Meereswissenschaftliche Berichte MARINE SCIENCE RÉPORTS

No. 48

Alkenone in Ostseesedimenten, -schwebstoffen und -algen: Indikatoren für das Paläomilieu?

von

Anne Charlotte Schöner

Institut für Ostseeforschung Warnemünde 2001

Die vorliegende Arbeit ist inhaltlich die unveränderte Fassung einer Dissertation, die 2001 im Institut für Ostseeforschung Warnemünde angefertigt und von der Mathematisch-Naturwissenschaftlichen Fakultät zu Greifswald angenommen wurde.

Diese Arbeit wurde als hauseigene Doktorantenstelle am Institut für Ostseeforschung Warnemünde an der Universität Rostock und Greifswald finanziert.

Inhalt	Seite	
Abstract		1
Zusammenfassung		2
1. Einleitung		3
 1.1 Alkenone als Biomarker 1.2 Die Ostse 1.2.1 Hydrographie 1.2.2 Entwicklung und Sedimente 1.2.3 Prymnesiophyceen 1.3 Zielsetzung der Arbeit 		4 8 9 10 12 15
2. Material und Methoden		16
 2.1 Probenmaterial 2.1.1 Oberflächensedimente 2.1.2 Schwebstoffe 2.1.3 Sinkstoffe 2.1.4 Algenkulturansätze 2.1.5 Holozän/pleistozäne Sedimente des Gotlandbeckens 2.2 Bestimmung von organischem Kohlenstoff 2.3 Analyse der Alkenone 2.3.1 Übersicht zur Alkenonanalyse 2.3.2 Probenaufbereitung 2.3.3 Reinigung der Laborgeräte 2.3.4 Lösungsmittel 2.3.5 Extraktion 2.3.6 Verseifung 2.3.7 HPLC 2.3.8 Gaschromatographie (GC) 2.3.9 Gaschromatographie (GC) / Massenspektrometrie (MS) 2.3.10 Auswertung 2.3.11 Abschätzung des analytischen Fehlers 		16 16 17 18 19 21 22 23 23 23 23 23 23 23 23 24 25 26 27 30 31
3. Rezentes Alkenonsignal der Ostsee		32
 3.1 Ergebnisse 3.1.1 Oberflächensedimente 3.1.2 Schwebstoffe 3.1.3 Sinkstoffallen 3.1.4 Algenkulturen 3.2 Diskussion 		32 32 37 37 38 42
4. Holozän/pleistozänes Alkenonsignal der Ostsee		52
 4.1 Angewandte Methoden am Kastenlotkern 20048-1 und Schwerelotkern 20048-4 4.1.1 Altersmodell 4.1.2 Kernbeschreibung 4.1.3 Ergebnisse der organisch-geochemischen Analyse 4.2 Diskussion 		55 56 57 60 61
5. Schlußfolgerung		75

6. Li	teratur	78
7. Da	anksagung	91
8. A	nhang	92
8.1	Verwendete Standardsubstanzen, Chemikalien und Gase zur Alkenonanalyse	92
8.2	Verwendete Geräte zur Alkenonanalyse	93
8.3	Verwendete Hard- und Software	95
84	Datenanhang	96

Abstract

The presence of alkenones in Baltic Sea sediments was first detected in the spring of 1996 (SCHULZ et al., 1997). Subsequently more samples of sediments and surface water were taken from the Baltic Sea, the Kattegat and the Skagerrak and analysed for the presence of alkenones. The aim of this study was to use alkenones as an indicator for reconstructing surface water temperatures in the Baltic. The results of the alkenone analysis, however, do not show the indices $U^{k'}_{37}$ and U^{k}_{37} to correlate significantly with either contemporary water temperature records or with what is known of temperature developments in the Baltic area during the Holocene and late Pleistocene. On the other hand, the results do indicate a positive correlation between alkenone production and salinity changes.

The analysis of alkenones as found in floating and sinking particles and surface sediments shows that a decrease in surface water salinity is reflected by the increased synthesis of tetra-unsaturated C_{37} methylalkenones and tri-unsaturated C_{38} ethylalkenones. And in salinity ranges of less than 7 PSU, east of the Gotland Basin, no C_{38} methylalkenones are detected. For the description of alkenones in the Baltic Sea the specific alkenone patterns "Marine Alkenone pattern" and "Baltic Sea Alkenone pattern" have been defined. To express the changes in C_{38} ethylalkenones production, a new alkenone index $U^{k'}_{38Et}$ is used, which describes the correlation between the summa of di- and tri-unsaturated C_{38} ethylalkenones and di-unsaturated C_{38} ethylalkenones.

The holocene/pleistocene history of salinity changes is reflected by the $U_{37}^{k'}$ index. Alkenone analysis of sediments from of the Gotland Deep shows decreasing $U_{37}^{k'}$ when water salinity increased. Analysis results from sediments of the Baltic Ice Lake stage indicate that not only at 11250 ¹⁴C years BP, during the Billingen-I event (BJÖRCK, 1995), but also at 12000 ¹⁴C years BP, at the colour change of glacial clay, the salinity of the water increased. For the Ancylus Lake period, after an initial freshwater stage, the $U_{37}^{k'}$ values show a salinity increase at 9300 ¹⁴C years BP during the transition from Mastogloia to Littorina, a significant change in the alkenone synthesis can be surmised, as the $U_{37}^{k'}$ values from then onwards reflect known salinity developments at a consistently lower value of 0,2.

Leaving out of consideration the influence of lateral sedimentary movement, especially in the Gotland Deep, the different alkenone patterns and alkenone indices in the Baltic could have been caused by changes in the algae populations or in the dominant species of algae adapting to changing salinity conditions. In order to use alkenones as a means of reconstructing temperatures and salinity levels of surface water alkenone producing algae from the Baltic should be cultivated under controlled conditions as regard temperature and salinity. Five species of algae, taken from the Baltic and North Sea respectively, were cultivated under controlled conditions as regards temperature and subjected to alkenone analysis (MENZEL et al., 1999). This analysis showed that none of the cultivated algae can be considered as the dominant alkenone producing species in the Baltic.

If the dominant alkenone producing species of the Baltic were discovered, an algae cultivation experiment based on the U_{37}^{k} , $U_{37}^{k'}$ and $U_{38Et}^{k'}$ indices can be carried out in which the influence of varying salinity conditions at a given water temperature can be measured. Especially the proportion of $C_{37.4}$ methylalkenones within the total of C_{37} alkenones should be taken into consideration. Ensuing alkenone analysis results could be used to describe salinity and temperature changes in the surface water of the Baltic Sea during the Holocene and Pleistocene period. Eventually this might develop into an absolute measure for salinity and water temperature in the Baltic.

Zusammenfassung

Am Institut für Ostseeforschung Warnemünde konnten erstmals im Frühjahr 1996 Alkenone in Sedimenten der Mecklenburger Bucht und dem Arkonabecken nachgewiesen werden (SCHULZ et al., 1997). Daraufhin wurden weitere Sedimente und Schwebstoffe aus der Ostsee, dem Kattegat und Skagerrak auf Alkenone untersucht. Ziel dieser Untersuchungen war es, die Alkenone zur Wassertemperaturrekonstruktion zu nutzen. Die ermittelten Alkenon-Untersättigungs-Indices $U^{k'}_{37}$ und U^{k}_{37} korrelieren jedoch weder mit der heutigen Oberflächenwassertemperatur während der Wachstumsperiode der Ostseeprymnesiophyceen noch mit der bisher bekannten spätpleistozänen und holozänen Temperaturentwicklung des baltischen Raumes. Dagegen ist ein Zusammenhang zwischen Salinitätsveränderungen in der Ostsee und der Alkenonproduktion aufzeigbar.

Die Alkenonanalyse aus rezentem Probenmaterial, bestehend aus Oberflächensedimenten, Schwebund Sinkstoffen, läßt erkennen, daß mit abnehmendem Salzgehalt im Oberflächenwasser zunehmend vierfach ungesättigte C_{37} Methylalkenone und dreifach ungesättigte C_{38} Ethylalkenone synthetisiert werden. Auch sind ab einer Salinität von 7 PSU, d.h. östlich des westlichen Gotlandbeckens, keine C_{38} Methylalkenone mehr nachweisbar. Entsprechend dieser Beobachtung wurde ein sogenanntes "Marines Alkenonmuster" und ein "Ostsee Alkenonmuster" definiert. Die relative Veränderung der C_{38} Ethylalkenone ist in einem neu konzipierten Alkenonindex $U^{k'}_{38Et}$ dargestellt, indem die Summe aus zwei- und dreifach ungesättigter C_{38} Ethylalkenone zum zweifach ungesättigten C_{38} Ethylalkenon in Relation gesetzt wird.

In den holozän/pleistozänen Sedimenten aus dem Gotlandbeckentief zeichnet das nachgewiesene Alkenonverhältnis $U^{k'}_{37}$ die entwicklungsgeschichtlich bekannte Salinitätsveränderungen des Oberflächenwassers nach. Der Abfall der $U^{k'}_{37}$ Werte korreliert mit dem Anstieg des Salzgehaltes. Demnach kann im Eisstausee nicht nur um 11250 ¹⁴C Jahre BP am Billingen-I Ereignis (BJORCK, 1995) ein zunehmender Salzanstieg vermutet werden, sondern auch neuartig um 12000 ¹⁴C Jahren BP am Farbwechsel des Glazialtons. Der Werteverlauf im Stadium der Ancylus vermittelt ähnlich den Beobachtungen von HUCKRIEDE et al. (1996) nach anfänglicher Aussüßung, ab 9300 ¹⁴C Jahren BP einen erneuten Salzgehaltsanstieg. An der Grenze Mastogloia/Litorina (6600 ¹⁴C Jahren BP) wird ein Wechsel in der Alkenonsynthese angenommen, um den Werteverlauf des U^{k'}₃₇ weiterhin ungestört der bekannten Salzentwicklung zuzuordnen. Ab diesem Zeitraum wird bei gleicher Salinität ein um 0,2 geringerer U^{k'}₃₇ Wert produziert.

Die Ursache für die unterschiedlichen Alkenonmuster und Alkenonverhältnisse liegen, abgesehen von allochtonem Sedimenttransport, entweder in Verschiebungen in der Algenpopulationen und/oder in der Anpassung einer dominaten alkenonproduzierenden Alge an die sich veränderten Salinitätsverhältnisse. Um die Alkenonverhältnisse bzw. die Alkenonmuster zur Rekonstruktion von Oberflächenwassertemperaturen und Salinitätsgraden zu nutzen. müßten Ostseeprymnesiophyceen unter kontrollierten Temperatur- und Salinitätsbedingungen gezüchtet werden. Im Rahmen einer Diplomarbeit wurden von D. Menzel insgesamt fünf Nord- und Ostseeprymnesiophyceen bei kontrollierter Wachstumstemperatur gezüchtet und auf Alkenone untersucht (MENZEL et al, 1999). Die Auswertung der Alkenonmuster und Alkenonkonzentrationen zeigten jedoch auf, daß keine der kultivierten Arten als heutige dominant alkenonproduzierende Prymnesiophycee in Frage kommen.

Ist diese dominant alkenonproduzierende Prymnesiophycee der Ostsee jedoch bekannt, so könnten durch ein gezielt aufgebautes Kultivierungexperiment salzspezifische Temperaturgleichungen, die auf den Alkenon-Untersättigungs-Indices U_{37}^{k} , $U_{37}^{k'}$ und $U_{38Et}^{k'}$ basieren, erarbeitet werden. Auch sollte der prozentuale Anteil an C_{37:4} Methylalkenonen zur Summe an C₃₇ Alkenone besonders beachtet werden. Die Ergebnisse aus der Alkenonanalyse könnten dann zur Beschreibung von Salinitäts- und Temperaturveränderungen des Oberflächenwassers während der holozän/ pleistozänen Entwicklungsgeschichte genutzt werden. Möglicherweise können sogar absolute Angaben über die Salinität und die Wassertemperatur in der Ostsee angegeben werden.

1. Einleitung

Die Rekonstruktion der holozänen und pleistozänen Milieuentwicklung der Ostsee erfolgte bisher durch die Methoden der Palynologie (PAHLSSON & ALM, 1985), hochauflösenden Sedimentologie (GINGELE & LEIPE, 1997), anorganischen Geochemie (EMEIS et al., 1998), Isotopengeochemie (BODEN et al., 1997) und Mikropaläontologie (HUCKRIEDE et al., 1996). Die organischgeochemische Analyse von Alkenonen ist in der Marinen Geologie ein wichtiger Bestandteil zur Temperaturrekonstruktion und gibt Hinweise auf Salinitätswechsel des Oberflächenwassers. Diese Dissertation soll einen Beitrag zur Anwendung dieser Methode im Ostseeraum und somit zur Erforschung des Paläomilieus leisten.

Am Institut für Ostseeforschung konnten in Vorversuchen Alkenone in Ostseesedimenten nachgewiesen werden (SCHULZ et al., 1997). Es wurden sowohl typische marine als auch davon abweichende, lakrustin-ähnliche Alkenonmuster ("Ostsee-Verteilung") gefunden. Das zur Temperaturrekonstruktion genutzte Alkenonverhältnis Uk'37 weist ebenfalls variable Werte auf. Bisher wurden an Kernen aus der Mecklenburger Bucht, dem Arkona- und Bornholmbecken sowie an Oberflächensedimenten aus dem Arkonabecken organisch-geochemische Untersuchungen durchgeführt.

Die unterschiedlichen Alkenonmuster deuten auf unterschiedliche Produzenten (Prymniophyceen) hin. Die typisch marinen Alkenonmuster sind wahrscheinlich auch in den Sedimenten der Ostsee auf die hinreichend kultivierte und organisch-geochemisch analysierte Emiliania huxleyi zurückzuführen. Im Skagerrak, Kattegat und der Belt See tritt die Alge als dominierende Prymniophycee auf. Im Rahmen des biologischen Monitoringes (WASMUND et al., 1998) in der Mecklenburger Bucht konnte Emiliania huxleyi z.B. während der Herbstblüte nachgewiesen werden. Diese Alge ist bisher nur in Gewässern mit einer minimalen Salinität von 10 PSU gefunden worden. Die abweichenden, lakrustrin-ähnlichen Muster sind vermutlich auf Prymniophyceen zurückzuführen, die im Brackwasser bei geringer Salinität leben. MEYER-HARMS (1996) konnte ihrer anhand Markerpigments im Rahmen Dissertation des 19-Hexanoyloxyfucoxanthin bis in das zentrale westliche Gotlandbecken Prymnesiophyceen nachweisen. In der Veröffentlichungsreihe des Finnischen Meeresinstitutes Tvärminne werden auf dem Untersuchungsprofil Travemünde/Helsinki verschiedene Prymnesiophyceen als ein wichtiger Bestandteil des Nanoplanktons beschrieben (LEPPÄNEN et al., 1994).

Vermutlich bedingen Salinitätsunterschiede das Auftreten von unterschiedlichen Alkenonproduzenten. In der Ostsee nimmt die Salinität nach E/NE ab. Ähnlich der Salinität verliert das marine Alkenonmuster in rezenten Sedimenten von Westen (Mecklenburger Bucht) nach Osten (Arkona- und Bornholm-Becken) an Bedeutung. Die Salinität hat sich im Laufe der Ostseentwicklung mehrfach geändert. Entsprechend werden in Sedimenten, die unter hoher Salinität gebildet wurden, die "marinen" Alkenonmuster und in Sedimenten, die unter brackischen Bedingungen bzw. unter Süßwasser sedimentiert wurden, abweichende Alkenonmuster und indices erwartet.

3

1.1 Alkenone als Biomarker

Im Rahmen des Deep Sea Drilling Projects 1978 wurde erstmals eine Gruppe von langkettigen, mehrfach ungesättigten Ketonen in den miozänen und pleistozänen Sedimenten des Walfischrückens (Südatlantik) nachgewiesen (BOON et al., 1978). Es handelt sich um unverzweigte C_{37} - C_{39} , zwei- bis vierfach ungesättigte Methyl- und Ethylketone, welche zusammenfassend als Alkenone bezeichnet werden (DE LEEUW et al., 1980; VOLKMAN et al., 1980; VOLKMAN & SARGENT, 1980). RECHKA & MAXWELL (1988a) wiesen nach, daß die Doppelbindungen in Form der biologisch seltenen trans-Konfiguration (E-Form) vorliegen.

Abb. 1.1: Strukturformel der vier- a), drei- b) und zweifach c) ungesättigten C37 Methylketone, die zur Rekonstruktion der oberflächennahen Paläowassertemperaturen genutzt werden. Die Strukturformel d) zeigt beispielhaft das vierfach ungesättigte C38 Ethylketon.

In der Tab.1 sind die Alkenone mit ihrer offiziellen IUPAC-Bezeichnung (International Union of Pure and Applied Chemistry), der abgekürzten Nomenklatur sowie ihrer Molekülmasse zusammengefaßt. Die Abkürzungen erfolgen in Anlehnung an die der Fettsäuren. Hinter die Kohlenstoffkettenlänge wird, getrennt durch einen Doppelpunkt, die Anzahl der im Molekül vorkommenden Doppelbindungen geschrieben. Methyl- und Ethylverbindungen werden durch angefügte Kürzel (Me bzw. Et) wiedergegeben.

4

Tab.1.1: Offizielle IUPAC Nomenklatur, Namen-Kürzel und Molekulargewicht (MW) aller detektierten
Alkenone in der zeitlichen Abfolge ihrer Detektion mittels der Gaschromatographie.

Offizielle IUPAC Name	Abgekürzte Nomenklatur	Molekular- gewicht MW
Heptatriaconta-8E,15E,22E,29E-tetraen-2-on	C _{37:4} Me bzw. C _{37:4}	526
Heptatriaconta-8E,15E,22E-trien-2-on	C _{37:3} Me bzw. C _{37:3}	528
Heptatriaconta-8E,15E-dien-2-on	C _{37:2} Me bzw. C _{37:2}	530
Octatriaconta-9E,16E,23E-trien-3-on	C _{38:3} Et	542
Octatriaconta-9E,16E,23E-trien-2-on	C _{38:3} Me	542
Octatriaconta-9E,16E-dien-3-on	C _{38:2} Et	544
Octatriaconta-9E,16E-dien-2-on	C _{38:2} Me	544
Nonatriaconta-10E,17E,24E-trien-3-on	C _{39:3} Et	556
Nonatriaconta-10E,17E-dien-3-on	C _{39:2} Et	558

Da Alkenone nur von einigen Algengattungen synthetisiert werden, die alle zur Familie der Prymnesiophyceen gehören, können sie als organismenspezifische Biomarker dienen. Die Klasse der Prymnesiophyta (= Haptophyta) gehören nach VAN DEN HOEK (1995) die Ordnungen der Isochrysidales, Coccolithophorales, Prymnesiales und Pavlovales. Die im marinem Milieu lebende Alge der Ordnung Coccolithophorales Emiliania huxleyi und die Algen der Ordnung Isochrysidales Gephyrocapsa oceanica, Isochrysis galbana, Chrysotila lamellosa und Isochrysis sp. sind als Alkenonproduzenten beschrieben worden (MARLOWE et al., 1984; VOLKMAN et al., 1995). THOMSEN (1993) konnte in Zuchtversuchen mit hochsalinen Nährmedien in den Prymnesiophyceen Chrysochromulina apheles, Chrysochromulina polylepis, Corum bellus, Phaeocystis pouchetii, in der Isochrysidale Pleurocysis cartrae und der Pavlovale Pavlova lutheri Alkenone nachweisen. Als Hauptalkenonproduzent in nahezu allen Bereichen der Ozeane wird *Emiliania huxleyi* angesehen. Der Anteil der C₃₇ Methylketone kann bei dieser Algenart bis zu 8% der Biomasse betragen (PRAHL et al., 1988). Im Brackwasser-Milieu von 6 PSU wurden von MENZEL et al. (1999) die Isochrysidale Pleurochrysis carterae, die Prymnesiale Prymnesium parvum und die Pavlova lutheri als Alkenonproduzenten der Ostsee erkannt. Menge und Zusammensetzung der von diesen Arten produzierten Alkenone weisen jedoch darauf hin, daß die in der Ostsee dominant alkenonproduzierenden Prymnesiophyceen noch nicht bestimmt werden konnten. Für das Süßwasser-Milieu ist noch nicht bekannt, welche Arten Alkenone produzieren, wenngleich CRANWELL (1985) vermutet, daß nur Süßwasserprymnesiophyceen der Ordnung Chrysophyta eine Rolle spielen.

Die Alkenone sind Bestandteile der Zellmembran der alkenonproduzierenden Algen. Ihre physiologische Bedeutung der Alkenone besteht nach PRAHL & WAKEHAM (1987) darin, bei sinkender Temperatur der zunehmenden Viskosität der Zellmembran entgegenzuwirken, indem ein größerer Anteil von höher ungesättigten Alkenonen in die Zellmembran eingebaut wird. Tatsächlich zeigen die Alkenonmuster in Prymnesiophyceen und Sedimenten aus verschiedenen Regionen des Atlantiks zeigen, daß der Anteil der höher ungesättigten C37 Methylketone zunimmt, wenn die Wassertemperatur abnimmt (MARLOWE et al., 1984; BRASSELL et al., 1986). Als ein Maß für den Grad der Untersättigung der C_{37} Alkenone definierten BRASSELL et al. (1986) den Alkenonindex :

$$U_{37}^{k} = \frac{C_{37:2} - C_{37:4}}{C_{37:2} + C_{37:3} + C_{37:4}}$$
(1.1)

Hier bedeuten U = Untersättigung (unsaturation) und K = Keton (ketone), während die Zahl 37 die Anzahl der Kohlenstoffatome im Molekül angibt.

Bei Abwesenheit des C37:4 Methylketons vereinfacht sich der Alkenonindex zu Uk'37 (BRASSELL et al., 1986; PRAHL & WAKEHAM, 1987).

$$U_{37}^{k'} = \frac{C_{37:2}}{C_{37:2} + C_{37:3}}$$
(1.2)

Aufgrund der Temperaturabhängigkeit der Alkenonzusammensetzung können Alkenone in der marinen Geologie zur Rekonstruktion der oberflächennahen Paläowassertemperatur und zur Abschätzung von oberflächennahen Paläosalinitäten genutzt werden.

PRAHL & WAKEHAM (1987) zeigten anhand von Züchtungsversuchen erstmals, daß Uk'37 und die Wachstumstemperatur der Algen linear korrelieren und in der Temperatur-Gleichung $U_{37}^{k'} = 0,034$ T + 0,039 ausgedrückt werden kann. Bei dieser Gliederung handelt es sich um eine empirische Funktion, deren Konstanten ortsspezifisch sind. Deshalb wurde die Gleichung vielfach modifiziert, um ortsspezifische Temperaturkalibrierungen zu erarbeiten (BRASSELL et al., 1986; PRAHL & WAKEHAM, 1987; TEN HAVEN et al., 1987; PRAHL et al., 1988; SIKES et al., 1991; CONTE et al., 1992; CONTE & EGLINTON, 1993; SIKES & VOLKMAN, 1993; BRASSELL 1993; ROSELL-MELÉ et al., 1995; SIKES et al., 1997). Die Eichungsfunktionen wurden aus Kulturexperimenten (PRAHL et al., 1987; VOLKMAN et al., 1995), Schwebstoffen (PRAHL & WAKEHAM, 1987; CONTE et al., 1992; CONTE & EGLINTON, 1993; SIKES & VOLKMAN, 1993), Oberflächensedimenten (SIKES et al., 1991; ROSELL-MELÉ et al., 1995) und aus der Kombination unterschiedlichen Probenmaterials (PRAHL et al., 1988; BRASSELL, 1993; SIKES et al., 1997) entwickelt. Bei der Verwendung des Uk'37 zur Temperaturrekonstruktion ist zu beobachten, daß die lineare Beziehung nur in einem bestimmten Temperaturbereich gilt. So zeigen beispielsweise SIKES & VOLKMAN (1993) auf, daß bei Temperaturen zwischen 4 und 25°C mit der Gleichung $U_{37}^{k} = 0,0414 \text{ T} - 0,156$ eine lineare Beziehung zwischen Uk'₁₇ und der Oberflächentemperatur (SST) südlich von Tasmanien aufgestellt werden kann. Ihre Untersuchungen ergaben jedoch auch, daß für Temperaturen von -1,9 bis 6°C die Beziehung zwischen dem $U^{k_{37}}$ und der Oberflächentemperatur nicht mehr linear sondern exponentiell verläuft. Aufgrund des steilen Kurvenverlaufs wird der Alkenonindex für diese Temperaturbereiche nicht mehr zur Temperaturrekonstruktion genutzt.

Alkenone wurden nicht nur in marinen Sedimenten, sondern auch in brackigen und limnischen Sedimenten nachgewiesen (CRANWELL, 1985, 1988; VOLKMAN 1988, LI et al., 1996; THIEL et al., 1997; SCHULZ et al., 1997, SCHÖNER et al., 1999). Für die Alkenonproduzenten aus diesem Salzmilien gibt es bisher jedoch weder Zuchtreihen noch ausreichende Daten über Oberflächensedimente, so daß noch keine gesicherte Temperaturkalibrierung entwickelt werden konnte. Deshalb können in Brackwassergebieten und Seen Alkenone noch nicht zur Bestimmung von Paläowassertemperatur herangezogen werden.

6

Alkenonmustern erlauben Rückschlüsse auf physiologische Unterschiede der Algen-Spezies (PRAHL & MUEHLHAUSEN, 1989; Prahl et al., 1989a; ROSTEK et al., 1997). Die Autoren bedienten sich der folgenden Verhältnisse :

$$\frac{K37}{K38} = \frac{C_{37:2}Me + C_{37:3}Me + C_{37:4}Me}{C_{38:3}Et + C_{38:3}Me + C_{38:2}Et + C_{38:2}Me}$$
(1.3)

$$\frac{EE}{K37} = \frac{C_{36:2}FAME + C_{36:3}FAME}{C_{37:2}Me + C_{37:3}Me + C_{37:4}Me}$$
(1.4)

$$\frac{K37:4}{K38} = \frac{C_{37:4}Me}{C_{37:2}Me + C_{37:3}Me + C_{37:4}Me}$$
(1.5)

K37 Summe der Konzentrationen von C37 Alkenonen

K38 Summe der Konzentrationen von C38 Alkenonen

EE Summe der Konzentrationen von C36 Ethylalkenoaten

K37:4 Summe der Konzentrationen von C37:4 Methylketonen

C_{x:y} bezeichnet den Anteil/Konzentration an Alkenonen bzw. Alkenoaten (Fettsäure-Methylester), wobei _{x:y} als Pseudonym für die Kettenlängen und Doppelbindungen steht

FAME Fettsäure-Methylester

In Abhängigkeit zum Uk'37 zeigen die Verhältnisse K37/K38 (Formel 1.3) und EE/K37 (Formel 1.4) kein lineares Verhalten in *Emiliania huxleyi* Kulturansätzen (PRAHL et al. 1988). Die Alkenonanalyse von Sedimentproben lassen einen systematischen Versatz erkennen (PRAHL et al. 1989a). Als Ursache für diesen Versatz wurden physiologisch bedingte Unterschiede der Prymnesiophyceen bezüglich ihrer Alkenon- und Alkenoatsynthese angenommen. Das Verhältnis der Summenkonzentrationen K37/K38 dient nach ROSTEK et al. (1997) zur Identifizierung verschiedener Prymnesiophyceenarten. PRAHL et al. (1995) benutzen das Verhältnis K37:4/K37 (Formel 1.5) im Zusammenhang mit dem Verhältnis von K37/K38 und dem U^{k'}₃₇ dazu, um die Verwendung der Temperaturgleichung U^{k'}₃₇ = 0,034*T+0,039 (PRAHL et al. 1988) zur Rekonstruktion von Wassertemperaturen während der Glazial-/Interglazialzeiten im nördlichen Pazifik zu begründen.

Aus der Bestimmung des U^k₃₇ und des δ^{18} O in planktonischen Foraminiferenschalen und Sedimenten ist die Rekonstruktion von Paläosalzgehalten des Ozeans möglich (SUESS, 1986; ROSTEK et al., 1993). Auf geringe Salinitäten des Oberflächenwassers weist ein Anteil an C_{37:4} Methylketonen von mehr als 5% zur Summe der C₃₇ Alkenone hin (SCHULZ et al., 1997; ROSELL-MELÉ et al., 1998, SCHÖNER et al., 1999; SCHULZ et al., 2000). Ein korrelierbarer Zusammenhang von Alkenonverhältnissen bzw. Alkenonkonzentrationen und Salzgehalten des Nährmediums müßte jedoch in Züchtungsversuchen salztoleranter Prymnesiophyceen nachvollzogen werden.

Ketone sind gegenüber mikrobiellem Abbau und Diagenese relativ stabil. So konnten BRASSELL et al. (1986) Ketone in über 100 Mio. Jahren alten Sedimenten nachweisen. PRAHL & MUEHLHAUSEN (1989) zeigten, daß sich die Ketone gegenüber besser abbaubaren Biomarkern über die Zeit anreichern. Findet eine Biodegradation der Alkenone statt, dann verläuft diese im gleichen Maß an den di-, tri- und tetra-ungesättigten C_{37} Ketonen (PRAHL et al., 1989b). Damit bleibt das Alkenonverhältnis und somit das Temperatursignal erhalten, was eine wesentliche Voraussetzung für die Eignung der Alkenone zur Temperaturrekonstruktion aus geologischen Proben ist.

1.2 Die Ostsee

Die Ostsee ist ein Nebenmeer des Atlantischen Ozeans, mit dem sie über das Schelfmeer Nordsee in Verbindung steht. Sie ist mit einem mittleren Salzgehalt von 9-10 PSU eines der größten Brackwassergebiete der Welt (VOIPIO, 1981) und kann als intrakontinentales Mittelmeer im humiden Klimabereich bezeichnet werden (DIETRICH et al., 1975). Die Grenze zur Nordsee bilden die Drogden- und die Darßer Schwelle. Die Bodentopographie der Ostsee ist durch eine Kette von tieferen Becken und 18-70 m flachen Schwellen stark gegliedert (siehe Abb.1.2). Die mittlere Tiefe der Ostsee beträgt 52 m. Ihre tiefste Stelle ist mit 459 m Wassertiefe das Landsorttief südlich von Stockholm im westlichen Gotlandbecken. Die Becken und Buchten erstrecken sich über eine Fläche von 415 000 km² bei einem Volumen von 21 700 km³. Das Einzugsgebiet der Ostsee ist mit 1 620 000 km² etwa viermal so groß wie ihre Oberfläche (HELCOM, 1986a und b). Die Planzenund Tierwelt der Ostsee wird vorwiegend durch den Salzgehalt beeinflußt. Die meisten Organismen sind von der Nordsee bzw. über das Süßwasser der Flüsse in die Ostsee eingewandert. Sowohl die marinen als auch die limnischen Arten erfahren durch das Brackwasser der Ostsee ihre Verbreitungsgrenzen. In dem relativ jungen Brackwassermeer hat sich bislang kaum eine eigenständige Flora und Fauna ausgebildet (RHEINHEIMER, 1995).

In den folgenden Kapiteln werden die Hydrographie und die Entwicklungsgeschichte der Ostsee, wie sie in den Sedimenten dokumentiert ist, und die Verbreitung von Prymnesiophyceen, ausführlicher dargestellt.

Abb.1.2: Die Ostsee und ihre Buchten und Becken nach dem grundlegenden Vorschlag von WATTENBERG (1949), modifiziert von KÖSTER & LEMKE (1995)

1.2.1 Hydrographie

Die Ostsee besitzt eine positive Wasserbilanz. Der mittlere jährliche Festlandsabfluß beträgt 483 km³ (HELCOM, 1986a). Die Verdunstung (207 km³) und der Niederschlag (266 km³) über der Ostseefläche gleichen sich weitgehend aus. Die positive Wasserbilanz ergibt sich aufgrund des Süßwasserüberschußes von durchschnittlich 542 km³ pro Jahr und des periodischen Einstroms salzreichen Nordseewassers. Der bodennahe Einstrom beträgt 830 km³ gegenüber dem oberflächennahen Gesamtausstrom von 1370 km³ (RHEINHEIMER, 1995).

Der Wasseraustausch mit der Nordsee kann nur über den Großen und Kleinen Belt sowie den Øresund erfolgen. Die flachsten Stellen bilden die 18 m tiefe Darßer Schwelle und die 7 m tiefe Drogdenschwelle. Nach JACOBSON (1980) erfolgt 73 % des Wasseraustausches über die Darßer Schwelle. Durch die geringen Wassertiefen findet eine Vermischung des Nordseewassers mit Ostseewasser in der Beltsee und dem Öresund statt, so daß der Salzgehalt des Einstroms verringert wird.

Eine großräumige Horizontalzirkulation der Ostsee wird durch die kaskadenförmige Anordnung der Becken (Arkonabecken, Bornholmbecken, Gotlandbecken) stark behindert. Es bildet sich daher eine relativ stabile Schichtung von salzarmem Wasser in den oberen Schichten der Ostsee und salzreicherem Wasser in den Tiefenschichten aus. In der zentralen Ostsee liegt diese Salzgehaltssprungschicht in 50 bis 70 m Tiefe. Aufgrund der Stabilität dieser Schichtung bildet sich in den tiefen Becken durch den Abbau von Sauerstoff ein anoxisches Milieu aus, daß durch Schwefelwasserstoff (H_2S) gekennzeichnet ist.

Die Stagnationsphasen mit ihrer stabilen Schichtung werden unterbrochen, wenn größere Mengen salzreichen Wassers aus der Nordsee einströmen. Solche sogenannte Salzwassereinbrüche finden statt, wenn starke Westwinde aif Ostwindlagen folgen (WYRTKI, 1954; Lass & Matthäus, 1996). Die Ausbreitung des Salzwassers erfolgt allmählich am Boden der Becken, so daß der Austausch des Tiefenwassers im Gotlandbecken erst nach mehreren Monaten beobachtet werden kann (MATTHÄUS & FRANCKE, 1990; NEHRING & FRANCKE, 1972; NEHRING et al., 1994). Die Salzwassereinbrüche finden in der Regel im Winter statt, wobei es alle 7-10 Jahre zu einem größeren Einstromereignis kommt. Ein größerer Ausstrom in den Oberflächenschichten ist hauptsächlich im Sommer festzustellen. Gesteuert durch die Abkühlung des Oberflächenwassers im Herbst, durch den Grad der Salzwassereinbrüche und durch Diffusionseffekte während längerer Stagnationsperioden findet eine Vermischung des Tiefenwassers mit dem Oberflächenwasser statt. Im Arkonabecken und Bornholmbecken kommt es bisweilen zu einer vollständigen Konvektion. Dies ist im Gotlandbecken nicht der Fall. Dort kann sich nach Salzwassereinbrüchen nur kurzzeitig anoxisches Zwischenwasser ausbilden. Die mittlere Verweildauer des Wassers in den Becken beträgt etwa 30 Jahre (RHEINHEIMER, 1995).

Der Salzgehalt des Oberflächenwassers nimmt vom Westen nach Osten ab. Es können zwei Grenzflächen unterschieden werden (WATTENBERG, 1941). Die Skagerrak-Grenzfläche wird zwischen dem Nordseewasser mit 30 PSU und dem Mischwasser des Kattegats (20 bis 26 PSU) gebildet. Die Beltsee-Grenzfläche bildet sich aus dem Mischwasser des Kattegat und dem Brackwasser der Ostsee, welche Salinitäten von 2 bis 12 PSU aufweist. In der Abb.2.1 können diese Grenzflächen anhand der Isohalinen im Augustmittel nach Bock (1997) nachvollzogen werden.

Im Sommer erwärmt sich das Oberflächenwasser auf 15-20°C, und es bildet sich über der Halokline in 20-30 m Tiefe, eine thermische Sprungschicht aus. Die Thermokline ist von Mitte April bis Ende Oktober ausgeprägt (LENZ, 1971). Die Wassermasse zwischen der Thermo- und Halokline wird als winterliches Zwischenwasser bezeichnet, da sie die winterliche Deckschicht beinhaltet. Nach der Abkühlung im Herbst wird die Schichtung instabil. Dies ermöglicht Vertikalkonvektion bis zur Halokline. Horizontale Strömungen in der Ostsee werden durch den Wind und nur im sehr geringen Maß durch Niederschlag, Verdunstung, Flußwasserzufuhr und Tidenhub verursacht. Die Abweichung vom mittleren Wasserstand kann bis zu 0,5 m betragen (HELA, 1944; LASS, 1988). Durch die Schubkraft des Windes kommt es an den Küsten zu einem Windstau und somit zur Erniedrigung des Wasserstandes (WÜBBER & KRAUSS, 1979). Auch Luftdruckschwankungen tragen zu Wasserstandsveränderungen bei (HELA, 1944). Der maximale Tidenhub (Springtidenhub) der eintägigen Gezeiten liegt in der Westlichen Ostsee und im Finnischen Meerbusen bei 15 cm. In der Zentralen Ostsee sind die Gezeiten ohne Bedeutung.

1.2.2 Entwicklung und Sedimente

Die Geschichte der Ostsee ist seit Jahrzehnten Gegenstand intensiver Untersuchungen. SAURAMO (1948) stellte erstmals in einer grundlegenden, zusammenfassenden Arbeit die Entwicklung der nacheiszeitlichen Ostseestadien dar. Das Zusammenspiel von Isostasie und Eustasie resultierte in sieben Hauptphasen in der spät- und nacheiszeitlichen Geschichte der Ostsee. Diese wurden zum Teil noch weiter untergliedert.

Durch das Abschmelzen des Inlandeises entwickelte sich der Baltische Eisstausee in der Ostseefurche zwischen Eisrand und den umgebenen Endmoränen. BJÖRCK (1995) faßt in einem Literaturüberblick die Entwicklung des Eisstausees wie folgt zusammen: Nach dem Eisrückzug und der Bildung des Baltischen Eisstausees bestand eine Verbindung zum Kattegat über den Øresund. Durch isostatische Hebung des Øresundbereichs wurde der Zufluß von Salzwasser aus der Nordsee unterbrochen. Der Wasserspiegel im Eisstausee stieg so weit an, bis ein erster Ausfluß durch das Gebiet von Billingen (Mittelschweden) in den Kattegat erfolgte. Diese Verbindung wurde durch einen Eisvorstoß in der Jüngeren Dryas wieder unterbrochen. Durch anschließenden Eisrückzug erfolgte eine zweiter Ausfluß des Sees über die sogenannte Billingen-Pforte. Das zuströmende Salzwasser aus der Nordsee in den Binnensee bildete daraufhin das salzig-brackige Yoldia-Meer. Die von KÖSTER & SCHWARZER (1995) beschriebene nordöstliche Meeresstraße vom Yoldia-Meer zum Weißen Meer wird von SAARNISTO et al. (1995) widerlegt. Durch einen verstärkten isostatischen Anstieg des Festlandes wurde die Verbindung zur Nordsee wieder unterbrochen und das Yoldia-Meer süßte aus. Es entstand der Ancylus-See. Der Ancylus-See hatte in seiner ersten Entwicklungsphase (Ancylus I) hohe Süßwasserzuflüsse. In relativ kurzer Zeit floß der See über die Darßer Schwelle (KOLP, 1986; BJÖRCK, 1995) in die Nordsee ab. Diese Verbindung zum Kattegat charakterisiert eine zweite Phase des Ancylus-Sees (Ancylus II). Durch den schnellen Anstieg der Weltmeeresspiegel strömte anschließend salzhaltiges Nordseewasser in den Binnensee und es bildete sich, über das brackige Zwischenstadium des Mastogloia-Meeres (KESSEL & RAUKAS, 1979; ERONEN et al., 1990; LANGE, 1984), das salzig-brackige Litorina-Meer. Später setzte eine leichte Aussüßung ein und das brackige Limnaea-Meer entstand. Seitdem sich die Sandklaffmuschel Mya arenaria in der Ostsee ausgebreitet hat, wird das heutige Ostseestadium als das Mya-Meer bezeichnet.

Die Einordnung der Ostseestadien in absolute Zeitabschnitte variiert in der Literatur stark. Die Tab. 1.2 zeigt die oben beschriebenen Stadien der Ostsee mit den zugehörigen Datierungen, Ereignissen, Salinitäten und Sedimentausbildungen, die der Diskussion dieser Arbeit zugrunde liegen. Tab. 1.2: Entwicklung und Sedimente der Ostseestadien

Ostseestadien auf der Grundlage von BJÖRCK, 1995 bis SVENSSON, 1991;

C14-Datierung auf der Grundlage dieser Arbeit

Salinität: KESSEL & RAUKAS (1979) bzw. kursiv = eigene Annahme;

Generelle Lithostratigraphie: IGNATIUS et al. (1981) in WATEGÅRD et al. (1995); Lithostratigraphie des Gotlandbeckens : HUCKRIEDE et al. (1996)

Ostsee- stadium	Angabe der basalen Zeitgrenze	Ereignis	Salinität	Generelle Litho- stratigraphie		Lithostrati. d.Gotlandb.	
C14-Datier	(y.BP =v.1950)						
Mya 500 bis heute		Mya arenaria	brackig	Ton-Gyttja, laminiert		bioturbierter und laminierter	
Lymnea 3000	2000-500	Rückgang des Salzgehaltes	brackig ~ 8 PSU	Ton-Gyttja, homogen bis laminiert	Post- glazialer Schlick	Schlick a1-a6	
Litorina 6900	7900/7300-2000 (Kliewe & Janke, 1982)	bis 5700 weltweiter Meeresanstieg, auch in der Ostsee	salzig- brackig 8-15 PSU	Ton-Gyttja, laminiert			
6900 Mastogloia 8300/8000 (LANGE, 1984/ ERONEN et al., 1990)- 7900/7300 (KLIEWE&JANKE, 1982)		verstärkte Salzwasser- zufuhr	brackig-süß > 8 PSU	Ton-Gyttja, laminiert		laminierter braungrauer Sapropel mit blaugrünem Silt u. Ton a7-b1	
Ancylus II 9300	~9000-8000 (ERONEN et al., 1990)	9000-8000 (ERONEN Verbindung zum al., 1990) Verbindung zum Kattegat über die Darßer Schwelle SPSU sulfidhaltig		homogener Ton, sulfidhaltig	Über- gangston	dunkler Ton, bioturbiert, Sulfidknollen b2+b3	
Ancylus I 9620	9500-9300/9200/8700 (Svensson, 1991/ Björck, 1995/ Kliewe&Janke, 1982, 1991)	Isostatischer Aufstieg bedingt Anstau des Ancylus-Sees	süß	homogener Ton		hellgrauer, laminierter, sulfidfreier Ton b4	
Yoldia 10320	10300-9500 (Björck,1995)	Billingen-Pforte ist zur Nordsee offen	brackig ~ 8 PSU	Ton, dünne distale Warven	Glazialer Ton und Silt	grauer, laminierter sulfidreicher Ton b5-b7	
Baltischer Eisstausee	10300 (Bodén et al.,1997)	Abfluß II über die Billingen- Pforte	süß	Ton, dünne distale und proximale Warven		hellgrauer gewarvter Ton c1	
	10800 (Jensen, 1992)	durch Eisvorstoß der jüngeren Dryas isolierter Eisstausee	süß	¢			
11250	11200 (Björck,1995)	Abfluß I über die Billingen-Pforte	Salzwasser- einflüsse möglich			hellbrauner gewarvter Ton c2	
12064	12064 12000 (Вјörск,1995)		süß				
	12600/12000 (BERGSTEN & NORD- BERG,1992) 13500/13000 (BJÖRCK,1995)	Bildung des Baltischen Eisstausees mit einer Verbindung zum Kattegat über den Øresund	dung des Salzwasser- einflüsse itischen einflüsse stausees mit möglich er Verbindung n n Kattegat er esund en				

In den Sedimenten der Ostsee kommt die typische Differenzierung von schwellen- bzw. küstennahen gröberkörnigen Bildungen und den feinkörnigen Schlicken der Becken klar zum Ausdruck. Die charakteristische Lithologie der Ostseesedimente bildete sich aufgrund der Salinitäts- und Strömungswechsel, der Änderungen der Erosionsräume, durch fortscheitenden Eisrückzug bzw. durch sich verändertes Volumen der Ostsee. Dies alles sind Effekte der Klimaentwicklung des Spätglazials und Holozäns. IGNATIUS et al. (1981) beschrieben eine stratigraphische Gliederung der spätquartären Ostseesedimente. Dieser wird in Tab. 1.2 die Lithostratigraphie des Gotlandbeckens nach HUCKRIEDE et al. (1996) gegenübergestellt.

Karten der Sedimentverteilungen wurden bis zur politischen Wende in Europa unter Verschluß gehalten. Im Laufe der letzten zehn Jahren wurden, wie HARFF et al. (1995) darstellt, geologische Karten der Ostsee im Maßstab 1:500 000 u.a. von GRIGELIS (1990-1993 a, b) und NIELSON (1992) erstellt und publiziert. Derzeit finden Projektvorbereitungen statt, um ein die Gesamtostsee erfassendes Kartenwerk zu erstellen (HARFF et al., 1995). Dabei sollen neben einer rein beschreibenden Aufnahme auch differenzierte quantitative meßbare Sedimenteigenschaften berücksichtigt werden.

1.2.3 Prymnesiophyceen

EDLER et al. (1984) beschrieben in der "preliminary check-list of the phytoplankton of the Baltic Sea" 36 Prymnesiophyceenarten. PANKOW (1990) ergänzt diese Liste um Apistonema Pappomonas flabellifer und Chrysochromulina pyrenigerum. Calciopappus caudatus, brachycylindra. Die größte Artenvielfalt ist im Kattegat mit einer Art aus der Ordnung der Isochrysidales, sieben Arten der Papposphaerales (=Coccolithophytales nach VAN DEN HOEK et al. 1995) und 26 Arten der Prymnesiales nachzuweisen. Im Arkonabecken werden neben Pappomonas flabellifer neun Arten der Ordnung Prymnesiales beschrieben. KELL & NOACK (1991) berichten über ein Fischsterben im Kleinen Jasmunder Bodden durch Massenvermehrung von Prymnesium saltans. Im Bornholmbecken zeigen EDLER et al. (1984) nur noch Prymnesium parvum. PANKOW (1990) gibt für einen Verbreitungsraum vom Arkonabecken bis in das Bornholmbecken zusätzlich fünf weitere Arten der Ordnung Prymnesiales auf. LEPPÄNEN et al. (1994 bis 1998) weisen in der Mecklenburger Bucht, dem Arkonabecken, dem Bornholmbecken, dem westlichen und östlichen Gotlandbecken und dem Finnischen Meerbusen nur Prymnesium parvum, Chrysochromulina spp. und Chrysochromulina polylepis nach. Im Finnischen Meerbusen werden von EDLER et al. (1984), THOMSEN (1979) und PANKOW (1990) insgesamt, jeweils drei Arten der Ordnung Isochrydales und Coccolithophytales, fünf Arten der Prymnesiales und Pavlova lutheri aus der Ordnung Pavlovales beschrieben. Im Datenanhang findet sich eine Auflistung der Ostsee-Prymnesiophyceen mit ihren Fundorten, der Salinität des Oberflächenwassers und dem Nachweis von Alkenonen.

Ob die Artenvielfalt in den tieferen Becken der Ostsee (Bornholm- und Gotlandbecken) tatsächlich so gering ist, oder ob dies einfach nur an der geringeren Anzahl der untersuchten Proben liegt, sei dahingestellt. Prymnesiophyceenarten zu bestimmen ist durch ihre geringe Größe von 5 bis 10µm relativ aufwendig. Oft unterscheiden sich die Arten nur an den Merkmalen ihrer Coccolithen oder organischen Schuppen. Letztere sind nur im Transmissionselektronenmikroskop eindeutig zu bestimmen.

Daten aus der Ostsee mit hoher zeitlicher und räumlicher Auflösung veröffentlicht das Finnish Institute of Marine Research in Helsinki von März bis November in einem Turnus von 14 Tagen über die Internet-Seite www2.fimr.fi/algaline/algaline.htm. Die Fähren GTS Finnjet und Wasa Queen messen auf ihrer Fährstecke von Travemünde nach Helsinki bzw. von Helsinki nach Tallinn die Temperatur und Salinität des Oberflächenwassers (0 bis 5m). Zusätzlich werden Wasserproben entnommen und auf Nährstoffe, Chlorophyllkonzentration und die Artenzusammensetzung des Phytoplanktons untersucht. In diesen regelmäßigen Untersuchungen von LEPPÄNEN et al. (1994 bis 1998) werden die Prymnesiophyceen zusammenfassend als *Chrysochromulina spp.* bezeichnet. Nur die Arten *Chrysochromulina polylepis* und *Prymnesium parvum* werden bei eindeutiger Identifizierung unterschieden. Desweiteren werden Satellitenbilder veröffentlicht. Dieses Monitoringprogramm wird seit 1994 durchgeführt (LEPPÄNEN et al., 1994). Die Daten des laufenden Jahres sind auf der Internet-Seite abzufragen. Daten aus früheren Jahren werden per Anfrage auf CD zugeschickt (algaline@fimr.fi).

Die Daten aus den Jahren 1994 bis 1998 zeigen einen deutlichen Jahresgang der Prymnesiophyceenentwicklung. Bei einer Wassertemperatur von ca. 11°C wachsen die ersten *Chrysochromulina spp.* in der Ostsee an. In der Mecklenburger Bucht erreicht das Oberflächenwasser Ende Mai diese Temperatur. Im südlichen Gotlandbecken (Bornholmbecken und Gotlandbecken bis zur südlichen Höhe Gotlands) wachsen die Prymnesiophyceen ca. 14 Tage später bei gleicher Temperatur an. Im nördlichen Gotlandbecken und dem Finnischen Meerbusen beginnt das Prymnesiophyceenwachstum weitere 3 bis 5 Tage später, also Mitte bis Ende Juni.

Massenhafte Vermehrung tritt in der Ostsee ab einer Wassertemperatur von 14°C und bei einer Salinität von 6-10,5 PSU auf. Mitte Juli bis Anfang August findet bei 14,8 bis 17,3°C eine erste Blüte statt. Anfang bis Ende September kann eine zweite Blüte bei 15,3 bis 17,8°C beobachtet werden. Zwischen den Blüten nimmt die Prymnesiopyceenpopulation besonders in der Mecklenburger Bucht und dem Arkonabecken von dominant auf verbreitet ab. Im Gotlandbecken und dem Finnischen Meerbusen ist im August/September nur eine unwesentliche Abnahme der Prymnesiophyceen zu beobachten.

Zusammenfassend kann gesagt werden, daß das Phytoplankton der Ostsee von Mitte Juli bis Ende September durch kleine Flagellaten, vor allem durch die Prymnesiophyceen, dominiert wird. Ist der Juni besonders kalt und windig, wie z.B. 1996, so dominieren schon zu dieser Zeit die kleinen Flagellaten. Mitte Oktober bis Mitte November stoppt das Wachstum der Prymnesiophyceen in der Ostsee bei 11°C. Die folgende Abb. 1.3 faßt den jahreszeitlichen Verlauf der Prymnesiophyceenentwicklung im Oberflächenwasser der Ostsee, wie er sich aus den Daten von algaline (1994 bis 1998) darstellt, schematisch zusammen.

neben der relativen Häufigkeit der Prymnesiophyceen im Nanoplankton (hellgrau) ist der Temperaturverlauf mit Maximalwerten und Minimalwerten dargestellt; zusätzlich sind die Anwachstemperatur von 11°C und der optimale Wachstumbereich von 14-17,5°C gekennzeichnet.

14

1.3 Zielsetzung der Arbeit

Ziel der Arbeit ist es zu überprüfen, ob langkettige Alkenone als Biomarker zur Rekonstruktion der Paläotemperatur und der Paläosalinität in der Ostsee geeignet sind.

Im einzelnen werden folgende Fragen untersucht:

- 1) Welches Alkenonsignal wird heute in der Ostsee produziert ?
- 2) Eignen sich die Alkenonuntersättigungsindices U^k₃₇ und U^k₃₇, um in der Ostsee Paläotemperaturen des Oberflächenwassers abzuschätzen ?
- 3) Spiegeln Veränderungen im Muster der Alkenone salinitätsabhängige Änderungen der Alkenonproduzenten wider?
- 4) Kann ein ostseespezifischer Alkenonindex mittels Alkenonmessungen an Zuchtansätzen, Schwebstoffen und Sedimenten ermittelt werden ?

An datierten Ostseesedimenten sollen in lateraler und vertikaler Verteilung Alkenone nachgewiesen werden. Um das rezente Alkenonsignal der Ostsee zu dokumentieren, werden neben Oberflächensedimenten auch Schwebstoffe des Oberflächenwassers zur Blütezeit der Prymnesiophyceen und organisches Material aus Sinkstoffallen auf Alkenone untersucht. Die bereits in Vorversuchen dokumentierten Ostsee-Alkenonmuster sollten auf mögliche Produzenten zurückgeführt werden. Diese werden gezüchtet, um einen spezifischen Temperaturindex für die Alkenonmuster in der Ostsee zu erstellen. Sedimente aus dem Gotlandbecken (Kastenlotkern 20048-1KL) können das Alkenonsignal der holozänen und pleistozänen Entwicklungsgeschichte der Ostsee beinhalten. Durch die Verknüpfung des Ostsee-Alkenonindexes mit den dokumentierten Alkenonmustern ist eine Rekonstruktion der Oberflächenwassertemperatur und –salinität für das Holozän und Pleistozän möglich.

Vorraussetzungen für die Beantwortung dieser Fragen waren die Optimierung der Alkenonanalytik, die Beprobung der Ostsee und Erhalt und Kultivierung von Ostseeprymnesiophyceen. Die Optimierung der Alkenonanalytik war notwendig wegen der relativ niedrigen Alkenongehalte in den untersuchten Sedimenten, Schwebstoffen und Zuchtansätzen und wegen der genannten Fragestellungen, die eine sehr genaue Erfassung aller C37 und C38 Alkenone erforderten. Ebenfalls bedingt durch die geringen Alkenongehalte waren relativ hohe Probenmengen der Sedimente (mind. 8g) und Schwebstoffe (aus mind. 601 Wasser) notwendig.

Die im Rahmen einer Diplomarbeit (cand. biol. Diana Menzel) kultivierten Prymnesiophyceen konnten in engem Kontakt zur Biologischen Station Tvärminne/Finnland, zur Biologischen Anstalt Helgoland – Wattenmeerstation List/Sylt, zu dem Scandinavian Culture Centre for Algae and Protozoa (SCCAP) Kopenhagen und zum Forschungs- und Technologiezentrum Westküste Büsum erhalten und gezüchtet werden.

2. Material und Methoden

2.1 Probenmaterial

Um das Alkenonsignal der Ostsee zu ermitteln, wurden Schwebstoffe aus dem Oberflächenwasser, Material aus Sinkstoffallen, Oberflächensedimente und Sedimente aus einem Kastenlotkern des Gotlandbeckens analysiert. Die Beprobung des Wassers und der Oberflächensedimente erfolgte möglichst flächendeckend und erstreckt sich vom Skagerrak bis in den Finnischen Meerbusen. Die Entnahmepunkte der in dieser Arbeit verwendeten Proben sind in Abb.2.1 dargestellt.

Abb.2.1: Positionen der Entnahmepunkte der Sedimente, Schweb- und Sinkstoffe sowie Isolinien im Oberflächenwasser nach BOCK (1979)

2.1.1 Oberflächensedimente

Um ein breites Spektrum möglicher Variationen im sedimentären Abbild der Alkenone zu erhalten, wurden neben Oberflächensedimenten der Ostsee auch Sedimente aus dem Skagerrak und Kattegat untersucht.

Die Oberflächensedimente (0-2 cm) aus dem Skagerrak und Kattegat wurden im September 1998 (Fahrt 40/98/18) mit dem F/S Professor Albrecht Penck genommen. Die Beprobung erfolgte mit einem Kastengreifer (15x15x30 cm). Direkt nach der Entnahme wurden die Sedimente in Aluminiumschalen überführt und bei \leq -20°C tiefgefroren.

Oberflächensedimentproben (0-2 cm) aus der Beltsee, der Mecklenburger Bucht, dem Arkonabecken, dem Bornholmbecken und dem Gotlandbecken wurden im Juli/August 1998 (Fahrt 40/98/16) mit dem F/S Professor Albrecht Penck genommen. Die Beprobung erfolgte mit einem 15x15x30 cm großem Kastengreifer. Die Proben wurden ebenfalls direkt nach der Entnahme in Aluminiumschalen überführt und bei $\leq 20^{\circ}$ C tiefgefroren.

Aus dem Gotlandbecken wurden vier weitere Proben von folgenden Fahrten auf Alkenone untersucht: Die Oberflächenprobe 20001-4/5 wurde im August 1994 auf der GOBEX-Fahrt

44/94/13.2 mit dem F/S Alexander von Humboldt mit dem Multicorer gezogen, beprobt und tiefgefroren. Die Oberflächensedimente 220000, 220010 und 220040 wurden im August 1998 mit dem Multicorer auf der Forschungsfahrt 99/98/01 mit dem F/S Kottsov genommen und tiefgefroren.

Die Sedimente aus dem Finnischen Meerbusen wurden im Mai/Juni 1997 (Fahrt: 44/97/07) mit dem F/S Alexander von Humboldt genommen. Die Proben 202770, 202780, 202800 und 202820 wurden mit einem 15x15x30 cm großen Kastengreifer entnommen. Die Proben 202840 und 202880 wurden mit einem 30 cm langen Rumohr-Lot gezogen. Direkt nach der Beprobung wurden die Sedimente in Aluminiumschalen bzw. Petrischalen überführt und bei \leq -20°C tiefgefroren.

Die folgende Tab. 2.1 gibt einen Überblick über die in dieser Arbeit auf Alkenone untersuchten Oberflächensedimente. Detaillierte Angaben zur Lokalität der Sedimente sind im Datenanhang in Tab. 8.1 dokumentiert.

Fahrt	Gebiet der Beprobung	biet der Beprobung Gerät der Entnahme		Probenbezeichnung		
40/98/18	Skagerrak	Kastengreifer	11	220300 - 220800		
	Kattegat					
40/98/16	Belt See	Kastengreifer	12	12 - 360		
	Mecklenburger Bucht					
	Arkonabecken					
	Bornholmbecken					
	Gotlandbecken					
44/94/13.2	Gotlandbecken	Rumohrlot	1	20001-4/5		
99/98/01	Gotlandbecken	Multicorer	3	220000 - 220040		
44/97/07	Finnischer Meerbusen	Kastengreifer	6	202770 - 202960		
		Rumohrlot				

Tab. 2.1: Oberflächensedimente des Skagerraks, Kattegats und der Ostsee

2.1.2 Schwebstoffe

Zur Dokumentation des Alkenonsignals im Verhältnis zur Wassertemperatur in der Ostsee wurden Schwebstoffe aus den obersten Metern der Wasserschicht untersucht. Die Beprobungstiefe von 0, 5, 10 oder 15m wurde aufgrund von Pigmentbestimmungen von MEYER-HARMS (1996) gewählt, welche durch ein Maximum des Markerpigmentes 19-Hexanoyloxyfucoxanthin auf eine Anreicherung von Prymnesiophyceen in diesen Tiefen hinwiesen.

Zur Zeit der Prymnesiophyceenblüte in der Ostsee während des Spätsommers wurden auf der Monitoringfahrt 40/98/16 (30. Juli - 13. August 1998) mit dem F/S Professor Albrecht Penck Schwebstoffproben genommen. An ausgewählten Monitoringstationen wurde Wasser aus ein bis maximal drei Tiefen mittels einer Kreiselpumpe in drei 601 fassende Absatzbecken gepumpt. Die Schwebstoffe der Station 360 und 22 wurden durch eine Durchflußzentrifuge (CEPA/Typ Z41) bei einer Zylinderdrehzahl von 20 000 U/min und einer Durchsatzleistung von 500 I/h zentrifugiert und anschließend von der Edelstahlwand des Zylinders in Aluminiumschalen abgeschabt. Wegen eines Defekts dieser Zentrifuge wurden die Schwebstoffe der anderen Stationen mit einer Heraeus-Durchflußzentrifuge bei 10 000 U/min und einem Durchfluß von 90 I/h auf Aluminium- und Teflonstreifen zentrifugiert, die anschließend in Aluminiumschalen gegeben wurden. Nach der Probennahme wurden die Schwebstoffe sofort bei \leq -20°C tiefgefroren und bis zur Aufbereitung in diesem Zustand gehalten, um mikrobiellem Abbau vorzubeugen. In Tab. 2.2 sind alle gewonnenen Schwebstoffe aufgelistet.

Station-	Latitude	Longitude	Beprobungs-	Entnahme-	Filtermenge
nummer		_	datum 1998	tiefe [m]	[1](Entnahmetiefe)
360	54°36,023N	10°27,021E	30.7.	1	180
22	54°06,724N	11°10,77E	31.7.	1	180
30	54°43,464N	12°46,981E	1.8.	0,5,10	je 60
RB1	55°08,836N	13°00,464E	1.8.	0,10,15	je 60
113	54°55,473N	13°29,872E	2.8.	0,5,10	je 60
109	55°00,00N	14°04,953E	2.8.	0	90
· 140	55°28,00N	14°43,05E	3.8.	0	120
213	55°14,941N	15°58,761E	3.8.	0,10	120 (0m), 60 (10m)
202	54°42,013N	15°14,971E	4.8.	0,10	100 (0m),60 (10m)
150	54°36,681N	14°02,575E	4.8.	0, 10	120 (0m), 60 (10m)
255	55°38,12N	18°35,98E	7.8.	0	180
263	56°20,86N	19°22,46E	7.8.	0	120
286	57°59,829N	19°54,2E	8.8.	0	60
271	57°18,312N	20°04,587E	8.8.	0,5,10	120 (0m), 60 (5+10m)
213	55°15,22N	15°58,97E	9.8.	10	60 (10m)
113	54°55,57N	13°30,00E	10.8.	0,10	120 (0m), 60 (10m)
46	54°27,96N	12°12,92E	10.8.	0	120

Tab. 2.2: Übersicht der untersuchten Schwebstoffe aus dem Oberflächenwasser der Ostsee

An 15 Stationen wurden insgesamt 29 Proben genommen, wobei die Station 213 und 113 in einem zeitlichen Abstand von 6 bzw. 8 Tagen doppelt geprobt wurden. Die unterschiedlichen Tiefen und Mengen der Probenentnahme sind bedingt durch den zeitlich begrenzten Aufenthalt an den Stationen und durch z.T. starke Windverhältnisse, welche die Probennahme in größeren Tiefen behinderte.

2.1.3 Sinkstoffe

Zur Bestimmung der Alkenonflüsse im Gotlandbecken standen Sinkstoffe von der Monitoringstation 271 aus den Jahresgängen 1996, 1997 und 1998 für die Alkenonanalyse zur Verfügung. Die Verankerung liegt bei 57°18,5154N / 20°08,2239E im südlichen Gotlandbecken und besitzt zwei Sinkstoffallen in 140 bzw. 175m und 230m Tiefe. Die Sinkstoffallen (Sinkstoff-Falle "Kiel", Typ S/MT 234, K.U.M Umwelt- und Meerestechnik GmbH Kiel) besitzen eine konische Falle mit einer Fangfläche von 0,5 m², unter der ein Mehrfachprobenwechsler für 21 Proben montiert ist. In den Fallen werden im Dauereinsatz über 4-6 Monate Sinkstoffe in 400ml Probenflaschen gesammelt, wobei die Flaschen in einem Intervall von 1,5-9 Tagen gewechselt werden. Die Fallenproben werden mit 2%igem Formalin vergiftet und im Naßverfahren gesplittet (VON BODUNGEN et al., 1991). Von den Jahrgängen 1996 und 1997 standen Splits von 1/8 bis 1/64 (0.8 - 524 mg Trockengewicht) und vom Jahrgang 1998 Splits von 1/4 (0,9 - 197 mg Trockengewicht) zur Verfügung. Um eine ausreichende Alkenonmenge für die Analyse zu erhalten, wurden die Sinkstoffe vom Winter 1996 bis Winter 1997 (07.03.1996 bis 24.03.1997) aus einem Untersuchungsintervall von jeweils 3 Monaten vereinigt. Das Probenmaterial von Sommer 1997 bis Winter 1998 (27.07.1997 bis 15.03.1998) wurde, je nach Sinkstoffmenge, aus Untersuchungsintervallen von 7 bis 84 Tagen zusammengegeben. In einem Fall wurde Material über ein ganzes Jahr gesammelt. Die Tab. 8.5 im Anhang gibt eine Übersicht der untersuchten Sinkstoffallenproben.

2.1.4 Algenkulturansätze

Um das Alkenonsignal der Ostsee zur Temperaturrekonstruktion nutzen zu können, sind Alkenonuntersuchungen an Ostseeprymnesiophyceen bei definierten Wachstumstemperaturen notwendig. Erste Zuchtversuche am Anfang dieser Arbeit zeigten schnell, daß die Zucht von Prymnesiophyceen einen relativ großen Arbeitsaufwand und gefestigte Erfahrungen verlangt. Daher wurde in Zusammenarbeit mit Frau Prof. Dr. Karin Lochte (Sektion für Biologische Meereskunde des Institutes für Ostseeforschung an der Universität Rostock) eine Diplomarbeit konzipiert, die von cand. Biol. Diana Menzel im April 1999 erfolgreich abgeschlossen worden ist.

Im Rahmen dieser Diplomarbeit wurden Chrysochromulina polylepis (nach MANTON & PARKE, 1962), Chrysochromulina apheles (nach MOESTRUP & THOMSON, 1986), Prymnesium parvum (nach CARTER, 1937), Pavlova lutheri (nach DROOP, 1953), Pleurochrysis cartera (nach BRAARUD & FAGERLAND, 1946) und Prymnesium patelliferum (nach GREEN, HIBBERT & PIENAAR, 1982) gezüchtet und anschließend qualitativ und quantitativ auf Alkenone untersucht. Chrysochromulina apheles wurde nicht nur bei 20°C, sondern auch bei 11, 14, 16 und 18°C gezüchtet und anschließend auf Alkenongehalt und -muster untersucht. Die Algenkulturen wurden in F/2 Medium nach GUILLARD (1975) gezüchtet. Die Salinität der Nährmedien entsprach dem jeweiligen Habitat, aus welchem die Algen isoliert worden waren. Dem Nährmedium von Chrysochromulina polylepis wurde Selen als wichtiges Spurenelement in Form von Natriumselenitpentahydrat (Na₂SeO₃ x 5H₂O) in einer Konzentration von 1,3 μ g/l zugegeben. Das Nährmedium und die Zuchtgefäße wurden autoklaviert. Die Vitamine des Mediums wurden erst nach der Sterilisation zugegeben, um sie bei den hohen Temperaturen nicht zu zerstören. Anschließend wurde das Nährmedium mit steriler HCl (1N) auf einen pH-Wert zwischen 7,0 und 7,5 eingestellt. Die Algen wurden bei einer Lichtintensität von 40-50 µmol/m²s in einem 12h Licht- und 12h Dunkelrythmus kultiviert. Pavlova lutheri wurde in einem 121 Kulturansatz in der Biologischen Meeresanstalt Tvärminne (Finnland) bei einer Lichtintensität von 50-100 µmol/m²s und in einem 16h Licht- und 8h Dunkelrythmus kultiviert. Die Zellzahlen in den Kulturen wurden mit einem Partikelzählgerät (Elzone) ermittelt. Parallel zur Zählung wurden spektrographische Messungen der optischen Dichte bei 750 nm (OD_{750nm}) vorgenommen. Für beide Meßmethoden wurde als Blindwert partikelfreies F/2 Medium mit 50% Ostseewasser (Rostocker Bucht) genutzt. Am Ende der exponentiellen Wachstumsphase wurden die Algenkulturen entweder auf Glasfaser-Filter (0,7µm GGF) gefiltert oder mit einer Heraeus-Durchflußzentrifuge bei 11 000 U/min und minimalem Durchfluß auf Glasfaser-Filterstreifen zentrifugiert. Die Filter wurden nach der Filtration bei -20°C tiefgefroren. In Tab. 2.3 sind weitere Angaben über die Herkunft der Genome und die Kultivierungsparameter verzeichnet.

Tab. 2.3: Herkunft und Kultivierungsparameter der im Zuchtversuch untersuchten Prymnesiophyceen (MENZEL et al., in Vorbereitung), sowie ihre Verbreitung im Ostseeraum nach EDLER et al. (1984) und LEPPÄNEN et al. (1994 bis 1998)

Prymnesio- phyceen Art	Herkunft des Genoms	Genom erhalten von	Salinität des Nähr- mediums (PSU)	Kulturansätze bei 20°C	Verbreitung in der Ostsee
Prymnesium Finnischer parvum Meerbusen (1990)		Biologischen Station Tvärminne (Fi)	6	2x11 und 1x121	Kattegat, Arkonabecken, Bornholmbecken, Gotlandbecken, Finnischer Meerbusen
Pavlova lutheri	Finnischer Meerbusen	,,	6	2x11 und 1x121	Finnischer Meerbusen
Pleurochrysis cartera	Finnischer Meerbusen	>>	6	1x11 und 1x121	Kattegat, Finnischer Meerbusen
Prymnesium patelliferum	Brack- wasser- gebiet bei Büsum (4-25 PSU)	Forschungs- und Technologie- zentrum Westküste Büsum	26	1x2l und 1x12l	Brackwasser der Nordsee
Chrysochromuli na polylepis	Kattegat (1988)	Biologische Anstalt Helgoland, Wattenstation List/Sylt	30	2x11 und 1x121	Kattegat, Finnischer Meerbusen
Chrysochromuli na apheles	Kattegat	Scandinavian Culture Centre for Algae and Protozoa (SCCAP) Kopenhagen (DK)	30	1x11 und zusätzlich je 41 bei 11,14,16,18 und 20°C	Finnischer Meerbusen

20

2.1.5 Holozän/pleistozäne Sedimente des Gotlandbeckens

Der Kastenlotkern 20048-1 wurde im Februar 1995 mit dem F/S Poseidon im Gotlandbecken im Rahmen des Projektes GOBEX (Gotland Basin Experiment; EMEIS & STRUCK, 1998) gezogen. Der Kern hat einen Querschnitt von 30x30cm und eine Länge von 10,29 m. Es wurde im östlichem Gotlandtief (57°23.14 N; 20°15.51 E) in 241 m Tiefe entnommen. Nach der Entnahme wurde der Kern an Bord geöffnet, beschrieben, beprobt und in 50x30x20cm großen durchsichtigen Probenboxen möglichst luftdicht verschlossen. An Land wurde der Kern anfänglich bei 4°C und nach einigen Monaten bei Raumtemperatur und in Dunkelheit gelagert. Für die Alkenonanalysen wurden im Herbst 1996 1cm-Scheiben in Abständen von 10-20 cm aus dem Kern entnommen, tiefgefroren und gefriergetrocknet.

2.2 Bestimmung von organischem Kohlenstoff

Die Oberflächensedimente wurden mit einem Eltra CS-Analysator auf Schwefel und Kohlenstoff untersucht. Der Gesamtkohlenstoff (TC) und Schwefelgehalt wurde nach Oxidation bei 1200°C mittels eines Infrarot-Detektors ermittelt. Zur Messung des anorganischen Kohlenstoffgehaltes (TIC) wurde das Sediment 2 mal mit 2,5 ml 50% H_3PO_4 angesäuert und die entwichene CO₂-Menge ermittelt. Der Gehalt an organischem Kohlenstoff errechnet sich aus der Differenz zwischen Gesamtkohlenstoffgehalt und anorganischem Kohlenstoffgehalt. Die Werte wurden aus Doppelmessungen an 20-200 mg Sediment erhalten.

Der organische Kohlenstoffgehalt (TOC) der holozänen/pleistozänen Sedimente aus dem Gotlandbeckenkern 20048 wurden mit einem Carlo-Erba/Fisons 1108 Elementar-Analysator ermittelt. 20 mg des Sediments wurden mit 2N HCl entkarbonatisiert, so daß nur der organische Kohlenstoffgehalt gemessen wurde.

Zur Ermittlung des Gesamtkohlenstoffes (TC) der Schwebstoffe dienten Schwebstoffe die aus 21 des Stationswassers auf Glasfaserfilter gefiltert worden waren. Die Schwebstoffe wurden mit den Glasfaserfiltern in einem Elementar-Analysor Vario EL analysiert. In reinem Sauerstoff fand eine Oxidation bei 1150°C statt. Durch einen Wärmeleitfähigkeitsdetektor wurde das bei der Verbrennung freiwerdende CO_2 ermittelt.

2.3 Analyse der Alkenone

2.3.1 Übersicht zur Alkenonanalyse

Im organischen Material aus der Ostsee, dem Kattegat und Skagerrak und in den Algen-Kulturen sind nur geringe Konzentrationen an Alkenonen nachzuweisen. Zusätzlich werden diese in der Gaschromatogarphie von Estern, Hopanoiden und Steroiden überlagert. Daher ist es notwendig, das Probenmaterial zu verseifen und zu fraktionieren. Auch wurde das Temperaturprogramm der Gaschromatographie deutlich verlängert, um eine bessere Trennung der Alkenone zu erreichen. Das folgende Flußdiagramm in Abb. 2.2 gibt einen Überblick über die verwendete Analytik. In den anschließenden Kapiteln werden die Teilschritte noch genauer beschrieben.

Probenaufbereitung

Gefriertrocknung des

Sinkstoffallen- und Sedimentmaterials, Trocknung der Algenkulturen auf Glasfaserfiltern im Trockenschrank bei 40°C

₽

Extraktion

Ultraschall oder Accelerated Solvent Extration (ASE) Lösungsmittel: Dichlormethan

╢

Alkalische Verseifung Entfernung von Esterverbindungen, Hopanoiden und Steroiden

╢

Fraktionierung mittels HPLC

Auftrennung in Aliphaten, Aromaten (Alkenone), Aldehyde und hochmolekulare Komponenten

∜

Gaschromatographie Quantifizierung und Identifizierung der Alkenone

11

Massenspektrometrie Identifizierung der Alkenone

Abb. 2.2: Flußdiagramm der in dieser Arbeit durchgeführten Alkenonanalyse.

2.3.2 Probenaufbereitung

Die Sedimente und die Schwebstoffe, letztere auf Teflon- und Aluminiumstreifen zentrifugiert, wurden 24 bis 48 h in Gefiertrocknungsanlagen Christ Alpha 1-4 getrocknet. Die Proben wurden auf 30°C geheizt. Die Kondensationstemperatur betrug -53°C. Getrocknet wurde bei einem Vakuum von 0,370 bar. Die Algenansätze auf den Glasfaserfiltern wurden 24 h bei 40°C im Trockenschrank getrocknet. Vor der Extraktion wurden die Sedimentproben in einem Achatmörser homogenisiert. Die Glasfaserfilter, Teflon- und Aluminuimstreifen mit Schwebstoffen wurden ohne weitere Vorbehandlung mit Dichlormethan extrahiert.

2.3.3 Reinigung der Laborgeräte

Glasgeräte wurden in einer Miele-Laborspülmaschine mit handelsüblichen Reinigungsmittel (Neodisher N, Chemische Fabrik Dr. Weigert, GmbH & Co) und mit 95°C heißem deionisiertem Wasser gereinigt. Gefäße, die zur Extraktgewinnung verwendet worden waren, wurden vor der Reinigung in der Spülmaschine unter Leitungswasser gesäubert. Nach der maschinellen Reinigung wurden die Geräte bei 120°C getrocknet und mit Aluminiumfolie verschlossen in Schränken und Schubladen gelagert. Die Stahlkartuschen der ASE wurden nach dem Gebrauch auseinandermontiert, 2 mal in Aceton getaucht und für 10 Minuten im Ultraschallbad gereinigt.

2.3.4 Lösungsmittel

Eine saubere und reproduzierbare Analytik ist nur mit hochreinem Lösungsmitteln möglich.

Es werden folgende Lösungsmittel verwendet :

- Aceton (Acros : Aceton for HPLC, 2,51)
- Dichlormethan (Merck : DCM for chromatography, 2,51)
- n-Hexan (Acros: 95% n-Hexan for HPLC, 2,51)
- Methanol (Lab-Scan : Methanol for HPLC, 2,51)

n-Hexan und Dichlormethan wurden in einer ILUDEST-MICROPURE-Destillationsanlage über eine 1m lange Destillationskolonne mit einem Fluß von 1ml/min destilliert, da die Reinheit der gekauften Lösungsmittel für die Analyse nicht ausreichte. Die Reinheit des Destillats wurde regelmäßig mit der Gaschromatographie überprüft. Bei ausreichender Reinheit werden die Lösungsmittel bei 4°C im Kühlschrank aufbewahrt. Die Destillation erfolgte unmittelbar vor dem Gebrauch, so daß die Lösungsmittel nicht länger als 1 Woche im Kühlschrank gelagert wurden.

Die Reinheit des Methanols von Lab-Scan und des Acetons von Acros war ausreichend für die Analyse, so daß diese vor dem Gebrauch nicht weiter gereinigt wurden.

2.3.5 Extraktion

Vor der Extraktion wurde den Proben 10-Nonadecanon in einer Konzentration von 0,005µg/µl als interner Standard zugegeben.

Die Schwebstoffe aus dem Oberflächenwasser, den Sinkstoffallen und den Algenansätzen wurden mittels Accelerated Solvent Extraction (ASE) extrahiert. Die Einwaagen betrugen 0,02 bis 0,9 g. Mittels der ASE wurde DCM bei einem Druck von 80 bar und 75°C sowie einer stationären Extraktionszeit von 10 min durch eine Stahlkatusche mit 9-14g Sediment bzw. Glasfaserfilter, Teflon- oder Aluminiumstreifen gepreßt. Dieser Vorgang wurde zwei- bis viermal wiederholt. Die Gesamtextrakte enthielten kein Kristallwasser, so daß eine anschließende Filtration über Na₂SO₄ nicht notwendig war. Die Sedimente (2-20g Einwaage) wurden mittels Ultraschall extrahiert. Die Extraktgewinnung erfolgte mit einem Ultraschallstab der Firma B.Braun Typ Labsonic 2000U (Schwingsonde (12T) : 127 x 95 mm. Die trockene Probe wurde 2 mal mit je 30 ml DCM jeweils 10 min lang bei einer Output-Intensität von 7 und einem Cycle von 70% extrahiert. Vor dem Abdekantieren der Lösung werden die Proben bei 4000-3500 U/min 5 min zentrifugiert. Die mittels ASE und Ultraschall gewonnenen Gesamtextrakte wurden bei 600 mbar und 40°C auf 1 ml im Rotationsverdampfer eingeengt, in 2 ml großen Glasampullen überführt und bei Raumtemperatur vollständig getrocknet.

2.3.6 Verseifung

In vielen Ostseesedimenten wird das gaschromatographische Signal der Fraktion der isolierten Alkenone von Estern, Hopanoiden und Steroiden überlagert. Dazu zählen auch die $C_{36:2}$ und $C_{36:3}$ Methylester (Alkenoate), die bei der Ermittlung des Uk37 erheblich stören, da sie im Gaschromatographen mit den C₃₇ Alkenonen koeluieren (MARLOWE et al., 1984; CONTE et al., 1992; VILLANUEVA & GRIMALT, 1996). Versuchsreihen mit holozänen Sedimenten aus dem Gotlandbecken und Oberflächensedimenten aus dem Arkonabecken zeigten, daß eine alkalische Verseifung mit 1M methanolischer KOH vor der HPLC-Fraktionierung die beste Abtrennung der interferierenden Substanzen bewirkt. Zur Verseifung wurden 0,5 ml 1 M methanolische KOH auf den Gesamtextrakt gegeben und die Glasampulle unter Stickstoff sauerstoffrei geschlossen. Der vollständig benetzte Gesamtextrakt wird 2 h bei 90°C in einen Trockenschrank gestellt. Nach Erkalten des Reaktionsgefäßes wird die Reaktionslösung mit 0,5 ml deionisiertem Wasser versetzt. Nach dreimaliger Zugabe von 0,5 ml n-Hexan und anschließendem Schütteln (je 50 mal per Hand) werden die Alkenone und Verseifungsprodukte dekantiert und in neue Glasampullen überführt. Alle drei Hexanphasen werden dabei vereinigt. Die 1 M methanolische KOH-Lösung für die Verseifung wurde wie folgt erstellt : 14 g KOH werden in einen 250 ml Meßkolben gegeben und mit einer Mischung aus 235 ml Methanol und 15 ml deionisiertem Wasser gelöst. Die Lösung wird anschließend bei -20°C gelagert. Die Zugabe von methanolischer KOH zum Lipidextrakt erfolgt bei Raumtemperatur. Die Abb. 2.3 gibt die Gaschromatogramme eines unverseiften und verseiften Sediments aus dem Gotlandbecken wieder und verdeutlicht die Notwendigkeit dieses Arbeitschrittes.

2.3.7 HPLC

Die Fraktionierung mittels High Performance Liquid Chromatography (HPLC) dient der Trennung der Alkenone von störenden Substanzklassen, die sich auch nach der alkalischen Verseifung noch im Extrakt befinden. Zur Fraktionierung der Proben wurde das verseifte Material in 150µl n-Hexan gelöst und vollständig injiziert. Als mobile Phase wurde eine Sequenz aus vier Lösungsmitteln eingesetzt (s.u.). Das Eluat wurde entsprechend in vier Fraktionen aufgefangen.

Die Trennleistung der HPLC basiert auf dem chromatischen Prinzip der einfachen Säulenchromatographie, zeichnet sich jedoch durch eine höhere Trennleistung, eine höhere Reproduzierbarkeit und einen höheren Probendurchsatz aus (SNYDER & KIRKLAND, 1981). Die chromatographische Trennung beruht auf Unterschieden in den Wechselwirkungen zwischen den Analyten und der mobilen Phase (Elutionsmittel) bzw. der stationären Phase (Säulenfüllung). Je nach ihrer Polarität besitzen die einzelnen, in dem Lipidextrakt enthaltenen Substanzen unterschiedliche Affinitäten zur stationären Phase (GOTTWALD, 1993). Bei einem konstanten Fluß der mobilen Phase bewegen sich daher die Substanzen unterschiedlich schnell über die Säule, so daß eine Auftrennung stattfindet.

An Oberflächensedimenten aus der Lübecker und Mecklenburger Bucht wurde die HPLC so optimiert, daß die Alkenone in der 2. Fraktion zu finden sind. Inbesondere bei unerwartet hohen Mengen an Alkenonen können diese Komponenten trotzdem in die 3. Fraktion verschleppt werden. In einzelnen Sedimentproben wurden C_{38} Ethylalkenone in der 1. Fraktion festgestellt. Nach festgestellten Verschleppungen wurden die entsprechenden Fraktionen zusammengegeben und nochmals gaschromatographisch analysiert.

Die verwendete HPLC-Anlage bestand aus einer HPLC-Pumpe, einer Probenschleife (200 μ l), einer Säule (250x4 mm) und einem Fraktionssammler. Die Pumpe (HPLC-Pump L-710, Merck Hitachi) war mit einem Mikrokolbenkopf (0,02-10 ml/min), einem Rheodyne Probenaufgabeventil mit einer 200 μ l-Probenschleife und programmgesteuerten Ventilen zum Wechsel der Lösungsmittel ausgestattet. Als Trennsäule wurde eine Silicagel LiChrospher-Säule (Merck; Si100; 5 μ m) mit einem vorgeschalteten Grobstoffilter genutzt. Die Trennsäule wurde während der Fraktionierung in einem Column-oven L-7360 (Merck) konstant auf 20°C gehalten. Das Totvolumen der HPLC-Anlage betrug 5 ml. Die Fraktionierung erfolgte bei einer Flußrate von 1ml/min. Die verseiften Proben wurden durch folgende Lösungsmittelsequenz in vier Fraktionen aufgetrennt:

- 1. 5ml n-Hexan (Alkane)
- 2. 14ml n-Hexan/Dichlormethan 10:90 (v/v) (Alkenone)
- 3. 9ml Dichlormethan (Aromaten)
- 4. 9ml Aceton (Heterokomponenten)

Um die Säule für die folgende Fraktionierung vorzubereiten, wurde mit mindestens 12 ml n-Hexan nachgespült.

Die ersten drei Fraktionen wurden getrennt mittels des Fraktionssammler (L 7650) in Spitzkolben aufgefangen. Die vierte Fraktion wurde verworfen. Die Lösungen wurden auf ca.100µl eingeengt, mit DCM in 2ml Gläser überführt, abgedampft und eingefroren.

Bei der Verwendung von Siliziumoxid als stationärer Phase in der Trennsäule kommt es schnell zur Anlagerung von Wasser aus Lösungsmitteln und der Luft. Dies bedingt eine Veränderung der Polarität der stationären Phase und kann somit die Trennleistung der HPLC erheblich verändern (BREDEWEG et al., 1979). Um eine bessere Reproduzierbarkeit der Fraktionierung zu erlangen, wurden die verwendeten Lösungsmittel möglichst wasserfrei eingesetzt und die Fraktionen so getrennt, daß die Alkenone auch bei einer gewissen Verschiebung der Retentionszeiten in der 2. Fraktion eluiert wurden. Zusätzlich wurden alle Fraktionen eines Probenextraktes gaschromatographisch analysiert, um Verschleppungen auszuschließen.

2.3.8 Gaschromatographie (GC)

Die aufgereinigten Proben wurden für die gaschromatographische Analyse in n-Hexan gelöst. Die Analyse erfolgte an GC 8000 Top-Geräten (CE Instruments) mit einer Hauptsäule DB 5 HT (30 m x 0,32 mm x 0,23 μ m) und einer 6 m langen Vorsäule (0,32 mm Durchmesser). Die Geräte waren mit cool-on-column-Injektoren ausgestattet. Die Detektion der Komponenten erfolgte mittels Flammenionisierungsdetektor (FID). Als Trägergas wurde Helium bzw. Wasserstoff und als Makeup Gas Stickstoff verwandt. Die Flußrate des Trägergases betrug 2ml/min.

routinemäßig eingesetzte Temperaturprogramm zur Das in der Arbeitsgruppe gaschromatographischen Analyse von langkettigen Alkenonen ist für Sedimente aus dem Mittelmeer und dem Nordatlantik erstellt worden. Die gaschromatische Trennung von Alkenonen in Ostseesedimenten erfolgt mit diesem Temperaturprogramm nur unzureichend. Anhand einer Versuchsreihe mit Proben aus dem Gotlandbecken (MUC-20001) ist ein neues Temperaturprogramm entwickelt worden.

Das optimierte Temperaturprogramm beinhaltet, nach einer Anfangstemperatur von 35° C, drei Aufheizrampen. Ausgehend von einer Anfangstemperatur von 35° C, wird zunächst mit 15° C/min auf 250°C geheizt. Diese Temperatur wird 20 Minuten lang konstant gehalten. Danach wird mit 15° C/min auf 290°C geheizt, gefolgt von einer 20-minütigen isothermen Phase. Schließlich wird die Temperatur mit 15° C/min auf 330° C erhöht und weitere 10 Minuten konstant gehalten. Die Analysedauer beträgt somit 70 Minuten. Die Alkenone eluieren bei 290°C. Mit diesem optimierten Temperaturprogramm lassen sich auch die zeitlich nah beieinander eluierenden C₃₈ Methyl- und Ethylalkenone ausreichend trennen (Abb. 2.4).

Abb. 2.4: Gaschromatogramm einer Sedimentprobe aus der Lübecker Bucht. Neben den C₃₇, C₃₈ und C₃₉ Alkenonen ist der Interne Standard 10-Nonadekanon (C19:1) in der Elutionsabfolge erkennbar.

Die Identifizierung der Alkenone erfolgte durch den Vergleich mit synthetischen Alkenonstandards $(C_{37:2}$ und $C_{37:3})$, die von J.R.Maxwell (RECHKA & MAXWELL, 1988 a, b) zur Verfügung gestellt

wurden, sowie durch den Vergleich mit massenspektrometrisch untersuchten Sedimentproben aus dem Mittelmeer. Zusätzlich wurden ausgewählte Ostseeproben massenspektrometrisch analysiert (Rosell-Melé A., persönliche Mitteilung). Da synthetische Alkenonstandards für die quantitative Auswertung nicht zur Verfügung stehen, erfolgte die quantitative Alkenonerfassung über den Vergleich der Peakflächen mit der eines externen Cholestan-Standards. Dabei werden gleiche Responsefaktoren für Cholestan und die Alkenone angenommen. Die Datenaufnahme und Auswertung erfolgte mit Chrom-Card für Windows 95 (CE Instruments), wobei die Basislinie manuell gesetzt wurde.

2.3.9 Gaschromatographie (GC) / Massenspektrometrie (MS)

Zur Absicherung der Identität der Alkenone wurden an ausgewählten Proben massenspektrometrische Messungen von A. Rosell-Melé (Universität Bristol) und am institutseigenen Gerät vorgenommen.

Das GC/MS der Sektion Geologie am IOW setzt sich aus einem Gaschromatographen des Typs HP 6890 (Hewlett-Packard) mit Kaltaufgabesystem (Gerstel KAS 4) und einem Massenspektrometer des Typs HP 5973 (Hewlett-Packard) zusammen. Als Trägergas dient Helium (1,5 ml/min). Das Kaltaufgabesystem gewährleistet eine schonende Verdunstung des Lösungsmittels (n-Hexan). Dabei wurde das System von einer Anfangstemperatur von 40°C, welche 30 Sekunden beibehalten wurde, mit einer Aufheizrate von 5°C/sec auf 280°C erhitzt. Nach 2 Minuten wird mit 10°C/sec auf 350°C aufgeheizt. Diese Endtemperatur wird 2 Minuten beibehalten. Die gaschromatische Trennung erfolgte in einer Kapillarsäule HP5MS (30 m x 0,25 mm x 0,25 µm). Das verwendete Ofentemperaturprogramm startete bei einer Temperatur von 100°C, welche 4 Minuten konstant gehalten wurde. Mit einer Aufheizrate von 15°C/min wurde auf 250°C hochgeheizt und diese wurden 20 Minuten konstant gehalten. Die dritte Isotherme wurde mit 5°C/min bei 290°C erreicht und betrug ebenfalls 20 Minuten. Die letzte Isotherme von 325°C wird mit einer Aufheizrate von 15°C/min erreicht und dauerte 10 Minuten an. Die Temperatur des Übergangsbereiches ("transferline") zwischen Gaschromatograph und Massenspektrometer wurde 60 Minuten lang auf 280°C gehalten und dann mit einer Aufheizrate von 15°C/min auf 325°C geheizt. Die Ionenquelle im MS wird auf konstanten 230°C gehalten, die Ionisierungsenergie betrug 70eV. Erfaßt wurde der Massenbereich von 50 bis 650 amu. Im Detektor wurden die Ionen aufgetrennt nach ihrer Masse erfaßt. Neben dem Totalionenstromchromatogramm können die Signale von einzelnen charakteristischen Fragmenten (Ionenchromatogramme) dargestellt werden (siehe Abb. 2.5). Aus dem Totalionenstrom kann das Massenspektrum jedes Substanzsignals ermittelt werden. In Abb. 2.6 sind Massenspektren der C37:3 und C37:2 Methylalkenone wiedergegeben.

Die Massenspektren der Alkenone sind aufgrund der starken Fragmentierung wenig spezifisch. Neben den Molekül-Ionen der Alkenone (siehe Tab. 1.1) sind die Fragmente von Ketonstrukturen (m/z = 58), Methylestern (m/z = 87), Ethylestern (m/z = 101) und Alkdienylionen (m/z = 95) charakteristisch für Alkenone (HESSE et al., 1991; BUDZIKIEWICZ, 1992). Wie die Massenspektren der C₃₇ Alkenone in Abb. 2.6 zeigen, wird das Molekül-Ion meist nur in sehr geringen Mengen detektiert. Die relativ langkettigen Alkenone zerfallen im Massenspektrometer oft vollständig in kürzere Fragmente. Das häufig sehr intensive Alkdienylion (C₇ Alken mit zwei ungesättigten Kohlenstoff-Kohlenstoff-Bindungen) bildet sich aus den Alkenonen, da die Doppelbindungen im Ionenstrom schnell umgelagert werden. Die genaue Lage der Doppelbindungen im ursprünglichen Molekül zu bestimmen, ist ohne zusätzliches Untersuchungsverfahren deshalb nicht möglich (BUDZIKIEWICZ, 1992). Methyl- und Ethylalkenone gleicher Kettenlänge durch die Fragmentmassen 87 und 101 zu unterscheiden, gelingt nur selten.

Die Detektion von Alkenonen mittels GC/MS erfordert im Gegensatz zur Analyse mit dem Flammenionisationsdetektor (s.o.) eine etwa um den Faktor 4 höhere Konzentration. Aufgrund der relativ geringen Alkenonkonzentration liefert die Alkenonbestimmung an Ostseeproben mittels GC/MS nur qualitative, aber keine quantitativen Aussagen.

Die Empfindlichkeit des GC/MS kann gesteigert werden, wenn die Probe im selected-ion-mode (SIM) analysiert wird. Wenn die Ionisierung durch Elektronenstoß erfolgt, ist es aufgrund der starken Fragmentierung schwierig, geeignete Ionen für die SIM-Detektion auszuwählen, da die charakteristischen M+ nur in geringer Intensität auftreten, die intensiven Ionen dagegen von vielen

Substanzen, die Alkan- und Alkenketten enthalten, gebildet werden. Hohe Intensitäten der Molekülionen (bzw. Quasimolekülionen) der Alkenone sind nur durch die Analyse mittels der chemischen Ionisation (CI) möglich. Dabei wird als Reaktandgas Ammoniak eingesetzt. Die durch Protonierung und NH_2^+ -Anlagerung gebildeten CI-Spektren enthalten gut reproduzierbare Quasimolekülionen (M+H)⁺ und (M+18)⁺ (HÜBSCHMANN, 1996). Diese Methode liefert somit auch für Proben mit relativ geringen Alkenongehalten qualitative und quantitative Aussagen. Diese

Methode wurde in Bristol zur Analyse von Sedimentproben aus dem Mittelmeer (ODP) verwendet. Das so analysierte Material wurde als externer qualitativer Standard ("ODP-Standard") zur Zuordnung der C_{37} , C_{38} und C_{39} Alkenone genutzt.

2.3.10 Auswertung

Die Zuordnung der Signale erfolgte, wie oben beschrieben, durch Vergleich der Retentionszeiten in der Probe und in einem synthetischen Standard ($C_{37:2}$ und $C_{37:3}$) bzw. einer massenspektrometrisch charakterisierten Sedimentprobe (ODP-Standard, alle Alkenone). Die quantitative Auswertung erfolgte mit α 5-Cholestan (Cholestan) und 10-Nonadecanon. Da die synthetischen $C_{37:2}$ und $C_{37:3}$ Methylalkenone nur in einer Lösung ohne Konzentrationsangabe zur Verfügung standen, wurden die Alkenone ersatzweise zum Responsefaktor von Cholestan ins Verhältnis gesetzt. Auch die Wahl von 10-Nonadecanon als interner Standard stellt einen Kompromiß dar, weil die geeigneteren C_{36} bis C_{40} Methylketone zur Zeit nicht kommerziell erhältlich sind.

Um Schwankungen der Detektorempfindlichkeit des FID's (tägliche Variation durch Raumtemperaturschwankungen und variierende Brenngaszusammensetzung) auszugleichen, wurden vor jeder Probenserie Cholestan und 10-Nonadecanon in gleichbleibender Konzentration analysiert. Der zur qualitativen Bestimmung verwendete ODP-Standard wurde inmitten einer jeden Probenaufnahme injiziert. Die Berechnung der Alkenonkonzentration (x) erfolgte nach der Formel:

$$x(ng / g) = \frac{R_{pC}(ng / \mu lmVs) * A_x(mVs) * I(\mu l)}{M(g)}$$
(2.1)

Darin bedeutet :

R_{pC} Responsefaktor, d.h. Konzentration Cholestan/ Peakfläche Cholestan

A_x Peakfläche der jeweiligen Verbindung

I Volumen des Lösungsmittels

M Einwaage der Probe

Das Injektionsvolumen der Probe und des Cholestanstandards war gleich $(1\mu l)$ und muß deshalb in der Berechnung nicht berücksichtigt werden.

Zur Bestimmung der Wiederfindungsrate (W_{fr}) wird die Fläche des vor der Extraktion der Probe zugegebenen 10-Nonadacanon mit der eines externen 10-Nonadecanon-Standards nach folgender Formel ins Verhältnis gesetzt:

$$W_{fr}(\%) = \frac{100 * R_{pN} (ng / \mu lmVs) * A_{Nx} (mVs) * I(\mu l)}{x_{N} (ng / \mu l) * V_{Nx} (\mu l)}$$
(2.2)

Darin bedeutet :

R_{pN} Responsefaktor, d.h. Konzentration 10-Nonadecanon/Peakfläche 10-Nonadecanon

A_{Nx} Peakfläche von 10-Nonadecanon in der Probe

I Volumen des Lösungsmittels

x_N Konzentration, in der 10-Nonadecanon der Probe zugegeben wurde

V_{Nx} Volumen an 10-Nonadecanon, das der Probe zugegeben wurde

Jeder Probe wurden $0,5\mu g$ 10-Nonadecanon (100 μ l einer Lösung mit $0,005\mu g/\mu$ l) zugegeben. Vom externen 10-Nonadecanonstandard wurde bei gleicher Konzentration 1μ l in den Gaschromatographen injiziert.

An allen untersuchten Proben wurde der organische Kohlenstoff (TOC, total organic carbon) gemessen. Damit kann nach folgender Formel der Anteil der Alkenone am organischen Kohlenstoff (xTOC) berechnet werden:

$$xTOC(ng / gTOC) = \frac{100 * R_{pC}(ng / \mu lmVs) * A_x(mVs) * I(\mu l)}{M(g) * TOC}$$
(2.3)

Darin bedeutet :

R _{pC}	Responsefaktor, d.h. Konzentration Cholestan/ Peakfläche Cholestan
A _x	Peakfläche der jeweiligen Verbindung
I	Volumen des Lösungsmittels
Μ	Einwaage der Probe

TOC Menge an organischem Kohlenstoff in der Probe

Durch den Bezug des Alkenongehaltes auf TOC spielen Verdünnungseffekte durch anorganische Sedimentbestandteile keine Rolle mehr. Die Alkenonkonzentrationen sind daher besser vergleichbar.

Um das sich verändernde Verhältnis der zweifach und dreifach untersättigten C_{38} Methylalkenone auszudrücken, wird der folgende U^{k'}_{38Et}-Index definiert :

$$U_{38Et}^{k'} = \frac{C_{38:2}Et}{C_{38:2}Et + C_{38:3}Et}$$
(2.4)

Desweiteren wurden der Alkenonindex U_{37}^{k} und der vereinfachte Alkenonindex $U_{37}^{k'}$ berechnet wie in den Gleichungen 1.1 und 1.2 (Kap. 1.1) definiert.

2.3.11 Abschätzung des analytischen Fehlers

Zur Abschätzung des Gesamtfehlers wurden an einer Probe 12 Messungen, an 7 Proben Doppelmessungen und an 3 Proben Dreifachmessungen vorgenommen (Tab. 2.5). Im Folgenden werden einige Ergebnisse dieser Messungen herausgestellt und diskutiert:

Der relative Fehler (Variationskoeffizient) des Alkenonverhältnisses $U^{k'_{37}}$ betrug bei der Zwölffach-Messung 2,2 % (n=12). Dies entspricht einem absoluten Fehler (Standardabweichung) von 0,01 $U^{k'_{37}}$ -Einheiten. Für die Anteile der einzelnen Alkenone lag der relative Fehler in dieser Meßreihe zwischen 2% (C_{37;3}) und 15,6% (C_{37;4}).

Die Auswertung der Doppel- und Dreifachmessungen (10 Proben) ergab für den U_{37}^{k} einen mittleren relativen Fehler (Mittelwert der relativen Fehler der einzelnen Proben) von 5,4% (Tab. 2.5). Dies entspricht einem mittleren absoluten Fehler von 0,02 U_{37}^{k} Einheiten. Der mittlere relative Fehler der Alkenonanteile liegt für C_{37:3} bei ± 5,4% und für C_{37:2} bei ± 7,8%. Der Anteil des C_{37:4} Methylketons schwankt in der Meßreihe der Doppelt- und Dreifachmessungen mit einem mittleren relativen Fehler von 40,7% am stärksten. Zu diesem hohen Fehler tragen zwei Faktoren bei. In dieser Meßreihe ist die Konzentration des C_{37:4} Methylketons oft sehr gering. Zusätzlich wird es, trotz Verseifung und Fraktionierung, oftmals von weiteren Verbindungen überlagert. Der gemittelte relative Fehler der C₃₈ Alkenone liegt bei den Doppelt- und Dreifachmessungen höher

als bei der ersten Meßreihe. Dies ist bedingt durch den geringen Mengenanteil der C_{38} Alkenone in den untersuchten Proben. So konnten in zwei Proben C_{38} Alkenone gar nicht nachgewiesen werden. In einer Oberflächenprobe aus dem Gotlandbecken lag die Konzentration der C_{38} Methylalkenone unter der Nachweisgrenze. In die Berechnung der mittleren Fehler gingen nur die Proben ein, in denen die jeweiligen Substanz nachzuweisen war. Die Fehler wurden also, je nach der betrachteten Substanz, über 7, 8 oder alle 10 Proben gemittelt.

Tab. 2.5: Meßergebnisse aus einer Zwölffach-Messung an der Oberflächenprobe 220300 (Lübecker Bucht) und aus einer Meßreihe, die sich aus 7 Doppelmessungen und 3 Dreifachmessungen zusammensetzt. Der absolute Fehler entspricht der Standardabweichung und der relative Fehler dem Variationskoeffizienten (SACHS, 1992). Der mittlere absolute und relative Fehler ist der Mittelwert aus den Fehlerberechnungen der Doppel- und Dreifachmessungen.

	absoluter Fehler			relativer	Fehler	[%]			
	U ^k ´ ₃₇	Uk′37	37:4Me%	37:3Me%	37:2Me%	38:3Me%	38:3Et%	38:3Me%	38:2Et%
Tab	0.01		zu 837	zu S37	zu \$37	zu \$38	zu \$38	zu S38	zu \$38
220300 n=12	Einheiten	2,2	15,6	2,0	2,2	10,2	4,9	5,2	6,2
	gemitteler absoluter Fehler			Gemittelt er	relativer	Fehler	[%]		
Doppelt-, Dreifach-	0,02	5,4	40,7	5,4	7,8	18,4	12,9	16	16,8
Messung	n=10	n=10	n=10	n=10	n=10	n=8	n=7	n=8	n=7

Die Wiederfindungsraten liegen bei der angewandten Methode zwischen 60 und 80%. Der Vergleich mit nicht verseiften Proben zeigt, daß die Verseifung der Analysenschritt mit der höchsten Verlustrate (bis zu 30%) ist.

Abschließend bewertet weisen Einzelkomponenten z.T. relativ hohe Fehler auf. Dies trifft besonders für Substanzen zu, die in geringen Konzentrationen vorliegen, also vor allen für die $C_{37:4}$ Methylalkenone. Angaben über Konzentrationen werden in den folgenden Kapiteln daher nur der Abschätzung von Trends.

Bei der Bildung von Verhältnissen sind die Fehler relativ gering. Daher wird in der folgenden Auswertung ein stärkeres Gewicht auf die Aussagen der Verhältnisse gelegt.
3. Rezentes Alkenonsignal der Ostsee

3.1 Ergebnisse

Die Ergebnisse der Untersuchungen an Oberflächensedimenten, Schwebstoffen, Sinkstoffen und Algenkulturen werden im Zusammenhang mit ihrem Entnahme-Milieu dargestellt. Neben der im Einleitungskapitel eingeführten Gebietsbezeichnung des Skagerraks, Kattegats und der Ostsee, wird das Arkonabecken in Bezug auf die Ergebnisse der Oberflächensedimente und Schwebstoffe in ein östliches und westliches Arkonabecken weiter gegliedert. Die Grenzziehung erfolgt entlang einer in Nord-Süd-Richtung verlaufenden Linie vom Kap Arkona auf Rügen bis an die schwedischen Küste.

3.1.1 Oberflächensedimente

Das Entnahmegebiet der Oberflächensedimente erstreckt sich zwischen der Länge 10-25°E und der Breite 53-60°N. Die meisten Sedimente wurden im Spätsommer 1998 mit einem Kastengreifer (15 x 15 x 30 cm) genommen. Im Datenanhang beinhalten die Tabellen 8.1, 8.2 und 8.3 die genauen Entnahmedaten und die Meßergebnisse aller auf Alkenone untersuchten Oberflächensedimente. Eine Verknüpfung der in Tab. 8.1 angegebenen durchschnittlichen Salinität des Oberflächenwassers mit den Ergebnissen der Alkenonanalyse erfolgt in der Diskussion. Die Tab. 3.1 gibt einen Überblick über die im Folgenden erläuterten Durchschnittswerten für die einzelnen Ostseebecken.

Die untersuchten Oberflächensedimente unterscheiden sich sowohl hinsichtlich der Alkenonkonzentration als auch hinsichtlich der Nachweisbarkeit der einzelnen Alkenone. Auf einem West-Ost-Gradienten können daher zwei Alkenonmuster, das Marine- oder *Emiliania huxleyi* ähnliche-Alkenonmuster und das Ostsee-Alkenonmuster, herausgearbeitet werden (Abb. 3.1).

Die Konzentrationen an Alkenonen nehmen vom Skagerrak über den Kattegat bis in die Lübecker Bucht von 2331 bis 171 ng/g bzw. von 126 bis 61 μ g/gTOC generell ab (Tab. 8.2). In der Ostsee, von der Mecklenburger Bucht bis zum Finnischen Meerbusen, variieren die Alkenonkonzentrationen von 2 bis 1310 ng/g bzw. 11 bis 17661 μ g/gTOC sehr stark (Tab. 8.3). Durchschnittlich sind im Finnischen Meerbusen die geringsten Mengen an Alkenonen nachzuweisen.

Vom Skagerrak bis in das Bornholmbecken sind zwei-, drei- und vierfach ungesättigte C37-Methylalkenone, zwei- und dreifach ungesättigte C38 Methyl- und Ethylalkenone, sowie zwei- und dreifach ungesättigte C39 Methylalkenone nachzuweisen. Östlich des Bornholmbeckens, im Gotlandbecken und dem Finnischen Meerbusen, sind keine zwei- und dreifach ungesättigten C38 Methylalkenone mehr zu finden. In den Sedimenten des Bornholmbeckens (Station 202 und 213) sind C38 Methylalkenone an der Nachweisgrenze oder gar nicht zu detektieren. In Proben mit geringen Alkenonkonzentrationen sind manchmal keine C39 Methylalkenone nachweisbar (Station 30, 202800 und 202960).

Abb. 3.1: Beispielhafte Gaschromatogramme der Alkenonkomponenten aus Oberflächensedimenten von der Lübecker Bucht bis in den Finnischen Meerbusen.

Der prozentuale Anteil von C37:4 an der Summe der C37-Alkenone von durchschnittlich 4 % (1,4 bis 9,4 %), westlich von Kap Arkona, auf durchschnittlich 18 % (7,4 bis 35 %),östlich von Rügen, zu. Die Sedimente im Bornholmbecken weisen einen C_{37:4}-Anteil von durchschnittlich 22 % auf, jene im Gotlandbecken einen Anteil von 14 %. Im Finnischen Meerbusen steigt der Anteil von C37:4 an der Summe der C37-Alkenone nochmals deutlich auf 23 bis 35 % (durchschnittlich 27 %) an.

Das Verhältnis der C38 Ethylalkenone verändert sich in den Oberflächensedimenten ebenfalls auf einem West-Ost-Gradienten. Nach Osten nimmt der Anteil an dreifach ungesättigten C38 Ethylalkenonen zu den zweifach ungesättigten zu. Der in der Gleichung (2.4) definierte Uk'38Et eignet sich zur Darstellung dieser Veränderung.

Westlich von Rügen ist das Uk'38Et-Verhältnis relativ konstant (0,63 bis 0,69). Beim Übergang vom westlichen ins östlichen Arkonabecken ist ein deutlicher Sprung des Verhältnisses von 0,69 zu 0,59 erkennbar. Im Bornholm- und Gotlandbecken nimmt der Uk'38Et-Wert weiter auf 0,46 ab. Im Finnischen Meerbusen wird durch den relativ hohen Anteil des dreifach ungesättigten C38-Ethylketones ein Durchschnittwert von 0,24 erreicht.

Der Alkenonindex Uk37 verändert sich am deutlichsten an der Grenze vom Arkonabecken zum Bornholmbecken. Vom Skagerrak bis einschließlich des Arkonabeckens liegt der Uk37 zwischen 0,27 und 0,54. Bedingt durch den hohen Prozentanteil an $C_{37:4}$ -Methylalkenonen weisen die Sedimente vom Bornholmbecken bis zum Finnischen Meerbusen sehr geringe Uk37-Werte von 0,21 bis 0,28 auf.

Der Uk'37 verändert sich ebenfalls östlich des Bornholmbeckens deutlich. Im Skagerrak sind noch relativ geringe Uk'37-Werte von durchschnittlich 0,40 nachzuweisen. Weiter östlich im Kattegat, der Mecklenburger Bucht und dem westlichen Arkonabecken steigt der Wert auf durchschnittlich 0,50 bis 0,53 an. Im östlichen Arkonabecken sinken die Uk'37-Durchschnittswerte auf 0,45. Im Bornholmbecken werden nur noch Durchschnittlichswerte von 0,39 ermittelt. Im Gotlandbecken und mit folgender Einschränkung auch im Finnischen Meerbusen werden die geringsten der Uk'37-Werte von durchschnittlich 0,27 sedimentiert. Der Durchschnittswert im Finnischen Meerbusen errechnet sich wenn die Probe 202820 und 202960 nicht miteinbezogen werden. Die Probe 202820 weißt nur sehr geringe Alkenonkonzentrationen auf und im Chromatogramm der Probe 202960 können Überlagerungen der Alkenone nicht ganz ausgeschlossen werden.

Tab. 3.1: Mittelwerte der Alkenonergebnisse aus Oberflächensedimenten; S37 bezeichnet die Summe aus den C37 Alkenonkonzentrationen; SAlk bezeichnet die Summe aus C37, C38 und C39 Alkenonenkonz.; Uk'38Et = C38:2Et / (C38:2Et + C38:3Et)

Lokation	37:4% zu S37	SAlk ng/g	SAlk µg/gTOC	Uk′37	Uk37	Uk'38Et
Skagerrak	7	1854	101	0,40	0,30	0,67
Kattegat-Öresund	4	840	63	0,50	0,44	0,63
Mecklenburger Bucht	3	7382	3531	0,50	0,46	0,65
westliches Arkonabecken	4	125	5672	0,53	0,46	0,69
östliches Arkonabecken	9	520	12663	0,45	0,32	0,57
Bornholmbecken	22	545	10073	0,39	0,10	0,46
Gotlandbecken	14	714	15140	0,27	0,09	0,46
Finnischer Meerb.	27	78	2117	0,33 (0,27)	-0,03	0,24

Zusammenfassend weisen die Verhältniswerte Uk'37, Uk'37, Uk'38Et und der prozentuale Anteil an C37:4 zur Summe der C37-Alkenone ab dem östlichen Arkonabecken deutliche Veränderungen auf. Die Uk-Werte werden geringer und der Anteil an vierfach ungesättigter C37 Methylalkenone steigt deutlich an. Die folgende Abbildung 3.2 verdeutlicht diesen Verlauf nochmals.

Abb. 3.2: Uk'37, Uk'38Et und der prozentuale Anteil an C37:4 zur Summe der C37-Alkenone in Relation zur Breite (Ost) des Entnahmeortes der Oberflächensedimente (Belt See bis Finnischer Meerbusen).

Um die Alkenonergebnisse mit den heutigen Temperaturen und Salinitäten des Oberflächenwassers in Zusammenhang zu bringen, wurden Jahres- und Sommermittelwerte für jedes Untersuchungsgebiet errechnet. Die Rohdaten wurden im Rahmen der nationalen Ostseeerforschung (1969-1985) des Institutes für Meereskunde Warnemünde und im Folgeprogramm des HELCOM-Monitorings (1986-1998) des Institutes für Ostseeforschung Warnemünde ermittelt (HELCOM 1986; 1990; 1996). An maximal 213 Stationen erfolgte in den Zeiträumen 12. Januar-28. Februar, 10. Mräz-22. April, 2. Mai-10. Juni, 14. July-28. August und 26.September-26.Dezember von 1969 bis 1998 Messungen über den ganzen Ostseeraum, den Kattegat und Skagerrak bis in die Nordsee. An den Stationen, die annähernd mit den Probeentnahmepunkten der Ostseeoberflächensedimente übereinstimmen, wurden Profilmessungen 5-25 in m Abstand bis zum Grund vorgenommen. Zur Ermittlung der Oberflächenwassertemperatur und Salinität wurden die Ergebnisse aus 2 und 5 m Wassertiefe zusammengefaßt und, lokal auf die Gebiets- und Beckengrenzen des Ostseeraumes bezogen, gemittelt. In der Tab.3.2 sind die Mittelwerte und Standardabweichungen sowie die Anzahl der ausgewerteten Stationen und Einzelmessungen aufgeführt. Da vom 14.Juli bis 28.August kaum Messungen im Finnischen Meerbusen und im Bottnensee erfolgten, wurden die Sommer-Temperatur- und -Salinitätsverhältnisse des Finnischen Meerbusens aus den Werten von Leppänen et al. (1994-1998) für den Zeitraum vom 17. Juli bis 29. August ermittelt.

 Tab.3.2: Durchschnittliche Temperatur- und Salinitätswerte der Ostsee und Nordsee ermittelt im Rahmen der nationalen Ostseeforschung und des HELCOM-Monitorings am Institut für Meereskunde / Ostseeforschung Warnemünde (1969-1998). Die Sommerwerte für den Finnischen Meerbusen wurden aus Leppänen et al. (1994-1998) gemittelt. STD = Standardabweichung, relativer Fehler

JAHR	STATIONS-	ORT	TEMP-	TEMP-	TEMP-	SALZ-	SALZ-	SALZ-
	ANZAHL		MESSUNGEN	MITTEL	STD	MESSUNGEN	MITTEL	STD
10.Mrz-	max. 42 St.	Nordsee	122	8,85	0,03	122	34,26	0,04
26.Dez.				,			ŕ	-
10.Mrz-	max. 9 St.	Skagerrak	132	8,30	0,21	127	20,93	0,46
26.Dez.		, C		· ·				
12.Jan-	max. 3 St.	Belt See	417	8,03	0,61	671	19,22	1,11
26.Dez.	-							
12.Jan-	max. 21 St.	Mecklenb.B.	3245	8,12	1,36	3215	12,31	1,58
26.Dez.								
12.Jan-	max. 31 St.	westlArkonab.	2372	7,95	1,10	1992	9,40	0,92
26.Dez.								
12.Jan-	max.35 St.	östl.Arkonab.	5567	8,02	1,50	5418	7,94	0,42
26.Dez.								
12.Jan-	max.63 St.	Arkonab.	7956	8,00	1,34	7424	8,34	0,56
26.Dez.								
12.Jan-	max. 26 St.	Bornholmb.	3398	7,53	1,52	3247	7,72	0,27
26.Dez.								
12.Jan-	max.67 St.	Gotlandb.	4841	7,75	1,11	4705	7,49	0,19
26.Dez.								
10.Mrz	max.6 St.	Finnischer M.	517	5,03	1,53	517	6,26	0,36
6.Dez.								
14.Jul	42 Stationen	Nordsee	83	14,92	0,002	83	33,64	0,009
28.Aug.								
14.Jul	9 Stationen	Skagerrak	19	16,27	0,02	19	23,90	0,13
28.Aug.								
14.Jul	3 Stationen	Belt See	102	15,59	0,01	102	28,77	0,06
28.Aug.								
14.Jul	21 Stationen	Mecklb.B.	674	17,05	1,34	670	11,58	0,98
28.Aug.								
14.Jul	21 Stationen	westl.Arkonab	438	16,62	2,04	396	9,08	0,70
28.Aug.								
14.Jul	35 Stationen	östl.Arkonab.	1125	17,19	1,89	1103	7,72	0,42
28.Aug.				1.1.0.0				
14.Jul	56 Stationen	Arkonab.	1563	16,98	1,95	1499	8,08	0,50
28.Aug.	26.00			1600				
14.Jul	26 Stationen	Bornholmb.	790	16,29	1,98	684	7,64	0,26
28.Aug.	46.54	0.11.11			- 1 00			
14.JUL-	40 Stationen	Gotlandb.	970	17,72	1,38	944	7,16	0,21
20.Aug.		Einstein M.		16.00			(00	
17.JUL		rinnischer M.		16,28			6,08	
49.MUB			1					

3.1.2 Schwebstoffe

Vom 30. Juni bis 10. August 1998 wurden an 16 Stationen Schwebstoffe aus 0-1 m, 5 m und 10 m Wassertiefe entnommen. Das Entnahmegebiet erstreckt sich von 10°E-53°N bis 20°E-60°N (Belt See - Gotlandbecken). In Tab. 2.3 sind die genauen Entnahmedaten zusammengefaßt. Tab. 8.4 im Datenanhang beinhaltet die Ergebnisse aus der Alkenonanalyse. Die Verknüpfung der Alkenonergebnisse mit der Wassertemperatur und der Salinität des Oberflächenwassers am Entnahmedatum erfolgt in der Diskussion.

Bei der gaschromatographischen Analyse der Alkenone treten in den Schwebstoffproben trotz vorheriger Verseifung und Fraktionierung Überlagerungen der C38 und C39 Ketone auf. Lediglich in den Schwebstoffen von der Station 360 können alle C37, C38 und C39 Alkenone eindeutig nachgewiesen werden. In den Schwebstoffen des Gotlandbeckens (Station 255 bis 286) sind neben den C37 Alkenonen nur C38 Ethylalkenone detektierbar. An den östlichsten Stationen des Gotlandbeckens 271 (10m Wassertiefe) und 286 konnten 7 bzw. 20% C37:4 Methylalkenone gefunden werden.

In der Belt See (Station 360) sind die Alkenone mit 12275 ng/g bzw. 136,4 μ g/gTC am höchsten konzentriert. In der Mecklenburger Bucht nimmt die Alkenonkonzentration deutlich auf 3 bis 83 ng/g (35 bis 867 ng/gTC) ab. Im Arkonabecken variieren die Konzentrationen an C37 Alkenonen von 44 bis 2260 ng/g (402 bis 23299 ng/gTC), wobei durchschnittlich 309 ng/g (4107 ng/gTC) nachgewiesen werden. Im Bornholmbecken sind C37:3 und C37:2 Methylalkenone in Mengen von 48 bis 232 ng/g (790 bis 11993 ng/gTC) und durchschnittlich 118 ng/g (3477 ng/gTC) zu finden. Die Schwebstoffe des Gotlandbeckens zeigen Alkenonkonzentrationen von 45 bis 1893 ng/g (347 bis 21961 ng/gTC), im Mittel 400 ng/g (4345 ng/gTC). Der prozentuale Gehalt an Gesamtkohlenstoff (TC) lag zwischen 1,2 bis 18,1 %. Am geringsten ist der Kohlenstoffgehalt in den Schwebstoffen des westlichen Arbonabeckens. Im Bornholm- und Gotlandbecken liegen die Werte, mit Ausnahme der Station 202, um mehr als das Doppelte höher. In den Tiefenprofilen verändert sich der Gesamtkohlenstoffgehalt kaum.

Der Alkenonindex Uk'37 schwankt von 0,21 bis 0,82. In der Belt See und der Mecklenburger Bucht erreicht der Uk'37 Werte von 0,43 bis 0,49. Im Arkona- und im Bornholmbecken steigt der Index auf Durchschnittswerte von 0,54 bzw. 0,64 an. Im Gotlandbecken sind niedrigere Werte des Uk'37 von durchschnittlich 0,37 (0,21 bis 0,56) nachzuweisen.

3.1.3 Sinkstoffallen

Aus Schwebstoffen aus 140 und 230 m Wassertiefe der Gotlandbeckenstation 271 konnten, obwohl Probenmaterial von drei Monaten vereinigt wurde, Alkenone nur in geringen Konzentrationen nachgewiesen werden (Tab. 8.5 im Datenanhang). Mit Ausnahme von drei Proben sind nur C37 Methylalkenone eindeutig identifizierbar. Im Winter 1998 sind in 230 m Tiefe für den Zeitraum 1.2.98 - 15.3.98 und in 140 m Tiefe für den Zeitraum 22.2.98 - 15.3.98 auch C38 Ethylalkenone nachgewiesen worden. Im Sommer 1996 (27.6.96 - 28.9.96) und im Sommer 1997 (14.9.97 -28.9.97) sind in 230 m Tiefe, unter Berücksichtigung der unterschiedlich langen Untersuchungsintervalle, relativ hohe Alkenonkonzentrationen detektiert worden. In 140 m Tiefe zeigt die einzig untersuchte Sommerblüte von 1997 (17.8.97 - 28.9.97) ebenfalls die relativ höchsten Alkenongehalte. Der Uk'37 variiert in den untersuchten Sinkstoffen von 0,07 bis 0,87 sehr stark und vermittelt kein einheitliches Bild.

Aus der Mecklenburger Bucht und dem Gotlandbecken wurden mehrfach Wasserproben mit dem Lichtmikroskop und dem Raster-Elektronenmikroskop/REM (Typ: Cam Scan 44 Analytic WEX, Firma: Cam Scan, Cambrigde, UK) zur Dokumentation und Identifizierung von Prymnesiophyceen untersucht. In einer lichtmikrokopischen Aufnahme konnten im Sommer-Oberflächenwasser 1998 des Gotlandbeckens (Station 271) maximal 2% der Biomasse als Prymnesiophyceen beschrieben

werden. Diese Daten wurden im Rahmen des biologischen Monitoring Programms des Institutes für Ostseeforschung erhoben (WASMUD et al., 1998). Eigene REM-Aufnahmen zeigen weder im Oberflächenwasser der Mecklenburger Bucht noch in dem des Gotlandbeckens Prymnesiophyceen. Die Schwebstoffe wurden vor der Aufnahme schonend Kritisch-Punkt getrocknet (BÖHLER, 1992) und mit Gold bedampft.

3.1.4 Algenkulturen

In Zuchtversuchen konnten die Alkenonsignale von Prymnesium parvum, Pavlova lutheri, Pleurochrysis carterae, Prymnesium patelliferum, Chrysochromulina polylepis und Chrysochromulina aphelis bestimmt werden.

Zur Dokumentation der Kulturansätze wurden alle Stämme unter dem Lichtmikroskop fotografiert (MENZEL et al., 1999). Zusätzlich wurden die Prymnesiophyceen mit einem Raster-Elektronenmikroskop (Typ: Cam Scan 44 Analytic WEX, Firma : Cam Scan, Cambrigde, UK) aufgenommen. Die Algen wurden für diese Aufnahmen über eine Wasser-Aceton-Kohlendioxid-Austauschreihe Kritisch-Punkt getrocknet (BÖHLER, 1992) und mit Gold bedampft. Die folgenden beispielhaften Abbildungen 3.3 und 3.4 stellen die Fotografien beider Methoden gegenüber.

Abb. 3.3: Raster-Elektronenaufnahme von a) *Pleurochrysis carterae* (die Zellen sind im Apistonema-Stadium / Koloniebildung aufgenommen) und
b) *Prymnesium patelliferum* (neben der Zelle sind beide Flagellen (F) und das zusammengerollte Haptonema (H) erkennbar).

b)

a)

Abb. 3.4 : Lichtmikroskopische Aufnahme von *Pleurochrysis carterae* a) im Apistonema-Stadium (Koloniebildung) und b) im Hymenomonas-Stadium (schattenhaft sind die sich bewegenden Flagellen angedeutet; der Pfeil markiert den Flagellenansatz)

Die Tab. 8.6 im Datenanhang beinhaltet die Konzentrationen und Verhältnisse der C37:2 und C37:3 Methylalkenone. Für die 4l-Kulturansätze von *Chrysochromulina aphelis* kann keine Konzentration pro Einwaage angeben werden, da das Gesamtgewicht der Algen nach dem Zentrifugieren nicht bestimmt werden konnte. Die angegebenen Konzentrationen sind mittels der Wiederfindungsraten (35 bis 88%) auf 100% hochgerechnet worden.

b)

Das vierfach ungesättigte C37-Methylalkenon konnte in keinem der Algenansätze nachgewiesen werden. Die höchste Konzentration an C37 Alkenonen pro Einwaage enthält mit 772 ng/g der Kulturansatz von *Pavlova lutheri* (Finnischer Meerbusen). Die Alkenonkonzentration pro Zelle ist, bedingt durch die geringe Zellgröße, bei *Chrysochromulina aphelis* (Kattegat) mit 9,8x10⁻³ fg/Zelle am größten. Die geringsten C37-Alkenonkonzentrationen wurden im 12l-Kulturansatz von *Prymnesium patelliferum* (Brackwasser bei Büsum) mit 85 ng/g und in dem 4l-Kulturansatz bei 11°C bei *Chrysochromulina aphelis* mit 0,5x10⁻³ fg/Zelle errechnet.

Der Uk'37 variiert bei 20°C Wachstumstemperatur je nach Alge von 0,44 bis 0,71. Eine Doppelmessung zeigt, daß im 11- und 12l-Kulturansatz von *Prymnesium patelliferum* der gleiche Uk'37 von 0,71 produziert worden ist. Die Züchtung von *Chrysochromulina aphelis* bei 11, 14, 16, 18 und 20°C zeigt eine lineare Korrelation von Uk'37 zur Wachstumstemperatur mit Uk'37 = 0,0307 T°C + 0,502 bei einer Standardabweichung von 0,842 auf (Abb. 3.8). Diese Korrelation ist jedoch nur dann erkennbar, wenn der Uk'37 des 11-Kulturansatzes (0,68) anstelle des 41-Kulturansatzes (0,509) verwendet wird.

Wie in der Abb. 3.5 und Abb. 3.6 nachvollziehbar, können auch C38 und C39 Alkenone detektiert werden. Die Konzentrationen dieser Verbindungen sind jedoch sehr gering, so daß sie nur qualitativ ausgewertet wurden. In allen untersuchten Algen können C38:3Me, C38:2Et und C38:2Me nachgewiesen werden. Die Chromatogramme von *Pleurochrysis carterae* und *Chrysochromulina polylepis* lassen zusätzlich das C38:3 Ethylalkenon erkennen. In den Alkenonmustern aus den anderen Kulturansätzen wird das Signal von C38:3 Et durch andere Substanzen überlagert.

a)

Retentionszeit (min)

Abb. 3.5: Gaschromatogramme aus der Kulturzucht der Prymnesiophyceen des Finnischen Meerbusens; dargestellt sind die Chromatogramme des ODP-Standards (jeweils oben) und der Prymnesiophyceen (jeweils unten)

Retentionszeit (min)

Abb. 3.6: Gaschromatogramme aus der Kulturzucht der Prymnesiophyceen des Kattegats (a,b) und dem Brackwasser vor Büsum (c); dargestellt sind die Chromatogramme des ODP-Standards (jeweils oben) und der Prymnesiophyceen (jeweils unten) Für die Alkenonanalyse wurden die Algen bis zum Erreichen ihrer exponentiellen Wachstumsphase gezüchtet und dann abgefiltert bzw. abzentrifugiert. Zur Bestimmung des optimalen Erntezeitpunktes wurden die Zellzahlen pro ml Nährmedium und die optische Dichte bezogen auf 750 nm (OD_{750nm}) ermittelt. In der Tab. 8.7 sind die Ergebnisse des Kulturwachstums zusammengefaßt aufgeführt. Die Algen erreichten nach 8 bis 24 Tagen die exponentielle Wachstumsphase. Es wurden Zellzahlen von $2,7x10^6$ bis $9,2x10^6$ Zellen/ml und ein OD_{750nm} von 0,042 bis 0,21 nm gemessen. In der Kultur von *Pleurochrysis carterae* konnte die Zellzahl nicht ermittelt werden, da sich die Algen im Stadium der Koloniebildung befanden und somit die Zellen nicht einzeln erfaßt werden konnten.

3.2 Diskussion

Das heute in der Ostsee produzierte Alkenonsignal ist im Rahmen dieser Arbeit in den Schwebstoffen des Oberflächenwassers (0 bis 15 m Wassertiefe), in den Sinkstoffen der Station 271 (Gotlandbecken) und in den Oberflächensedimenten ermittelt worden. Zusätzlich wurden Prymnesiophyceen aus der Nordsee, dem Kattegat und dem Finnischen Meerbusen bei definierten Temperaturen kultiviert und auf Alkenone untersucht.

Eine direkte Korrelation zwischen den Uk'37-Werten (0,22 – 0,55; Tab. 8.3) aus den Oberflächensedimenten der Ostsee und der durchschnittlichen Juli/August Oberflächenwassertemperatur, der Hauptblütezeit der Prymnesiophyceen, ist nicht zu erkennen (HELCOM 1986, 1995, 1998; LEPPÄNEN et al., 1994). Während Prymnesiophyceen in der gesamten Ostsee bei gleichen Oberflächenwassertemperaturen blühen, variieren die in den Schwebstoffen, Sinkstoffen und Oberflächensedimenten ermittelten Uk'37 Werte stark. Dieses Ergebnis deckt sich auch mit Alkenonuntersuchungen in der Nordsee an Sedimenten, die aus einem Milieu von relativ geringer Salinität und Temperatur stammen (ROSELL-MELÉ et al., 1998).

Das Fehlen von C38 Methylketonen im Gotlandbecken ist kein Effekt der Biodegradation, sondern gibt vielmehr das im Oberflächenwasser produzierte Alkenonmuster wieder. Dies kann aus dem Nachweis der zwei unterschiedlichen Alkenonmuster (Ostsee-Alkenonmuster und Marines-Alkenonmuster, siehe Abb. 3.1) in den Oberflächensedimenten und in den Schwebstoffen des Oberflächenwassers (Abb. 3.7) abgeleitet werden. Im organischen Material der Sinkstoffallen aus der Gotlandbeckenstation 271 konnten ebenfalls nur C38 Ethylketone nachgewiesen werden. Die Alkenonmuster der Oberflächensedimente geben also das im Oberflächenwasser produzierte Alkenonmuster wieder. In einer Studie an Oberflächensedimenten des östlichen Atlantiks konnten relativ geringe Abbaurate von 0.001/a bis 0.11/a für die gesamte Stoffgruppe der Alkenone (C37-C39 Alkenone) aufgezeigt werden (MADUREIRA, 1994). Viele Untersuchungen weisen aber auf keine durch diagenetische Prozesse gesteuerte Veränderung des Uk37 hin (PRAHL et al., 1989; TEECE et al., 1994; MADUREIRA et al., 1995; CONTE et al., 1995; PARKES et al., 1996). FLÜGGE (1997) belegt jedoch anhand von Laborexperimenten, daß die C37 Alkenone proportional zum Grad ihrer Untersättigung abgebaut werden. Die ermittelten Abbauraten weisen auf einen bevorzugten Abbau des vierfach ungesättigten Ketons hin. Des weiteren wurden Alkenone aus Schwebstoffen schneller abgebaut als solche, die im Sediment gebunden waren. Der Abbau von Ethyl- und Methylalkenonen, der bei unterschiedlichen Abbauraten die unterschiedlichen Alkenonmuster in den Oberflächensedimenten (Abb. 3.1) erklären könnte, wurde jedoch bisher noch nicht verglichen. Der mikrobielle Abbau greift bevorzugt an funktionelle Gruppen einer Verbindung, d.h. an der Carbonylgruppe und den Doppelbindungen der Alkenone, an (DE LEEUW et al., 1980; VOLKMAN et al., 1980a, b; RECHKA & MAXWELL, 1988a, b). Demnach dürfte der Einfluß einer Methylengruppe auf mikrobielle Abbauraten gering sein.

Retentionszeit (min)

Abb. 3.7: Alkenonmuster aus Schwebstoffen und Oberflächensedimenten der Belt See (a,b) und des Gotlandbeckens (c,d)

44

Die Alkenonuntersuchungen an den Sinkstoffen der Gotlandbeckenstation 271 zeigen im Spätsommer 1996 und 1997 (17.8 – 28.9) die höchsten Alkenonkonzentrationen und zeichnen somit das Ende der Prymnesiophyceenblüte Ende September (Abb. 1.2 im Kapitel 1.2.3 Prymnesiophyceen) nach. Dieses Ergebnis weist auf Fallzeiten von wenigen Tagen bis in eine Tiefe von 140 bzw. 230 m Tiefe hin. PASSOW (1991) gibt für Diatomeen ebenfalls durchschnittliche Sinkgeschwindigkeiten von 15 bis 30 m pro Tag im Gotlandbecken an.

Die geringen der Alkenonkonzentrationen in den Schwebstoffen und Oberflächensedimenten der eigentlichen Ostsee, d.h. östlich der Station 360 in der Belt See, findet eine Entsprechung in der geringen Alkenonproduktivität der untersuchten Ostsee- und Brackwasserprymnesiophyceen. Die Alkenonproduktivität ist um den Faktor 1×10^4 (*Prymnesium patellifera*) bis 50×10^4 (*Pavlova lutheri*) geringer als die Produktivität von *Emiliania huxleyi* (MENZEL 1999, MENZEL et al. in Vorbereitung, PRAHL et al., 1988). *Pavlova lutheri* (Finnischer Meerbusen) und *Chrysochromulina polylepis* (Kattegat) zeigen die höchsten Alkenonkonzentrationen und könnten signifikant zum Alkenonsignal der Ostsee beitragen.

Die im Kulturexperiment erhaltenen Alkenonmuster (Abb. 3.5 und Abb. 3.6) stimmen nicht mit den Mustern aus den Schwebstoffen und Oberflächensedimenten der Ostsee überein. Die Muster der Algenkulturen ließen keine $C_{37:4}$ Alkenone erkennen, enthielten aber die C38 Methylalkenone.

Die bei einer Kulturtemperatur von 20 °C ermittelten Uk'37 Werte streuten von 0,44 (*Pleurochrysis carterae*) bis 0,71 (*Prymnesium patellifera*). Die drei aus dem Finnischen Meerbusen isolierten Arten *Prymnesium parvum, Pavlova lutheri* und *Pleurochrysis carterae* zeigten Uk'37 Werte von 0,63, 0,54 und 0,44 (Tab. 8.6). In den Oberflächensedimenten des Finnischen Meerbusens wurden deutlich geringere Uk'37 Werte von durchschnittlich 0,27 (ausgenommen Probe 202820 und 202960) ermittelt. Im Kattegat und der Belt See wurden in den Oberflächensedimenten ein Uk'37 von durchschnittlich 0,47 und in den Schwebstoffen 0,43 ermittelt. Diese Werte sind ebenfalls geringer als die aus den vor Kopenhagen isolierten Arten *Chrysochromulina polylepis* und *apheles* (Tab. 8.6). Die untersuchten Arten zeigen daher eher einen artspezifisches als einen ortsspezifischen Uk'37.

Um die Temperaturabhängigkeit der Alkenonproduktion zu untersuchen, wurde die Prymnesiophycee *Chrysochromulina apheles* im Rahmen der Diplomarbeit von Diana Menzel bei fünf ausgewählten Temperaturen, 20°C, 18°C, 16°C, 14°C und 11°C gezüchtet und auf Alkenone analysiert (MENZEL et al., 1999). Die zelluläre Alkenonsynthese von *Chrysochromulina apheles* variierte je nach Wachstumstemperatur zwischen 0.5×10^{-2} und 5.2×10^{-2} fg/Zelle für die Summe der C37 Methylketone (Tab. 8.6). Dieses Ergebnis widerspricht der Beobachtung an Zuchtversuchen von *Emiliania huxleyi*, bei denen Alkenonkonzentrationen bei verschiedenen Temperaturen als relativ stabil anzusehen sind (PRAHL et al., 1988).

In der *Chrysochromulina apheles*-Kultur unterscheiden sich der Uk'37 bei 20°C aus dem 1-Liter-Kulturansatz mit 0,68 deutlich von dem der 4-Liter-Kultur (0,509). Der relativ geringe Wert von 0,509 kann auf Überlagerungen im Chromatogramm zurückzuführen sein. Zudem befand sich der 4-Liter-Kulturansatz beim Abfiltrieren bereits in der Absterbephase. Kulturversuche an *Emiliania huxleyi* zeigten, daß mit der Absterbephase der Uk'37 im Vergleich zur exponentiellen Wachstumsphase geringfügig abnehmen kann (PRAHL & WAKEHAM, 1987). Im Gegensatz dazu, produzierte *Prymnesium patellifera* sowohl im 1-Liter- als auch im 12-Liter-Kulturansatz Alkenone mit dem gleichen Uk'37 von 0,71 (Tab. 8.6).

Wird bei einer Wachstumstemperatur von 20°C der Uk'37 aus dem 1-Liter-Kulturansatz verwendet, so ist eine lineare Korrelation des Uk'37 zur Temperatur erkennbar. Die so ermittelte Temperaturkalibrierungskurve (Abb. 3.8) zeigt eine wesentlich geringere Steigung als die Kurve der marinen Coccolithophoride *Emiliania huxleyi* (PRAHL & WAKEHAM, 1987). Damit eignet sich der Uk'37 von *Chrysochromulina apheles* wesentlich schlechter zur Temperaturrekonstruktion als der der marinen Prymnesiophycee.

b)

Abb. 3.8 : Gegenüberstellung der Temperaturkalibrierungskurve von a) Chrysochromulina apheles nach MENZEL ET AL. (in Vorbereitung) und b) Emiliania huxleyi (PRAHL & WAKEHAM, 1987)

Aufgrund der sehr geringen Mengen an synthetisierten Alkenonen, den abweichenden Alkenonmustern und den relativ hohen Uk'37 ist anzunehmen, daß die kultivierten Prymnesiophyceen Prymnesium parvum, Pavlova lutheri, Pleurochrysis carterae, Prymnesium patellifera, Chrysochromulina polylepis und Chrysochromulina apheles nicht zu den dominant alkenon-produzierenden Arten der Ostsee gezählt werden können.

Wie bereits in Kapitel 1.2.3 dargestellt, werden in der Ostsee, dem Skagerrak und Kattegat Prymnesiophyceen aus allen vier Ordnungen (Isochrysidales, Coccolithophytales, Prymnesiales und Pavlovales) beschrieben (EDLER et al., 1994; HÄLLFORDS & THOMSON, 1979; KELL & NOACK, 1991; PANKOW, 1990; TIKKANEN, 1980; THOMSON, 1979). Um die möglichen dominanten Arten zu finden, eignet sich das im Internet puplizierte Monitoring-Programm des Finnischen Institutes für Marine Wissenschaften in Tvärminne am besten (LEPPÄNEN et al., 1994; "http:// meri.fimr.fi"). Seit dem Beginn der Veröffentlichung 1994, wird besonders während der Sommermonate Prymnesiophyceen der Gattung Chrysochromulina spp. als dominantes Phytoplankton beschrieben. Allerdings wird diese Gattung über den gesamten

46

Untersuchungstransekt von Travemünde (D) bis Helsinki (Fi) als dominant angeben, der auch die Mecklenburger Bucht, das Arkona- und das Bornholmbecken beinhaltet. Als einzige Arten werden *Chrysochromulina polylepis* und *Prymnesium parvum* bei eindeutiger Identifizierung in dieser Veröffentlichungsreihe unterschieden. Diese Angaben erfolgen jedoch ohne nähere Angaben zum Verbreitungszeitpunkt und –raum.

Zusammenfassend werden im Skagerrak, Kattegat und der Ostsee eine Prymnesiophyceen-Vergesellschaftung aus bislang 54 Arten beschrieben. Ab dem Arkonabecken werden noch 20 verschiedene Arten unterschieden. Außer den fünf bereits kultivierten Arten könnten folgende Arten zu den Alkenonproduzenten der Ostsee zählen :

- 1. Apistonema pyrenigerum
- 2. Hymenomonas roseola
- 3. Pleurochrysis elongata
- 4. Balaniger balticus
- 5. Emiliania huxleyi
- 6. Pappomonas virgulosa
- 7. Papponomas flabellifer
- 8. Chrysochromulina birgeri
- 9. Chrysochromulina brachycylindra
- 10. Chrysochromulina cytaphora
- 11. Chrysochromulina ericina
- 12. Chrysochromulina mantoniae
- 13. Chrysochromulina parkeae
- 14. Chrysochromulina pringsheimii

15. Pheocystis pouchetii

Es ist jedoch nicht auszuschließen, daß weitere, bisher noch nicht beschriebene Prymnesiophyceen als mögliche Alkenonproduzenten der Ostsee anzusehen sind.

Auf einem West-Ost-Gradienten verändern sich die einzelnen Alkenone hinsichtlich ihrer relativen Konzentration bzw. ihrer Nachweisbarkeit. Wie in Abb. 3.1 dargestellt, können zwei Alkenonmuster beschrieben werden. Das marine- oder *Emiliania huxleyi*-ähnliche Alkenonmuster westlich des Gotlandbeckens, zeichnet sich durch relativ geringen Anteil an C37:4 Methylalkenonen und das Auftreten aller C38 Ethyl- und Methylalkenonen aus. Das sogenannte Ostsee-Alkenonmuster wird durch relativ hohen Anteil des C37:4 Methylalkenons und das Fehlen der C38 Methylalkenone charakterisiert. Auch steigt mit fallender Oberflächenwassersalinität der Anteil des dreifach ungesättigten C38 Ethylalkenons gegenüber des zweifach ungesättigten ab dem östlichen Arkonabecken ebenfalls deutlich an. Diese Zunahme äußert sich in fallenden Uk'38Et-Werten (Formel (3.1): Uk'38Et = C38:2Et / (C38:2Et + C38:3Et)).

Die unterschiedlichen Alkenonmuster der Oberflächensedimente können auf drei verschiedene Prozesse beruhen. Die ersten zwei Prozesse sind an die Salinitätsgradienten der Ostsee geknüpft. Oberhalb und unterhalb von einer Salinität von 7,7 PSU (Bornholmbecken) können zum einen a) zwei unterschiedliche Algengemeinschaften leben, die verschiedene Alkenonmuster und konzentrationen synthetisieren, und zum anderen b) könnte ein Wechsel in der biochemischen Alkenonproduktion aufgrund der sich verändernden Lebensbedingungen in dominant alkenonprodzierenen Prymnesiophyceen stattfinden. Als dritte Ursache kann der Transport von allochthonem organischen Material aus der Nordsee in die Ostsee angesehen werden.

a) Die Einteilung der Ostsee aufgrund der Alkenonmustern in den Oberflächensedimenten (Abb. 3.1) in eine westliche und eine östliche Provinz kann an die Salinitätsabnahme von 11-12 PSU in der Mecklenburger Bucht bis hin zu nahezu Süßwasserbedingungen in der Bottensee geknüpft werden (Abb. 2.1). Die Salinität des Oberflächenwassers im Grenzgebiet zwischen dem Bornholmbecken und dem Gotlandbecken liegt zwischen 7 und 8 PSU. Diese Grenze markiert die

48

minimale Salztolenranzgrenze für *Emiliania huxleyi*, welche als dominante Prymnesiophycee in der Ostsee bis zu Salinitäten von ca. 10 PSU beschrieben ist (EDLER ET AL., 1984). Neben *Emiliania huxleyi* können Populationen von *Phaeocystis pouchetii* bis in die mittlere Ostsee vordringen (PANKOW, 1990). *Gephyrocapsa oceanica*, die unter ähnlichen Lebensbedingungen wie *Emiliania huxleyi* lebt (MCINTYRE, 1967), wurde bislang in der Ostsee nicht nachgewiesen. Bei geringen Oberflächenwassersalinitäten werden keine 38 Methylalkenone, dafür aber verstärkt $C_{37:4}$ Methylalkenone und $C_{38:3}$ Ethylalkenone produziert (Abb. 3.1 e,f). Die dominant alkenonproduzierende Prymnesiophyceen-Art in der Region östlich des Bornholmbeckens ist bislang noch nicht bekannt. Salinitätswechsel als Kontrollmechanismus für Alkenonbildung wurde auch von JINGGUI LI ET AL. (1996) und ROSELL-MELÉ (1998) kritisch diskutiert.

Das Brackwasser der Ostsee beinhaltet ein Spektrum von marinem Milieu (weitgehend brackig, aber im offenen Kontakt zur Nordsee) bis zum Süßwasser-Milieu (isolierten Wasserkörper in Küstennähe). Daher sollten die Ostsee-Alkenonmuster auch mit Mustern verglichen werden, die von Süßwasserprymnesiophyceen produziert werden. Studien von CRANWELL (1985) an Sedimenten des Englischen Seen Distriktes zeigen ähnliche Alkenonmuster wie in der Ostsee auf. Es wurden relativ hohe Konzentrationen von C38 Ethylalkenonen gegenüber geringer konzentrierten C38 Methylalkenonen und hochkonzentrieren C37:4 Methylalkenonen nachgewiesen. Als mögliche Produzenten werden in diesen Seen Prymnesiophyceen der Ordnung Chrysophyta angenommen. VOLKMAN et al. (1988) untersuchte Sedimente aus dem hochsalinen Ace-See in der Antarktis, der einen offenen Zugang zum Ozean besitzt. Er konnte ebenfalls Alkenonmuster mit hochkonzentrierten C37:4 Methylalkenonen und fehlenden C38 Methylalkenonen nachweisen. Vergleichbare Resultate ergab die Alkenonanalyse von Sedimenten des Qinghai Sees (China), der als Salzsee ohne einen direkten Kontakt zum Meer ausgebildet ist (JINGGUI LI ET AL., 1996). In diesem See werden Algen der Gattung Chromulina sp. (Chrysochromulina sp. ?) als möglicher Alkenonproduzent angesehen. Im hochalkalischen Van-See (Türkei) wurden ebenfalls äquivalente Alkenonmuster nachgewiesen (THIEL et al., 1997).

b) Eine weitere Ursache für die unterschiedlichen Alkenonmuster und Konzentrationen in der Ostsee könnte in der Reaktion einer dominanten Prymnesiophycee oder unveränderten Prymnesiophyceengesellschaft bezüglich ihrer Alkenonsynthese auf physiologischen Stress sein. Dieser Stress wird z.B. verursacht durch Variationen in der Salinität, dem Nährstoffangebot, der Temperatur und der Wasserdurchmischung.

Nährstoffkonzentrationen beeinflussen die Verteilung von Prymnesiophyceenarten entlang von Nährstoffgradienten (BRAND, 1994). Kulturexperimente von *Emiliania huxleyi* aus der Saragossa-See unter verschiedenen Nährstoffkonzentrationen zeigen Einflüße auf den Uk'37 (EPSTEIN et al., 1998). In der gesamten Ostsee ist das Nährstoffangebot generell gering. Auch während der Hauptblütezeit, in der Sommersaison, sind keine Variationen in den Nährstoffen zu beobachten, so daß die Algenvergesellschaftung dadurch beeinflußt werden könnte (NEHRING, 1996; "http://data.ecology.su.se/baltic96"). Variationen in der Temperatur und Durchmischung des Oberflächenwassers liegen in der gesamte Ostsee während der Prymnesiophyceen-Blüte zwischen 15,6 bis 17,7°C. In besonders kalten und windigen Sommern dominieren die Prymnesiophyceen zwar, dies jedoch gleichzeitig in der gesamten Ostsee. Damit wäre also auch keine Veränderung in der Alkenonsynthese über einen Ost-West-Gradienten zu erklären.

Die Salinität des Oberflächenwassers der Ostsee nimmt auf einem Transekt in nordöstlicher Richtung ab (Abb. 2.1). Die größte Salinitätsabnahme, von 35 auf 10 PSU, ist von der Nordsee über die Belt See bis in die Mecklenburger Bucht zu beobachten. Im der Zentralen- und Nördlichen-Ostsee schwankt der Salinitätsgrad von 8 bis annähernd 0 PSU.

Hohe $C_{37:4}$ Alkenonkonzentrationen (%) charakterisieren Oberflächensedimente aus Bereichen mit geringen Salinitäten (Abb. 3.9). Ein ähnliches Phänomen wurde im Nord Atlantik festgestellt. ROSELL-MELÉ (1998) zeigt hier einen Zusammenhang zwischen geringen Abnahmen in der Salinität des Oberflächenwassers und höheren $C_{37:4}$ Alkenonkonzentrationen. Steigt der Anteil des C37:4 Methylalkenons über 5 %, so empfiehlt er, den zugehörigen Uk'37 nicht mehr als Temperaturindikator zu nutzen. Diese hohen Konzentrationen von vierfach ungesättigten Alkenonen deckt sich auch mit Beobachtungen aus dem Englischen Seen Distrikt (CRANWELL, 1985), wo die geringe Salinität zu einer bevorzugten Produktion von höher untersättigten Alkenonen geführt hat. In chinesischen Seen wurden gegensätzliche Beobachtungen unter dem Einfluß variierender Salinitätsgraden gemacht (JINGGUI LI et al., 1996). In Sedimenten aus salzreicheren Seen wurden höhere Konzentrationen von mehrfach untersättigten Alkenonen gefunden. Des weiteren zeigen Alkenonmuster aus dem höher salinen Ace-See in der Antarktis eine starke Dominanz des $C_{37:4}$ Methylalkenons auf (VOLKMAN et al., 1988). Trotzdem kann eine erhöhte Konzentration des vierfach ungesättigten C37 Methylketons als Facies-Marker-Muster für Sedimentation in limnischen und brackigen Milieus angesehen werden (THIEL ET AL., 1997).

Abb. 3.9 : Anteil des C37:4 Methylketons an der Summe der C37 Alkenone der Oberflächensedimente in Abhängigkeit von der durchschnittlichen Salinität des Oberflächenwassers

Das Verhältnis von zweifach und dreifach untersättigten C38 Ethylalkenonen, ausgedrückt im hier definierten Uk'38Et, zeigt ebenfalls eine Korrelation zur Oberflächensalinität (Abb. 3.10). Demnach werden mit abnehmender Salinität, ähnlich den C37 Methylalkenonen, vermehrt Doppelbindungen in den C38 Ethylalkenonen synthetisiert.

Abb. 3.10 : Uk'38Et = C38:2Et / (C38:2Et + C38:3Et) der Oberflächensedimente in Abhängigkeit von der durchschnittlichen Salinität des Oberflächenwassers

Das Verhältnis der Summenkonzentrationen K37/K38 dient nach ROSTEK et al. (1997) zur Identifizierung verschiedener Prymnesiophyceen Arten. Aufgrund dieser Studie und der Annahme einer dominanten Art als Alkenonproduzenten ist dieses Verhältnis aus den Alkenonkonzentrationen der Oberflächensedimente gebildet worden. Der Anstieg von K37/K38 Werten zeigt, daß bei Salinitäten unter 8 PSU bevorzugt C37 Alkenone gegenüber C38 Alkenone produziert werden (Abb. 3.11).

Abb. 3.11 : Alkenonverhältnis der C37 zu den C38 Alkenonen der Oberflächensedimente in Abhängigkeit von der durchschnittlichen Salinität des Oberflächenwassers

Ab dem Bornholmbecken fehlen jedoch generell alle C38 Methylalkenone. Daher ist es sinnvoll, nur das Verhältnis der C37 Methylalkenone zu den in der gesamten Ostsee nachweisbaren C38 Ethylalkenonen zu diskutieren. Die Abb. 3.12 setzt den so gebildeten K37/K38Et der Oberflächensedimente zur Salinität des Entnahmegebietes in Zusammenhang. Dabei ist keine wirkliche Zunahme der C37 Methylalkenone bei ansteigender Salinität des Oberflächenwassers mehr ersichtlich. Die Verhältniswerte sind unabhängig der Salinität. Sie liegen mit Ausnahme der Verhältnisse der Proben 202770 (K37/K38Et = 4,8) und 202780 (K37/K38Et = 6,8) aus dem Finnischen Meerbusen zwischen 1,5 und 2,6.

Abb. 3.12 : Alkenonverhältnis der C37 zu den C38 Ethylalkenonen der Oberflächensedimente in Abhängigkeit von der durchschnittlichen Salinität des Oberflächenwassers

Faßt man die Argumente der Diskussion in a) und b) zusammen, so weisen die Änderung der Alkenonmuster auf die sich verändernde Salinität des Oberflächenwassers hin. Die Alkenonmuster können so als potentielle Marker für Salinitätsveränderungen vom marinen zum Süßwasser-Milieu angesehen werden. Die Ursache der Alkenonmuster sind entweder verschiedene Algenvergesellschaftungen in der Ostsee oder eine definierte Änderung in der biochemischen Alkenonsynthese innerhalb der gleichbleibenden Algengesellschaft durch die Salinitätsänderung.

Die dritte Ursache für Veränderungen der Alkenonmuster der Ostsee liegt darin, daß alle marinen Alkenonmuster auf einen allochthonen Input von marinen Sedimenten hinweisen. Verschiedene Alkenonmuster in den Oberflächensedimenten der westlichen Ostsee könnten im Transport organischen Materials aus hoch salinen Milieus begründet sein. Dies würde eine Verwendung des Uk'37 zur Rekonstruktion der Paläowassertemperatur und Paläosalinität für die westliche Ostsee ausschließen.

Die Ostsee ist durch eine flache Beckenmorphologie charakterisiert, die eine hochvariable und dynamische Sedimentation bedingt, so daß sich laterale und vertikale Prozesse und oft turbulente Sedimentation in tieferen Becken ergeben (LEIPE et al., 1995; EMEIS et al., 1998). Advektion von salz- und sauerstoffreichem Nordseewasser durch den Skagerrak, den Kattegat und die dänischen Schwellen in die Bodenzone der Mecklenburger Bucht ist ein bekanntes Phänomen und wurde seit Beginn dieses Jahrzehnts als Salzwassereinbruch verstärkt dokumentiert (MATTHÄUS & SCHINKE, 1994; MATTHÄUS, 1995, NEUMANN ET AL., 1995; LASS & MATTHÄUS, 1996). Auch ist anhand der Tonmineralverteilung in Sedimenten der Mecklenburger Bucht eine Advektion von suspendiertem Material aus der Nordsee gezeigt worden (GINGELE & LEIPE, 1997). Dieser mineralogische Anzeiger für Advektionsströme verschwindet im schlammgefüllten Arkonabecken. Durch diese Transportmechanismen kann auch marines Algenmaterial, das durch das marine Alkenonmuster charakterisiert ist (Abb. 3.1 a-c), über den Skagerrak in den westlichen Teil der Ostsee gelangen. Das Alkenonsignal der Oberflächensedimente aus dem Skagerrak ist trotz rapide abnehmender Salinität relativ einheitlich und weist auf lateralen Transport der Oberflächensedimente hin (Tab. 8.2). Sinnvoll wäre hier eine Untersuchung der Schwebstoffe, um ein mögliches Salinitätssignal in den steilen Gradienten des Skagerraks und Kattegats nachweisen zu können. Im Bornholmbecken sind die für das marine Alkenonmuster typischen C38 Methylketone gering konzentriert oder nicht mehr nachweisbar (Abb. 3.1 d und Tab. 8.3). In den Schwebstoffen und Oberflächensedimenten des Gotlandbeckens und des Finnischen Meerbusens sind nur noch Ostsee-Alkenonmuster mit erhöhtem C37:4 Methyalkenon und fehlenden C38 Methylalkenonen nachweisbar (Abb. 3.1 e+f). Diese Veränderung der Alkenonmuster unterstützt die mineralogisch, anorganisch-geochemisch und physikalisch ermittelten Annahme über den Transport von marinen Sedimenten aus der Nordsee bis in das Bornholmbecken. Starke lokale Variationen der Alkenonkonzentrationen und des Uk'37 spiegeln diese dynamischen Prozesse ebenfalls wider.

ist nach dieser Argumentationskette das marine Alkenonmuster der Abschließend Oberflächensedimenten vom Skagerrak bis in das Bornholmbecken durch Materialtransporte ein Mischsignal von Algenmaterial, das unter dem Einfluß verschiedener Oberflächenwassersalinitäten gebildet wurde. Östlich des Bornholmbeckens, im Gotlandbecken, im Finnischen Meerbusen und der Bottensee, läßt die Durchmischung weitgehend nach, so daß das im Oberflächenwasser synthetisierte Alkenonsignal auch in den Sedimenten dokumentiert wird und eine direkte Beziehung zu veränderten Salinitäten ermittelt werden kann. Um Alkenone als berechenbares Maß für die Salinitätsveränderungen der Ostsee zu nutzen, müssen jedoch dominante Algen beschrieben werden und ihre biochemische Reaktion bezüglich Salinitätsschwankungen unter Laborbedingungen definiert sein. Die Alkenonanalyse in den Oberflächensedimenten weist auf eine vermehrte Synthese von mehrfach ungesättigten C37 und C38 Alkenonen bei abnehmender Oberflächenwassersalinität hin. Aufgrund des starken Salinitätsgradienten im Skagerraks, im Kattegats und in der Ostsee wird das Temperatursignal der Alkenone so stark durch das Salintätssignal überlagert, daß eine Temperaturrekonstruktion mittels des Uk37 oder Uk'37 in der heutigen Ostsee nicht möglich ist.

51

4. Holozän/pleistozänes Alkenonsignal der Ostsee

Die holozän/pleistozänen Sedimente der Ostsee, und speziell die des Gotlandbeckens, wurden bisher von zahlreichen Autoren auf unterschiedliche Parameter untersucht.

BJÖRCK (1995) faßt in einem Überblick viele Arbeitsergebnisse aus Sedimenten des Ostseeraumes zusammen. Er zeichnet somit die Entwicklungsgeschichte der Ostsee bezüglich ihrer Salinitäts-, Wasserstands- und Wasserflußentwicklung nach. HUCKRIEDE et al. (1996) erarbeiteten durch eine detailierte sedimentologische Beschreibung, Mikrofossilbestimmung und geochemische Parameter Zonierung der Gotlandbeckensedimente. Desweiteren beschreiben sie die eine eigene hydrographischen und klimatologischen Entwicklung in der zentralen Ostsee. So unterteilen sie das Stadium der Ancylus in eine ältere Süßwasserphase (Ancuylus I) und eine jüngere Brackwasserphase (Ancylus II) und schließen, u.a. von ansteigenden Kohlenstoff- und Schwefelgehalten, auf Klimaveränderungen während des Litorina und Postlitorina Stadiums. SOHLENIUS (1996) untersuchte Sedimente aus dem nordwestlichen Baltic Proper und dem Gotlandbeckentief. Er stellt Ergebnisse aus magnetischer Suszeptibilität, Mineralneubildung, der Analyse organischer und anorganischer Elementbestimmungen, Dünnschliffen, Forraminiferenund Siliziummikrofossilbestimmungen gegeneinander dar. Hierdurch erarbeitete er Variationen in der Salinität, den Redox-Verhältnissen und der Primärproduktion des Ostseewassers seit dem Weichselglazial. Er stellt u.a. in einer Modellzeichnung die chemisch/biologischen Bedingungen in der Wassersäule und dem Oberflächensediment für die Süßwasserbedingungen des Ancylus Stadiums und des Brackwassers im Litorina Stadiums dar. Neueste Arbeiten befassen sich eingehender mit den Redox Bedingungen im Übergang vom Ancylus zum Litorina Stadium (SOHLENIUS et al., in Vorbereitung). WESTMAN (1998) stellt die Bestimmung von siliziumhaltigen Mikrofossilien, chemischen Parametern aus Oberflächen- und Kernsedimenten gegenüber. Er beschreibt die Primärproduktion im Baltic Proper seit 8500¹⁴C Jahren BP als stickstofflimitiert und zeichnet den Wechsel von Süßwasser zum Brackwasser um 7000 Jahre BP anhand der Entwicklung von Cyanobakterien nach. Auch kann er das Einstromgebiet von Salzwasserzuflüssen im Öresund 6500 - 4500 Jahre BP durch Indizien erhöhter Eutrophierung eingrenzen. Schließlich ordnet er aufgrund der marinen Siliziumalge Dictyocha speculum dem Zeitraum von 5500-4500 Jahre BP die höchste Salinität des Oberflächenwassers seit 8500 Jahren BP zu. ANDRÉN (1999) beschreibt die holozäne Entwicklungsgeschichte des Bornholm- und Gotlandbeckens aufgrund ihrer Diatomeenstratigraphie und Gehalten an organischen Kohlenstoff. Sie zeigt Zusammenhänge zur Salinitätsentwicklung, u.a. sechs Perioden von marinen Wasserzuströmen während des Holozäns, zur Klimaveränderung, d.h. die Temperaturveränderungen zu Beginn des Holozäns, in der Medialen Warmphase und in der Kleinen Eiszeit, und anthropogene Eutrophierungseffekte der beiden letzten Jahrhunderte auf. Der Statusbericht des Gotland Basin Experiment (GOBEX) von EMEIS & STRUCK (1998) stellt Untersuchungsergebnisse aus der Geophysik, Geologie, Chemie und Biologie gegenüber. Daran werden bentische und diagenetische Prozesse studiert und natürliche und anthropogene Materialbildung zu betrachten. Im Rahmen dieser Veröffentlichung stellt KOHLY (1998) seine Ergebnisse aus der Diatomeen- und Mikrofossilbestimmung am Kastenlotkern 20048-1, der hier auf Alkenone untersucht wurde, vor. Aufgrund dieser Auszählungen sind erste Angaben zur Salinität des Oberflächenwassers bezogen auf die Entnahmetiefe entwickelt worden. Derzeit wird anhand der Daten aus diesem GOBEX-Projekt und weiterführenden Untersuchungen eine Veröffentlichung zur Salinitätsentwicklung während der letzten 7000 Jahren erarbeitet (EMEIS et al., in Vorbereitung). Hierin wird der Salzgehalt des Ostseewassers an die Schwellentiefe und die klimatologisch gesteuerten Faktoren der Frischwasserzufuhr und Windrichtungen geknüpft. Die Salzwasserveränderungen bedingen die Ausprägung von anoxischem Tiefenwasser. Anoxisches Bodenbedingungen können im Sediment nachvollzogen werden. Dadurch kann die Ausbildung der Sedimente im engen Zusammenhang zu Klimaveränderungen getrachtet werden.

Die Untersuchung der Ostseesedimente aus dem Kastenlotkern 20048-1 des GOBEX-Projektes auf Alkenone erweitert die Analytik um eine weitere Methode und müßte erwartungsgemäß zur Rekonstruktion der Paläotemperatur des Oberflächenwassers führen. Wie den vorangegangenen und folgenden Kapitel zu entnehmen ist, erlaubt die Alkenonanalyse in Sedimenten der Ostsee jedoch eher eine Rekonstruktion der Paläosalinität. Daher leistet diese Methode einen Beitrag sowohl zur Klimaentwicklung im baltischen Raum als auch zur Entwicklungsgeschichte der Ostsee.

Die Ergebnisse der Alkenonanalyse aus marinen Sedimenten werden mit Paläotemperaturen, die aus anderen Methoden ermittelt wurden, verglichen und diskutiert. Hier sei angemerkt, daß im baltischen Raum bisher nur Temperaturrekonstruktionen, die mittels der Palynologie (Pollenkunde) und mittels Baumwachstumsgrenzen kombiniert zur Vergletscherung ermittelt wurden, einen direkten Wertevergleich zulassen. Werte des letzten Jahrhunderts können auch mit zahlreichen Luft- und Wassertemperaturmessungen verglichen werden. Als Grundlage für das Verständnis der holozän/pleistozänen Klimaentwicklung und als Darstellung des weiteren Forschungsbedarfs werden im folgenden verschiedene Methoden zur Ermittlung der Paläotemperatur aufgeführt und auf ihre Eignung zur Anwendung im baltischen Raum geprüft.

Das Isotopensignal des Sauerstoffs, δ^{18} O, in den Eisbohrkernen der Arktis und der Antarktis, liefert ein relatives Temperatursignal der Atmosphäre für die Polregionen. Auf der Grundlage der Arbeiten von DANSGAARD et al. (1993) wurde eine Nomenklatur von Interstadiale 1-24, welche zu den Interstadialperioden NW-Europa korrilierbar sind, aufgebaut. Das zugehörige Altersmodell für die letzten 15-20 000 Jahre beruht auf der Zählung von Eiswarven. Die Signale der sogenannten GRIP-Eisbohrkerne geben jedoch ein globales Klimasignal wieder (DANSGAARD et al., 1993; JOHNSON et al., 1992). Auch werden die relativ geringen Temperaturschwankungen im Verlauf des Holozäns nicht ausreichend differenziert wiedergegeben. Daher eignet sich dieses Isotopensignal nicht zum Vergleich mit den eher regional beeinflußten Wassertemperaturschwankungen des Ostseeraumes.

Der Gehalt von δ^{13} C in Planktonresten vermittelt ebenfalls Lufttemperaturschwankungen (FONTUGNE & DUPLESSY, 1981). Für die Ostsee liegen noch keine zum Vergleich geeigneten Untersuchungsergebnisse vor.

Sauerstoffisotopenverhältnisse karbonatischer Foraminiferengehäuse können als Indikator der Wassertemperatur benutzt werden (EMILIANI, 1955; DUPLESSY, 1978; ROSTEK et al. 1997). δ^{18} O-Werte aus planktonischen und bentischen Foraminiferen werden zur Rekonstruktion von Temperaturschwankungen in Abhängigkeit von der Wassertiefe genutzt (UREY, 1947; EPSTEIN et al., 1953; SHACKLETON, 1982; EREZ & LUZ, 1983). Der geringe Salzgehalt der Ostsee verhindert die Entwicklung vergleichbarer Forraminiferengesellschaften, so daß gemessene Wassertemperaturschwankungen in dieser Region, mit dieser Methode nicht ermittelt werden können.

Die Jahresringforschung an Holz trägt zur absoluten Altersdatierung (Dendrochronologie) und zur Rekonstruktion früherer Klimaverhältnisse (Dendroklimatologie) bei. Die Breite und die Dichte (Zellgröße und Zellwandstärke) der einzelnen Jahresringe können mit gewissen Einschränkungen auf Temperatur und Feuchtigkeit geeicht und die Ergebnisse auf fossile und subfossile Hölzer übertragen werden (SCHWEINGRUBER, 1989). Diese Eichung bleibt immer auf eine bestimmte Holzart und ein begrenzt geographisches Gebiet bezogen. In der Temperatur-Response-Funktionsanalyse nach FRITTS (1976) werden die Jahresringweiten und die maximalen Spätholzdichten getrennt voneinander für bestimmte Perioden zusammengefaßt. Es ergibt sich ein Regressionskoeffizient (-0,5 \ge R \ge 0,5) für einen 14 Monats-Zyklus mit dessen Hilfe sich Wachstumstemperaturen errechnen lassen. Briffa et al. (1990) geben weitere Regressionsgleichungen wieder, mit der Temperaturanomalien gestützt auf die Ringweite und die Spätholzdichte ermitteln werden. Kritisch setzten sich BRIFFA et al. (1995) mit unterschiedlichen mathematischen Umsetzungen von Jahresringen in Proxy-Klimadaten auseinander. Die Umsetzung der Jahresringaufnahme in dendroklimatologischen Daten erfolgt verstärkt im heutigen Zeitraum. Wie ESCHBACH et al. (1995) darstellt, gestattet die Weiterentwicklung in der Radiodensitometrik die Auswertung von Jahresringen in immer kürzerer Zeit und höherer Auflösungsgenauigkeit. SCHWEINGRUBER & BRIFFA (1995) weisen auf ein bereits heute vorhandenes großes

Datenpotential hin, um für verschiedene Regionen ein Dendroklimatologisches Netzwerk bis max. 8000 Jahre BP aufzubauen. In Regionen mit kalt-feuchten Sommern werden nach SCHWEINGRUBER & BRIFFA (1995) Koniferen als die besten Klimaindikatoren bezeichnet. Sie geben aus diesen in einem Datenüberblick Klimadaten aus den letzten 400 Jahren an. Die zeitlich weitreichendste Temperaturermittlung mittels Dendroklimatologie reicht 1400 Jahre im nördlichen Fenno Standinavia zurück (BRIFFA et al., 1990). Die jüngsten auf Alkenone untersuchten holozän/pleistozänen Sedimente sind jedoch auf 1500¹⁴C Jahre BP datiert und somit gibt es keine zeitlich vergleichbaren Temperaturwerte, die mittels Dendroklimatologie errechnet worden sind.

Direkte Temperaturmessungen im baltischen Raum könnten auch an das U_{37}^{k} -Temperatursignal gekoppelt werden. Für die letzten 100 Jahre existieren eine Vielzahl von Klimadaten, welche meist von staatlichen Stellen des Ostseeraumes aufgezeichnet wurden. HUPFER (1997) zeigt die Veränderung im Wasserkörper der Ostsee bezüglich der Lufttemperatur für die letzten 100 Jahre auf. Da der kleine Wasserkörper der Ostsee auf regionale Klimaschwankungen relativ schnell reagiert, ist ein Vergleich von Luft- mit oberflächennahen Wassertemperaturen, ermittelt über den Alkenonindex, möglich. Dieser Datenpool reicht jedoch zeitlich auch nicht weit genug zurück, um die hier ermittelten holozän/pleistozänen Alkenonwerte zu vergleichen.

Für den holozän/pleistozänen Zeitraum geben pollenkundliche Untersuchungen die Klima- bzw. Lufttemperaturentwicklung detailiert wieder. In Moor- und Seeablagerungen sind die alljährlich entstehenden Blütenstäube der Gesamtvegetation sehr gut erhalten. Marine Sedimente sind pollenanalytisch meist weniger ergiebig. Es kann zu starker selektiver Verzerrung der Pollenspektren kommen, da die Pollen durch die größere Dichte des Salzwassers langsamer absinken und durch Strömungen und Turbulenzen ungeregelt transportiert werden (LANGE, 1994). Mengenmäßig sind die Baumpollen (BP) gegenüber den Nichtbaumpollen (NBP) stärker vertreten. Es können unter dem Auflichtmikroskop die Pollen einzelner Baumarten und Baumgattungen unterschieden werden. Zeitlich gleich einzuordnende Horizonte zeigen charakteristische Pollenspektren auf. Mittels dieser sind lokal begrenzte Pollenzonen herausgearbeitet worden. WALTER & STRACKA (1970) stellt einige Pollenzonen gegenüber. In Mitteleuropa werden die Pollenzonen nach FRIBAS (1949, 1952) am häufigsten für chronologische und klimatologische des Charkterisierungen verwendet. Zusammenfassungen vegetationsgeschichtlichen Wissensstandes über Europa sind meist älteren Jahrgangs und somit im wesentlichen noch ohne Hilfe der Radiokarbonmethode zeitlich eingeordnet. Trotzdem bilden diese Werke nach LANGE (1994) auch heute noch wichtige Informationsquellen, die bei allem Detailreichtum die großen Linien nicht aus den Augen verlieren. Obwohl derzeit an der Methodik der Palynolgie verstärkt weitergearbeitet wird (z.B.: FAEGRI & IVERSEN, 1989; MOORE et al., 1991), wird wie folgt der Kurvenverlauf des Alkenonindex U^{k'}₃₇ mit den bereits 1975 von OVERBECK zusammengetragenen Daten verglichen. OVERBECK (1975) entwickelte für die Nordwest-Deutsche Region (Niedersachsen und Schleswig-Holstein) aus zahlreichen Pollenuntersuchungen relative Lufttemperatur- und Feuchtigkeits-schwankung für die letzten 15 000 ¹⁴C Jahre BP. Die stellenweise angegebenen Juli- und Januartemperaturen sind aus übereinstimmenden Berechnungen verschiedener Autoren von Overbeck ausgesucht und beigefügt worden. Der Temperaturverlauf aus dieser Arbeit ist in der Abbildung 4.4 dem Werteverlauf des $U_{37}^{k'}$ direkt gegenübergestellt.

Basierend auf Wachstumsgrenzen von Koniferen (Höhenlagen) in Kombination zur Vergletscherung Norwegens errechnen DAHL & NESJE (1996) für den skandinavischen Raum durchschnittliche Sommertemperaturen und Winterniederschläge. Diese absoluten Angaben lassen ebenfalls einen direkten Vergleich zu den ermittelten Alkenonverhältnissen für die letzten 9000¹⁴C Jahre BP (unkorrigiert) zu.

4.1 Angewandte Methoden am Kastenlotkern 20048-1 und Schwerelotkern 20048-4

Das untersuchte holozän/pleistozäne Probenmaterial des Kastenlotkerns 20048-1 ist dem östlichen Gotlandbeckentief entnommen (57°23,14°N; 20°15,51°E, Abb. 2.1). Die stratigraphische Zuordnung der Sedimente basiert auf 11 AMS ¹⁴C-Datierungen in Kombination mit biostratigraphischen, lithologischen, tephrastratigraphischen und geochemischen Daten.

Direkt nach der Entnahme wurden die Kernsedimente sedimentologisch beschrieben. Anschließend erfolgte die Aufnahme folgender Parameter: Kohlenstoff (organisch und anorganisch), Schwefel, Isotopen (δ^{13} C, δ^{15} N), P-Wellengeschwindigkeit (vp), GRAPE (Gamma Ray Porosity Evaluator)-Dichte, magnetische Suszeptibilität, Diatomeen, AMS ¹⁴C-Datierungen (11 Messungen) und Alkenone.

Die Kohlenstoff- Schwefel- und Isotopenmessungen, sowie die Sedimentaufnahme am frischen Kern wurden von Dr.U.Struck am Institut für Ostseeforschung Warnemünde vorgenommen. Die Messungen erfolgten mit einem Carlo Erba/Fisons 1108 Elementar Analysator, welcher an einem Isotopen-Massenspektrometer (Finnigan Delta S) gekoppelt war. Die sedimentphysikalischen Eigenschaften (Schallgeschwindigkeit, Dichte und Suszeptibilität) wurden von Dipl.Geol.M.Moros am Institut für Ostseeforschung Warnemünde ermittelt. Diese Aufnahme erfolgte mit einem Multi-Sensor-Core Logger der Firma GEOTEK in Haslemere/UK (SCHULTHEISS et al., 1988). Die Diatomeenzählung nahm Dr.A.Kohly im Geologisch-Paläologischen Institut und Museum der Universität Kiel (Sonderforschungsbereich 313) vor. Die AMS ¹⁴C-Datierungen wurden im Labor Leibniz der Universität Kiel (KIA) und am Risø Forschungsinstitut in Aarhus (AAR) in Auftrag gegeben. Die organisch-geochemischen Alkenonanalyse erfolgte im Rahmen dieser Doktorarbeit am Institut für Ostseeforschung Warnemünde. Der Meereswissenschaftliche Bericht Nr.34 (EMEIS & STRUCK, 1998) faßt die Ergebnisse der oben aufgeführten Untersuchungen erstmalig zusammen.

Vor der Beprobung für die Alkenonanalyse wurde der Kern nochmals sedimentologisch beschrieben und mit dem Programm AppleCORE dargestellt. Zusätzlich wurden die Teufen der Sedimentwechsel des Kastenlotkerns 20048-1 und des parallel entnommenen Schwerelotkerns 20048-4 über den optisch erkennbaren Lithologiewechsel und analytisch ermittelte TOC-Gehalte korreliert (Tab. 8.10 und Tab. 8.11). Dies erfolgte, um die Schwarz-Weiß-Scans des Schwerelotkerns 20048-4 zur Verdeutlichung der Lithologie der Beprobungsintervalle verwenden zu können (Abb. 4.3).

4.1.1 Altersmodell

Die Tabelle 4.1 und Abbildung 4.1 zeigen die Meßergebnisse, die an unterschiedlichen Sedimentrückständen ermittelt wurden (KOHLY et al., in Vorbereitung). Die ermittelten ¹⁴C-Alter wurden aufgrund des Reservoir-Effektes von Meerwasser um 400 Jahre vordatiert und anschließend mittels der INTCAL98 Radiocarbon Kalibrierung nach STUIVER et al. (1998) in Kalenderjahre umgerechnet. Dabei ist in 499 cm Kernteufe eine Zeitdifferenz im Vergleich zu Datierungen anhand von Bosmina spp. $(5200 \pm 75 \text{ BP})$ und der Gesamtprobe $(7010 \pm 50 \text{ BP})$ festzustellen. Die Messungen ab einer Kernteufe unter 639 cm vermitteln zu alte absolute Altersangaben (11450 \pm 60 BP, 16500 \pm 90 BP). Dies liegt am geringen Gehalt an organischem Kohlenstoff von weniger als 0,76%. Diese Werte wurden nicht für das Altersmodell genutzt. In 675 cm und 800 cm Teufe konnten von Dr.A.Kohly (pers. Mitt., 1998) Tephren der Vulkanausbrüche von Vedde und Saksurnarvatn als Altersmarken nachgewiesen werden (BIRKS et al., 1996; GULLIKSEN et al., 1998). Der im Sediment erkennbare Abfluß I des Baltischen Eisstausees über die Billingen-Pforte wurde mittels der Altersangabe von BJÖRCK (1995) auf 13160 Kalenderjahre datiert. Die Tab.4.1 zeigt die verwendeten Datierungen fett untersetzt. Anhand dieser Datierung wurde ein Altersmodell erstellt (Abb.4.1), in dem für jede Sedimenttiefe ein interpoliertes Alter berechnet wurde (AnalySeries 1.1 für MacIntosh).

Tab.4.1: Meßergebnisse aus der AMS¹⁴C-Datierungen an Sedimenten des Kastenlotkern 20048-1(KOHLY et al., in Vorbereitung). KIA bezeichnet Proben die im Leibnizlabor der Universität Kiel, und AAR Proben, die am Risø Forschungsinstitut in Aarhus analysiert wurden. Die basalen Alter wurden auf der Grundlage von Björck (1995) ermittelt.

Probe	Kernteufe	Sedimentrückstand/	¹⁴ C Jahre BP	Kalenderjahre BP	Ostseestadium
		Marker	(unkorrigiert)		
KIA 3772	69-70 cm	saurer Rückstand	2160 ± 30 BP	1695 ± 30 BP	Basale Mya
KIA 3773	71-72 cm	saurer Rückstand	2320 ± 30 BP	1866 ± 30 BP	Basale Mya
KIA 3774	209-210 cm	saurer Rückstand	3750 ± 30 BP	3585 ± 30 BP	Top Litorina
KIA 3775	327-328 cm	saurer Rückstand	4970 ± 50 BP	5305 ± 50 BP	Laminiertes
					Intervall III
KIA 3776	379-380 cm	saurer Rückstand	5510 ± 40 BP	5910 ± 40 BP	Laminiertes
		Humidfraktion	5590 ± 40 BP	5935 ± 40 BP	Intervall II
		alkalischer Rückstand	5620 ± 50 BP	5945 ± 50 BP	
KIA 3777	431-432 cm	saurer Rückstand	6420 ± 40 BP	6805 ± 40 BP	Laminiertes
		Humidfraktion	6310 ± 40 BP	6690 ± 40 BP	Intervall I
		alkalischer Rückstand	6570 ± 50 BP	7155 ± 50 BP	
KIA 3778	499-500 cm	saurer Rückstand	7010 ± 60 BP	7485 ± 60 BP	Basale Litorina
		Humidfraktion	7240 ± 60 BP	7665 ± 60 BP	
1		alkalischer Rückstand	7040 ± 50 BP	7555 ± 50 BP	
AAR		Bosmina spp.	5200 ± 75 BP	5495 ± 75 BP	
KIA 3779	551-552 cm	saurer Rückstand	8350 ± 50 BP	8975 ± 50 BP	Top Ancylus
KIA 3780	639-640 cm	saurer Rückstand	11450 ± 60 BP	13025 ± 60 BP	Mitte Ancylus
KIA 3781	709-710 cm	saurer Rückstand	16500 ± 90 BP	19100 ± 90 BP	Top Yoldia
GULLIKSEN	678 cm	Saksurnarvatn Tephra	9500 - 400 BP	10700	Top Yoldia
ET AL. 1998		-			
BIRKS ET	800 cm	Vedde Tephra	10300 - 400 BP	12275	Top Eisstausee
al. 1996					
BJÖRCK	867 cm	Lithologie	11200 - 400 BP	13160	Abfluß I
1995					Eisstausee

4.1.2 Kernbeschreibung

Am Kastenlotkern 20048-1 aus dem Gotlandbeckentief östlich von Gotland wurde vor der Beprobung eine Profilaufnahme mittels AppleCORE angefertigt (Abb.4.2). Neben der Lithologie wurden Bioturbation, Farbe und physikalische Strukturen (Ausbildung der Lamination, Flecken, Flasern und Störungen) vermerkt. Die zeitliche Zuordnung der Sedimente zu den Ostseestadien erfolgte wie oben beschrieben auf der Grundlage von 11 AMS ¹⁴C-Datierungen in Kombination mit biostratigraphischen, lithologischen, tephrochronologischen und geochemischen Daten.

Die Sedimente des Kastenlotkerns 20048-1 können der lithologischen Zonierung nach HUCKRIEDE et al. (1995) gut zugeordnet werden (Tab. 8.11 und Kapitel 4.4). Im Gotlandbecken erfolgte die Sedimentation von basalen Tonen (Zone c2-b2) über weitgehend laminierte Sapropele (Zone a7-a4) bis hin zu vermehrt bioturbierter Schlicke und Sapropele (Zone a3-a1). Die Tabelle 8.11 listet die Teufenzuordnung der Zonen detailliert auf. Zusätzlich sind die Sedimentbeschreibungen der Zonen angefügt.

Neben dem Kastenlotkern 20048-1 wurde ein Schwerelotkern 20048-4 gezogen. Ein Vergleich der Lithologie und der TOC-Gehalte ergab eine Teufenzuordung beider Kerne, wie sie der Tab. 8.10 und Tab. 8.11 zu entnehmen ist. Eine detailierte Beschreibung der Sedimente des Schwerelotkerns ist beigefügt. Der Schwerelotkern 20048-4 wurde in Grauwerten und Farbe gescant (Abb.4.3). Die Grauwerte verdeutlichen besonders gut die Lamination der Gotlandbeckensedimente.

58

Abb.4.2: Profilaufnahme des Kastenlotkerns 20048-1; Farbabkürzungen nach Farbskala von MUNSELL (1975)

Abb. 4.3: Grauwertscan des Schwerelotkerns 20048-4

59

4.1.3 Ergebnisse der organisch-geochemischen Analyse

Die Beprobung zur Alkenonanalyse erfolgte in Intervallabständen von 10 bis 20 cm und einer Probenmächtigkeit von 1 cm. Die Tab.8.8 und 8.9 im Datenanhang beinhalten die Laborergebnisse mit Entnahmeteufe, Ostseestadium und Paläosalinität des Oberflächenwassers. Die Ergebnisdarstellung erfolgt von der Basis zum Top des Kastenlotkerns. Im Kapitel der Diskussion werden die Ergebnisse aus der Alkenonanalyse mit den Grenzen der Ostseestadien und der Paläosalinität des Oberflächenwassers verknüpft.

Die Alkenonkonzentrationen und Alkenonverhältnisse (Abb.4.4, 4.7, 4.8 und 4.9) zeigen deutliche Veränderungen mit der Entnahmeteufe bzw. der ¹⁴C-Datierung.

Die Summe der Alkenone steigt in einer Teufe von 775-789 cm von relativ geringen Werten (2 bis 18 ng/g bzw. 464 bis 3851 μ g/gTOC) auf höhere Werte (43 bis 89 ng/g bzw. 5843 bis 14602 μ g/gTOC) an. In einer Teufe von 719-720cm und 663-664 cm sind die Alkenonkonzentrationen mit 4 ng/g wieder gering. Oberhalb dieser Teufe steigen die Konzentrationen bis zum Maximalwert von 15232 μ g/gTOC (601-602 cm) an. Ab einer Teufe von 491 cm sind die Schwankungen in den Alkenonkonzentrationen nicht mehr so extrem. Die Werte liegen zwischen 11 und 166 ng/g bzw. 293 und 3633 μ g/gTOC.

Der Anteil von $C_{37:4}$ an der Summe an C_{37} Alkenone liegt zwischen 10 % und 46 % (Tab. 8.8 und 8.9) und gibt somit einen ersten Hinweis darauf, daß die Alkenonsynthese durch die geringe Salinitätsbedingungen während der Wachstumsphase der Prymnesiophyceen stark beeinflußt wurde. Im basalen Teufenintervall von 799 bis 1016 cm werden durchschnittlich 16 % $C_{37:4}$ Methylalkenone ermittelt. Deutlich höhere Werte wurden jedoch in einer Teufe von 870 bis 891 cm (23 und 32 %) gefunden. Oberhalb von 799 cm steigen die $C_{37:4}$ -Anteile deutlich auf durchschnittlich 26% an. Der maximale Anteil wurde mit 46% in einer Teufe von 774-775 cm festgestellt. In den Teufen von 687-688 cm, 649-650 cm, 478-479 cm und 363-364 cm wurden mit 15, 17, 11 und 18 % noch einmal relativ geringe Gehalte des $C_{37:4}$ Methylalkenons nachgewiesen.

Die Alkenonindices $U_{37}^{k'}$ und $U_{37}^{k'}$ liegen im Bereich von 0,17 bis 0,69 bzw. -0,37 bis 0,52 (Tab. 8.8 und 8.9). Bis in eine Teufe von 799 cm ist der Wert des $U_{37}^{k'}$ mit durchschnittlich 0,58 relativ hoch. Danach fällt der $U_{37}^{k'}$ bis auf 0,18 ab, um in eine Teufe von 687 cm bis auf maximal 0,59 wieder anzusteigen. Anschließend verringert sich der $U_{37}^{k'}$, bis er in einer Teufe von 491-450 cm Werte um 0,15 erreicht. Die stärkste Veränderung erfolgt zwischen 431 und 439 cm Teufe, wo sich der $U_{37}^{k'}$ innerhalb von 8 cm um 0,17 verschiebt.

Die C_{38} und C_{39} Alkenone sind immer deutlich geringer konzentriert als die C_{37} Alkenone. Oftmals liegen sie mit unter 1 ng/g nah an der Nachweisgrenze. In vielen Gaschromatogrammen werden die Signale der längerkettigen Alkenone zusätzlich von anderen organischen Komponenten überlagert, so daß im Gegensatz zu den Alkenonsignalen aus rezenten Sedimenten diese Alkenongruppen hier nicht vorgestellt und diskutiert werden.

Abb.4.4: Summe der Alkenonen (SAlk), Konzentration der C_{37:4} Methylalkenone bezüglich der C₃₇ Alkenone (C_{37:4} %) und U^{k'}₃₇ Werte in Relation zum Top der Entnahmetiefe (cm) aus dem Kastenlotkern 20048-1.

4.2 Diskussion

Schwebstoffe, Sinkstoffe, Algenkulturen und Sedimente der Ostsee wurden mit dem Ziel, den Alkenon-Untersättigungs-Index U_{37}^{k} als Paläothermometer in der Ostsee zu etablieren, auf Alkenone untersucht. Die Analyseergebnisse zeichnen, wie im Kapitel 3 und im Folgenden diskutiert, nicht nur Temperaturen, sondern im Wesentlichen die Salinität des Oberflächenwassers nach. Diese Beobachtung ist am rezenten und holozän/pleistozänen Probenmaterial nachweisbar.

Das Gotlandbecken ist durch seine östliche Lage im Vergleich zu den westlichen Becken nicht beeinflußt vom lateralen und bodennahen Sedimenttransport aus der Nordsee. Daher kann eine Verfälschung des Alkenonsignals durch allochthones organisches Material aus dem Skagerrak weitgehend ausgeschlossen werden. Auch war das heute 250m tiefe östliche Gotlandbecken während der gesamten Entwicklungsgeschichte der Ostsee wassergefüllt (BJÖRCK, 1995). Damit Sedimente die Lebensbedingungen für Algenwachstum gegeben. Die des waren Gotlandbeckentiefs also die holozän/pleistozäne sedimentäre beinhalten gesamte Entwicklungsgeschichte der Ostsee.

Um die Eignung des $U^{k'_{37}}$ zur Temperaturrekonstruktion zu überprüfen, werden die so ermittelten Paläotemperaturen mit solchen verglichen, die mit Hilfe anderer Methoden erhalten wurden. Wie zu Begin des Kapitels dargestellt, eignen sich die meisten Untersuchungsmethoden nicht zum direkten Temperaturvergleich. Feuchtigkeits- und Temperaturkurven aus der Palynologie (z.B.: OVERBECK, 1975), der Höhenlagen von Baumwachstumsgrenzen und Vergletscherungen (DAHLE & NESJE, 1996) können jedoch herangezogen werden. Die Abbildung 4.5 und 4.10 zeigen die von Overbeck entwickelte Lufttemperaturkurve zusammen mit dem Verlauf des U^{k'}₃₇ Signals im Kern 20048-1.

Die Alkenonanalyse aus marinen Sedimenten, Schwebstoffen und Algen zeigen auf, daß hohe Wassertemperaturen mit hohen Alkenonverhältnisse korrelieren. Demnach müsste auch der Werteverlauf des $U^{k'}_{37}$ ermittelt aus Ostseesedimenten parallel zu den bekannten Temperaturkurven des baltischen Raumes verlaufen.

Abb.4.5: U^{k'}₃₇ Werte des Kastenlotkerns 20048-1 und Lufttemperaturschwankungen Norddeutschlands (OVERBECK, 1975) in Relation zur ¹⁴C-Datierung

Jedoch vermittelt der Werteverlauf des U^k, 37 vom Beginn des Bölling (Chronozonen nach DANN & SCHULZ, 1995) bis zum Präborial höhere Wassertemperaturen als sie vor 13500-9500 Jahren nachzuweisen sind. OVERBECK (1975) gibt für diesen Zeitabschnitt deutlich geringere jahresdurchschnittliche Lufttemperaturen als die heutigen Kieler Werte von 16,3 °C an. Die Kaltzeit der jüngeren Dryas (Dryas III) wird mit Julitemperaturen von 10 bis 10,5 °C eingeschätzt und findet im Kurvenlauf des Alkenonindexes keine Entsprechung. Auch werden die relativ kalten Phasen zum Beginn und am Ende des Böllings nicht von entsprechend niedrigen Alkenonverhältnissen wiedergespiegelt. Seit der Mitte des Präboreals steigen die Lufttemperaturen deutlich au und erreichen im mittlerem Boreal erstmalig heutige Durschnittswerte. Der U^k, 37 würde jedoch auf rapide abfallende Temperaturen verweisen, die am Ende des Präboreals nochmals ansteigen und in der Mitte des Boreals wieder tiefe Temperaturen vermitteln.

Das atlantische Klimaoptimum wird für Nordwest-Deutschland mit maximalen Julitemperaturen von 18-19 °C und Wintertemperaturen über dem Gefrierpunkt angegeben (OVERBECK, 1975). DAHL & NESJE (1996) errechneten im skandinavischen Raum eine im Vergleich zu heute um 1,2-1,4 °C erhöhte Sommertemperatur und weitere Untersuchungsergebnisse geben eine um 2-4 °C über dem heutigen Mittel angestiegene Temperatur an (NESJE & DAHL, 1993). Die U^k,₃₇ Werte würden das Klimaoptimum jedoch als die kälteste Periode des Holozäns beschreiben.

Im letzten Drittel des Atlantikums, ca. 6000¹⁴C Jahre BP, fallen sowohl die durchschnittlichen Lufttemperaturen in Nordwest-Deutschland als auch die durchschnittlichen Sommertemperaturen in Skandinavien langsam bis auf heutige Mittelwerte ab. Der Werteverlauf des U^k,³⁷ steigt dem entgegen generell an und würde somit auf zunehmende Temperaturen verweisen. DAHL & NESJE (1996) errechneten am Ende des Atlantikums, ca. 5300¹⁴C Jahre BP, und im Subboreal um 4500 und 3700¹⁴C Jahren BP kurzperiodische Temperaturabfälle von 0,6 bis 0,3 °C. Der Verlauf des Alkenonsignals erscheint zwar auch unstet, würde jedoch eher auf schrittweise ansteigende als

abfallende Temperatursprünge schließen lassen. HUCKRIEDE et al. (1996) zeigen anhand von Kohlenstoff-, Schwefel, Magnesium, δ^{18} O und Na/Mn-Werten auf, daß seit 7500 Jahre BP acht periodische Wechsel/Zyklen (alle 400-600 Jahre) in der Sedimentation stattgefunden haben. Sie beschreiben in jedem Zyklus anfänglich oxisches Bodenmilieu, welches sich zum Ende schnell in anoxische Milieus stabilisiert. Oxische Bodenwässer im Gotlandbecken sind im Zusammenhang mit Salzwassereinbrüchen und feuchten und kälteren Klimabedingungen zu sehen (FONSELIUS, 1969; KALEIS 1976; BÖRNGEN et al., 1990). Demnach kann ihre Beobachtung mit anderen periodischen Klimaschwankungen verglichen werden (KELLOGG, 1984; OVERPECK, 1987; MÖRNER, 1980a, b; COLQUHOUN & BROOKS, 1987; TERS, 1987). Anhand der U^{k, 37} Alkenonverhältnisse lassen sich jedoch keine kälteren Wassertemperaturen in einem periodischen Zyklus von 400-600 Jahren seit den atlantischen Klimaoptimum nachvollziehen.

Diese Gegenüberstellung der Temperaturentwicklung in Nord-Europa zum Verlauf der U^k₃₇ Werte zeigt also einen weitgehend inversen Verlauf auf. Demnach eignet sich das U^k₃₇ Signal in holozän/pleistozänen Sedimenten des Gotlandbeckens nicht zur Rekonstruktion der Oberflächenwassertemperatur.

Auf Grund der nachfolgenden Daten postuliere ich, daß die $U^{k_{37}}$ Schwankungen Salinitätsschwankungen in der Ostsee während des Holozäns und Pleistozäns entsprechen (Abb. 4.6): Mit zunehmendem Salzgehalt sinkt der $U^{k_{37}}$ -Wert.

Der Werteverlauf des $U_{37}^{k'}$ im Vergleich zur Salinitätsentwicklung der Ostsee verläuft jedoch nicht ungestört. An der Grenze Mastoglioa/Litorina ist ein Bruch festzustellen. Aufgrund des Postulats werden mit zunehmenden Salzgehalten niedrigere $U_{37}^{k'}$ -Werte angenommen, d.h. nach dem Werteverlauf würde das Wasser des Litorinastadiums süßer als das der vorangegangende Mastogloiastadium sein. Auch würde die späte Litorina und die Postlitorina als Süßwasserphase beschrieben werden. Beide Angaben entsprechen jedoch nicht der bislang bekannten Salinitätsentwicklung der Ostsee. Ein ungestörter Werteverlauf ist erst dann gegeben, wenn bei gleicher Salinität ein um ca. 0,2 niedrigerer $U_{37}^{k'}$ Werte angenommen wird. Ein solcher Versatz könnte mit einem Wechsel in der Prymnesiophyceenvergesellschaftung erklärt werden, d.h. im oberen Teil des Kerns dominieren andere alkenon-produzierende Algenarten als im unteren Teil. Bei gleicher Salinität müßten die im oberen Teil dominierende Alge (Algen) einen etwa um 0,2 niedrigere $U_{37}^{k'}$ -Werte synthetisieren als die Alge (Algen) im unteren Teil des Kerns. Die Annahme eines solchen Wechsels an der Grenze Mastogloia/Litorina, kann auch durch veränderten Nährstoffbedingungen und neu gebildete Diatomeenvergesellschaftung untermauert werden (siehe Abschnitt *Mastogloia* und *Litorina / Postlitorina*).

Im Folgenden wird der Verlauf des ermittelten $U^{k'}_{37}$ Signals zur Entwicklung der Wassermilieus jedes Ostseestadiums diskutiert. Im Anschluß werden die Verhältnisse U^{k}_{37} (Abb.4.7), der prozentuale Anteil an C_{37:4} Methylalkenone zur Summe der C₃₇ Alkenone (Abb.4.8) und die Summe der Alkenone (ng/g) (Abb.4.9) in die Diskussion eingehängt.

Eisstausee

Im Kastenlotkern 20048-1 wurden in einer Teufe von 800 bis 1029 cm die Tone des Eisstausees abgelagert. Der basale, bräunlich gefärbte Ton ist das Sediment des "embryonalen" Baltischen Eisstausees (BJÖRK, 1995). Die Entstehung des Sees wird von 13500 bis 13000 unkorrigierten C14 Jahren BP angenommen. Der Zeitraum um 12000 Jahre BP wird als Wendepunkt (turning point) bezeichnet (BJÖRK, 1995). Zu dieser Zeit schmolz der baltische Gletscher stark ab (BJÖRK & MOLLER, 1987). Das Schmelzwasser ließ den Seespiegel des Eisstausees ansteigen, so daß es zu einem Wasserausfluß in die Nordsee kam. AGREEL (1976) und BJÖRK (1979) lokalisieren diesen Ausfluß über den Öresund. In den homogen anzusprechenden Tonen dieses Alters zeigt die Alkenonanalyse leicht abfallende U^k₃₇ Werte. Der Werteabfall endet 12064 Jahre BP (940 cm Teufe) mit dem auffällig geringen U^k₃₇ Wert von 0,39. Dieser Werteverlauf zeichnet ebenfalls ein verändertes Wassermilieu nach.

HUCKRIEDE et al. (1996) beschreibt das Sediment des Eisstausees als sulfidfreien gevarvten Ton. Durch einen auffälligen Farbwechsel von basalem Braunrot zu Blaugrau wird dieser in die Einheiten c2 und c1 unterteilt. Dieser Farbwechsel kann auch im untersuchten Kern in einer Teufe von 867 cm nachvollzogen werden. Bei der Datierung des Kerns (siehe oben) wurde dieser Lithologiewechsel dem von BJÖRK (1995) beschriebenen Billingen I Ereignis, d.h. 11200 Jahre BP, zugeordnet. Der genaue Charakter dieses Ergebnisses steht noch zur Diskussion. BJÖRK (1995) führt in seinem Review einige Aspekte gegeneinander auf. So weisen am Ende des Allröds einige Studien darauf hin, daß der Wasserspiegel des Eisstausees stark abgefallen sein muss (e.g. BJÖRK, 1979; GUDELIS, 1979; KESSEL & RAUKES, 1979; SVENSON, 1989). Dieser plötzliche Wasserverlust könnte mit einer offenen Verbindung zur Nordsee in der Nähe des Bergs Billingen erklärt werden (DONNER, 1969; BJÖRK, 1979; BERGLUND, 1979). Die Alkenonanalyse zeigt in der entsprechenden Teufe relativ niedrige U^k₃₇ Wert von 0,45. Ähnlich wie in 940 cm Teufe (12064 Jahre BP), fällt der U^k₃₇ kontinuierlich ab und steigt anschließend stark an auf Werte um 0,24.

SOHLENIUS (1996) gibt an, daß es bislang keine Indizien für Salzwasserzuflüsse in den Eisstausee gibt. Die mikrofossilarmen Tone beinhalten höchstens einige Süßwasserdiatomeen (KESSEL & RAUKES, 1979; BRUNNBERG, 1988) und Süßwassermollusken (KÖNIGSON & POSSNERT, 1988). Nimmt man jedoch an, daß der $U^{k'}_{37}$ bei steigender Salinität des Wassers sinkt, so lassen die Daten aus dem untersuchten Kern vermuten, daß der Eisstausee zweimal zunehmend salziger geworden ist und dann plötzlich wieder aussüßte. Entgegen der Vorstellung von BJÖRK (1995), der schnelles

und starkes Abfließen des Eisstausees am Berg Billingen annimmt, zeichnen diese Ergebnisse eine langsam zunehmende Öffnung des Eisstausees zur Nordsee und eine plötzliche Unterbrechung des Salzwasserzustroms nach.

Yoldia

Die Sedimente des Kernintervalls von 799 bis 687 cm im Kastenlot werden dem Yoldia-Stadium zugeordnet. Die unkorrigierte C14-Datierung gibt für diesen Kernabschnitt ein Alter von 10320 bis 9620 Jahre BP, d.h. eine Dauer von 700 Jahren, an. Die Beschreibung dieses Kernabschnittes konnte fast zwei Jahre nach der Entnahme nur noch relativ undifferenziert erfolgen. Das Sediment erscheint als hell bis dunkelgrauer Ton mit vereinzelten dunklen Flecken und homogener Struktur.

HUCKRIEDE et al. (1996) beschreibt diese Sedimente als sulfidreiche, laminierte Tone und gibt eine Differenzierung in die Zonen b8 bis b5 an. Die basal dünngewarvten Tone (0,5–1mm Warvendicke; b8) gehen in dicker gewarvte, sulfidreichere Tone (max. 4mm Warvendicke; b7) über. In diesem Horizont sind auch Silt- und Sandlagen nachzuweisen. Die folgende Zone b6 wird als noch weitständiger gewarvt (max. 10mm), teilweise bioturbiert und mit Sulfidanreicherungen ("sulfide nodules") beschrieben. Die Zone b5 faßt 1-2mm dick gewarvte Tone zusammen, in denen nur noch vereinzelt Sulfidanreicherungen zu erkennen sind. Die Zeitdauer der Yoldia wird von den Autoren mit 600 bis 700 Jahren angegeben.

Die Alkenonanalyse zeigt, daß die Sedimente ab 10320 Jahren BP (entspricht einer Teufe von 799cm) deutlich verringerte $U^{k'}_{37}$ Werte haben. Sie sind durchschnittlich um einen Wert von 0,31 kleiner. In den ersten 200 Jahren des Yoldia-Stadiums schwankt der $U^{k'}_{37}$ zwischen 0,18 und 0,34. In den folgenden 300 Jahren liegt der Wert relativ konstant bei 0,22. Der drastische Werteabfall ist mit einem Anstieg der Oberflächenwassersalinität verbunden. KOHLY (1998) weist am gleichen Sedimentabschnitt ein plötzliches und anhaltendes Auftreten der brackischen Diatomeen *Thalassoisira baltica, T. eccentrica, T. decipiens*-Gruppe, *Stephanodiscus rotula* und *S. minutulus* nach. Aufgrund dieser Ergebnisse sind die ersten 500 Jahre des Yoldia Stadiums als brackig zu beschreiben.

STRÖMBERG (1992) nimmt jedoch für die ersten 300 Jahre des Yoldia-Stadiums Süßwasserbedingungen in der Ostsee an. MÖRNER (1995) unterstützt diese Aussage dadurch, daß er in diesem Zeitraum Ancylusfaunen in Sedimenten auf Gotland und Öland nachweisen konnte.

Erst nach diesem Zeitraum wird das Oberflächenwasser für 100 bis 150 Jahre als brackisch beschrieben (SVENSON, 1991). WASTEGARD et al. (1995) weisen in diesem Zeitabschnitt bentische Foraminiferen und Ostrakoden nach, die im brackigen Milieu des nord-westlichen Gotlandbeckens lebten. In weiterführenden Untersuchungen zeigen Geigerite brackiges Oberflächenwasser an (SOHLENIUS, 1996). Auch fehlende Spurenelemente wie z.B. Molybdän sind als Indiz für Salzwasserzuflüsse anzusehen (SOHLENIUS et al., 1996). HUCKRIEDE et al. (1996) schließen anhand der zunehmenden Warvendicke des Sediments auf einen Anstieg des Meeresspiegels. Die ausgeprägte Lamination, der steigende Anteil an Sulfiden und ein relativ geringer Anteil an Mangan weisen auf stabile anoxische Bodenbedingungen hin. Dieses Bodenmilieu bildete sich in der Ostsee unter einer stabilen Halokline aus, die durch den Zustrom salzigen Wassers aus der Nordsee einerseits und dem hohen Eintrag von Flußwasser andererseits ausgebildet wurde. In den Sedimenten aus dem mittleren Bereich des Yoldia-Stadiums wurden von HUCKRIEDE et al. (1996) Brackwasserdiatomeen nachgewiesen. Die dominante Art dieser Zonen, *Thalassiosira baltica*, weist nach SNOEIJS (1993) auf kaltes Oberflächenwasser mit einer maximalen Salinität von 10 PSU hin.

BJÖRCK (1995) ordnet auch die folgenden 350 bis 400 Jahre der Ostseeentwicklung dem Yoldia-Stadium zu, welches damit bei 9600 Jahre BP endet. In der Literaturzusammenfassung bezeichnet er diesen Zeitabschnitt als Süßwasserphase. Die Aussüßung fand durch den isostatischen Aufstieg Schwedens statt, bei dem die Verbindung zur Nordsee abgeschnitten wurde. Die Diatomeenbestimmung von KOHLY (1998) zeigt in den Sedimenten des Kastenlotkerns 20048-1 für diesen Zeitraum das völlige Verschwinden der Brackwasserdiatomeen und die Dominanz der Süßwasserart *Aulacoseira* spp.. Die Alkenonanalyse aus den Sedimenten dieses Zeitabschnittes zeigen einen steilen Anstieg des U^{k'}₃₇ Wertes von 0,22 auf 0,58 und zeichnet damit auch eine kontinuierliche Aussüßung der Yoldia nach.

Ancylus

Das Kernintervall von 687 bis 540 cm Teufe beinhaltet die Sedimente des Ancylus-Stadiums. Dies entspricht einem Zeitabschnitt von 9620 bis 8000 Jahren BP. Das Sediment kann, vor der Beprobung für die Alkenonanalyse, basal bis in eine Teufe von 625 cm als hell bis dunkel blaugrauer homogener Ton mit vereinzelten braun-ocker gefärbten Flecken beschrieben werden. Auf diesen homogenen Tonen folgt diffus laminierter hell olivgrauer Ton, der stark bioturbiert erscheint und ocker gefärbte Bänder beinhaltet. Eine weitere Differenzierung der Sedimente war zur Zeit der Probenentnahme nicht mehr möglich.

HUCKRIEDE et al. (1996) geben eine detailliertere Sedimentbeschreibung und unterteilen die Sedimente des Ancylus-Stadiums in die Zonen b4, b3 und b2. Die basale Zone b4 wird als dunkelgrauer Ton beschrieben, der hell graue, sulfidfreie Bereiche bis zu 15 mm Mächtigkeit beinhaltet. Dieser Ton erscheint in Röntgenaufnahmen ausgesprochen laminiert (bis zu 1 mm Mächtigkeit). Darauf folgt dunkler bis schwarzer ungegliederter sulfidhaltiger Ton (Zone b3). Die Zone b2 umfaßt blaugrauen Ton, der verzweigte, mit Pyrid-Markasit gefüllte Eintiefungen beinhaltet. Der variierende Gehalt an Monosulfiden suggeriert in dieser Zone einzelne Lagen.

Die Ergebnisse der Alkenonanalyse weisen in den Sedimenten des Ancylus-Stadiums im Alter von 9300 Jahre BP auf einen Wechsel in den Lebensbedingungen der Prymnesiophyceen hin. Die relativ hohen U^{k}_{37} -Werte zu Beginn des Stadiums legen Süßwasserbedingungen im Oberflächenwasser nahe. Ab einer Teufe von 649 cm (9300 Jahre BP) werden geringe Werte, im Mittel 0,22, nachgewiesen. Diese Ergebnisse entsprechen in etwa denen aus den Sedimenten der Yoldia und würden durch brackiges Oberflächenwasser in der jüngeren Ancylus erklärt werden.

HUCKRIEDE et al. (1996) nehmen im Ancylus-Stadium ebenfalls eine Zweiteilung vor. Sie definieren einen älteren Sedimentationsabschnitt Ancylus I und einen jüngeren Ancylus II. Das Stadium der Ancylus I beinhaltet die Sedimentzone b4 und ist durch Süßwasserbedingungen charakterisiert. Die Zeitdauer dieser Phase wird mit 500 Jahren angegeben. Die Ancylus II (Zone b3 und b2) weist auf eher brackige Wasserbedingungen im Gotlandbecken hin. Obwohl eine gleichbleibende Diatomeenvergesellschaftung auf durchgehende Süßwasserbedingungen schließen ließe, ist der angestiegene Gehalt an Kohlenstoff und Schwefel in der Zone b3 und b2 ein Hinweis auf oxische Bodenbedingungen. Dieses Bodenmilieu bildet sich nach Meinung der Autoren aufgrund von Salzwasserzuflüssen in dem Gotlandbecken aus. Des weiteren deutet eine Korngrößenzunahme ab der Zone b3 auf brackige Wasserbedingungen in der Ancylus II hin. Im brackigen Wasser werden Tone relativ schnell sedimentiert, d.h. in den tieferen Becken wie dem Gotlandbecken fehlen diese. KOLP (1986) erzielte durch die Kartierung und Datierung von submarinen Terrassen in der westlichen Ostsee ähnliche Resultate. In einer frühen Untersuchung von BJÖRCK (1987) wird das Ancylus-Stadium ebenfalls in zwei Phasen unterteilt.

Die Diatomeenbestimmung von KOHLY (1998) zeigt ab einer Teufe von 710 cm (9700 Jahre BP; Ende der brackischen Phase der Yoldia) eine deutliche Dominanz der Süßwasserdiatomeen Aulacoseira spp (59-93 %). Diese Dominanz setzt sich durch die gesamten Sedimente der Ancylus fort. Auffällig ist jedoch, daß erst ab einer Teufe von 650 cm (9300 Jahre BP) die Süßwasserarten Tabellaria fenestrata, Cymatopheura elliptica und Cyclotella iris nachzuweisen sind. Diese größere Artenvielfalt könnte auch auf Veränderungen im Wassermilieu zu diesem Zeitpunkt zurückzuführen sein. Obwohl KOHLY (1998) auch einige Brackwasserdiatomeen der Arten Stephanodiscus rotula und S. minutulus in den Ancylussedimenten nachweisen konnte, beschreiben die Diatomeenfunde durchgehend Süßwasserbedingungen. BJÖRCK (1995) nimmt keine weitere Differenzierung der Ancylus mehr vor und beschreibt diese als einen reinen Süßwassersee, der lediglich nach seinem Wasserhöchststand über einen sogenannten Dana-River in den Kattegat entwässerte. Auf der Grundlage der Ergebnisse von KOLP (1986) skizziert er den Verlauf des Flusses über die Falster-Rügen-Platte, die Darßer Schwelle, den Fehmarn-Belt und den Großen Belt. Eine erneute Verbindung des Ancylussees mit dem Kattegat würde die veränderten Alkenonverhältnisse erklären. Dieser Kontakt mit salinaren Wässern müßte jedoch so groß sein, daß beidseitiger Wasseraustausch, ähnlich dem Yoldia-Stadium, möglich ist. Die Verbindung des Ancylussees lediglich über den von BJORCK (1995) skizzierten Dana-River erscheint zu klein dimensioniert. LEMKE (1998) zweifelt die Lage diese Abflusses ebenfalls an und fordert auf, unter Berücksichtigung der isostatischen Bewegungen und der regionalen Bedingungen im skandinavischen Raum nach einer neuen Verbindung zwischen Ancylussee und Kattegat zu suchen.

Daß der Ancylussee über eine Verbindung zum Kattegat in relativ kurzer Zeit eine deutliche Senkung des Wasserspiegels erfuhr, wird von mehreren Autoren beschrieben. Im Überblick listet LEMKE (1998) unterschiedliche Zeitpunkte der Ancylus-Regression auf. So nimmt SVENSSON (1991) für dieses Ereignis 9300 Jahre BP, BJÖRCK (1995) 9200 Jahre BP, KOLP (1986) 8800 Jahre BP und KLIEWE & JANKE (1982, 1991) 8700 Jahre BP an. Aufgrund der Alkenonanalyse erscheint eine Verbindung zum Kattegat ab 9300 Jahre BP möglich.

Mastogloia

Ab einer Teufe von 540 cm (8000 Jahre BP) sind die Sedimente des Mastogloia-Stadiums aufgeschlossen. Das Sediment des untersuchten Kerns kann als hell grauer bis olivgrauer, diffus laminierter Ton beschrieben werden. Bis in eine Teufe von 533 cm (7800 Jahre BP) sind in der diffusen Laminierung Ocker farbige Bereiche erkennbar. Das Sediment ist bis 520 cm Teufe als stark bioturbiert zu beschreiben.

KOHLY (1998) konnte im Teufenintervall von 540 bis 520 cm *Mastogloia* nachweisen und ordnet daher nur diese Sedimente dem Mastogloia-Stadium zu. Als dominante Diatomeen gibt er die Brack- bis Süßwasserdiatomeen *Aulacoseira*, *Stephanodiscus* und *Cyclotella* an, wobei auffällig ist, daß in der Mitte dieses Intervalls diese Diatomeen relativ gering konzentriert sind oder ganz fehlen.

Entgegen der Grenzziehung von KOHLY (1998) wird das Ende der Sedimentation im Mastogloia-Stadium in einer Teufe von 480 cm (6900 Jahre BP) angenommen. Bis in diese Tiefe ist der hell bis dunkelgraue tonige Silt sehr fein laminiert (submm). Im Hangenden nimmt die Mächtigkeit der Lamination zu (mm). Auch wird diese Lamination von immer mächtiger werdenden bioturbierten Bereichen unterbrochen. Die Untersuchungen von KOHLY (1998) zeigen bis in diese Teufe, daß Aulacoseira meist zu über 50 % dominiert. In jüngeren Sedimenten ist der Anteil dieser Art deutlich geringer. Stephanodiscus und Cyclotella sind nur bis zu einer Teufe von 510 cm nachzuweisen.

Zu Beginn des Mastogloia-Stadiums, ab 540 cm (8000 Jahre BP) Teufe, steigt der Gehalt an organischem Kohlenstoff deutlich über 2 % an (siehe Abb. 4.2). Die Höchstwerte liegen bei annähernd 8 %. Erst ab 480 cm (6900 Jahre BP) liegt der Kohlenstoffgehalt für einen längeren Zeitraum zwischen 3 und 4,5%. Dieser Anstieg wird auf eine höhere Primärproduktion zurückgeführt (EMELYANOW, 1988; WINTERHALTER, 1992). Die Autoren nehmen ursächlich ein größeres Nährstoffangebot an, das durch Zirkulation des Tiefenwassers an die Oberfläche geführt wurde. WINTERHALTER (1992) vermutet zusätzlich eine größere photische Zone aufgrund von ausgeflockten Schwebstoffen. EMELYANOW (1988) gibt zusätzlich eine erhöhte Nährstoffzufuhr vom Land ins Wasser aufgrund des wärmeren und trockeneren Klimas an. SOHLENIUS (1996) bezeichnet die Grenze der Ancylus zur Litorina als einen drastischen Wechsel in der post-glazialen Sedimentation. Er stellt den Wechsel in der Wassersäule als Modellzeichnung dar. Darin zeichnet

er den Einstrom von Salzwasser, die Ausbildung einer Haloklinen und vertikale Winterwasserzirkulationen auf Grundlage seiner Untersuchungen und denen von WINTERHALTER (1992) nach.

HUCKRIEDE et al. (1996) berichten, daß der Wechsel vom brackigen Ancylus II- Stadium zur Mastogloia hauptsächlich am temporären Anstieg von Kohlenstoff und Schwefel erkennbar ist. Nach ihren Angaben ist weder in der Lithologie noch in der Diatomeenvergesellschaftung eine Grenze ersichtlich. So liegt der Grenzbereich auch im oberen Bereich der Lithologie-Zone b2 (bläulich grauer sulfidhaltiger undeutlich laminierter Ton). Die Sedimente der Mastogloia setzen sich über die Zone b1 (bläulich grauer bis grünlicher Ton mit unregelmäßigen schwarzen sulfidreichen Flecken) in die Zone a7 (laminierter graubrauner Sapropel im Wechsel mit bläulich grünem Silt) fort. In den Zonen b1 und a7 konnten die Autoren vereinzelt brackige Diatomeen nachweisen. In Sapropelen der Zone a7 die mehr als 10 Gew.% Kohlenstoff enthalten, wurden vorwiegend Süßwasserdiatomeen gefunden. MILLER & ROBERTSSON (1979) wiesen der Mastogloia (8000 bis 7000 Jahre BP) im Küstenbereich nur geringe Salinität zu. In Sedimenten der tieferen Becken findet sich jedoch keine Entsprechung dieser Beobachtung (WINTERHALTER et al., 1981). HUCKRIEDE et al. (1996) verbinden den langsamen Anstieg an Kohlenstoff und Schwefel im Gotlandbecken mit einem Anstieg im Salzgehalt des Oberflächenwassers. EKMAN (1953) und SJÖBERG et al. (1984) geben an, daß die Mastogloia eine höhere Salinität als die heutige Ostsee besaß. Diese Autoren sehen die Mastogloia als basalen Teil der Litorina (8000 bis 3000 Jahre BP) an. LEMKE (1998) berichtet, daß ab 7200 Jahren BP die Diatomeenfunde ununterbrochene marine Bedingungen in der Mecklenburger Bucht belegen. Er schließt daher auf eine dauerhaft überflutete Schwelle des Großen Belt und bezeichnet daher die Mastogloia über einen 1000 jährigen Zeitraum als brackig-marin.

Die nachgewiesenen U^k₃₇ Werte fallen gegenüber den Werten des Ancylus-Stadiums kontinuierlich weiter ab. Bei einer angenommenen direkten Verknüpfung der Alkenonproduktion mit Salinitätsveränderungen des Oberflächenwassers, würde dieser Verlauf dem oben gezeichneten Bild der zunehmenden Salzwasserzuflüsse entsprechen. Die relativ hohen Konzentrationen an Alkenonen in den Sedimenten der Mastogloia unterstützten auch die von EMELYANOW (1988) und WINTERHALTER (1992) dargestellte höhere Primärproduktion im Oberflächenwasser.

Litorina / Postlitorina

Die Sedimente des Litorina-Stadiums sind im Teufenintervall von 490 bis 145 cm (6900 bis 3000 Jahre BP) aufgeschlossen. Basal ist hell- bis dunkelgrauer toniger Silt sedimentiert, der mmmächtig laminiert ist. Dieser Silt kann der Zone a7 und a6 nach HUCKRIEDE et al. (1996) zugeordnet werden. Bis in eine Teufe von 428 cm (6300 Jahre BP) ist eine zunehmende Bioturbation erkennbar. Die folgenden Sedimente aus olivgrauem Schlick erscheinen diffus laminiert und stark bioturbiert und entsprechen dem bioturbierten Saprobel der Zone a5. Ab 399 cm (5700 Jahre BP) ist der hell bis dunkelolivgrüne Schlick mm mächtig laminiert, wobei bioturbierte Horizonte zum Top wieder an Häufigkeit und Mächtigkeit zunehmen. Dieses Sediment ist dem laminierten Schlick der Zone a4 gleichzusetzen. In einer Teufe ab 254 cm (5200 Jahre BP) erscheint der nun olivgraue Schlick aufgrund der bis zum Top des Kerns durchgehenden Bioturbation als homogen. Nur in wenigen Bereichen ist noch diffuse Lamination erkennbar. Ein Farbwechsel von olivgrau zu olivgrünen Farben ist in einer Teufe von 202 cm (3680 Jahre BP) erkennbar. HUCKRIEDE et al. (1996) fassen diesen bioturbierten Schlick in der Zone a3 zusammen.

Der Übergang der Sedimentation aus der Litorina in die der Postlitorina ist nicht in der Lithologie nachvollziehbar, sondern wurde mit Hilfe der ¹⁴C Datierung auf 145 cm Teufe (3000 Jahre BP) festgelegt.

Der $U^{k'_{37}}$ steigt ab der Grenze zwischen Mastogloia und Litorina in 490 cm Teufe (6900 Jahre BP) generell von 0,16 auf 0,53 an. Ab einer Teufe von 330 cm (5000 Jahre BP) sind die $U^{k'_{37}}$ -Werte annähernd so hoch wie in der Süßwasserphase des Yoldia- und Ancylus-Stadiums. Demnach müßte
das Oberflächenwasser der Litorina und Postlitorina geringere Salinität als das Mastogloia-Stadium besessen haben und fast so süß gewesen sein wie die späte Yoldia und die jüngere Phase der Ancylus. Aufgrund von zahlreichen Diatomeenfunden und geochemischen Untersuchungen ist die Litorina als mindestens genauso salzig wie die Mastogloia beschrieben. Wird an der Grenze Mastogloia/Litorina jedoch ein Wechsel in der Prymnesiophyceenvergesellschaftung angenommen, d.h. daß im Litorina-Stadium andere alkenon-produzierende Algenarten dominieren als während des Mastogloia-Stadiums, so bildet sich ein durch die Literatur gestütztes Bild der Salinitätsentwicklung dieser Stadien.

Dieser vermutete Wechsel in der Algenvergesellschaftung zum Ende der Mastogloia, kann auch mit einer in dieser Zeit neu gebildeten Diatomeenvergesellschaftung untermauert werden (KOHLY, 1998; WESTMAN & SOHLENIUS, 1998). KOHLY (1998), der denselben Kastenlotkern untersuchte, benennt Actinocylus octonarius und Chaetoceros in den Sedimenten der Litorina und Postlitorina als dominante brackig-marine Diatomeen. Hyalodiscus scoticus, Epithernis turgida und Diploneis spp. können in geringerer Anzahl bis in eine Teufe von 210 cm nachgewiesen werden. Im Kernintervall von 450-330 cm (6600-5000 Jahre BP) wurden in vier abgrenzbaren Horizonten Diatomeen aus sehr salzhaltigen, warmen bis gut temperierten Wässern nachgewiesen. Die Diatomeen Thalassiosira oestupii, T. eccentrica, Thalassionema nitzschioides und Pseudosolenia calcar-avis sind in den Intervallen 450-440 cm, 420-410 cm, 490-480 cm und 340-320 cm in auffälliger Häufigkeit nachweisbar. KOHLY (1998) schließt daher auf fast marin zu bezeichnende Oberflächenwasserbedingungen. Die Alkenonanalyse zeigt in diesen Intervallen relativ niedrige U^k₃₇-Werte und würde somit ebenfalls auf salzhaltigeres Oberflächenwasser verweisen. Über die Anzahl von marinen Transgressionen während des Litorina-Stadiums existieren Angaben die zwischen drei (RISBERG et al., 1991) und sechs (BERGLUND, 1971) schwanken. Einheitlich wird jedoch angenommen, daß das Litorina-Stadium (8000-3000 Jahre BP) eine höhere Salinität des Oberflächenwassers als die heutige Ostsee besaß (EKMAN, 1953; SJÖBERG et al.; 1984).

In den Sedimenten der Litorina und Postlitorina weisen kalziumreiche Rhodochrosite auf anoxische Bodenbedingungen hin (HUCKRIEDE et al., 1996; SOHLENIUS et al., 1996). HUCKRIEDE et al. (1996) geben aufgrund der folgenden Argumentationskette absolute Salinitätsgehalte für diesen Sedimentationsabschnitt an: Das Sauerstoffisotopenverhältnis bei der Bildung kalziumreicher Rhodochrosite steht im Zusammenhang mit der Temperatur und der Salinität des Bodenwassers (EPSTEIN et al., 1953; FRÖHLICH et al., 1988; BÖTTNER, 1993). Da die Bodentemperatur des Gotlandbeckens als relativ konstant zwischen 4 und 6 Grad Celsius angesehen werden kann (NEHRING, 1990; NEHRING et al., 1994), ist es möglich die Paläosalinität der Ostsee anhand des δ^{18} O der Rhodochrosite abzuschätzen. Für die Sedimentationszone a7 (Übergangszone Ancylus II/Mastogloia) ergibt sich so eine Paläosalinität von etwa 8 PSU. Die Salinität steigt weiter bis maximal 18 PSU im basalen Teil der Zone a5 an. Ab dem oberen Teil der Zone a5 fällt der Salzgehalt des Bodenwassers im Gotlandbecken graduell bis auf den heutigen Wert ab. Anoxisches Bodenwasser kann als ein Effekt von Salzwassereinströmungen angesehen werden. Das einströmende Salzwasser erhöht die Bodensalinität und drückt die Halokline nach oben (MATTHÄUS, 1986). Dies bedingt Nährstoffzufuhr und eine höhere Primärproduktion. Die bakterielle Zersetzung der sedimentierten organischen Schwebstoffe schafft ein anoxisches Bodenmilieu.

Überträgt man diese Entwicklung auf den hier untersuchten Kern, müßte in einer Teufe von ca. 428 cm (6300 Jahre BP) die maximale Bodenwassersalinität erreicht worden sein und ab einer Teufe von ca. 399 cm (5800 Jahre BP) würde der Salzgehalt am Boden des Gotlandbeckens wieder abfallen. Der Verlauf des Alkenonverhältnises U_{37}^{k} signalisiert jedoch weder bei 6300 Jahren BP maximale Salzwasserzuflüsse noch eine kontinuierliche Abnahme der Salinität ab 5800 Jahren BP. Vielmehr scheint sich eine maximale Bodensalinität um 5100 Jahre BP gebildet zu haben. Die Sedimente dieses Zeitintervalls sind mm mächtig laminiert und lassen daher ebenfalls auf anoxische Bodenwasser schließen. Ein Abfall in der Salinität des Oberflächenwassers ist, aufgrund der ansteigenden Alkenonwerte, nach dem Erreichen der maximalen Bodensalinität in 341 cm Teufe (5115 Jahre BP) anzunehmen. In dieser Teufe verändert sich auch die Farbe des Schlickes

von grünlichen zu grauen Tönen. Gemittelt zeigen die Alkenonwerte ab dieser Teufe bis zum Top des untersuchten Kernes (1850 Jahre BP) einen kontinuierlichen Anstieg und zeichnen somit die angenommene Aussüßung der Litorina und Postlitorina nach.

Die zunehmende Bioturbation des olivfarbigen Schlickes läßt auch auf zunehmend oxisches Bodenwasser schließen. Oxisches Bodenmilieu in den tieferen Becken der Ostsee ist auf geringe Salzwasserzuströme und/oder auf besonders kalte Winter zurückzuführen (NEHRING, 1990). KOHLY (1998) wiest in dem Teufenintervall von 300-210 cm (4700-3750 Jahre BP) mit ansteigender Häufigkeit Diatomeen aus kälteren und weniger salinaren Wassermilieus (*Thalassiosira anguste-lineata* und *T. hyperborea*) nach. In dem stark bioturbierten Grenzbereich der Litorina und der Postlitorina konnten aufgrund von vermuteten Lösungsvorgängen und/oder bodennahem Sedimenttransport nur sehr geringe Diatomeenmengen nachgewiesen werden. Erst ab einer Teufe von 70 cm (2300 Jahre BP) kann in der Postlitorina wieder eine der Litorina ähnliche Diatomeengesellschaft gefunden werden.

Unbeeinflußt von der Bioturbation der Sedimente, läßt sich das Alkenonverhältnis U^k,₃₇ im gesamten Sediment des Kastenlotkerns (14000-1852 ¹⁴C Jahre BP) ermitteln und eignet sich daher gut als Biomarker in den Ostseesedimenten. In der Ostsee steht der U^k,₃₇ jedoch eher in Zusammenhang mit der Salinität und weniger mit der Temperatur des Oberflächenwassers, somit kann der U^k,₃₇ nur bei unverändert marinen Wässern zur Temperaturrekonstruktion genutzt werden (e.g. PRAHL et al., 1988). Bei geringen Salzgehalten des Oberflächenwassers und in Süßwässern ist diese Verknüpfung nicht mehr möglich. Dies belegt sowohl die obere Diskussion als auch die Arbeiten von SCHULZ et al. (1997), ROSELL-MELÉ et al. (1998) SCHÖNER et al. (1999); SCHULZ et al. (1999).

Das Alkenonverhältnis U^k₃₇ zeigt im Laufe der Ostseegeschichte einen ähnlichen Verlauf wie das oben diskutierte vereinfachte Alkenonverhältnis $U_{37}^{k'}$ (Abb.4.6 und Abb.4.7). Vom Beginn der Ostseentwicklung sind, mit Ausnahme des Mastogloia-Stadiums, relativ niedrige U^k₃₇-Werte mit höheren Salzgehalten des Ostseewassers korrelierbar. Im Eisstausee weißt der Uk₃₇ vor 12000 Jahren (940 cm Teufe; Lithologiewechsel) auf verändertes, salzreicheres Oberflächenwasser hin. Das Billingen I Ereignis (BJÖRCK, 1995) wird 11250 Jahre BP ebenfalls durch niedrige U^k₃₇ Werte nachgezeichnet. Nach dem Billingen II Ereignis (BJÖRCK, 1995) verweist das Uk₃₇ Verhältnis auf starken Salzgehaltanstieg. Die Werte beschreiben die in der Literatur dargestellte Salzentwicklung des Yoldia-Stadiums nach (BJÖRCK, 1995; STRÖMBERG, 1992; MÖRNER, 1995; SVENSON, 1991; WASTEGARD et al., 1995; SOHLENIUS, 1996; HUCKRIEDE et al., 1996), d.h. der basale rapide Salzzufluß um 10300 Jahre BP (800 cm Teufe; Grenze Eisstausee/Yoldia) schwächt sich im Laufe der Zeit bis zur Aussüßung um 9620 Jahre BP (687 cm Teufe; Grenze Ancylus I/Yoldia) ab. Jedoch erscheint der Salzgehalt der ersten 500 Jahre des Yoldia-Stadiums aufgrund des U^k₃₇ Verhältnisses als nicht so konstant wie es die Uk₃₇ Werte aufzeigen. Die Süßwasserphase der Ancylus (Ancylus I, HUCKRIEDE et al., 1996) ist durch den langsam abfallenden U^k₃₇ nachgezeichnet. Deutlicher als Uk'37 beschreibt der Uk37 eine zunehmende Aussüßung der Anculus II bis 8000 Jahre BP (540 cm Teufe; Grenze Ancylus/Mastogloia). In den Sedimenten der Mastogloia (540-490 cm Teufe) verweißt der Uk₃₇ im Gegensatz zum Uk₃₇ auf geringeren Salzgehalt Oberflächenwassers hin. Bei angenommenem Wechsel des in der Algenvergesellschaftung um 6940 Jahre BP (490 cm Teufe; Grenze Mastoloia/Litorina) können generell niedrigere U^k₃₇ Werte mit höheren Salzgehalten während der Litorina und Post Litorina verknüpft werden. Lediglich der zweite als marin bezeichnete Salzwasserzustrom im basalen Litorina-Stadium (6300-6100 Jahre BP; 420-410 cm Teufe) kann nicht durch verringerte U^k₃₇ Werte nachgezeichnet werden.

Abb.4.7: U^k₃₇ Werte des Kastenlotkerns 20048-1 und Oberflächenwassersalinität der Ostseestadien während der letzten 13500 Jahre

Der prozentuale Anteil der $C_{37:4}$ Methylalkenone zur Summe an C_{37} Alkenonen steigt in den Kernproben bei ansteigendem Salzgehalt an (Abb.4.8). Als Ausnahme verweisen die Gehalte um 12000 Jahre BP (940 cm Teufe; Farbwechsel im Ton des Eisstausees) auf verringere Salzgehalte, während der U_{37}^{k} einen Salzwasserzustrom vermuten läßt. Auch erscheint, entsprechend dem U_{37}^{k} , in dessen Errechnung der Gehalt an $C_{37:4}$ Methylalkenonen eingeht, das Stadium der Mastogloia gegenüber der vorangegangende Ancylus II als weniger salzhaltig.

Die Auswertung von Oberflächensedimenten bezüglich der relativen Konzentrationen der $C_{37:4}$ Methylalkenone zeigt jedoch einen genau entgegengesetzten Zusammenhang zur Salinität des Oberflächenwassers auf (SCHULZ et al., 2000; siehe Kapitel 3.2). Die Untersuchungsergebnisse am rezenten Material vermitteln eine relative Zunahme der mehrfach ungesättigten Alkenone bei Abnahme der Salinität. Eine Erklärung dieses Wiederspruchs kann im Rahmen dieser Arbeit nicht gegeben werden.

Der durchgehend hohe prozentuale Gehalt an $C_{37:4}$ Methylalkenonen unterstützt jedoch die eingangs dargestellt Aussage, daß die C_{37} Alkenonverhältnisse $U^{k'}_{37}$ und U^{k}_{37} in den Sedimenten der Ostsee nicht zur Temperaturrekonstruktion herangezogen werden können. ROSELL-MELE (1998) zeigte an Sedimenten des Nordatlantiks auf, daß ab einem Gehalt von 5% der $U^{k'}_{37}$ keine Paläotemperaturen mehr errechnet werden können. In allen Stadien der Ostseentwicklung sind die $C_{37:4}$ Methylalkenone prozentual höher als 10% enthalten.

Abb.4.8: C_{37.4} Methylalkenone prozentual zur Summe der C₃₇ Alkanone des Kastenlotkerns 20048-1 und Oberflächenwassersalinität derOstseestadien während der letzten 13500 Jahre

Die Summe der Alkenonkonzentrationen (ng/g) lassen zwar auch Veränderungen bezüglich der Ostseestadien erkennen, zeichnen jedoch nicht so deutlich wie die Alkenonverhältnisse und der Gehalt an C_{37.4} Methylalkenonen die salinitäre Entwicklungsgeschichte der Ostsee nach (Abb.4.9). Im Stadium des Eisstausees sind die Alkenone ausnahmslos relativ gering konzentriert. Der vermutete Salinitätsanstieg am Lithologiewechsel um 12000 Jahre BP (940 cm Teufe) und zum Billingen I Ereignis (BJÖRCK, 1995) könnte sich in einem leichten Anstieg der Alkenongehalte wiederspiegeln. Nach dem Billingen II Ereignis (BJÖRCK, 1995) steigt die Alkenonkonzentration deutlich an und könnte durch eine vermehrte Nährstoffzufuhr, die Salzwasserzuflüsse ermöglichen, erklärt werden. Ab einer Teufe von 719 cm (9800 Jahre BP; Beginn der Aussüßung des Yoldia-Stadiums) schwanken die Alkenonkonzentrationen erheblich. Gemittelt erscheinen die Alkenonkonzentrationen in der salzärmeren Phase der jüngeren Yoldia und der Ancylus I zwar geringer konzentiert als in den basalen und liegenden salzreicheren Stadien, jedoch erscheint ab dieser Teufe eine Verknüpfung zur Salinitätsentwicklung nicht mehr als sinnvoll. Auffällig ist noch die sehr hohe Alkenonkonzentration zu Beginn der Mastogloia (7268 Jahre BP; 511 cm Teufe). Auch unter der Berücksichtigung des angestiegenden Gehaltes an organischen Kohlenstoffs ($\mu g/gTOC$; siehe Tab. 8.8 und Tab. 8.9) verweißt dieser Wert auf erhöhte Alkenonproduktion und somit auf erhöhten Prymnesiophyceenwachstum hin. Die vier als marin gekennzeichneten Salzwasserphasen während der basalen Litorina und der generelle Anstieg der Salinität der Post Litorina sind anhand veränderter Alkenonkonzentration nicht nachvollziehbar.

Eine Verminderung der Alkenongehalte durch Biodegradation in heute als bioturbiert erscheinende Sedimente ist nicht nachvollziehbar. Vielmehr liegen die höchsten Alkenongehalte in den bioturbierten Sedimente der basalen Ancylus II (9140-8900 Jahre BP; 632-610 cm Teufe) und der Mastogloia (7268 Jahre BP; 511 cm Teufe). Die relativ gute Erhaltung des Alkenonsignals deckt sich auch mit den Untersuchungsergebnissen von BRASSELL et al. (1986), PRAHL & MUEHLHAUSEN (1988), PRAHL et al. (1989b).

Abb.4.9: Summe der Alkenonkonzentration (ng/g) des Kastenlotkerns 20048-1 und Oberflächenwassersalinität derOstseestadien während der letzten 13500 Jahre

Abschließend faßt die Abb. 4.10 nochmals die Zuordnung des Alkenonsignals $U^{k'_{37}}$ im Kastenlotkern 20048-1 aus dem östlichen Gotlandbecken zur klimatologischen, pollenkundlichen und sedimentären Entwicklungsgeschichte der Ostsee während des Spätpleistizäns und Holozäns zusammen.

Abb.4.10: Zuordnung des U^{k'}₃₇ Signals aus den Sedimenten des Kastenlotkerns 20048-1(Gotlandbecken) zur Temperatur- und Niederschlagsentwicklung nach pollenkundlicher Analyse von OVERBECK (1975), Ostseestadien mit Salintät des Oberflächenwassers nach KOHLY et al. (in Vorb.), HUCKRIEDE et al. (1996), BJÖRCK (1995), Chronologie durch Pollen aus DANN & SCHULZ (1995), lithologische Zonierung der Gotlandsedimente nach HUCKRIEDE et al. (1996)

5. Schlußfolgerung

Aufgrund der oben dargestellten Ergebnissen und Diskussionen lassen sich zusammenfassend folgende Schlußfolgerungen ziehen :

Erstmals konnten in Algen, Schwebstoffen und rezenten sowie holozän/pleistozänen Sedimenten der Ostsee Alkenone (mariner Wassertemperaturanzeiger) nachgewiesen werden. Der Vergleich von rezenten und paläozänen Temperaturen mit den nachgewiesenen Alkenonverhältnissen U_{37}^{k} bzw. $U_{37}^{k'}$ ergab jedoch kein korrelierbares Bild.

Die diskutierten Ergebnisse zeigen eine Zuordnung der Alkenonverhältnisse zu den Salinitätsbedingungen des Oberflächenwassers während der Alkenonsynthese.

Die Auswertung der Alkenonanalyse aus **rezentem Probenmaterial** (Oberflächensedimente, Schweb- und Sinkstoffen) ergab in der Ostsee zwei differenziert zu beschreibende Alkenonmuster : In der Westlichen Ostsee kann ein *Emilinia huxleyi* ähnliches "Marines Alkenonmuster" zusammengefaßt werden. Dieses Muster zeichnet sich durch relativ geringe Gehalte an $C_{37:4}$ Methyhlalkenonen, durch Gehalte an $C_{38:2}$ Ethyl- und Methylalkenonen und eine relativ geringe Konzentrationen an $C_{38:3}$ gegenüber $C_{38:2}$ Ethylalkenonen aus. Ab einer Oberflächensalinität von 7 PSU, d.h. vom westlichen Gotlandbecken bis zum Finnischen Meerbusen, wird das hier benannte "Ostsee Alkenonmuster" synthetisiert. Das Alkenonmuster weist einen hohen Anteil an $C_{37:4}$ Methyhlalkenonen, keine C_{38} Methylalkenone und einen relativ hohen Gehalt an $C_{38:3}$ zu $C_{38:2}$ Ethylalkenonen auf. Um den relativen Anstieg von $C_{38:3}$ Ethylalkenonen im östlichen Probenmaterial besser darzustellen, wurde ein Alkenonverhältnis wie folgt definiert:

$$U_{38Et}^{k'} = \frac{C_{38:2}Et}{C_{38:2}Et + C_{38:3}Et}$$

Das $U_{38Et}^{k'}$ Verhältnis sinkt bei einer Salinitätsabnahme des Oberflächenwassers von 30 - 4 PSU um einem Wert von 0,43 ab. Der relative Gehalt an C_{37:4} Methylalkenonen gegenüber der Summe an C₃₇ Methylalkenonen steigt bei einer Salinitätsabnahme des Oberflächenwassers von 30 - 4 PSU um 20% an. Das Fehlen der C₃₈ Methylalkenone in den Oberflächensedimenten der Ostsee ist kein Effekt der Biodegradation, da sowohl in den Schwebstoffen aus 0 und 15 m Tiefe als auch in den Sinkstoffen des Gotlandbeckens aus 140 und 230 m Tiefe keine derartigen Verbindungen nachgewiesen wurden. Die nachgewiesenen Alkenonmuster in den Oberflächenproben wurden vielmehr so im Oberflächenwasser produziert.

Die Ursache für die unterschiedlichen Alkenonmuster kann auf drei verschiedenen Prozessen beruhen: Erstens können oberhalb und unterhalb von 7,7 PSU (Bornholmbecken) zwei unterschiedliche Algengemeinschaften leben, die verschiedene Alkenonmuster und – konzentrationen synthetisieren. Zweitens könnte aufgrund der sich veränderten Lebensbedingung (Salinität, Nährstoffangebot, Strömungs- und Wetterverhältnisse) ein Wechsel in der biochemischen Alkenonproduktion stattgefunden haben. Drittens könnte das Alkenonsignal aus den Sedimenten und Schwebstoffen durch den Transport von allochthonem organischen Material aus der Nordsee in die Ostsee überlagert worden sein.

Die Auswertung der Alkenonanalyse aus **Prymnesiophyceen-Zuchtreihen** ergab folgende Erkenntnisse: Der relativ geringe Gehalt an Alkenonen im Probenmaterial der Ostsee findet eine Entsprechung in der geringen Alkenonproduktivität der untersuchten Ostsee- und Brackwasserprymnesiophyceen. Die Alkenonproduktivität ist um den Faktor 1x10⁴ (*Prymnesium patelliferum*) bis 50x10⁴ (*Pavlova lutheri*) geringer als bei der marinen Alge *Emiliania huxleyi*. Die fünf untersuchten Prymnesiophyceenarten zeigen artspezifischen Uk'37-Verhältnis. Obwohl *Prymnesium parvum, Pavlova lutheri, Pleurochrysis carterae, Chrysochromulina polylepis* und *Chrysochromulina aphelis* bei gleicher Temperatur (20°C) gezüchtet wurden, sind in jeder Art ein anderes Alkenonverhältnis nachzuweisen. An Chrysochromulina aphelis aus dem Kattegat wurde eine Temperaturkalibrierungskurve an fünf Wachstumstemperaturen (11, 14, 16, 18 und 20°C) ermittelt. Die Steigung der Ausgleichsgeraden ist um den Faktor 5 geringer als die der marinen Prymnesiophycee *Emiliania huxleyi* und eignet sich damit deutlich weniger gut zu Ermittlung von Paläowassertemperaturen. Die untersuchten Algenarten sind aufgrund ihrer geringen Alkenonproduktivität und ihres Alkenonmusters, daß sich von Muster der Oberflächenproben, Schweb- und Sinkstoffe der Ostsee unterscheidet, nicht als mögliche dominante alkenonproduzierende Arten anzusehen.

Die Untersuchung von **holozän/pleistozänen Sedimenten** aus dem Gotlandbecken auf Alkenone zeichnen Paläosalinitäten nach. Wird an der Grenze Mastogloia/Litorina ein Wechsel in der Prymnesiophyceenvergesellschaftung angenommen, so besitzt der U^{k}_{37} und der $U^{k'}_{37}$ in salzreicherem Oberflächenwasser relativ geringe Werte. Auf der Grundlage dieser Annahme lassen sich folgende Salinitätsveränderungen in der Ostseentwicklung für den $U^{k'}_{37}$ beschreiben.

Der U^{k'}₃₇ weist in den Sedimenten des Eisstausees darauf hin, daß dieser zweimal zunehmend salzreicher wurde und dann plötzlich wieder aussüßte. Die erste Phase des maximale Salzgehaltes wurde um 12000 Jahre BP (940 cm Teufe im Kastenlotkern 20048-1), am Farbwechsel des Glazialtons, erreicht. BJÖRCK (1995) bezeichnet diesen Zeitpunkt auch als "turning point" ohne jedoch konkretere Angaben zu machen. Die zweite salzreiche Phase erreichte 11250 Jahre BP Maximalwerte. Das Billingen-I Ereignis (BJÖRCK, 1995) ist zeitgleich datiert und deutet ebenfalls auf mögliche Salzgehaltsänderungen hin. Das Ende des Eisstausees wird um 10300 Jahre BP (800 cm Teufe) durch rapiden Abfall der Uk'37 Werte gekennzeichnet. Dies entspricht dem starken Salzgehaltanstieg zum Beginn des Yoldia-Stadiums. BJÖRCK (1995) beschreibt rapiden Salzgehaltwechsel zeitgleich im sogenannten Billingen-II Ereignis. Der folgende Werteverlauf des $U_{37}^{k'}$ zeichnet die in der Literatur dargestellten Salzentwicklung des Yoldia-Stadiums nach, d.h. der basale rapide Salzzufluß um 10300 Jahre BP schwächt sich im Laufe der Zeit bis zur Aussüßung um 9620 Jahre BP (687 cm Teufe) ab (BJÖRCK, 1995; STRÖMBERG, 1992; MÖRNER, 1995; SVENSON, 1991; WASTEGARD et al., 1995; SOHLENIUS, 1996; HUCKRIEDE et al., 1996). Das anschließende Ancylus-Stadium kann aufgrund der Uk₃₇ Werte, entsprechend den Angaben von HUCKRIEDE et al. (1995), in eine basale Süßwasserphase Ancylus I und eine salzreicheren Phase Ancylus II unterteilt werden. Im Ancylus I-Stadium suggeriert langsam abfallende Uk₃₇ zunehmenden Salzghalt bis zur Grenzziehung um 9300 Jahre BP (649 cm Teufe). Ab diesem Alter verweisen geringen $U_{37}^{k'}$ Werte auf salzhaltige Oberflächenwässer im Ancylus II-Stadium. Nach 8000 Jahre BP fallen die Werte erneut und wiesen somit auf einen Milieuwechsel hin. Entsprechend den Diatomeenfunden aus dem gleichen Sediment von KOHLY (1998) ist hiermit der Beginn des Mastogloia-Stadiums gekennzeichnet. Die Uk[']₃₇ Werte fallen gegenüber dem Ancylus-Stadium weiter kontinuierlich ab und suggerieren so weitere Salzzuflüsse. Ab einem Alter von 6900 Jahren BP (480 cm Teufe) steigt der U_{37}^{k} generell wieder an und ist mit dem Beginn des Litorina-Stadiums gleichzusetzten. Die Zuordnung der Uk³⁷ Werte zu älteren Entwicklungsstadien würde das Litorina- und Postlitorina-Stadium geringer salinar als das Mastogloia-Stadium und annähernd so süß wie die späte Yoldia und die jüngere Phase des Ancylus beschreiben. Aufgrund von zahlreichen Diatomeenfunden und geochemischen Untersuchungen ist die Litorina jedoch als mindestens genauso salzig wie die Mastogloia beschrieben (KOHLY, 1998; WESTMAN & SOHLENIUS, 1998; SOHLENIUS, 1998). Wird ab der Grenze Mastogloia/Litorina jedoch ein Wechsel in der Algenvergesellschaftung angenommen, dann ist der Werteverlauf ungestört der weiteren Salzentwicklung zuzuordnen. Die nun dominierenden Algen müßten bei gleicher Salinität höhere $U_{37}^{k'}$ Werte synthetisiert. Die Differenz kann um einen Wert von 0,2 angenommen werden. Das Litorina-Stadium beinhaltet basal von 6600-5000 Jahren BP (450-330 cm Teufe) vier Horizonte in denen Diatomeen aus sehr salzhaltigen Wässern beschrieben worden sind (KOHLY, 1998). Deckungsgleich fallen die Uk'37 Werte deutlich ab und weisen auf höhreren Salzgehalt hin. Nach erreichen der Maximalsalinität um 5100 Jahren BP (340 cm Teufe) zeigt der Werteverlauf verringerte Salzgehalte des späten Litorina- und Postlitorina-Stadiums an.

Als Ergebnis dieser Arbeit konnten relative Salinitätsschwankungen in rezentem und holozän/pleistozänem Probenmaterial anhand der Alkenonanalyse aufgezeigt werden. Um absolute

Salzgehalte im Ostseeraum mittels Alkenonverteilungen ermitteln zu können, müssen ortspezifische Alkenonindices entwickelt werden. Dafür müßten Prymnesiophyceenarten der Ostsee gezüchtet und auf Alkenone untersucht werden. In der Ostsee werden östlich der Belt See neben den fünf bereits untersuchten Algen weitere 15 Prymnesiophyceenarten beschrieben. Es ist jedoch nicht auszuschließen, daß weitere mögliche alkenonproduzende Arten nachzuweisen sind.

Als dominant alkenonproduzierende Prymnesiophyceenart bzw. -arten sind diejenigen anzusehen, welche eine hohe Alkenonproduktivität aufweisen und ähnliche "Ostsee-Alkenonmuster" (hoher Gehalt an C37:4 Mtehylalkenonen und C38:3 Ethylalkenonen so wie keine C38 Methylalkenone) synthetisieren, wie sie im rezenten Probenmaterial nachzuweisen sind. Nach der Bestimmung dieser Art (Arten) sollten diese bei unterschiedlichen Salinitätsgehalten und gleichbleibender optimalen Wachstumstemperatur (16 - 18°C) gezüchtet werden. Diese Züchtungsreihen ergeben Salinitätskalibrierungskurven für die Ostsee. Als Ermittlungsgrundlage für diese Kurven sollten nicht nur der U^k₃₇ und U^k₃₇ herangezogen werden, sondern vielmehr der hier definierte U^k_{38Et} und der prozentuale Anteil an C37:4 Methylalkenonen zur Summe an C37 Alkenone. Die Ergebnisse aus der Sediment- und Schwebstoffanalyse dieser Arbeit läßt starke Veränderungen in der Alkenonsynthese erwarten. Des weiteren erscheint es sinnvoll die dominant alkenonproduzierenden Art (Arten) bei unterschiedlichen Wachstumstemperaturen und gleichbleibender Salinität zu züchten. Die weiteren Salinitätsgehalten ergibt salinitätsspezifische Züchtung bei Temperaturkalibrierungskurven. Die ersten Züchtungsversuche mit Ostseeprymnesiophyceen (Chrysochromulina apheles) und die Alkenonanalyse des rezenten und holozän/pleistozänen lassen jedoch nur geringfügige Veränderung des $U^{k_{37}}$ bezüglich Probenmaterials Temperaturänderungen erwarten.

Erst der Vergleich der Alkenonsynthese bei unterschiedlichen Temperaturen und Salinitäten der dominant alkenonproduzierenden Art (Arten) kann eine Errechnung von Paläosalinitäten und/oder Paläotemperaturen des Oberflächenwassers der Ostsee ermöglichen. Auf der Grundlage der Alkenonuntersuchungen dieser Arbeit am rezenten und holozän/pleistozänen Probenmaterial ist zu erwarten, daß auf der Ermittlungsgrundlage des $U^{k'}_{37}$, U^{k}_{38Et} und des prozentualen Anteils an $C_{37:4}$ Methylalkenonen zur Summe an C_{37} Alkenone eher Paläosalinitäten als Paläotemperaturen errechnet werden können.

AGREEL H. (1976): The highest coastline in south-eastern Sweden, Boreas, 5, 143-154

- ANDRÉN E. (1999): Holocene environmental changes recorded by diatom stratigraphy in the southern Baltic Sea, Dissertation, Department of Geology and Geochemistry, Stockholm University, Nr. 302
- BRAND L. (1994): Physiological ecology of marine coccolithophores,-in: A. Winter & W. G. Siesser(Hrsg.): Coccolithophores, 256 Seiten, 39-49
- BERGLUND B.E. (1971): Littorina transgressions in Blekinge, south Sweden. A preliminary report, Geologiska Föreningens i Stockholm Förhandlingar, 93, 625-652
- BERGLUND B.E. (1979): The deglaciation of southern Sweden 13,500-10,000 years B.P., Boreas, 8, 89-118
- BERGSTEN H. & NORDBERG K. (1992): Late Weichselian marine stratigraphy of the southern Kattegat, Scandinavia: evidence for drainage of the Baltic Ice Lake between 12,700 and 10,300 years BP, Boreas, **21**, 223-252
- BJÖRK S.(1979): Late Weichselian stratigraphy of Blekings (SE Sweden) and water level changes in the Baltic Ice Lake, University of Lund, Department of Quaternary Geology, Thesis, 7, 248 Seiten
- BJÖRCK S. (1987): An answee to the Ancylus enigma ? Presentation of a working hypothesis, Geologiska Föreningens i Stockholm Förhandligar, **109**, 171-176
- BJÖRK S. & MÖLLER P. (1987): Late Weichselian environmental history in southeastern Sweden during the deglaciation of the Scandinavian Ice Sheet, Quaternary Research, 28, 1-37
- BJÖRCK S. (1995): A review of the history of the Baltic Sea, 13.0-8.0 ka BP, Quaternary International, 27, 19-40
- BOCK K.-H.(1997): Monatskarte des Salzgehaltes der Ostsee, Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe B(4°), **12**
- BODÉN P., FAIRBANKS R. G., WRIGHT J.D. & BURCKLE L.H. (1997): High-resolution stable isotope records from southwest Sweden: The drainage of the Baltic Ice Lake and Younger Dryas ice marginal oscillations, Paleoceanography, **12(1)**, 39-49
- VON BODUNGEN B., WUNSCH M. & FÜRDERER H. (1991): Sampling and analysis of suspended and sinking particles in the North Atlantic, Marine Particles : Analysis and characterization, American Geophysic Union Geophysic Monography, **63**, 47-56
- BÖHLER S. (1992): Kritisch-Punkt-Trocknung biologischer Proben in der Raster-Elektronenmikroskopie, Fachbericht der Balzers Union Aktiengesellschaft, Fürstentum Liechtenstein, 1-8
- BOON J. J., MEER V.D.; SCHYL P., DE LEEW J., SCHENK P., BURLINGAME A. (1978):
 Organic geochemical analysis of core samples from site 362 Walvis Ridge, DSDP leg
 40, in: Bolli H.M. & Ryan W. (Hrsg.): Initial reports of the Deep Sea Drilling Projekt, 40, 627-637

- BÖTTNER M.E. (1993): Die experimentelle Untersuchung Lagerstätten-relevanter Metall-Anreicherungsreaktionen aus wäßriger Lösungen unter besonderer Berücksichtigung der Bildung von Rhodochrosit (MnCO₃). Unpublished dissertation, University og Göttingen, 273 Seiten
- BÖRNGEN M., HUPFER P., OLBERG M. (1990): Occurrence and absence of strong salt influxes into the Baltic Sea, Beiträge zur Meereskunde, **61**, 11-19
- BRASSELL S.C., EGLINTON G., MARLOWE I., PFLAUMANN U., SARNTHEIN M. (1986): Molecular stratigraphy : A new tool for climatic assessment, Nature **320**,129-133
- BRASSELL S.C. (1993): Application of Biomarkers for Delineating Marine Palaeoclimatic fluctuations during the Pleistocene.- in: Macko S. & Engel M. (Hrsg.), Organic Geochemistry, 699-738
- BREDEWEG R.A., ROTHMAN L.D., PFEIFFER C.D. (1979): Chemical Reactivation of Silica, Columns. Analytical Chemistry, **51**, 2061-2063
- BRIFFA K.R., BARTHOLIN T.S., ECKSTEIN D., JONES P.D., KARLÉN W., SCHWEINGRUBER F.H., ZETTERBERG P. (1990): A 1,400-year tree-ring record of summer temperatures in Fennoscandia. - Nature 346, 434-439
- BRIFFA K.R., JONES P.D., SCHWEINGRUBER F.H., KARLÉN W., SHIYATOV S. (1995): Tree-ring variables as proxy-climate indicators: Problems with low-frequency signals -in: Jones P.D., Bradley R.S., Jouzel J. (Hrsg.): Climatic Variations and Forcing Mechanisms of the Last 2000 Years, Global Environmental Change, 41, Series I
- BRUNNBERG L. (1988): Diatoms in glacial clay in the Södertörn area. Stockholm region in MILLER U. & ROBERTSSON A.-M.: Proceedings of Nordic Diatomists Meeting, University of Stockholm, Department of Quarternary Research Report, 12, 7-9
- BUDZIKIEWICZ H. (1992): Massenspektrometrie, Dritte erweiterte Auflage, VCH-Verlags GmbH Weinheim, 179 Seiten
- COLQUHOUN D.J. & BROOKS M.J. (1987): New Evidence for Eustatic Components in Late Holocene Sea Levels – in: Rampino M.R., Sanders J.E., Newman W.S., Königsson L.K. (Hrsg.): Climate – History, Periodicity and Predictability, Van Nostrand Reinhold Company, New York, 143-156
- CONTE M.H., EGLINTON G., MADUREIRA L.A.S.(1992): Long-chain alkenones and alkyl alkenoates as paleotemperature indicators : their production, flux and early sedimentary diagenesis in the eastern North Atlantic. - in: Advances in Organic Geochemistry 1992, Organic Geochemistry, **19**, 287-298
- CONTE M.H. & EGLINTON G. (1993): Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature, Deep-Sea Research, 40, 1935-1961
- CONTE M.H., VOLKMAN J.K., EGLINTON G. (1994) : Lipid biomarkers of the Haptophyta.- 351-377, - in: Green J.C. & Leadbeater B. (Hrsg). The Haptophyte Algae, Clarendon University Press, Oxford
- CONTE M.H., EGLINTON G., MADUREIRA L.A.S. (1995): Origin and fate of organic biomarker compounds in the water column and sediments of the eastern North Atlantic, Phil. Trans. R. Soc. Lond. B, 348, 169-178

Geochimica et Cosmochemica Acta, 49, 1545-1551

- CRANWELL P.A. (1988): Lipid geochemistry of late pleistocene lacustrine sediments from Burland, Chemical Geology, **69**, 181-197
- DAHL S.O. & NESJE A.(1996): A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjokulen, central southern Norwey, The Holocene, **6**, 381-398

DANSGAARD W., JOHNSEN S.J., CLAUSEN H.B., DAHL-JENSEN D., GUNDESTRUP N.S., HAMMER C.U., HVIDBERG C.S., STEFFENSEN J.P., SVEINBJÖRNSDOTTIRA.E., JOUZEL J., BOND G. (1993): Evidence for general instability of pastclimate from a 250-kyr ice-core record, Nature, **374**, 218-220.

- DIETRICH G., KALLE K., KRAUSS, W., SEIDLER, G. (1975): Allgemeine Meereskunde, Gebrüder Borntraeger, Berlin-Stuttgart, 593 Seiten
- DONNER J.J. (1969): A profil across Fennoscandia of late Weichelian ans Flandrian shore-lines, Societas Scientarum Fennica, Commentationes Sediments Indicating Relative Sea-Level Changes. Annales Academiae Sientiarum Ser. A. **III. 134**, 13-26
- DUPLESSY J.C. (1978): Isotope Studies.- in: GRIBBIN, J. (Hrsg): Climatic Change, Cambridge University Press, Cambridge, 46-67.
- EKMAN S.(1953): Zoogeography if the sea, Sidgwick and Jackson, London, 417 Seiten
- EDLER L., HALLFORS G., NIEMI A. (1984): A preliminary check-list of the phytoplankton of the Baltic Sea, Acta Botanica Fennica, **128**, 1-26
- EPSTEIN B.L., BUCHSBAUM R., LOWENSTAM H., UREY H.C. (1953): Revised carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America, **64**, 1315
- EPSTEIN B. L., D'HONDT S., QUINN J. G., ZHANG J., HARGRAVES P. E. (1998): An effect of dissolved nutrient concentrations on alkenone-based temperature estimates, Paleoceanography, **13** (2), 122-126.
- EMEIS K.-C. & STRUCK U. (1998): Gotland Basin Experiment (GOBEX) Status Report on Investigations concerning Benthic Processes, Sediment Formation and Accumulation, Meereswissenschaftliche Berichte, 34
- EMEIS K.-C., NEUMANN T., ENDLER R., STRUCK U., KUNZENDORF H., CHRISTIANSEN C. (1998): Geochemical records of Sediments in the Eastern Gotland Basin – products of sediment dynamics in a not-so-stagnent anoxic basin, Applied Geochemistry, 13, 349-358
- EMEIS K.-C., STRUCK U., KOHLY A., VOB M., HAGEN E. (in Vorbereitung): Salinity changes in the Central Baltic Sea (NW Europa) over the last 7000 Years

EMILIANI C. (1955): Pleistocene temperatures.- Journ. Geol., 63, 538-578.

EMELYANOW E.M. (1988): Biogenic sedimentation in the Baltic Sea and its consequences. – Winterhalter B. (Hrsg): The Baltic Sea. Geological Survey of Finland, 6, 127-133

- EPSTEIN S.R., BUCHSBAUM R., LOWENSTAM H.A., UREY H.C. (1953); Revised carbonate-water isotopic temperature scale. Geol. Soc. Amer. Bull., 62, 417-426
- EREZ J. & LUZ B. (1983): Experimental paleo-temperature equation for planktonic foraminifera.-Geochim. Cosmochim. Acta, 47, 1025-1031
- ERONEN M., RISTANIEMI O., LANGE D. (1990): Analysis of a sediment core from the Mecklenburg Bay, Special Paper, 6, 11-18
- ESCHBACH W., NOGLER P., SCHÄR E., SCHWEINGRUBER F.H. (1995): Technical advances in radiodensitometrical determination of wood density. Holzforschung, 98
- FAEGRI K. & IVERSEN J. (1989): Pollen Analysis in: Feagri K., Kaland P.E., Krzywinski K. (Hrsg.): Textbook of Pollen Analysis, 4. Ausgabe, 278 Seiten
- FLÜGGE A. (1997): Jahreszeitliche Variabilität von ungesättigten C₃₇ Methylketonen (Alkenone) in Sinkstoffallenmaterial der Norwegischen See und deren Abbildung in Oberflächensedimenten. Bericht aus dem Sonderforschungsbereich 313, 69, Christian-Albrechts-Universität zu Kiel
- FIRBAS F. (1949): Spät- und nacheiszeitliche Waltgeschichte Mitteleuropas nördlich der Alpen 1.Band: Allgemeine Waldgeschichte
- FIRBAS F. (1952): Spät- und nacheiszeitliche Waltgeschichte Mitteleuropas nördlich der Alpen - 2.Band: Waldgeschichte der einzelnen Landschaften

FRITTS H.C.(1976): Tree Rings and Climate, 456 Seiten

- FRÖHLICH K., GRABCZAK J., ROZANSKI K. (1988): Deuterium and oxygen-18 in the Baltic Sea. Chemical Geology, 72, 77-83
- FONSELIUS S.H. (1969): Hydrography of the Baltic deep basins III, Fishery Board of Sweden, Series Hydrography, 23, 1-97
- FONTUGNE M.R., & DUPLESSY J.-C. (1981): Organic isotopic fractionation by marine plankton in the temperature range-1 to 31°C.- Oceanol. Acta, 4, 85-90
- GINGELE F.X. & LEIPE T. (1997): Clay mineral assemblages in the western Baltic Sea: recent distribution and relation to sedimentary units, Marine Geology, 140, 97-115
- GOTTWALD W. (1993): Chromatographische Verfahren, in: Gruber U. & Klein W. (Hrsg), RP-HPLC für Anwender, 1-7
- GRIGELIS A., REPECKA M., SPIRIDONOV (Hrsg.) (1990-1930 a): Geological map of the Quaternary deposits of the Baltic Sea bottom and adjacent land areas, 1 : 500 000, Lithuanian Geological Institute u.a.
- GRIGELIS A. (Hrsg.) (1990-1930 b): Geological map of the Baltic Sea bottom and adjacent land areas, 1 : 500 000, Lithuanian Geological Institute u.a.
- GUDELIS V. (1979): Lithunia in Gudelis V. & Königsson L.-K.: The Quaternary Hisrory of the Baltic, 159-173, Acta Universitation Upsaliensis, Symposia Universitatis Upsaliensis Annum Quingentesimum Celebrantis 1, Upsala

- GUILLARD R. (1975): Culture of phytoplankton for feeding marine invertebrates, in: Smith W.L. & Chanley M.H. (Hrsg.) : Culture of Marine Invertibrate Animals, 29-60
- HÄLLFORDS G. & THOMSON H.A. (1979): Future observations on Chrysochromulina birgeri (Prymnesiophyceae) from the Tvärminne archipelago, SW coast of Finland, Acta Botanica Fennica, 110, 41-46
- HARFF J., LEMKE W., TAUBER F., EMELYANOV E.M. (1995): Geologische Kartierung der Ostsee, Geowissenschaften, 11, 442-447
- TEN HAVEN H.L., BAAS M., KROOT M., DE LEEUW J.W., SCHENCK P.A., EBBING J. (1987): Late Quaternary Mediterranean sapropels III: Assessment of source of input and paleotemperature as derived from biological markers, Geochimica et Cosmochimica Acta, 51, 803-810
- HESSE M., MEIER H., ZEEH B. (1991): Spektroskopische Methoden in der organischen Chemie, Thieme Verlag, 267 Seiten
- HELA I. (1944): Über die Schwankungen des Wasserstandes in der Ostsee (mit besonderer Berücksichtigung des Wasseraustausches durch die dänischen Gewässer), Merentukimuslatoksen Julkaisu Havsforskningsinstitutets Skrift, **134**, 108 Seiten
- HELCOM, (1986a): Water Balance of the Baltic Sea. International Summary Report, Helsinki, Baltic Sea Environment Proceedings, 16
- HELCOM, (1986b): First Periodic Assessment of the State of the Marine Environment of the Baltic Sea: 1980-1985; general conclusion.- Helsinki Commission, Baltic Sea Environment Proceedings, **17A**, **B**
- HELCOM, (1990):Second Periodic Assessment of the State of the Marine Environment of the Baltic Sea: 1984-1988; general conclusion.- Helsinki Commission, Baltic Sea Environment Proceedings, **35A**, **B**
- HELCOM, (1996):Third Periodic Assessment of the State of the Marine Environment of the Baltic Sea: 1989-1993; general conclusion.- Helsinki Commission, Baltic Sea Environment Proceedings, 64A, B
- VAN DEN HOEK C., MANN D.G., JAHNS H.M. (1995): Algae An introduction to phycology, University Press, Cambridge, 623 Seiten
- HUCKRIEDE H., CLASEN S., MEISCHNER D. (1996): Hydrographic and climatic records in holocene sediments of the central Baltic Sea, Baltica, 9, 76-91
- HÜBSCHMANN H.-J., (1996) : Handbuch der GC/MS. Grundlagen und Anwendung, VCH Verlagsgesellschaft mbH, Weinheim, 345 Seiten
- HUPFER K. (1997): Klimaänderungen und –wirkungen im Ostseeraum, Greifswalder Geographische Arbeiten, 15, 36-55
- IGNATIUS H., AXBERG S., NIEMISTÖ L., WINTERHALTER B. (1981): Quarternary geology of the Baltic Sea,- in Voipio, A. (Hrsg.): The Baltic Sea, Elsevier Oceanography Series, **30**, 418 Seiten
- JACOBSON T. S. (1980): Sea water exchange of the Baltic Measurements and methods The Belt Project, National Agency of Environmental Protection, Kopenhagen, 106 Seiten

JENSEN J.B. (1992): Late Pleistozene and Holocene depositional evolution in the shallow water near the Island of Moen, SE Denmark, Ph.D. Thesis, Geological Survey of Denmark, Kopenhagen, 160 Seiten

JOHNSEN S.J.; CLAUSEN H.B., DANSGAARD W., FUHRER K., GUNDESTRUP N., HAMMER C.U., IVERSEN P., JOUZEL J., STAUFFER B., J.P. STEFFENSEN J.P. (1992):Irregular glacial interstadials recorded in a new Greenland ice core, Nature, **359**, 311-313.

KALEIS M.V. (1976): Present hydrographic conditions in the Baltic, Ambio Special Report, 4,37-44

- KELLOGG T.B. (1984): Late-Glacial Holocene high-frequency climatic changes in deep-sea cores from Denmark Strait – in: Mörner N.-A. & Katlen W. (Hrsg.): Climatic Changes on a Yearly to Millenial Basis, Reidel Publishing Company, Boston, 123-133
- KELL V. & NOACK B. (1991): Fischsterben durch *Prymnesium saltans* Massart im Kleinen Jasmunder Bodden (Rügen) im April 1990, Journal Appliced Ichthyology, 7, 187-192
- KESSEL H. & RAUKAS A. (1979): The Quaternary history of the Baltic, Acta Universitatis Upsaliensis, Symposia Universitatis Upsaliensis Annum Quingentesimum Celebrantis, 1, 127-146
- KLIEWE H. & JANKE W. (1982): Der holozäne Wasserspiegel der Ostsee im nördlichen Küstengebiet der DDR, Petermanns Geographische Mitteilungen, **126**, 65-74
- KLIEWE H. & JANKE W. (1991): Holozäner Küstenausgleich im südlichen Ostseegebiet bei besonderer Berücksichtigung der Boddenausgleichsküste Vorpommerns, Petermanns Geographische Mitteilungen, 135, 1-14
- KOHLY A. (1998): Absolute and relative abundances of siliceous plankton organisms in the Gotland Sea- in EMEIS K.-C. & STRUCK U.: Gotland basin Experiment (GOBEX) Status Report on Investigations concerning Bentic Processes, Sediment Formation and Accumulation, Meereswissenschaftliche Berichte, 34, 116-121
- KOHLY A., STRUCK U., EMEIS K.-C. & SCHAFER P.(in Vorbereitung) : Combined micropaleontological, geochemical and biochemical investigations on a long sediment core from the Gotland Basin, Baltic Sea
- KOLP O. (1986): Entwicklungsphasen des Ancylus-Sees, Petermanns Geographische Mitteilungen, 130, 79-94
- KÖNIGSON L.-K. & POSSNET G. (1988): Ancylus faunas studied by accelerator ¹⁴C dating of signal small shells – in WINTERHALTER B.: The Baltic Sea, Geological Survey of Finnland, Special Paper, 6, 137-145
- KÖSTER R. & LEMKE W. (1995): Morphologie und Bodenbedeckung, in Rheinheimer, G. (Hrsg.): Meereskunde des Ostsee, 2.Auflage, Springer Verlag, Berlin, 123-140
- KÖSTER R. & SCHWARZER K. (1995): Geologie und Geographie.- in Rheinheimer (Hrsg.): Meereskunde der Ostsee, 2. Auflage, Springer Verlag, Berlin, 34-56
- KOWALCZYK K., WITKOWSKI A., STRUCK U. (1999) : Environmental changes in the Gotland Deep during the Late-glazial and Holocene as inferred from siliceous Mikrofossils (mainly Diatoms) analyses, Quarternary Studies in Poland, **Special Issue 1999**, 135-145

- LANGE D. (1984): Geologische Untersuchungen an spätglazialen und holozänen Sedimenten der Lübecker und Mecklenburger Bucht, Unveröffentlichte Dissertation (B), Institut für Meereskunde Warnemünde, 166 Seiten
- LANGE G. (1994): Quartäre Vegetationsgeschichte Europas Methoden und Ergebnisse, Gustav Fischer Verlag, 462 Seiten
- LASS H.-U. (1988): A theoretical study of the barotropic water exchange between the North Sea and the Baltic and the sea level variations of the Baltic, Beitrag zur Meereskunde, **58**, 19-33
- LASS H.-U. & MATTHÄUS W. (1996): On temporal wind variations forcing salt water inflows into the Baltic Sea, Tellus, **48a**, 663-671.
- DE LEEUW J., MEER V., RIJPSTRA F., SCHENK P. (1980): On the occurence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments, in: Douglas A. & Maxwell J. (Hrsg.): Advances in Organic Geochemistry, **12**, 211-217
- LENZ W. (1971): Monatskarten der Temperatur der Ostsee, Deutsche Hydrographische Zeitschrift, Erg.-H. B: 11, 148 Seiten
- LEMKE W.(1998): Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression. Meereswissenschaftliche Berichte, **31**
- LEPPÄNEN J.-M., RANTAJÄRVI E., MAUNUMAA M., LARINMAA M., PAJALA J. (1994): Unattended algal monitoring system – a high resolution method for detection of phytoplankton blooms in the Baltic Sea, Oceans94 Proceedings, IEEE, New York, 461-463
- LEPPÄNEN J-M., HÄLLFORS S., RANTAJÄRVI E. (1994 bis 1998): <u>Alg@line</u> Web Site : http://www.fimr.fi/algaline.htm; Finnish Institute of Marine Research, BP Box 33 FIN-00931 Helsinki, e-mail : algaline@fimr.fi
- LI J., PHILIP R.P., PU F., ALLEN J. (1996): Long-chain alkenones in Qinghai Lake Sediments, Geochimica et Cosmochimica Acta, **60**, 235-241
- MADUREIRA L.A.S. (1994): Lipids in Recent sediments of the Eastern North Atlantic, Dissertation, University of Bristol, 287 Seiten
- MADUREIRA L.A.S., CONTE M.H., EGLINTON G. (1995): Early diagenesis of lipid biomarker compounds in North Atlantic sediments, Paleoceanography, **10**, 627-642
- MARLOWE I.T., GREEN J., NEAL A., BRASSELL S.C., EGLINTON G., COURSE P. (1984): Long chain (n-C₃₇-C₃₉) alkenones in Prymnesiophyceae, Distribution of alkenones and other lipids and taxonomic significance, Br. Phycol. Jornal, **19**, 203-216
- MATTHÄUS W. (1986): Charakteristische Eigenschaften von Stagnationsperioden im Tiefenwasser der Ostsee. Beiträge zur Meereskunde, **55**, 39-53
- MATTHÄUS W. & FRANCKE H. (1990): The water volume penetrating into the Baltic Sea in connection with major Baltic inflows, Gerlands Beitrag Geophysik, **99**, 377-386

- MATTHÄUS W. & SCHINKE H. (1994): Mean atmospheric circulation patterns associated with major Baltic inflows, Deutsche Hydrographische Zeitschrift, **46** (**4**), 321-339
- MATTHÄUS W. (1995): Natural variability and human impacts reflected in long-term changes in the Baltic Deep water conditions - A Brief Review, Deutsche Hydrographische Zeitschrift, 47 (1), 47-65
- MCINTYRE A. (1967): Coccoliths as paleoclimatic indicators of Pleistocene glaciation, Science, **158**, 1314-1317.
- MENZEL D., SCHÖNER A., EMEIS K.C., LOCHTE K. (1999) : Alkenone production by selected prymnesiophyte species of the Baltic Sea grown in cultures, Abstract, EUG 10 conference-Strasbourg, 200
- MENZEL D., SCHÖNER A., LOCHTE K., EMEIS K.-C. (in Vorbereitung): Alkenone patterns of selected prymnesiophyte species from the Baltic Sea in batch culture, Organic Geochemistry
- MEYER-HARMS B. (1996): Ernährungsstrategie calanoider Copepoden in zwei unterschiedlich trophierten Seegebieten der Ostsee (Pommernbucht, Gotlandsee), Meereswissenschaftliche Berichte, **13**
- MILLER U. & ROBERTSSON A.-M. (1979): Biostratigraphical investigations in the Anundsjö Region, Angermanland, Northern Sweden. Early Norrland, 12, 1-76

MOOR P.D., WEBB J.A., COLLINSON M.E. (1991): Pollen Analysis, 2. Ausgabe, 156 Seiten

- MÖRNER N.-A. (1980): The northwest European "sea-level laboratory" and regional Holocene eustasy. Paleogeography, Paleoclimatology, Paleoecology, **29**, 281-300
- MÖRNER N.-A. (1980b): A 10,700 years paleotemperatur record from Gotland and Pleistocene/ Holocene boundary events in Sweden, Boreas, 9, 283-287
- MUNSELL P. (1975): Book of Color. Munsell Color. Macbeth Color Communications Chesire, England
- NEHRING D. & FRANCKE E. (1972): The stagnation in the deeps of the Baltic during 1971 and the influx of high saline water in March, 1972. Proc. 8th Conference Baltic Oceanographers, **15**, 154-178
- NEHRING D. (1990): Die hydrographischen-chemischen Bedingungen in der westlichen und zentralen Ostsee von 1979 bis 1988 ein Vergleich. Meereswissenschaftliche Berichte, 2, 2-45
- NEHRING D., MATTHÄUS W., LASS H.-U., NAUSCH G. (1994): Die hydrographischchemischen Bedingungen in der westlichen und zentralen Ostsee im Jahre 1993, Deutsche Hydrographische Zeitung, **46**, 151-162
- NEUMANN T., CHRISTIANSEN C., CLASEN S., EMEIS K.-C., KUNZENDORF H. (1995): Geochemical records of salt-water inflows into the deep basins of the Baltic Sea, Continental Shelf Research, 17, 95-115.
- NESJE A. & DAHL S.O. (1993): Lateglazial and Holocene glacier fluctuations and climate variations in western Norwey: A review, Quarternary Science Reviews, **12**, 255-261

- NIELSEN P.E. (Hrsg.) (1992): Bottom sediments around Denmark and Western Sweden, 1: 500 000, National Forest and Nature Agency, Geological Survey of Denmark, Geological Survey of Sweden
- OVERBECK F. (1975): Botanisch-geologische Moorkunde, Karl Wachholtz Verlag, Neumünster, 719 Seiten
- OVERPECK J.T. (1987): Pollen time series and Holocene climate variability of the Midwest United States – in: Berger W.H. & Labeyrie L.D. (Hrsg.): Abrupt Climatic Change, Reidel Publishing Company, Bosten, 137-143
- PAHLSSON I. & ALM K.B. (1985): Pollen-analytical Studies of the Cores 14103-3 and 14102-1 from the Western Baltic, - in Borg G.C.: Palaeo-Ecology Reflected in Physical and Chemical Proporties of Three Baltic Cores, STRIAE, 23, 74-82

PANKOW H. (1990): Ostsee-Algenflora, Gustav-Fischer-Verlag, Jena, 648 Seiten

- PARKERS R.J., MAXWELL J.R., EVERSHES R.P., RIELEY G. (1996): Bacterial controls on the molecular fossil record, ABI Newsletter 3, 77-79
- PASSOW U. (1991): Species-specific sedimentation and sinking velocities of diatoms, Marine Biology, **108**, 449-455
- PRAHL F.G. & WAKEHAM S.G. (1987): Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature, **330**, 367-369
- PRAHL F.G., MUEHLHAUSEN L.A., ZAHNLE D.L. (1988): Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochimica et Cosmochimica Acta, 52, 2303-2310
- PRAHL F.G. & MUEHLHAUSEN L. A. (1989): Lipid Biomarkers as Geochemical Tools for Paleoceanographic Study. - in : Berger W.H., Smetacek V.S., Wefer G.: Productivity of the Ocean: Present and Past, 271-289
- PRAHL F.G., MUEHLHAUSEN L.A., LYLE M. (1989a): An organic geochemical assessment of oceanographic conditions at MANOP Site C over the past 26,000 years, Paleoceanography, 4, 495-510
- PRAHL F.G., DE LANGE G.J., LYLE M., SPARROW M.A. (1989b): Post-depositional stability of long-chain alkenones under contrasting redox conditions, Nature, **341**, 434-437
- PRAHL F.G., PISIAS N., SPARROW M., SABIN A. (1995): Assessment of sea-surface temperature at 42°N in the California Current over the last 30,000 years, Paleoceanography, 10, 763-775
- RECHKA J.A. & MAXWELL J.R. (1988a): Characterisation of alkenone temperature indicators in sediments and organisms, - in: Advances in Organic Geochemistry 1988, Organic Geochemistry, 13, 727-734
- RECHKA J.A. & MAXWELL J.R. (1988b): Unusual long chain ketones of algal origin, Tet. Letters, 29, 259-260
- RHEINHEIMER, G. (Hrsg.) (1995): Meereskunde der Ostsee, 2.Auflage, Springer Verlag, Berlin, 338 Seiten

- RISBERG J., MILLER U., BRUNNBERG L. (1991): Deglation, Holocene shore displacement and coastal settlements in Eastern Svealand, Sweden, Quaternary International, 9, 33-37
- ROSELL-MELÉ A., EGLINTON G., PFLAUMANN U., SARNTHEIN M. (1995): Atlantic core-top calibration of the U^k₃₇ index as a sea-surface palaeotemperature indicator, Geochimica et Cosmochimica Acta, **59**, 3099-3107
- ROSELL-MELÉ A, WEINELT M., KOC N., JANSEN E., SARNTHEIN M. (1998): Variability of the Arctic front during the last climatic cycle: application of a novel molecular proxy, Terra Nova, 10, 86-89.
- ROSTEK F., RUHLAND G., BASSINOT F., MUELLER P.J., LABEYRIE L.D., LANCELOT Y., BARD E. (1993): Reconstructing sea surface temperature and salinity using δ^{18} O and alkenone records, Nature, **364**, 319-321
- ROSTEK F., BARD E., BEAUFORT L., SONZOGNI C., GANSSEN G. (1997): Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep-Sea Research, 44, 1461-1480
- SAARNISTO M., GRÖNLUND T., EKMAN I. (1995): Lateglacial of Lake Onega contribution to the history of the eastern Baltic Basin, Quaternary International, 27, 111-120

SACHS L. (1992): Angewandte Statistik, 7. Auflage, Springer-Verlag, 654 Seiten

- SCHÖNER A., MENZEL D., SCHULZ H.M., EMEIS K. C. (1998) : Long-chain alkenones in Holocene Sediments of the Baltic Sea – A Status Report, - in: EMEIS K.-C., & STRUCK U.: Gotland Basin Experiment (GOBEX) - Status Report on Investigations concerning Benthic Processes, Sediment Formation and Accumulation, Meereswissenschaftliche Berichte, 34, 122-124
- SCHÖNER A., MENZEL D., EMEIS K.C. (1999) : Long-chain alkenones in surface and holocene sediments of the Baltic Sea, Abstract, EUG 10 conference-Strasbourg, 200
- SCHULZ H.M., SCHÖNER A., EMEIS K.C., ROSELL-MELÉ A., MANGELSDORF K., RULLKÖTTER J. (1997) : Long-chain alkenones in Holocene Sediments of the Baltic Sea, 18th International Meeting on Organic Geochemistry, 279-280
- SCHULZ H.M., SCHÖNER A., EMEIS K.C. (2000) : Long-chain alkenones in the Baltic Sea the ocean-freshwater transition, Geochimica et Cosmochimica Acta, 64/3, 469-477

SCHWEINGRUBER F.H. (1989): Tree Rings, 324 Seiten

- SCHWEINGRUBER F.H. & BRIFFA K.R. (1995): Tree-ring Density Network for Climate Reconstruction -in : Jones P.D., Bradley R.S., Jouzel J. (Hrsg.): Climatic Variations and Forcing Mechanisms of the Last 2000 Years, Global Environmental Change, 41, Series I
- SHACKLETON N.J. (1982): The deep-sea sediment record of climate variability.- Prog. Oceanog. 11, 199-218

- SIKES E. L., FARRINGTON J.W., KEIGWIN L.D. (1991): Use of the alkenone unsaturation ratio U^k₃₇ to determine past sea surface temperature: core-top SST calibrations and methodology considerations, Earth Planet. Sci. Letter, **104**, 36-47
- SIKES E. L. & VOLKMAN J.K. (1993): Calibration of alkenone unsaturation ratios (U^k₃₇) for paleotemperature estimation in cold polar waters, Geochimica et Cosmochimica Acta, 57, 1883-1889
- SIKES E. L., VOLKMAN J.K., ROBERTSON L.G., PICHON J.-J. (1997): Alkenones and alkenes in surface waters and sediments of the Southern Ocean: Implications for paleotemperature estimation in polar regions, Geochimica et Cosmochimica Acta, 1, 1495-1505
- SJÖBERG L.E., GEORGALA D., RICKARD D.T. (1984): Origin of interstitial water composition in postglacial clays (northeastern Sweden), Chemical Geology, **42**, 147-158
- SNOEIJS P. (1993): Intercalibration and distribution of diatom species in the Baltic Sea, Band 1, The Baltic marine biologists publication, 16a, 1-129
- SNYDER L.R.& KIRKLAND J.J. (1981): Introduction to Modern Liquid Chromatography, John Wiley & Sons., UK, 345 Seiten
- SOHLENIUS G., STERNBECK J., ANDREN E., WESTMAN P. (1996): Holocene history of the Baltic Sea as record in a sediment core from the Gotland Deep, Marine Geology, 134, 183-201
- SOHLENIUS G. (1996): The history of the Baltic proper since the Late Weichselian deglaciation as record in sediments, Quaternaria Stockholm University, Ser.A., 3
- SOHLENIUS G., EMEIS K.-C., ANDREN E., ANDREN T., KOHLY A. (in Vorbereitung) : Development of anoxia during the Holocene fresh brackish water transition in the Baltic Sea
- STRÖMBERG B. (1992): The final stage of the Baltic Ice Lake in ROBERTSSON A.-M., RINGBERG B., MILLER U., BRUNNBERG L.: Late Quaternernay statigraphy, glacial morphology and environmental changes, Seriges Geologiska Undersökning, Ca 81, 347-354

SUESS E. (1986): Biomarkers for arcient climates, Nature, 320, 107-108

STUIVER M., REIMER P.J., BARD E., BECK J.W., BURR G.S., HUGHEN K.A., KROMER B., MCCORMAC F.G., PLICHT V/D J., SPURK M. (1998) : INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal. a BP, Radiocarbon, 40, 1041-1083

- SVENSON N.-O. (1989): Late Weichselian and Early Holocene shore displacemement in the central Baltic, based on stratigraphical and morphological records from eastern Smaland and Gotland, Sweden, Lindqua Thesis, 25, 195 Seiten
- SVENSSON N.-O. (1991): Late Weichselian and Early Holocene shore displacement in the central Baltic Sea, Quaternary International, 9, 7-26
- TAPPAN H. (1980): The Paleobiology of Plant Protists, W.H.Freeman and Company, U.S.A., 803 Seiten

- TEECE M.A., MAXWELL J.R., GETLIFF J.M., PARKES R.J., BRIGGS D.E., LEFTLEY J.W. (1994):
 Laboratory degradation of lipids of the marine prymnesiophyte *Emiliania huxleyi* and significance studies in: Eglinton G. & Kay R.L. (Hrsg.): Biomolecular paleontology:
 Lyell Meeting Volume, Biomolecular Palaeontology Special Topic Special Publication, NERC Special Puplication, 94/1, 5-8
- TERS M. (1987): Variation in Holocene Sea Level on the French Atlantic Coast and Their Climatic Significance – in: Rampino M. R., Sanders J.E., Newman W.S., Könogsson L.K. (Hrsg.): Climate – History, Periodicity and Predictability, Van Nostrand Reinhold Company, New York, 204-237
- THIEL V., JENISCH A., LANDMANN G., REIMER A., MICHAELIS W. (1997): Unusual distributions of long-chain alkenenones and tetrahymanol from the highly alkaine Lake Van, Turkey, Geochimica et Cosmochimica Acta, 61, 2053-2064
- THOMSEN H.A. (1979) : Electron microscopical observations on brackish water nannoplankton from the Tvärminne arae, SW coast of Finland; Acta Botanica Fennica, **110**, 11-37
- THOMSEN C. (1993): Verfolgung pelagischer Prozesse mit Hilfe von biochemischen Komponenten am Beispiel der Alkenone (C_{37:2}, C_{37:3}), Bericht des Sonderforschungsbereich 313: Veränderung der Umwelt - der nördliche Atlantik, **43**, Kiel
- TIKKANEN T.& WILLÉN T. (1992) : Växtplanktonflora, Naturvårdsverket, 2000 AB, Eskiltuna, 213 Seiten
- UREY H.C. (1947): The thermodynamic properties of isotopic substances.- Journal of the Chemical Society 1947, 562-581.
- VILLANUEVA J.& GRIMALT T.C. (1996): Pitfalls in the chromatographic determination of the alkenone U^k₃₇ index for paleotemperature estimation, Journal of Chromatography, **143**, 285-291

VOIPIO, A., 1981: The Baltic Sea, Elsevier Oceanography Series, 30, 418 S.

- VOLKMAN J.K., EGLINTON G., CORNER E., FORSBERG T. (1980): Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi, Phytochemistry, **19**, 2619-2622
- VOLKMAN J.K. & SARGENT J. (1980): Novel unsaturated straight-chain C₃₇-C₃₉ methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi, - in: Advances in Organic Geochemistry 1979, Physics and Chemistry of Earth, **12**, 219-227
- VOLKMAN J.K. (1988): Biological marker compounds as indicators of the depositional environments of petroleum source rocks. In: Lacustrine Petroleum Source Rocks, Geological Society Publication, 40, 103-122
- VOLKMAN J. K., BURTON H. R., EVERITT D. A., ALLEN D. I. (1988): Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica, Hydrobiologia 165, 41-57.
- VOLKMAN J.K., BARRETT S., BLACKBURN S., SIKES E. (1995): Alkenones in Gephyrocapsa oceanica : Implications for studies of paleoclimate, Geochimica et Cosmochimica Acta, 59, 513-520

WALTER H. & STRACKA H. (1970): Arealkunde, Reihe: Einführung in die Phytologie Bd III-2

- WASMUND N., ALHEIT J., POLLENE F., SIEGEL H., ZETTLER M.L. (1998): Ergebnisse des Biologischen Monitorings der Ostsee im Jahre 1997 im Vergleich mit bisherigen Untersuchungen, Meereswissenschaftliche Berichte, Institut für Ostseeforschung, 32
- WASTEGÅRD S., ANDRÉN T., SOHLENIUS G., SANDGREN P. (1995): Different phase of the Yoldia Sea in the north-western Baltic Proper, Quarternary International, 27, 121-129
- WATTENBERG H. (1941): Über die Grenzen zwischen Nord- und Ostseewasser, Annalen der Hydrographie und maritimen Meteorologie, **69**, 265-279
- WATTENBERG H. (1949): Entwurf einer natürlichen Einteilung der Ostsee, Kieler Meeresforschungen, 6, 10-15
- WESTMAN P. & SOHLENIUS G. (1998): Diatom Stratigraphy in five off-shore sediment cores from northwestern Baltic proper implying large scale circulation changes during the last 8500 years, Paleolimnology
- WESTMAN P.(1998): Salinity and trophic changes in the north-western Baltic Sea during the last 8500 years as indicated by microfossils and chemical parameter in sediments, Quaternaria Stockholm University, Ser.A., 5
- WINTERHALTER B., FLORÉN T., IGNATIUS H., AXBERG S., NIEMISTÖ L. (1981): Geology of the Baltic Sea. - in: Voipio A. (Hrsg.), The Baltic Sea, Elsevier Oceanography Series, 30, 1-121
- WINTERHALTER B. (1992):Late-Quaternary stratigraphy of Baltic Sea basins a review. Bulletin of the Geological Society of Finland, 64, 189-194
- WÜBBER C. & KRAUSS W. (1979): The two-dimensional seiches of the Baltic Sea, Oceanol. Acta, 2, 435-446
- WYRTKI K. (1954): Die Dynamik der Wasserbewegungen im Fehmarnbelt II, Kieler Meeresforschungen, 10, 126-181

7. Danksagung

Herrn Prof. Kay-Christian Emeis danke ich für die gute und großzügige Betreuung dieser Arbeit. Seine wissenschaftlichen Erfahrungen und sein Interesse am Fortgang der Arbeit waren mir eine unschätzbare Hilfe. Bei Dr. Hans-Martin Schulz und Dr. Anja Miltner bedanke ich mich für die stete Diskussionsbereitschaft und Kritiken.

Dr. Arnim Flügge und Dr. Thomas Blanz danke ich für viele praktische Tips im analytischen Arbeitsteil. Ohne Dr. Malte Elbrächter, Dr. Claudia Thomsen und Diplom Biologin Diana Menzel wäre die Zucht von Prymnesiophyceen nicht möglich gewesen.

Hier danke ich auch Frau Prof. Karin Lochte für die Betreuung der Diplomarbeit von Diana Menzel und die Möglichkeit, die Laborausstattung der Sektion Biologie zu nutzen. Dr. Norbert Wasmud danke ich für seine stete Bereitschaft Fragen zu beantworten und dafür, daß er mir ermöglichte als zusätzlicher wissenschaftlicher Passagier an der Fahrt 40/98/16 teilzunehmen. Mein besonderer Dank gilt der Besatzung der F/S Alexander von Humboldt und der F/S Professor Albrecht Penck. In der Sektion Meereschemie möchte ich mich bei Dr. Regina Bruhn, Dr. Gesine Witt und Astrid Lerz bedanken.

In der Sektion Mariner Geologie danke ich dem Laborteam Reinhild Rosenberg, Susanne Lage, Dagmar Benesch, Jutta Christoffer und Petra Schäning für ihre Unterstützung und Freundschaft. Andreas Bliesner, Nils Wagner und Marion Sussujew danke ich für die Aktualisierung meiner Computer. Gisela Radloff danke ich für die Beantwortung meiner Fragen zur "Verwaltung" und für den sekretarischen Kontakt auch über die Zeit des Arbeitsvertrages hinaus. - Eigentlich habe ich die gesamte Sektion als ein Team erlebt, in dem es ganz selbstverständlich ist Fragen zu stellen und Probleme zu lösen.- doch, das Institut für Ostseeforschung hat eine wirklich gute "Infrastruktur": Schiffe, Werkstätten, Bibliothek, Verwaltung und Sektionen.

Diese Arbeit wurde als eine hauseigene Doktorantenstelle am Institut für Ostseeforschung Warnemünde an der Universität Rostock und Greifswald finanziert.

Schließlich möchte ich noch meiner Familie für Ihre Unterstützung danken.

8. Anhang

8.1 Verwendete Standardsubstanzen, Chemikalien und Gase zur Alkenonanalyse

Wiederfindungsstandard :

10-Nonadecanon¹

Quantitativer Externer Standard :

 5α -Cholestan²

Alkenonstandard :

 $C_{37:2}$ (Heptatriaconta-15E,22E-dien-2-on)³

 $C_{37:3}$ (Heptatriaconta-8E,15E,22E-trien-2-on)³

ODP-Standard (Alkenone aus Mittelmeersedimenten)

Chemikalien:

Aceton, reinst⁴

Dichlormethan, reinst⁵

n-Hexan, reinst⁴

KOH, p.a.²

Methanol, reinst⁶

Mucasol⁷

Neodisher N⁸

Gase :

Helium 4.0⁹ Preßluft⁹ Stickstoff 5.0⁹ Wasserstoff 5.0⁹

1) Aldrich-Chemikalien, Steinheim (BRD)

2) Fluka Feinchemikalien GmbH, Neu-Ulm (BRD)

3) Arbeitsgruppe Prof. G. Eglington, Bristol (UK)

4) Acros, Schwerte (BRD)

5) Merck, Darmstadt (BRD)

6) LAB-SCAN Ldd, Dublin (IRL)

7) Merz, Neu-Ulm (BRD)

8) Chemische Fabrik Dr. Weigert GmbH & Co (BRD)

9) AGA, STN-Sanitärtechnik GmbH, Neudeck (BRD)

8.2 Verwendete Geräte zur Alkenonanalyse

Destillation :

ILUDEST-Micropure ILUDEST GmbH, Karlstadt (BRD)

Probenaufbereitung :

Gefriertrocknung : Christ Alpha 1-4 Martin Christ GmbH, Osterode (BRD)

Trockenschrank : Typ T12 Heraeus, Osterode (BRD)

Extraktion :

Ultraschallstab : Labsonic 2000U Braun, Melsungen (BRD)

Zentrifuge : Megafuge 1.0 Heraeus, Osterode (BRD)

ASE:

Accelerated Solvent Extraction 200 Dionex, Idstein (BRD)

HPLC:

Pumpe :

HPLC-Pumpe L-7360 Merck, Darmstadt (BRD)

Injektor :

Modell 7125 mit 200 µl Probenschleife Rheodyne, Cotati , CA (USA)

Trennsäule :

Silicagel LiChrosphere-Säule Si 100, 5µm Merck, Darmstadt (BRD)

Fraktionssammler : Typ L 7650 Merck, Darmstadt (BRD)

Rotationsverdampfer :

Rotavapor Typ R-114; Waterbath Typ B-480 Büchi Labor Technik AG, Flawil (CH)

Gaschromatographie :

Gaschromatographen : GC 8000 Top, CE-Instruments Fisons Instruments (jetzt ThermoQuest), Egelsbach (BRD)

Vorsäule :

Retation gap, Ultra – 1, (1-6 m x 0,32 mm) Hewlett-Packard, Waldbronn (BRD)

Hauptsäule :

DB 5 HT (30 m x 0,32 mm x 0,23 μm) J & W Scientific, Folsom, CA (USA)

Trägergas :

Helium, 2 ml/min (110 kPa) Wasserstoff, 2 ml/min (50-70 kPa)

Brenngas :

Wasserstoff, 150 ml/min (60 kPa) Druckluft, 400 ml/min (90 kPa)

Make-up-Gas :

Stickstoff, 400 ml/min (70 kPa)

Gaschromatographie-Massenspektrosmetrie :

Kaltaufgabesystem:

KAS 4

Gerstel, Mühlheim a. d. Ruhr (BRD)

Gaschromatograph :

HP 6890

Hewlett-Packard, Waldbronn (BRD)

Hauptsäule :

HP 5 MS (30 m x 0,25 mm x 0,25 μm) Hewlett-Packard, Waldbronn (BRD)

Trägergas :

Helium, 1,5 ml/min (110 kPa)

Massenspektrometer:

HP 5973 Quatrupol Hewlett-Packard, Waldbronn (BRD)

8.3 Verwendete Hard- und Software

Hardware :

MS-DOS kompatible Computer für Datenaufnahme und Datenverarbeitung (mit Windows 95 und Windows NT 4.0)

Power Macintosh 7100/66 Apple Computer für Datenverarbeitung (mit MacOs 7.5.5)

Software :

unter Windows NT 4.0:

Microsoft Excel 97 (Tabellenkalkulation)

Microsoft PowerPoint 97 (Graphik)

Microsoft Word 97 (Textverarbeitung)

Surfer 6.01 (Erstellung geographischer Karten)

CorelDRAW 7.373 (Graphik)

HP-Chemstation B.01.00 (Datenaufnahme und -verarbeitung am GC/MS)

unter Windows 95 :

Chrom-Card 1.19 (gaschromatische Datenaufnahme und -verarbeitung)

unter MacOs 7.5.5 :

AppleCORE 0.74g (Kernbeschreibung) PowerPoint 97 (Graphik)

8.4 Datenanhang

Station	Latitude	Longitude	Lokation	Entnahmetiefe	durch. Salinität des	TOC %
				(m) dar Sadimente	Oberflächenwassers	der Oberfl sed
220780	58°51,827N	10°34,733E	Skagerrak	128	31,70	1,85
220720	58°21,494N	10°54,158E	Skagerrak	117	31,70	1,89
220690	57°52,097N	10°06,283E	Skagerrak	72	31,70	1,67
220630	57°38,08N	11°24,742E	Kattegat	68	21,42	2,17
220580	56°59,11N	12°02,087E	Kattegat	50	21,42	1,76
220560	56°53,443N	11°03,826E	Kattegat	14	21,42	0,14
220550	56°39,987N	10°36,706E	Kattegat	15	21,42	0,53
220500	56°17,057N	12°12,153E	Kattegat	30	21,42	2,15
360	54°36,023N	10°27,021E	Belt See	17	19,22	0,28
220300	54°05,015N	11°10,052E	Lübecker Bucht	24	13,73	5,54
220800	55°40,281N	12°52,838E	Öresund	14	12,81	1,66
22	54°06,724N	11°10,77E	Mecklenburger Bucht	21	12,31	4,96
12	54°18,91N	11°32,999E	Mecklenburger Bucht	23	12,31	3,82
46	54°27,96N	12°12,92E	Mecklenburger Bucht	23	12,31	1,43
30	54°43,464N	12°46,981E	westliches Arkonabecken	22	9,40	0,08
220820	55°07,224N	12°42,362E	westliches Arkonabecken	30	9,40	1,41
RB1	55°08,836N	13°00,464E	westliches Arkonabecken	33	9,40	0,07
113	.54°55,473N	13°29,872E	östliches Arkonabecken	47	7,94	5,85
150	54°36,681N	14°02,575E	östliches Arkonabecken	20	7,94	0,09
109	55°00,00N	14°04,953E	östliches Arkonabecken	47	7,94	5,27
140	55°28,00N	14°43,05E	Bornholmbecken		7,72	
202	54°42,013N	15°14,971E	Bornholmbecken	63	7,72	5,71
213	55°14,941N	15°58,761E	Bornholmbecken	88	7,72	4,83
255	55°38,12N	18°35,98E	Gotlandbecken		7,49	
263	56°20,86N	19°22,46E	Gotlandbecken		7,49	
271	57°18,51N	10°08,22E	Gotlandbecken		7,49	
20048	57°23,14N	20°15,51E	Gotlandbecken	243	7,49	
286	57°59,829N	19°54,2E	Gotlandbecken	186	7,49	8,91
20001-4/5	57°18,33N	20°03E	Gotlandbecken	240	7,49	7,01
220000	57°14,56N	20°42,69E	Gotlandbecken	77	7,49	1,88
220010	57°15,28N	20°32,37E	Gotlandbecken	102	7,49	5,89
220040	57°07,57N	20°28,57E	Gotlandbecken	101	7,49	4,24
202770	59°22,8N	23°59,4E	Finnischer Meerb.	20	6,26	3,88
202780	59°22,2N	24°00E	Finnischer Meerb.	20	6,26	3,45
202800	59°20,8N	24°01,6E	Finnischer Meerb.	20	6,26	4,12
202820	59°19,6N	24°02,9E	Finnischer Meerb.	20	6,26	0,48
202840	59°20,5N	24°01,9E	Finnischer Meerb.	22	6,26	4,07
202960	59°23,45N	23°18,61E	Finnischer Meerb.	115	6,26	3,58

Tab. 8.1: Probenentnahmepunkte der Sedimente, Schwebstoffe und Sinkstoffe

96

Tab. 8.2: Ergebnisse aus den Oberflächensedimenten der Forschungsfahrt FS Penck 40/98/18 und 40/98/16 (Skagerrak und Kattegat);
x kennzeichnet Doppel- bzw. Dreifachmessungen an einer Probe; für diese Proben sind zusätzlich zu den Mittelwerten die relativen Fehler s
(Standardabweichung) angegeben; S37 bezeichnet die Summe aus den C37-Alkenonen; SAlk bezeichnet die Summe aus C37-, C38- und C39-
Alkenonen; Uk'38Et = C38:2Et / (C38:2Et + C38:3Et), durchgezogene Linie entspricht diskutierter Beckengrenze

				ng/g											
Station	C 37:4	C 37:3	C 37:2	C 38:3e	38:3m	C 38:2e	C 38;2m	C 39:3m	C 39:2m	37:4% zu S37	SAlk ng/g	SAlk µg/gTOC	Uk′37	Uk37	Uk'38Et
220780	73	646	419	227	310	339	171	75	71	6,4	2331	126	0,39	0,30	0,60
220720	90	620	382	248	310	301	156	.79	70	8,2	2256	119	0,38	0,27	0,55
220690	30	266	197	50	33	276	76	14	35	6,0	976	58	0,43	0,34	0,85
220630	33	291	255	124	140	190	88	27	36	5,6	1183	54	0,47	0,38	0,60
220580	33	365	321	144	152	206	116	35	40	4,6	1413	80	0,47	0,40	0,59
220560	3	41	42	13	17	24	14	4	4	3,8	164	117	0,51	0,45	0,65
220550	24	103	123	48	51	93	48	13	19	9,4	521	98	0,54	0,40	0,66
220500	24	326	380		119		14	16	4	3,3	883	41	0,54	0,49	n.d.
360 x	2	43	38	17	18	29	14	3	5	2,2	171	61	0,47	0,44	0,62
	s=2	s=23	s=20	s=7	s=8	s=14	s=6	s=1	s=2	s=1,4	s=81	s=29	s=0,02	s=0,02	s=0,07
220300	15	300	256	131	201	163	85	19	28	2,6	1198	22	0,46	0,42	0,56
220800	5	113	146	41	36	103	52	12	13	1,8	520	31	0,56	0,54	0,72

Tab. 8.3: Ergebnisse aus den Oberflächensedimenten der Ostsee (Mecklenburger Bucht - Finnischer Meerbusen);

x kennzeichnet Doppel- bzw. Dreifachmessungen an einer Probe; für diese Proben sind zusätzlich zu den Mittelwerten die relativen Fehler s (Standardabweichung) angegeben; S37 bezeichnet die Summe aus den C37-Alkenonen; SAlk bezeichnet die Summe aus C37-, C38- und C39-Alkenonen; Uk'38Et = C38:2Et / (C38:2Et + C38:3Et); durchgezogene Linien entsprechen diskutierten Beckengrenzen

				ng/g											
Station	C 37:4	C 37:3	C 37:2	C 38:3e	38:3m	C 38:2e	C 38;2m	C 39:3m	C 39:2m	37:4% zu S37	SAlk ng/g	SAlk µg/gTOC	Uk′37	Uk37	Uk'38Et
22 x	11	142	120	61	55	84	57	14	11	3,9	556	11	0,47	0,42	0,61
	s=11	s=77	s=38	s=51	s=17	s=44	s=28	s=6	s=1	s=3,4	s=220	s=4,3	s=0,05	s=0,09	s=0,08
12 x	20	305	326	120	116	250	110	43	19	3,1	1310	34	0,53	0,48	0,68
	s=10	s=164	s=116	s=63	s=55	s=96	s=36	s=30	s=20	s=0,07	s=551	s=14	s=0,05	s=0,05	s=0,03
46	1	19	20	11	9	20	9	2	4	2,7	96	6677	0,51	0,47	0,65
30	0,1	2	2	1	1	2	1			3,2	9	11326	0,50	0,45	0,63
220820	6	58	70	15	16 ·	46	20	5	6	4,3	241	17	0,55	0,48	0,75
RB1 x	5	38	44	13	12	30	16	4	4	5,6	167	112	0,53	0,45	0,69
	s=2	s=8	s=7	s=1	<u>s=3</u>	s=5	s=1	s=0,2	s=0,3	s=0,8	s=26	s=130	s=0,01	s=0,02	s=0,02
113	48	290	228	146	80	142	54	31	14	8,4	1033	17661	0,44	0,32	0,49
150	0,3	1,5	1,5	0,6	0,6	1,1	0,5	0,2	0,4	10,5	7	7665	0,50	0,34	0,65
109 x	112	814	576	335	270	424	130	104	108	7,4	2873	54	0,41	0,31	0,56
	s=27	s=5	s=7	s=3	s=48	s=44	s=10	s=13	s=1	s=1,6	s=31	s=0,79	s=0,004	s=0,02	s=0,02
202	110	184	94	202		101		52	22	28	765	13408	0,34	-0,04	0,33
213	26	78	62	36	18	49	22	17	17	16	325	6739	0,44	0,21	0,58
286	115	299	124	141		129		21	16	21	846	9501	0,29	0,02	0,48
220000	2	14	4	8		8		3	2	11	41	2172	0,20	0,07	0,52
220010	51	167	59	107		71		59	17	18	532	9029	0,26	0,03	0,40
220040	20	82	26	41		34		29	12	15	244	5753	0,24	0,05	0,45
20001-4/5	62	714	384	368		329	16	40	12	5,3	1909	15852	0,35	0,28	0,47
202770	11	15	4 ·	5		1		3	1	35	37	953	0,22	-0,21	0,19
202780] 7	15	7	4		1		1	0,4	23	33	968	0,32	0,01	0,15
202800	4	7	2	6		2				28	20	484	0,26	-0,10	0,26
202820	0,3	0,5	0,4	1		0,1		0,1	0,2	23	2	365	0,44	0,10	0,12
202840	31	64	25	37		28		4	1	26	186	4569	0,28	-0,05	0,43
202960] 37	57	44	37		17				27	192	5363	0,44	0,05	0,31

								ng/g									
Station	Entnah.	Lokation	SAlk	SAlk	С	C	C	С	C	C	C	C	С	Uk′37	TC	Wasser-	Salinität
	-tiefe m		ng/gT	ng/g	37:4m	37:3m	37:2m	38:3e	38:3m	38:2e	38:2m	39:3m	39:2m		%	temp. °C	PSU
360	1	Belt See	13639	12275	100	3772	2853	1031	1289	1772	946	251	260	0,43	9,0	17,1	14,9
22	1	Mecklenb. Bucht	35	3		2	1	,						0,48	9,0	16,9	13,1
46	0	Mecklenb. Bucht	867	83		42	41	•	· · ·					0,49	9,6	16,6	8,7
30	0	westlich.Arkonab.				keine	Alkeno	ne nach	weisbar						7,1	15,6	7,4
30	5	westlich.Arkonab.	1570	111		55	56							0,50	7,1	15,6	7,4
30] 10	westlich.Arkonab.	1611	114		81	33							0,29	7,1	15,6	7,4
RB1	0	westlich.Arkonab.	13619	422		155	267							0,63	3,1	15,3	7,6
RB1	10	westlich.Arkonab.	3863	120		37	83							0,69	3,1	15,3	7,6
RB1	15	westlich.Arkonab.	6532	202		86	117							0,58	3,1	15,1	7,6
113	0	östlich. Arkonabecken	1410	133		43	90							0,68	9,4	15,3	7,4
113	5	östlich. Arkonabecken	1058	102		49	52							0,51	9,6	15,2	7,4
113	10	östlich.Arkonabecken	1004	97		43	54							0,56	9,7	15,0	7,4
113/10.8	0	östlich.Arkonabecken	23299	2260		1081	1179							0,52	9,7	15,9	7,4
113/10.8	10	östlich.Arkonabecken	1490	144		85	60							0,42	9,7	15,7	7,5
109	0	östlich.Arkonabecken	532	44		9	34							0,79	8,2	16,1	7,1
150] 0	östlich.Arkonabecken	402	73		38	35							0,48	18,1	16,8	7,5
150	_10	östlich.Arkonabecken	1102	200		136	63							0,32	18,1	16,8	7,6
140	0	Bornholmbecken	790	71		32	40							0,56	9,0	15,6	7,1
213	0	Bornholmbecken	993	106		43	63							0,59	10,7	15,6	7,0
213] 10	Bornholmbecken	2132	232		42	190							0,82	10,9	15,6	7,0
213/9.8] 10	Bornholmbecken	972	106		40	66							0,62	10,9	15,4	7,1
202] 0	Bornholmbecken	3983	48		16	32							0,67	1,2	16,1	7,0
202	10	Bornholmbecken	11993	145		63	82						-	0,56	1,2	16,1	7,0
255	0	Gotlandbecken	347	45		11	14	12		8				0,56	13,0	15,8	6,8
263	0	Gotlandbecken	578	69		26	16	16		10				0,38	11,9	15,6	7,1
271	0	Gotlandbecken	853	103		47	13	32		12				0,21	12,1	15,6	6,5
271	5	Gotlandbecken	1445	179		81	29	47		22				0,27	12,4	15,6	6,5
271] 10	Gotlandbecken	885	110	5	40	26	17		17				0,39	12,4	15,0	6,8
286	0	Gotlandbecken	21961	1893	303	735	447	138		269				0,38	8,6	15,2	6,1

Tab. 8.4: Ergebnisse aus den Schwebstoffen der Ostsee (Belt See - Gotlandbecken); SAlk bezeichnet die Summe aus C37-, C38- und C39-Alkenonen.

		en e						ng/g						1.			
Station	Entnah.	Lokation	SAlk	SAlk	C	С	C	С	С	С	C	C	C	Uk′37	TC	Wasser-	Salinität
	-tiefe m		ng/gT	ng/g	37:4m	37:3m	37:2m	38:3e	38:3m	38:2e	38:2m	39:3m	39:2m		%	temp. °C	PSU
360	1	Belt See	13639	12275	100	3772	2853	1031	1289	1772	946	251	260	0,43	9,0	17,1	14,9
22	1	Mecklenb. Bucht	35	3		2	1							0,48	9,0	16,9	13,1
46	0	Mecklenb. Bucht	867	83		42	41							0,49	9,6	16,6	8,7
30	0	westlich.Arkonab.				keine	Alkeno	ne nach	weisbar						7,1	15,6	7,4
30	5	westlich.Arkonab.	1570	111		55	56							0,50	7,1	15,6	7,4
30	10	westlich.Arkonab.	1611	114		81	33							0,29	7,1	15,6	7,4
RB1	0	westlich.Arkonab.	13619	422		155	267							0,63	3,1	15,3	7,6
RB1	10	westlich.Arkonab.	3863	120		37	83							0,69	3,1	15,3	7,6
RB1	15	westlich.Arkonab.	6532	202		86	117						·	0,58	3,1	15,1	7,6
113	0	östlich. Arkonabecken	1410	133		43	90							0,68	9,4	15,3	7,4
113	5	östlich. Arkonabecken	1058	102		49	52							0,51	9,6	15,2	7,4
113	10	östlich.Arkonabecken	1004	97		43	54							0,56	9,7	15,0	7,4
113/10.8	0	östlich.Arkonabecken	23299	2260	1	1081	1179							0,52	9,7	15,9	7,4
113/10.8	10	östlich.Arkonabecken	1490	144		85	60	t in the second						0,42	9,7	15,7	7,5
109	0	östlich.Arkonabecken	532	44		9	34							0,79	8,2	16,1	7,1
150	0	östlich.Arkonabecken	402	73	1	38	35							0,48	18,1	16,8	7,5
150	10	östlich.Arkonabecken	1102	200		136	63			<u>.</u>	····			0,32	18,1	16,8	7,6
140	0	Bornholmbecken	790	71		32	40							0,56	9,0	15,6	7,1
213	0	Bornholmbecken	993	106		43	63	1.00						0,59	10,7	15,6	7,0
213	10	Bornholmbecken	2132	232		42	190							0,82	10,9	15,6	7,0
213/9.8	10	Bornholmbecken	972	106		40	66							0,62	10,9	15,4	7,1
202	0	Bornholmbecken	3983	48		16	32							0,67	1,2	16,1	7,0
202	10	Bornholmbecken	11993	145		63	82		<u> </u>		- <u>-</u>		······································	0,56	1,2	16,1	7,0
255	0	Gotlandbecken	347	45		11	14	12		8				0,56	13,0	15,8	6,8
263	0	Gotlandbecken	578	69		26	16	16		10				0,38	11,9	15,6	7,1
271	0	Gotlandbecken	853	103		47	13	32		12				0,21	12,1	15,6	6,5
271	5	Gotlandbecken	1445	179		81	29	47		22				0,27	12,4	15,6	6,5
271	10	Gotlandbecken	885	110	5	40	26	17		17				0,39	12,4	15,0	6,8
286	0	Gotlandbecken	21961	1893	303	735	447	138		269				0,38	8,6	15,2	6,1

Tab. 8.4: Ergebnisse aus den Schwebstoffen der Ostsee (Belt See - Gotlandbecken); SAlk bezeichnet die Summe aus C37-, C38- und C39-Alkenonen.

Tab. 8.6: Ergebnisse der untersuchten Algenkulturen. Die angegebenen Konzentrationen sind mittels der Wiederfindungsraten auf 100% hochgerechnet worden.

			Wachstums-	Wiederfin-	ng/g	fg/Zelle	ng/g		
Art	Herkunft des Genoms	Ansatz l	temperatur °C	dungsrate (%)	C37:2+C37:3	C37:2+C37:3	C37:3 Me	C37:2 Me	Uk′37
Prymnesium parvum	Finnischer Meerbusen (1990)	12	20	ohne Wf.	185 ohne Wf.	6,1x10 ⁻³ ohne Wf.	68	117	0,63
Pavlova lutheri	Finnischer Meerbusen	1	20	88	772	6,7x10 ⁻³	324	448	0,58
Pleurochrysis carterae	Finnischer Meerbusen	12	20	42	202	n.b	113	89	0,44
Prymnesium patellifera	Brackwasser bei Büsum	12	20	43	85	8,6x10 ⁻³	25	60	0,71
		2	20	64	178	6,4x10 ⁻³	52	126	0,71
Chrysochromulina polylepis	Kattegat (1988)	1	20	52	429	5,2x10 ⁻²	180	249	0,58
Chrysochromulina apheles	Kattegat	1	20	35	286	9,8x10 ⁻³	91	194	0,68
		4	11	78		0,5x10 ⁻²	0,24x10 ⁻² fg/Zelle	0,28x10 ⁻² fg/Zelle	0,542
		4	14	42		2,2x10 ⁻²	0,99x10 ⁻² fg/Zelle	1,25x10 ⁻² fg/Zelle	0,558
		4	16	56		1,2x10 ⁻²	0,50x10 ⁻² fg/Zelle	0,73x10 ⁻² fg/Zelle	0,595
		4	18	46		3,5x10 ⁻²	1,42x10 ⁻² fg/Zelle	2,08x10 ⁻² fg/Zelle	0,593
		4	20	43		2,1x10 ⁻²	1,06x10 ⁻² fg/Zelle	1,10x10 ⁻² fg/Zelle	0,509

Tab. 8.7: Zellwachstum der untersuchten Algenkulturen

で「たいます」で

Art	Ansatz 1	Wachstums- temperatur °C	Zeitpunkt der exponentiellen Wachstumsphase (Tagen)	Zellen/ml	Optische Dichte bei 750 nm (nm)
Prymnesium parvum	12	20	13	2,7x10 ⁶	0,14
Pavlova lutheri	1	20	17	5,1x10 ⁶	0,21
Pleurochrysis carterae	12	20	24	nicht ermittelbar	0,042
Prymnesium patelliferum	12	20	10	3,0x10 ⁶	0,2
	2	20			
Chrysochromulina polylepis	1	20	14	2,7x10 ⁶	0,19
Chrysochromulina apheles	1	20	8	6,8x10 ⁶	0,11
	4	11	15	3,9x10 ⁶	0,05
	4	14	12	8,5x10 ⁶	0,15
	4	16	11	9,2x10 ⁶	0,14
	4	18	12	8,3x10 ⁶	0,12
	4	20	8	6,8x10 ⁶	0,11

f	= Frisch/Süßwa	isser. b-m = b	rackisch-marin. m-b = n	narin-brack	arch m = n	narin		JiiduJzaiii		, i.i.comy		co oanna		mache		argeruin	
Probe	unkorr. 14C	Kalender					ng/g			·····			37:4% zu	SAlk	SAlk	Uk'37	Uk37
-Top T.(cm)	Datierung	Jahre BP	Stadium, Salinität	C37:4	C 37:3	C37:2	C38:3e	C38:3m	C38:2e	C38:2m	C39:3m	C39:2m	S37	ng/g	µg/gTOC		
G48-41	1852	1500	Post-Litorina,b-m	29,41	35,39	30,07	12,77	4,82		0,58	2,73		31	116	1929	0,46	0,01
G48-51	1956	1622	Post-Litorina,b-m	14,75	20,47	13,61							30	49	836	0,40	-
G48-61	2101	1745	Post-Litorina,b-m	12,95	22,66	14,62	1,70	1,22		1,05			26	54	1573	0,39	0,03
G48-77	2382	1941	Post-Litorina,b-m	16,47	24,86	24,37	9,16	4,92		2,08	4,26	4,11	25	90	2512	0,50	0,12
G48-90	2527	2100	Post-Litorina,b-m	7,37	12,40	14,11	1,76	1,92		1,37	0,94	1,54	22	41	1271	0,53	0,20
G48-101	2631	2240	Post-Litorina,b-m	7,87	12,12	7,36		2,21		0,73			29	30	767	0,38	-
G48-121	2838	2489	Post-Litorina,b-m	6,30	8,93	6,41		1,75		0,81			29	24	958	0,42	0,01
G48-142	3045	2720	Post-Litorina,b-m	6,54	12,14	9,61	1,63	1,58		1,14	1,17	1,55	23	35	1055	0,44	0,11
G48-163	3273	3012	Litorina,b-m	17,89	33,25	20,28					7,34	5,94	25	85	2038	0,38	0,03
G48-191	3563	3361	Litorina,b-m	5,66	11,40	8,10					0,90	0,74	23	27	799	0,42	0,10
G48-201	3667	3485	Litorina,b-m	4,61	7,74	5,74		0,73		0,46			25	19	544	0,43	0,06
G48-231	3977	3906	Litorina,m-b	6,25	10,95	7,04							26	24	769	0,39	0,03
G48-263	4308	4372	Litorina,m-b	29,34	42,95	27,36	11,77	3,26		4,77	2,83	13,73	29	136	3633	0,39	-
G48-301	4701	4926	Litorina,m-b	5,13	9,81	5,41		0,69		0,23			25	21	543	0,36	0,01
G48-311	4805	5072	Litorina,m-b	33,58	33,15	30,39					7,29	6,60	35	111	2091	0,48	-
G48-331	5012	5352	Litorina,m	19,94	31,29	12,52							31	64	1193	0,29	-
G48-341	5115	5468	Litorina,m	10,03	27,81	5,65	8,86	6,90			1,57	2,56	23	63	1320	0,17	-
G48-363	5344	5724	Litorina,m-b	25,35	73,35	45,71					21,14		18	166	3595	0,38	0,14
G48-381	5545	5944	Litorina,m	1,87	3,89	1,76	1,96	0,30			0,67	0,91	25	11	293	0,31	-
G48-401	5895	6289	Litorina,m-b	2,91	6,17	4,07					1,94		22	15	503	0,40	0,09
G48-411	6070	6461	Litorina,m	3,05	7,46	3,25					1,76		22	16	554	0,30	0,02
G48-421	6245	6633	Litorina,m	5,57	16,00	5,87	2,75	1,27		0,58	0,92	5,76	20	39	1244	0,27	0,01
G48-431	6420	6805	Litorina,m-b	9,51	15,53	9,51					2,42		28	37	973	0,38	0,00
G48-439	6489	6893	Litorina,m	13,98	22,95	6,23							32	43	1242	0,21	-
G48-441	6507	6915	Litorina,m	13,05	24,54	12,46	4,06	2,49		1,57		2,56	26	61	1735	0,34	-
G48-451	6594	7024	Litorina,m	6,08	17,31	4,62					1,82	8,68	22	39	1014	0,21	-
G48-461	6680	7134	Litorina,m-b	11,67	36,03	10,30					8,07		20	66	1694	0,22	-
G48-471	6758	7240	Litorina,m-b	5,51	13,92	3,99	2,11						24	26	750	0,22	_
G48-478	6828	7320	Litorina,m-b	10,62	72,68	14,99					4,00	4,80	11	107	2241	0,17	0,04
G48-491	6949	7395	Mastogloia,b-m	62,93	136,47	24,44	1,71	2,40		1,55	1,27		28	231	6060	0,15	-
G48-511	7268	7875	Mastogloia,b-m	15,17	51,61	12,56	0,71	1,65		0,40			19	82	1335	0,20	-

Tab. 8.8: Ergebnisse aus den holozän/pleistozänen Sedimenten (Post-Litorina und Litorina Stadium) der Kastenlotkerns 20048-1 (57°23,14 N; 20°15,51 E); Neben der Zuordung der Sedimente zu den Ostseestadien ist die durch Diatomeenauszählung (Dr.A.Kohly) ermittelte Salinität des Oberflächenwassers aufgeführt :

1 ad. 6.9; EI	geomsse a	us den noi	ozani piersiozanen	oconne		lasiogioi	a Staulu	m-Eissiai	usce) uci i	VCIUS TOU	HO (JI 2.	,14 11, 2	0 13,31 D)	, 3.0.			
Probe	unkorr.C14	Kalender					ng/g	······					37:4% zu	SAlk	SAlk	Uk'37	Uk37
<u>-Ton T (cm)</u>	Datiemnoo	Iahre BP	Stadium Salinität	<u>C37·4</u>	208 64	<u>52 80</u>	C38.3e	<u>10 (0</u>	C38.2e	<u>C38·2m</u>	<u>C39·3m</u>	C39·2m		<u>nø/ø</u>	<u>цо/оТОС</u>	0.21	0.04
<u>G48-529</u>	1/5/	83/2	Mastogioia,D-m	07,00	208,04	33,89		19,69		0,34	17,55	4,00	20	5/1	9/80	0,21	-0,04
<u>G48-541</u>	8067	8/01	Ancylus II, b-m	17,75	22,14	8,10		4,40		2,02	0,81	1,00	20	50	1551	0,27	-0,20
<u>G48-548</u>	8221	9470	Ancylus II, D-m	18,84	33,73	10,51	15.05	2,82	0.77	1,41	0,20	1,25	30	09	3457	0,24	-0,13
<u>G48-589</u>	8720	9528	Ancylus II,b-m	12,63	22,54	5,85	15,05	3,10	2,67	0,63	1,80	1 70	31	64 000	4292	0,21	-0,17
<u>G48-601</u>	8810	9703	Ancylus II,b-m	43,55	82,64	27,21	29,12	15,28	14,84	2,84	5,12	1,79	28	222	15232	0,25	-0,11
<u>G48-611</u>	8950	9848	Ancylus II,b-m	39,50	83,45	24,12		9,91		4,48	1,96	0,84	27	164	11990	0,22	-0,10
G48-621	9080	9994	Ancylus II,b-m	24,80	63,53	21,69		10,25		4,46	1,66	1,29	23	128	10380	0,26	-0,03
<u>G48-631</u>	9120	10140	Ancylus II,b-m	3,18	8,76	3,43		0,91		0,52	0,75	0,32	21	18	1688	0,28	0,02
<u>G48-649</u>	9300	10402	Ancylus II,b-m	13,44	48,82	15,52		5,62		2,32	1,34	1,61	17	89	11668	0,24	0,03
G48-663	9440	10605	Ancylus I,f	0,77	1,35	1,03		0,25		0,39	0,07		24	4	714	0,43	0,08
<u>G48-670</u>	9520	10700	Ancylus I,f	1,71	3,09	2,74		0,81		1,00			23	9	1639	0,47	0,14
G48-687	9620	10912	Ancylus I,f	5,70	13,10	18,44	3,24	1,57	8,62	1,83	3,23	1,76	15	57	11273 -	0,59	0,34
G48-695	9690	11009	Yoldia,f	1,93	2,28	2,08	0,58	0,55		1,22			31	9	1544	0,48	0,02
G48-711	9780	11203	Yoldia,f	4,34	10,73	5,95	3,62	2,01	4,08	1,40	1,12		21	33	5363	0,36	0,08
G48-719	9820	11300	Yoldia,f	0,79	2,27	0,68		0,15		0,02	0,08		21	4	687	0,23	-0,03
G48-730	9890	11433	Yoldia,b-m	12,61	19,99	5,68		2,99		1,14	0,80		33	43	6754	0,22	-0,18
G48-742	9980	11578	Yoldia,b-m	30,46	36,27	10,79	4,06	4,13	0,63	1,15	1,00	0,60	39	89	14602	0,23	-0,25
G48-761	10100	11800	Yoldia,b-m	15,81	22,66	6,92	6,14	5,51	4,80	1,09	1,82	0,73	35	65	11290	0,23	-0,20
G48-774	10150	11966	Yoldia,b-m	14,03	13,29	2,96	12,32	1,49	0,45	0,37	0,66		46	46	5843	0,18	-0,37
G48-785	10210	12099	Yoldia,b-m	0,97	2,21	1,08	0,38		1,61		0,17	0,37	23	7	417	0,33	0,03
G48-789	10280	12145	Yoldia,b-m	1,56	3,21	0,76	3,79		1,31		0,34	0,46	28	11	865	0,19	-0,14
G48-799	10320	12150	Yoldia,b-m	1,52	3,50	4,65		1,12		1,43		0,29	16	13	2235	0,57	0,32
G48-810	10436	12414	Eisstausee,f	1,32	2,93	4,25		0,78		1,01			15	10	2100	0,59	0,35
G48-820	10571	12546	Eisstausee,f	1,24	3,02	4,93		0,70		1,01			14	11	2097	0,62	0,40
G48-830	10707	12678	Eisstausee,f	1,35	2,78	4,67	0,89	1,06	1,87	1,31	0,21	0,22	15	14	2661	0,63	0,38
G48-850	10979	12942	Eisstausee.f	0.93	2,63	5,77	-	0.72	·	1,46			10	12	2741	0,69	0,52
G48-870	11250	13206	Eisstausee,f	5,20	5,99	4,83		1,01		1,06			32	18	3851	0,45	-0,02
G48-890	11521	13470	Eisstausee.f	1.04	1.61	1.87		0,33		0,46			23	5	1262	0,54	0,19
G48-910	11793	13735	Eisstausee.f	0.74	1.32	2.08		0.21		0.40			18	5	1282	0.61	0,33
G48-930	12064	13999	Eisstausee.f	0.83	1.22	2,28		1.78		1,14	0,39	0,40	19	8	2436	0,65	0,34
G48-940	12200	14131	Eisstausee.f	1.18	5,53	3,46		0,34		0,53	0,07		12	11	2180	0,39	0,22
G48-960	12471	14395	Eisstausee.f	0,79	1,74	2,46		2,21		3,30	0,66	0,67	16	12	3112	0,59	0,33
G48-990	1 12879	14791	Eisstausee.f	0.42	0.99	1.61		0.21		0,36	0,06	,	14	4	831	0,62	0,39
G48-1015	13218	15122	Eisstausee.f	0.17	0.51	0.85		0.09		0.19	-,		11	2	464	0,63	0,44
	1			1 0, 1	~,~ -								······	_	·····		

Tab. 8.9: Ergebnisse aus den holozän/pleistozänen Sedimenten (Mastogloia Stadium-Eisstausee) der Kerns 20048 (57°23,14 N; 20°15,51 E); s.o.

Tab. 8.10: Zuordnung der Proben aus dem Kastenlotkern 20048-1 (57°23,14 N; 20°15,51 E) zur Datierung in ¹⁴C-Alter und Kalenderjahre nach KOHLY ET AL. (1999) und STUIVER ET AL. (1998) und zur korrelierbaren Teufe des Schwerelotkerns 20048-4 (57°23,14 N; 20°15,51 E) nach EMEIS (in Vorbereitung)

							the second s	
Probe	entsprech.	unkorri. ¹⁴ C	Kalender]	Probe	entsprech.	unkorri. ¹⁴ C	Kalender
-Top der	Teufe SL	Datierung	Jahre BP		-Top der	Teufe SL	Datierung	Jahre BP
Teufe (cm)	(cm)				Teufe (cm)	(cm)		
G48-41	-20	1852	1500		G48-541	442	8067	8701
G48-51	-10	1956	1622		G48-548	449	8221	9470
G48-61	· · 0 · ·	2101	1745		G48-589	474	8720	9528
G48-77	13	2382	1941		G48-601	480	8810	9703
G48-90	26	2527	2100		G48-611	485	8950	9848
G48-101	37	2631	2240		G48-621	491	9080	9994
G48-121	57	2838	2489		G48-631	496	9120	10140
G48-142	78	3045	2720]	G48-649	507	9300	10402
G48-163	99	3273	3012		G48-663	516	9440	10605
G48-191	127	3563	3361		G48-670	521	9520	10700
G48-201	137	3667	3485		G48-687	535	9620	10912
G48-231	166	3977	3906		G48-695	541	9690	11009
G48-263	198	4308	4372		G48-711	554	9780	11203
G48-301	235	4701	4926		G48-719	560	9820	11300
G48-311	245	4805	5072]	G48-730	569	9890	11433
G48-331	264	5012	5352	1	G48-742	578	9980	11578
G48-341	272	5115	5468	.	G48-761	591	10100	11800
G48-363	292	5344	5724	1	G48-774	600	10150	11966
G48-381	307	5545	5944		G48-785	608	10210	12099
G48-401	325	5895	6289	1	G48-789	611	10280	12145
G48-411	333	6070	6461	1	G48-799	617	10320	12150
G48-421	342	6245	6633		G48-810	625	10436	12414
G48-431	350	6420	6805	1.	G48-820	632	10571	12546
G48-439	357	6489	6893	ן ו	G48-830	638	10707	12678
G48-441	359	6507	6915		G48-850	652	10979	12942
G48-451	367	6594	7024		G48-870	666	11250	13206
G48-461	375	6680	7134	1.	G48-890	679	11521	13470
G48-471	384	6758	7240		G48-910	693	11793	13735
G48-478	389	6828	7320		G48-930	706	12064	13999
G48-491	396	6949	7395	1	G48-940	713	12200	14131
G48-511	417	7268	7875		G48-960	726	12471	14395
G48-529	428	7757	8372		G48-990	747	12879	14791
		• · · · · · · · · · · · · · · · · · · ·	•	• • •	G48-1015	764	13218	15122
Tab. 8.11.: Teufenzuordnung des Kastenlotkerns 20048-1 und des Schwerelotkerns 20048-4 durch Vergleich der Lithologie und der TOC-Gehaltes, beim Kastenlotkern 20048-1 sind eingeklammert

Lithologiesche Zonierung nach HUCKRIEDE et al. (1996)	Schwerelotkern 20048-4 basale Teufe in cm	Kastenlotkern 20048-1 basale Teufe in cm
a1	43 (schräge)	42
a2	61	72 (61 Post Litorina/Litorina)
a3	182 (einzelne Laminae korr.)	198
a4	319.	399
a5	344	428
a6	395	487 (491 Litorina/Mastogloia)
a7	423	520
b1	457/61	542 (540 Mastogloia/AncylusII)
b2	455	552
b3	500 (Lücke von 30cm)	643
b4	507	645 (649 Ancylus II/AncylusI)
b5	558	715 (719 Ancylus I/Yoldia)
b6	595	770
b7	614	792
b8	617	802 (799 Yoldia/Eisstausee)
c 1	666	868
c2	Kernende 1037	Kernende 1029

Lithologische Zonierung der holozän/pleistozänen Sedimente des Gotlandbeckentiefs nach Huckriede, Classen und Meischner (1996).

- a1 Bioturbierter Schlick, zur Basis teilweise laminiert, oliv grau bis dunkel grau. (15cm)
- a2 Laminierter Sapropel, lokal leicht bioturbiert, grau braun bis schwarz. (16cm)
- a3 Bioturbierter Schlick, einige Horizonte undeutlich laminiert, dunkel grau bis oliv grau. (123cm)
- a4 Laminierter Schlick durch bioturbierten Schlick unterbrochen, braun bis oliv grau. (38cm)
- a5 Bioturbierter Sapropel, stellenweise laminiert, oliv grau (15cm)
- a6 Laminierter Sapropel durch bioturbierten Schlick unterbrochen, braun bis oliv grau. (27cm)
- a7 Laminierter grau brauner Sapropel im Wechsel mit bläulich grünen siltischen Ton. (19cm)
- b1 Bläulich grauer bis bläulich grüner Ton, unterbrochen durch unregelmäßige schwarze sulfidreiche Flecken, die bis zu 5mm dick sein können, das X-ray-Radiogramm zeigt indeutliche Strukturen "bedded". (10cm)
- b2 Bläulich grauer Ton mit sulfidreichen Streifen und pyrit-markasit gefüllte verzweigte Hohlräume, welche bis zu 20mm lang und 0,2-0,5mm dick sein können, undeutliche Lagen werden durch unterschiedlich ausgebildete Monosulfide nachgezeichnet. (36cm)
- b3 Dunkel grauer bis schwarzer Ton mit Sulfidknollen, meist ungerichtet (35cm)
- b4 Dunkel grauer Ton unterbrochen durch hell graue, silfidfreie Einlagen die bis zu 15mm dick sind, ausgeprägte Lamination, jede Laminae erscheint im X-ray-Radiogramm mit Unebenheiten 1mm dick. (35cm)
- b5 Bläulich grauer Ton mit isolierten deutlich gerundeten Sulfidknollen, stark ausgeprägte Lamination, die 1 bis 2mm dick ist. (34cm)
- b6 Bläulich grauer Ton mit Lagen aus Sulfidknollen, die Knollen sind oft zusammengefügt und bilden bis zu 10mm dicke Sulfidlagen, deutlich laminiert, einige Horizonte sind bioturbiert. (46cm)
- b7 Braun grauer gewarvter Ton, Warven sind 1 bis 4mm dick, basal sind die Warven durch grauen siltigen Ton ausgebildet der zum Top Sulfid beinhaltet, mit Eismarken, einzelne Warven sind gut in parallelen Kernen wiederzufinden. (70cm)
- b8 Grauer undeutlich laminierter Ton, teilweise Eisensulfidflecken. (5cm)
- c1 Distal gewarvter Ton, Warven 0,5 bis 2mm dick, oft nur im X-ray-Radiogramm als Warve zu erkennen, Eismarken und Barytknollen, in der unteren 20 bis 30cm durch Eisensulfide gefleckt bis schmal gestreift, hell grau bis rötlich braun. (185cm)
- c2 Gewarvter Ton, Warven Dicke von 2 bis 80mm, Eismarken und Barytknollen, Warvendicke nimmt mit der Kerntiefe zu, hell grau bis rötlich braun. (435cm)

Lithologische Beschreibung des Schwerelotkerns 20048-4

0-77 Schlic	k, oliv (Pale olive 10 folgende Lamina 9,5-10 27-35	0Y 6/2), stark bioturbiert ation mm-cm mächtig erkennbar: Lamination ocker (Dark yellowish orange 10YR 6/6) Top und Basis meist mit dunkelgrauer(schwarzer (Dusky
	41-45,5 67-72	yellowish brown 10YR 2/2) Lage
	29-35	oliv/schwarze (10Y 6/2-10YR 2/2) Lamination,
	41-45,5	schräg/diskordant verlaufende Schichtung, bei 41cm mit dunkelgrauer Lamination nachgezeichnet, ab 45,5cm wieder waagerechte Sedimentation
77-88 Schlic	k, oliv/schwarze (10	Y 6/2-10YR 2/2) Lamination,
	kaum bioturbier	, ocker (10YR 6/6) nur 2x 0,5 und 1cm mächtig
88-192,5 Schlic	k olivgrün (Dusky y	ellow green 5GY 5/2)
	stark bioturbierte	e, diffuse Lamination in ocker/schwarz (10YR 6/6-10YR 2/2)
	vereinzelte unge	störte weiße Lagen, submillimeter mächtig
	nur 182,5-192,5	durchgehend schwarz/weiß laminiert
192,5-319,5Sch	lick, olivgrau - dunk	el olivgrau (Light olive gray 5Y 5/2-Olivee gray 5Y 3/2)
	durchgenend lan	hintert, wie folgt überwiegend nicht bloturbiert
	192,5-237	Top zur Basis ab. Bioturbation 2.5 bis 2cm möchtig
	227 210 5	rop zur Dasis ab, Dioturbation 2,5 bis zein machtig
	201-519,5	Diskontinuität
	200	besonders dunkles Band
319.5-344.5Sch	lick, hellgrau (Light	olive grav 5Y 6/1)
,,	stark bioturbiert,	vereinzelte mm breite schwarze Flaser
	328-328,7	dunkle ungestörte Lamination, schwarz/ weiß
344,5-422,5Sch	lick, hell-dunkelgrau	ue (Light gray 5Y 6/1- gray 5Y 3/2)
	durchgehend lan	niniert, wie folgt überwiegend nicht bioturbiert und zur Basis
	feiner laminiert	von mm zu submm (ähnlich wie im Horizont 192-319,5) :
	generell nimmt c	lie Bioturbation in Häufigkeit und Mächtigkeit vom Top zur
	Basis ab, auch di	e Lamination wird zur Basis von mm zu submillimeter feiner
	344,5-361,5	relativ helle mm-Lamination, tellweise bioturbiert
	301,3-308	relativ dunkle mm-Lamination, kaum bioturbiert,
	368-386	relativ helle mm. I amination teilweise hioturhiert
	386-395 8	relativ dunkle submm-Lamination, nicht bioturbiert
	395.8-422.5	relativ helle submm-Lamination, nicht bioturbiert
422,5-462Schlig	k, hellgrau (Light g	ray 5Y 5/2)
	stark bioturbiert,	wie folgt mit Flasern und vereinzelten Laminae
	453-457	mittelgraue Flasern, ca. 1x6mm
	460,5-462	zwei mittelgraue Laminae, ca. 1cm mächtig
462-558 Schlic	k, hellolivgrau-ocke	r (Pale olive 10Y 6/2-Dark yellowish orange 10YR 6/6),
	stark bioturbiert,	diffus laminierte 1-6mm mächtige ocker Laminae und
	schwarzen Fleck	en (Sulfid ?)
	493-500,5	besonder stark ocker
559 622 STon	300,3-338 Junkal hallorou laiak	schwarze Flecken (Sulfid?)
556-055,51011, 0	homogen teilwe	iese submm laminiert, schwarze und ocker Flecken (Sulfid)
	576-588	dunkelgrauer Ton
	576-580.5	submm laminiert, dunkelgrauer Ton
	606-618	verstärkt schwarze Flecken, größere Flecken ocker
633,5-688Ton, t	olaugrau (Medium li	hgt grav N6)
, ,	homogen	
688-792 Ton, b	raun (Light brown 5	YR 6/4)
	homogen bis auf	
	720-780	mm-mächtige diffuse Laminae
792-1037 Ton, b	raun (Light brown 5	YR 6/4) mit schlieriger, diffuser Lamination
	(Tonklasten) in h	ieligrau (Light greenish gray 5GY 8/1) cm-mächtig
	L	
	braun = oxisch ?	ach 2

Auflistung der Prymnesiophyceen der Ostsee und des Kattegats im Zusammenhang zu ihren Fundorten, der Salinität des Oberflächenwassers und dem Nachweis von Alkenonen :

Die Zuordnung in Klasse, Ordnung und Art erfolgte nach von VAN DEN HOEK et al. (1995).

Abkürzunger	n :	KG = GB = f = (1 a = A	= Katteg = Gotlar freshwat Alkenon	gat; AB = ndbecker ter) Süß e nachge	= Arkon n; FM = wasser; 1 ewiesen;	abecken Finniscl b = Brac ; aZ = A	; BB = I her Meen kwasser lkenone	Bornholı rbusen; ; m = (n aus Züc	nbecke SM = S narin) S htungsv	n; chären alzwas /ersucł	meer; sser ien	
Literatur :	1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	11)	

PRYMNESIOPHYTA (HAPTOPHYTA)

ISOCHRYSIDA	LES										
Apistonema											
Pyrenigerrum	-	-	-	-	-	-	-		.	-	GB
Chrysotila											
lamellosa	-	-	-		-	aZ	-	-	.	- -	-
Gephyrocapsa									··		
oceanica	-	-	-		a		_		-	- - 1	-
Hymenomonas s	<i>р</i> .										
roseola	-	-	f	-	-	-	_		_	· - ·	FM
Isochrysis sp.	-	-	÷		-	aZ	-	-	-	-	-
galbana	÷	4 '	<u> </u>	-	aZ	aZ	-	-	-	-	-
Pleurochrysis											
carterae KG	,FM	-			-	aΖ	b	-	-	FM	FM
= Cricosphaera	carterae										
= Hymenomona.	s cartera	е									
elongata	-	-	· _ · · · ·	f	_	° 🖕 👘 🖓	-	-	-	FM	· _
= Cricosphaera	elongata	· <" ·									
COCCOLITHON	PHYTALI	ES(=PA	PPOSPĖ	IAERALE	CS)						
Acanthoica sp.	-	-	-	f	_	-	-	-	-	-	-
quattrospina	KG	-	· - , · · ·	-	-	-	-	-	-	-	KG
Anacanthoica sp	•	. - 1	÷	f	-	_	-	-	-		
Balaniger											
balticus KG,F	M	-	- 100		-	-	-	-	- FN	A	KG-FM
Braarudosphaer	a										
bigelowii	KG	-		-	-	_	-	-	-	-	-
Calciopappus											
caudatus	-		-	-	-	-	-		-	-	KG
Calyptrosphaera	KG	-	-	-	-	-	-	-	_	_ ·	-
Discosphaera											
tubifer	BB?	-	-	-	- -	-	-	-	-	-	-
Emiliania											
huxleyi	KG,FM	-	· _ ·	-	-	aZ	аZ	-	-	FM	KG
= Gephyrocapsa	huxleyi										
= Coccolithus hu	yleyi										
Pappomonas											
Flabelellifer	-	-	-	-	.	-	-	-		KG	-BB
virgulosa	FM	-	-		-	-	-	-	-	FM	FM
Pontosphaera sp.		-		f	-	-	-	-	-	-	
z.B. = Emiliania	huxleyi										
z.B. = Discolithir	na japoni	ca									
Coccolithus pela	gicus-	-	-	-	-	-	-	а	-	-	-
- •	-										

Literatur :	1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	11)
PRYMNESIALES	5										
Corymbellus	-	-	-	-	-	-	aΖ	-	-	-	
= Corum bellus											
Chrysochromulin	na										
acantha	KG	-	-	-	-	-	-	-	-	•	
alifer	KG	-	-	-	-	-	-	-	-	-	
aphelis	- SM,	FM	-	-	-	-	aΖ	-		-	
bergenensis	KG	-	-	-	-	-	-	-	-	-	
birgeri	FM	-	-	-	-	-	-	b,SM	-		· FM
brachycylindra	-	-	-	-	-	-	-	-	-	•	· FM
brevifilum	KG	-	-	-	-	-	-	-	-		
campanulifera	KG	-	-	-	-	-	-	-	-		
chiton	KG	-	.	-	-	-	-	-	-		
cymbium	KG	-	-	-	-	-	-	-	-	-	
cytaphora	AB	-	-	-	-	-	-	-	-	-	AB-BB
enhinnium	KG	-	-	-	-	-	-	-	-	-	
ericina	KG	-	- '	-	-	-	-	-	-	-	AB-BB
fracilis	KG?	-	-	-	-	-	-	-	-		
hardlansis	KG.	_	-	-	-	-	-	-	-		
mantoniae	KGEM		_	_	-	-	_	-	-	FM	1 FM
manuoniae magaovlindra	KG,IM	_	_	_	_	_	-	-	-		
meguc yunuru mianamlin dra	KG	-	-		_	_	-	_	-		
microcyunara	KC .	-	-	-	•	_	_	_	-	-	AB-BB
рагкеае	NG	-	-	•	•	-	-	- f	_	-	
parva	- VC	-	-	-	-	-	•7	h.m	_	_	AR-RR
polylepis	KG	-	-	-	-	-	azı	0-111	_	_	AB-BB
pringsneimi	KG	-	-	-	-	-	-	- h	-		
spinifera	-	-	-	-	-	-	-	U	-	-	
strobilus	KG	-	-	-	-	-	-	-	-	•	. KG
pyramidosa	KĠ	-	-	-	-	-	-	- h	-	•	· KO
minor	-	-	-	-	-	-	-	D-111		•	
Phaeocystis	wa										
amoeboidea	KG	-	-	-	-	•	-	-	-	•	
pouchetii	KG	-	-	-		-	a	-	-	-	AD-UD
sphaeroides	KG	-	-		-	• .	-	-		•	
Prymnesium	nur zu 1):									
parvum KG,AB	,BS(FM)	-	-	-	-	-	b	-	-	•	• •
pastellifera		-	-	-	-	-	-	b	-		
saltans	-	-	f, AB	-	-	- c	-	-	-		
Trigonapsis											
diskoensis	KG	-	-	-	-	-	-	-	-	•	
minutissima	KG	-	-	-	-	-	-	- <	-		- KG
Wigwamma											
scenozonion	KG	-	-	-	-	-	-	-	-		
PAVLOVALES											
Pavlova											
lutheri	FM	-	-	-	-	-	aZ	b	-	•	- FM
= Monochrysis l	utheri										

Literatur :

- 1) EDLER L., HÄLLFORS G., NIEMI Å. (1984) : A preliminary check-list of the phytoplankton of the Baltic Sea, Acta Botanica Fennica **128**, 1-26
- 2) HALLFORDS G. & THOMSON H.A. (1979) : Future observations on Chrysochromulina birgeri (Prymnesiophyceae) from the Tvärminne archipelago, SW coast of Finland, Acta Botanica Fennica, 110, 41-46
- 3) KELL V.& NOACK B. (1991) : Fischsterben durch *Prymnesium saltans* Massart im Kleinen Jasmunder Bodden (Rügen) im April 1990, Jornal Appl. Ichthyology 7, 87-192
- 4) TAPPAN H. (1980): The Paleobiology of Plant Protists, W.H.Freeman and Company, U.S.A., 803 Seiten
- 5) VOLKMAN J.K., BARRETT S., BLACKBURN S., SIKES E. (1995): Alkenones in *Gephyrocapsa* oceanica: Implications for studies of Paleoclimate, Geochimica et Cosmochimica Acta **59**, 513-520
- 6) MARLOWE I.T., GREEN J., NEAL A., BRASSELL S.C., EGLINTON G., COURSE P. (1984): Long chain (n-C₃₇-C₃₉) alkenones in Prymnesiophyceae. Distribution of alkenones and other lipids and taxonomic significance, Br. Phycology Jornal 19, 203-216
- 7) THOMSEN C. (1993): Verfolgung pelagischer Prozesse mit Hilfe von biochemischen Komponenten am Beispiel der Alkenone (C_{37:2}, C_{37:3}), Sonderforschungsbericht 313: Veränderung der Umwelt - der nördliche Atlantik., 43, Universität zu Kiel
- 8) TIKKANEN T.& WILLÉN T. (1992): Växtplanktonflora, Naturvårdsverket, 2000 AB, Eskiltuna, 213 Seiten
- 9) CONTE M.H., VOLKMAN J.K., EGLINTON G. (1994) : Lipid biomarkers of the Haptophyta.- 351-377, - in: Green J.C. & Leadbeater B. (Hrsg.): The Haptophyte Algae, Clarendon University Press, Oxford
- 10) THOMSEN H.A. (1979) : Electron microsopical observations on brackish water nannoplancton from the Tvärminne area, SW coast of Finland, Acta Botanoca Fennica 110, 11-37

11) PANKOW H. (1990) : Ostsee-Algenflora, Gustav-Fischer-Verlag, Jena, 648 Seiten

Meereswissenschaftliche Berichte MARINE SCIENCE REPORTS

1	(1990)	Postel, Lutz: Die Reaktion des Mesozooplanktons, speziell der Biomasse, auf
		küstennahen Auftrieb vor Westafrika (The mesozooplankton response to coastal upwelling off West Africa with particular regard to biomass)
2	(1990)	Nehring, Dietwart: Die hydrographisch–chemischen Bedingungen in der westlichen und zentralen Ostsee von 1979 bis 1988 – ein Vergleich (Hydrographic and chemical conditions in the western and central Baltic Sea from 1979 to 1988 – a comparison)
		Nehring, Dietwart; Matthäus, Wolfgang: Aktuelle Trends hydrographischer und chemischer Parameter in der Ostsee, 1958 – 1989 (Topical trends of hydrographic and chemical parameters in the Baltic Sea, 1958 – 1989)
3	(1990)	Zahn, Wolfgang: Zur numerischen Vorticityanalyse mesoskaler Strom- und Massenfelder im Ozean (On numerical vorticity analysis of mesoscale current and mass fields in the ocean)
4	(1992)	Lemke, Wolfram; Lange, Dieter; Endler, Rudolf (Eds.): Proceedings of the Second Marine Geological Conference – The Baltic, held in Rostock from October 21 to October 26, 1991
5	(1993)	Endler, Rudolf; Lackschewitz, Klas (Eds.): Cruise Report RV "Sonne" Cruise SO82, 1992
6	(1993)	Kulik, Dmitri A.; Harff, Jan:
		I. Reference ion association models of normative seawater and of Baltic brackish waters at salinities 1–40 ‰, 1 bar total pressure and 0 to 30°C temperature
		(system Na–Mg–Ca–K–Sr–Li–Rb–Cl–S–C–Br–F–B–N–Si–P–H–O)
7	(1994)	Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans–Ulrich; Nausch, Günther:
8	(1995)	Hagen, Eberhard: John, Hans-Christian:
U	(1000)	Hydrographische Schnitte im Ostrandstromsystem vor Portugal und Marokko 1991 - 1992
9	(1995)	Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans Ulrich; Nausch, Günther: Nagel, Klaus;
		Hydrographisch-chemische Zustandseinschätzung der Ostsee 1994
		Seifert, Torsten; Kayser, Bernd:
10	(1005)	A high resolution spherical grid topography of the Ballic Sea
10	(1993)	Analytical theory and numerical experiments to the forcing of flow at isolated topographic features
11	(1995)	Kaiser Wolfgang: Nehring Dietwart: Breuel Günter: Wasmund, Norbert:
• •	(1000)	Siegel, Herbert; Witt, Gesine; Kerstan, Eberhard; Sadkowiak, Birgit:
		Zeitreihen hydrographischer, chemischer und biologischer Variablen an
		der Küstenstation Warnemünde (westliche Ostsee)
		Schneider, Bernd; Poni, Unrista: Spurenmetallkonzentrationen vor der Küste Mecklenburg-Vorpommerns

12 (1996)	Schinke, Holger: Zu den Ursachen von Salzwassoroinhrüchen in die Ostage
13 (1996)	Meyer-Harms, Bettina:
	Ernährungsstrategie calanoider Copepoden in zwei unterschiedlich trophierten Seegebieten der Ostsee (Pommernbucht, Gotlandsee)
14 (1996)	Reckermann, Marcus:
	in different marine pelagic ecosystems (Arabian Sea and Baltic Sea)
15 (1996)	Kerstan, Eberhard:
	Untersuchung der Verteilungsmuster von Kohlenhydraten in der
16 (1996)	Nehring, Dietwart: Matthäus Wolfgang: Lass Hans Ulrich: Nausch
- ()	Günther; Nagel, Klaus:
47 (1000)	Hydrographisch-chemische Zustandseinschätzung der Ostsee 1995
17 (1996)	Brosin, Hans-Jurgen: Zur Geschichte der Meeresforschung in der DDR
18 (1996)	Kube, Jan:
	The ecology of macrozoobenthos and sea ducks in the Pomeranian
19 (1996)	Bay Hagen Eborbard (Editor)
10 (1000)	GOBEX - Summary Report
20 (1996)	Harms, Andreas:
	Die bodennahe Trübezone der Mecklenburger Bucht unter besonderer
21 (1997)	Zülicke Christoph Hagen Eberhard
_ (())	GOBEX Report - Hydrographic Data at IOW
22 (1997)	Lindow, Helma:
	Experimentelle Simulationen windangeregter dynamischer Muster in
23 (1997)	Thomas, Helmuth:
	Anorganischer Kohlenstoff im Oberflächenwasser der Ostsee
24 (1997)	Matthäus, Wolfgang; Nehring, Dietwart; Lass, Hans Ulrich; Nausch,
	Hydrographisch-chemische Zustandseinschätzung der Ostsee 1996
25 (1997)	v. Bodungen, Bodo; Hentzsch, Barbara (Herausgeber):
	Neue Forschungslandschaften und Perspektiven der Meeresforschung -
26 (1997)	Reden und Vorträge zum Festakt und Symposium am 3. März 1997.
20 (1001)	Konzentrationen und Depositionen atmosphärischer Spurenmetalle an
	der Küstenstation Arkona
27 (1997)	Löffler, Annekatrin: Die Redeutung von Partikoln für die Spurenmetellvorteilung in der
	Ostsee, insbesondere unter dem Einfluß sich ändernder Redox-
	bedingungen in den zentralen Tiefenbecken
28 (1998)	Leipe, Thomas; Eidam, Jürgen; Lampe, Reinhard; Meyer, Hinrich; Neumann,
	momas, Osadczuk, Andrzej, Janke, Wolfgang, Puff, Thomas, Blanz, Tho- mas: Gingele, Franz Xaver: Dannenberger, Dirk: Witt, Gesine:
	Das Oderhaff. Beiträge zur Rekonstruktion der holozänen geologischen
20 (1000)	Entwicklung und anthropogenen Beeinflussung des Oder-Ästuars.
73 (1990)	Naunaus, wongang; Nausch, Gunther; Lass, Hans Ulrich; Nagel, Klaus; Siegel, Herbert
	Hydrographisch-chemische Zustandseinschätzung der Ostsee 1997
30 (1998)	Fennel, Katja:
	Ein gekoppeltes, dreidimensionales Modell der Nährstoff- und Plankton-

~ .	(1000)	dynamik für die westliche Ostsee
31	(1998)	Lemke, Wolfram: Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression
32	(1998)	Wasmund, Norbert; Alheit, Jürgen; Pollehne, Falk; Siegel, Herbert; Zettler, Michael L.:
~~	(1000)	Ergebnisse des Biologischen Monitorings der Ostsee im Jahre 1997 im Vergleich mit bisherigen Untersuchungen
33	(1998)	Mohrholz, Volker: Transport- und Vermischungsprozesse in der Pommerschen Bucht
34	(1998)	Emeis, Kay-Christian; Struck, Ulrich (Editors): Gotland Basin Experiment (GOBEX) - Status Report on Investigations concerning Benthic Processes, Sediment Formation and Accumulation
35	(1999)	Matthäus, Wolfgang; Nausch, Günther; Lass, Hans Ulrich; Nagel, Klaus; Siegel, Herbert:
36	(1999)	Schernewski, Gerald:
		Der Stoffhaushalt von Seen: Bedeutung zeitlicher Variabilität und räumli- cher Heterogenität von Prozessen sowie des Betrachtungsmaßstabs - eine Analyse am Beispiel eines eutrophen, geschichteten Sees im Ein- zugsgebiet der Ostsee (Belauer See, Schleswig-Holstein)
37	(1999)	Wasmund, Norbert; Alheit, Jürgen; Pollehne, Falk; Siegel, Herbert, Zettler, Michael L.:
		Der biologische Zustand der Ostsee im Jahre 1998 auf der Basis von Beutenlankten- Zooplankten- und Zoopenthesuntersuchungen
38	(2000)	Wasmund, Norbert; Nausch, Günther; Postel, Lutz; Witek, Zbigniew; Za- lewski, Mariusz; Gromisz, Sławomira; Łysiak-Pastuszak, Elżbieta; Olenina, Irina; Kavolyte, Rima; Jasinskaite, Aldona; Müller-Karulis, Bärbel; Ikauniece, Anda; Andrushaitis, Andris; Ojaveer, Henn; Kallaste, Kalle; Jaanus, Andres: Trophic status of coastal and open areas of the south-eastern Baltic Sea based on nutrient and phytoplankton data from 1993 - 1997
39	(2000)	Matthäus, Wolfgang; Nausch, Günther; Lass, Hans Ulrich; Nagel, Klaus; Siegel, Herbert:
40	(2000)	Schmidt, Martin; Mohrholz, Volker; Schmidt, Thomas; John, HChristian; Weinreben, Stefan; Diesterheft, Henry; Iita, Aina; Filipe, Vianda; Sangolay, Bomba-Bazik; Kreiner, Anja; Hashoongo, Victor; da Silva Neto, Domingos: Data report of R/V "Poseidon" cruise 250 ANDEX'1999
41	(2000)	v. Bodungen, Bodo; Dannowski, Ralf; Erbguth, Wilfried; Humborg, Christoph; Mahlburg, Stefan; Müller, Chris; Quast, Joachim; Rudolph, KU.; Scher- newski, Gerald; Steidl, Jörg; Wallbaum, Volker: Oder Basin - Baltic Sea Interactions (OBBSI): Endbericht
42	(2000)	Zettler, Michael L.; Bönsch, Regine; Gosselck, Fritz: Verbreitung des Makrozoobenthos in der Mecklenburger Bucht (süd-liche Ostsee) - rezent und im historischen Vergleich
43	(2000)	Wasmund, Norbert; Alheit, Jürgen; Pollehne, Falk; Siegel, Herbert: Der biologische Zustand der Ostsee im Jahre 1999 auf der Basis von Phytoplankton- und Zooplanktonuntersuchungen
44	(2001)	Eichner, Christiane: Mikrobielle Modifikation der Isotopensignatur des Stickstoffs in marinem partikulärem Material
45	(2001)	Matthäus, Wolfgang; Nausch, Günther (Editors): The hydrographic-hydrochemical state of the western and central Baltic

		Sea in 1999/2000 and during the 1990s
46	(2001)	Wasmund, Norbert; Pollehne, Falk; Postel, Lutz; Siegel, Herbert; Zettler,
		Biologische Zustandseinschätzung der Ostsee im Jahre 2000
47	(2001)	Lass, Hans Ulrich; Mohrholz, Volker; Nausch, Günther; Pohl, Christa; Postel, Lutz; Rüß, Dietmar; Schmidt, Martin; da Silva, Antonio; Wasmund, Norbert:
40	(0004)	Data report of R/V Meleor Cruise 46/3 ANDEN 2000
48	(2001)	Schöner, Anne Charlotte: Alkenone in Ostseesedimenten, -schwebstoffen und -algen: Indikatoren für das Paläomilieu?