1991 - 1992
9	(1995)	Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans Ulrich; Nausch,
		Günther; Nagel, Klaus:
		Hydrographisch-chemische Zustandseinschätzung der Ostsee 1994
		A high resolution spherical grid tonography of the Baltic Sec.
10	(1995)	Schmidt, Martin:
	(,	Analytical theory and numerical experiments to the forcing of flow at isolated topographic features
11	(1995)	Kaiser, Wolfgang; Nehring, Dietwart; Breuel, Günter; Wasmund, Norbert;
		Siegel, Herbert; Witt, Gesine; Kerstan, Eberhard; Sadkowiak, Birgit:
		der Küstenstation Warnemünde (westliche Ostsee)
		Schneider, Bernd; Pohl, Christa:
		Spurenmetallkonzentrationen vor der Küste Mecklenburg-Vorpom- merns

12	(1996)	Schinke, Holger:
12	(1006)	Never Herme, Botting:
13	(1996)	reger-Harms, bellina:
		Ernanrungsstrategie calanoider Copepoden in zwei unterschiedich
	(1000)	tropnierten Seegebieten der Ostsee (Pommernbucht, Gollandsee)
14	(1996)	Reckermann, Marcus:
		Oltraphytoplankton and protozoan communities and their interactions
	(1000)	in different marine pelagic ecosystems (Arabian Sea and Baltic Sea)
15	(1996)	Kerstan, Eberhard:
		Untersuchung der Verteilungsmuster von Kohlenhydraten in der
		Ostsee unter Berücksichtigung produktionsbiologischer Melsgroßen
16	(1996)	Nehring, Dietwart; Matthaus, Wolfgang; Lass, Hans Ulrich; Nausch,
		Günther; Nagel, Klaus:
	(1000)	Hydrographisch-chemische Zustandseinschatzung der Ostsee 1995
17	(1996)	Brosin, Hans-Jurgen:
	(1000)	Zur Geschichte der Meeresforschung in der DDR
18	(1996)	Kube, Jan:
		The ecology of macrozoodenthos and sea ducks in the Pomeranian
40	(1000)	Bay
19	(1996)	Hagen, Ebernard (Editor):
20	(1000)	GOBEX - Summary Report
20	(1996)	Harms, Andreas:
		Die bodennane Trubezone der Mecklenburger Bucht unter besonderer
~ ~	(1007)	Betrachtung der Stoffdynamik bei Schwermetallen
21	(1997)	Zulicke, Christoph; Hagen, Ebernard:
~~	(1007)	GUBEX Report - Hydrographic Data at IOW
22	(1997)	Lindow, Heima:
		Experimentelle Simulationen windangeregter dynamischer Muster in
22	(1007)	nochautiosenden numerischen Modellen
23	(1997)	I nomas, Helmuth:
		Anorganischer Kohlenstoff im Überflächenwasser der Östsee

- `