
I
i
I

1

I
l

Meereswissenschaftliche Berichte
MARINE SCIENCE REPORTS

No. 63

GOTM - Scientific Documentation
Version 3.2

by

Lars Umlauf1, Hans Burchard1
, Karsten Bolding2

Institut für Ostseeforschung
Warnemünde

2005

Addresses of authors:

IBaltic Sea Research Institute (IOW), Seestraße 15, D-18119 Rostock-Wamemünde,
Germany
2 Bolding & Burchard Hydrodynamics, Strandgyden 25, DK-5466 Asperup, Denmark

Corresponding author: lars.umlauf@io-wamemuende.de

Contents

1 Introduction
1.1 What is GOTM?
1.2 The idea behind GOTM
1.3 How to read the documentation .
1.4 Acknowledgements

2 The GOTM main program
2.1 Introduction .
2.2 GOTM - the main program
2.3 Module gotm - the general framework

2.3.1 Initialise the model .
2.3.2 Manage global time-stepping ..
2.3.3 The run is over - now clean up.

3 The mean flow model
3.1 Introduction .

3.1.1 Physics .
3.1.2 Numerics ..

3.2 Module Mean Flow .
3.2.1 Initialisation of the mean flow variables

3.3 The vertical grid
3.4 The Coriolis rotation
3.5 The U-momentum equation
3.6 The V-momentum equation
3.7 The external pressure-gradient
3.8 The internal pressure-gradient
3.9 The vertical friction ...
3.10 The temperature equation
3.11 The salinity equation
3.12 The buoyancy equation
3.13 Calculation of the vertical shear
3.14 Calculation of the stratification
3.15 Convective adjustment

4 The turbulence model
4.1 Introduction
4.2 Second-order models
4.3 Algebraic Models . .
4.4 Explicit models for vertical shear and stratification

4.4.1 Equilibrium states .
4.4.2 Stability of explicit models ..

4.5 Parameter conversion for other models

3

9
9
9

10
11

13
13
14
15
18
18
19

21
21
21
22
25
28
29
31
32
35
37
39
41
43
46
48
50
51
54

57
57
59
61
63
65
66
66

4

4.5.1 The model of Gibson and Launder (1978) 67
4.5.2 The model of Canuto et al. (2001) 67
4.5.3 The model of Mellor and Yamada (1982) 69

4.6 Numeries 69
4.7 Module turbulence: its all in here 71

4.7.1 Initialise the turbulence module. 77
4.7.2 Initialize the second-order model 78
4.7.3 Generate a two-equation model 81
4.7.4 Analyse the turbulence models . 86
4.7.5 Report turbulence model 88
4.7.6 Manage turbulence time-stepping . 88
4.7.7 Update the turbulent kinetic energy 91
4.7.8 Update the buoyancy variance ... 91
4.7.9 Update the dissipation length-scale . 92
4.7.10 Update the desctruction rate of buoyancy variance 93
4.7.11 Update diffusivities (Kolmogorov-Prandtl relation) 93
4.7.12 Update stability funetions 94
4.7.13 Compute special values of stability funetions . . . 94
4.7.14 Boundary conditons for the k-equation (k-epsilon style) 96
4.7.15 Boundary conditons for the k-equation (Mellor-Yamada style) . 97
4;7.16 Boundary conditons for the epsilon-equation 99
4.7.17 Boundary conditons for the psi-equation 100
4.7.18 Boundary conditons for the q21-equation . 102

4.8 Update turbulence produetion . 104
4.9 Update dimensionless alpha's 106
4.10 Update time scale ratio ., 107
4.11 The dynamic k-equation 108
4.12 The dynamic q2/2-equation 110
4.13 The dynamic kb-equation . 112
4.14 The dynamic q21-equation . 114
4.15 The dynamic epsilon-equation 117

:>4.16 The dynamic psi-equation 120
4.17 The algebraic k-equation. . . . 123
4.18 The algebraic kb-equation . . . 125
4.19 Some algebraic length-scale relations 126
4.20 The algebraic epsilonb-equation . . . 129
4.21 The algebraic velocity variances 130
4.22 Algebraic length-scale from ISPRAMIX 131
4.23 Algebraic length-scale with two master scales 133
4.24 The non-local, exact weak-equilibrium stability funetion 135
4.25 The non-local, approximate weak-equilibrium stability funetion 137
4.26 The local, weak-equilibrium stability funetions .. 138
4.27 The quasi-equilibrium stability funetions 140
4.28 The Munk and Anderson (1948) stability funetion 142

4.29 The Schumann and Gerz (1995) stability function .
4.30 Flux Richardson number stability function.
4.31 Ca1culate c3 from steady-state Richardson number
4.32 Calculate steady-state Richardson number from c3
4.33 Update internal wave mixing .
4.34 TKE flux from wave-breaking .
4.35 Module kpp: the KPP-turbulence model

4.35.1 Initialise the KPP module ...
4.35.2 Loop over the KPP-algorithm. .
4.35.3 Compute interior fluxes
4.35.4 Compute turbulence in the surface layer
4.35.5 Compute turbulence in the bottom layer
4.35.6 Compute the velocity scale

4.36 Printing GOTM library version

5 Air:-Sea interaction
5.1 Introduction .
5.2 Module airsea - atmospheric fluxes .

5.2.1 Initialise the air-sea interaction module
5.2.2 Obtain the air-sea fluxes .
5.2.3 Finish the air-sea interactions .
5.2.4 Compute the exchange coefficients
5.2.5 Calculate the heat fluxes
5.2.6 Calculate the short-wave radiation
5.2.7 Read meteo data, interpolate in time.
5.2.8 Read heat flux data, interpolate in time
5.2.9 Read momentum flux data, interpolate in time
5.2.10 Read P-E, interpolate in time.
5.2.11 Read SST, interpolate in time .
5.2.12 Read SSS, interpolate in time .
5.2.13 Integrate short-wave and sea surface fluxes

~":.. 5.2.14 Set the SST to be used from model.

6 Working with observed data in GOTM
6.1 Module observations the 'real' world

6.1.1 Initialise the observation module
6.1.2 get_aILobs ..
6.1.3 read_obs...
6.1.4 read_profiles.
6.1.5 get_s_profile.
6.1.6 get_t_profile.
6.1.7 get_ext_pressure
6.1.8 get-inLpressure.
6.1.9 read_extinction.

5

144
146
148
149
150
151
152
159
160
162
163
164
166
168

169
169
170
172
174
175
175
176
177
178
178
179
180
180
181
181
182

183
184
188
189
190
190
191
192
193
194
195

1

6

6.1.10 get_w_adv .
6.1.11 get_zeta .
6.1.12 get_veLprofile.
6.1.13 geLeps_profile
6.1.14 analyticaLprofile
6.1.15 consLNNT
6.1.16 const~NS

7 Saving the results
7.1 Module output - saving the results

7.1.1 Initialize the output module.
7.1.2 Set some variables related to output
7.1.3 Save the model results in file
7.1.4 Close files used for saving model results
7.1.5 Compute various diagnostic/integrated variables

7.2 Module asciiout - saving the results in ASCII
7.2.1 Open the file unit for writing .
7.2.2 Save the model results to file .
7.2.3 Close files used for saving model results

7.3 Module ncdfout - saving the results in NetCDF
7.3.1 Create the NetCDF file .
7.3.2 Save model results to file .
7.3.3 Close files used for saving model results
7.3.4 Begin or end define mode .
7.3.5 Define a new NetCDF variable
7.3.6 Set attributes for a NetCDF variable.
7.3.7 Store values in a NetCDF file

8 Utilities
8.1 Introduction .
8.2 Module util - parameters and interfaces for utilities .

- <~":- 8.3 Diffusion schemes - grid centers .
8.4 Diffusion schemes - grid faces .
8.5 Advection schemes - grid centers .
8.6 Module mtridiagonal- solving the system

8.6.1 Allocate memory .
8.6.2 Simplified Gaussian elimination .

8.7 Module eqstate - the equation of state
8.7.1 Read the namelist eqstate .
8.7.2 Select an equation of state .
8.7.3 Compute thermal expansion coefficient .
8.7.4 Compute saline contraction coefficient .
8.7.5 The UNESCO equation of state
8.7.6 The Jackett et al. (2005) equation of state .

196
197
197
198
199
200
201

203
204
205
205
206
207
207
209
209
210
211
212
213
214
214
215
215
216
217

219
219
220
222
225
227
230
230
231
233
234
234
235
236
236
237

8.8 Interpolate from observation space to model grid
8.9 Convert between buoyancy fluxes and others
8.10 Module time - keep control of time .

8.10.1 Initialise the time system .
8.10.2 Convert true Julian day to calendar date
8.10.3 Convert a calendar date to true Julian day
8.10.4 Keep track of time (Julian days and seconds)
8.10.5 Convert a time string to Julian day and seconds
8.10.6 Convert Julian day and seconds into a time string
8.10.7 Return the time difference in seconds .

9 Extra features
9.1 Module seagrass - sea grass dynamics

9.1.1 Initialise the sea grass module ..
9.1.2 Update the sea grass model ...
9.1.3 Finish the sea grass calculations
9.1.4 Storing the results .

10 GOTM scenarios
10.1 Idealised scenarios

10.1.1 Couette-flow .
10.1.2 Pressure-gradient driven channel flow
10.1.3 Turbulence under breaking surface waves
10.1.4 Some entrainment scenarios
10.1.5 Estuarine dynamics ...

10.2 Shelf sea scenarios
10.2.1 Fladenground Experiment .
10.2.2 Annual NorthSea simulation
10.2.3 Seasonal North Sea simulation
10.2.4 Liverpool Bay .
10.2.5 Gotland Deep .

:";' 10.2.6 Middelbank . .
10.3 Open ocean scenarios.

10.3.1 Ocean Weather Ship Papa.
10.4 Lake scenarios

10.4.1 Lago Maggiore

Bibliography

7

238
239
241
242
242
243
244
244
245
245

247
248
249
249
251
251

253
253
253
255
255
257
258
259
259
259
260
261
262
263
263
263
264
264

267

I

8

9

1 Introduction

1.1 What is GOTM?

GOTM is the abbreviation for 'General Ocean Turbulence Model'. It is a one-dimensional
water column model for the most important hydrodynamic and thermodynamic processes
related to vertical mixing in natural waters. In addition, it has been designed such that it
can easily be coupled to 3-D circulation models, and used as a module for the computation of
vertical turbulent mixing. The core of the model computes solutions for the one-dimensional
versions of the transport equations of momentum, salt and heat. The key component in solv­
ing these equations is the model for the turbulent fluxes of these quantities. The strength of
GOTM is the vast number of well-tested turbulence models that have been implemented in
the code. These models span the range from simple prescribed expressions for the turbulent
diffusivities up to complex Reynolds-stress models with several differential transport equa­
tions to solve. Even though, evidently, not all turbulence models published in oceanography
could be implemented, at least one member of every relevant model family can be found
in GOTM (empirical models, energy models, two-equation models, Aigebraic Stress Models,
K-profile parameterisations, etc).

Besides the classic combination of the hydrodynamic and turbulent part of the model,
GOTM has been growing considerably with the years, and new parts have been developed.
Sediment transport and the dynamics of sea grass have been added, state-of-the-art numer­
ical scherneshave been implemented, and an environment for the assimilation of data and
the cOlllputation of atmosphere-ocean interaetions exists now. In addition, there is a num­
ber of scientific research groups that adopted GOTM for their own projects. Even though
the modules developed by these groups (biological and bio-geochemical components, air-sea
interaction modules, plotting routines, etc) are not part of the core structure of GOTM, as
downloadable from our web-site at www.gotm.net. they are in most cases available directly
from these groups. In that sense, GOTM is an integrated, community based software envi­
ronment for an almost unlimited range of applications in geophysical turbulence modelling.

1.2 The idea behind GOTM

-Computer codes similar to pieces of GOTM can be found at many scientific institutions.
However, different researchers have different goals. Some are interested in the development
of turbulence models, others in oceanic applications of these models, and yet others want to
compare the effects of different turbulence models on different processes in the ocean or in
lakes. The attempt to use one of their specialised programs for one's own project resulted
in many cases in spending weeks of work for deciphering non-documented FORTRAN lines,
scattered with pre-historic fragments of code from more or, in some cases, less talented
programmers. Additional time had to be spend for providing components for atmospheric
forcing, etc, before the own research project could finally be attacked.

To overcome these problems, the GOTM project was intiated, its purpose being twofold.
First, GOTM should provide an integrative environment for all researchers interested in the
application of a turbulence model in studies of oceanic processes. Such a software should con­
tain a core part for solving transport equations of mean and turbulent quantities, but equally

I

10

well routines to compute the atmosphere-ocean fluxes from meteorological or measured data,
including routines to interpolate and manipulate them. Second, however, GOTM should also
be a research tool for those interested in the development of turbulence models and numerical
algorithms. This implies that GOTM should always contain the state-of-the-art models and
algorithms in these disciplines. The current version of GOTM was developed under these
premises.

In both cases, a detailed and comprehensible documentation is crucial, and we spent a
lot of effort to come close to this goal. All methods and models embedded in GOTM can be
traced back to scientific publieations, a key requirement for the scientific use of a program.
Also, we took great care to make the FORTRAN95 code as safe, easily understandable, and
extensible, as possible.

1.3 How to read the documentation

This document is the official scientific documentation of GOTM. Due to the fast and con­
tinuing evolution of GOTM, we have been looking for a new and flexible way of giving a
comprehensive and up-to-date documentation for GOTM. We decided for the following strat­
egy.

Every module of GOTM is accompanied by an introductory text on the general theory of
the subject, including mathematical derivations, bibliographie references, and the definition
of the most important variables. These introductory parts, which should give the reader
abrief theoretical overview of what is coded in the modules, are expected to be relatively
stable. References are given to more comprehensive introductory or advanced media for each
subject.

For the actual documentation of the FORTRAN95 code, which is more likely subject to
frequentchanges and extensions, a different strategy has been followed. For every module,
internal or external subroutine or function, a short piece of documentation in U'IEX has
been directly written into the code. These fragments of the documentation will be updated
every time the code changes. We use a software called PROTEX, which looks into every
FORTRAN file of GOTM, extracts the U'IEX parts, and compiles some information about the
FORTRAN interfaces, public member functions, publie data members, defined parameters,
-ett. All these pieces of information are assembled by PROTEX to yield a niee documentation
including table of contents, figures, tables, references, and formulae for each part of the
program. The largest part of the report has been created in this way. Note that PROTEX
looks for certain key words in the FORTRAN code to organise the structure of the final
document. Therefore, don't be confused if you find things like !DESCRIPTION :, ! INTERFACE: ,
! PUBLIC DATA MEMBERS:, etc, in the FORTRAN files. These are always preceded by an
exclamation mark, and thus invisible for your FORTRAN compiler.

If you are new to GOTM, we recommend to completely go through the core parts of
GOTM described in section 2, section 3, and section 4. In these sections, you will find also
references to the relevant introductory literature. The other parts of this documentation
should be used like an encyclopedia: you can look up things fast when you need more infor­
mation about parts of the program. Extra comments can be found in the form of standard
FORTRAN comments that should help users to find their way through the lines of the code.

11

A special status in this documentationhas section 10 illustrating particular scenarios pre­
pared for GOTM. This section contains useful information about the theoretical background
and the implementation of each scenario currently available in GOTM. Scenarios range from
simple test cases, like a turbulent Couette flow, to full oceanic applications including mete­
orological forcing and comparison to measured data. The most simple scenarios descibed in
section 10 serve as a little tutorial, in which the key algorithms of GOTM are introduced in
a practical way.

This documentation does not contain information about how to download, compile and
run the code and the test cases. All information necessary to run GOTM on a number of
well-known platforms is compiled at www.gotm.net. If you wish to directly contact to the
GOTM developers, please write an e-mail togotm-devel@gotm.net. All users of GOTM, who
signed up on the GOTM web page, will be on the users' mailing list, gotm-users@gotm.net.
Information about updates, bug fixes, and new versions of GOTM are communicated via this
list.

1.4 Acknowledgements

The authors of this report are grateful to the former members of the GOTM Team for their
persisting cooperation. These are particularly members from the very first days of GOTM
which took place at the Joint Research Centre in Ispra (Italy) in 1998: Manuel Ruiz Villarreal
who worked after the Ispra time in Santiago de Compostela (Spain), Lisboa (Portugal), Ham­
burg (Germany), and Warnemünde (Germany) before he moved back to his horne country for
working in A Coruna (Spain). Pierre-Phillipe Mathieu who went to Reading (U.K.) for some
time before he arrived in Frascati (Italy) recently. We further want to acknowledge those of
the almost 200 subscribed users of GOTM from all over the world who helped us to improve
GOTM, reported bugs, and motivated us to go on with this zero-budget project. It was also
the important role which GOTM played in several projects, mostly funded by the European
Commission, which helped a lot to maintain GOTM. These projects were MAS3-CT96-0053
('PHASE'), MAS3-CT96-0051 ('MTP II-MATER'), MAS3-CT97-0025 ('PROVESS'), and es­
pecially CARTUM (Comparative Analysis and Rationalisation of Second-Moment Turbulence
Models), a brainstorming activity (MAS3-CT98-0172), which brought together turbulence
~pecialists from all over the world. We are finally grateful to all those other people working
on the Public Domain Software without which a project like GOTM would be unthinkable:
1J\.'IEX, PROTEX, LINUX and many others.

1

,

12

13

2 The GOTM main program

2.1 Introduction

The purpose of the main program and its associated module go tm is the construction of asolid
framework for the interaction of all components of GOTM. Almost no actual computations
are carried out inside this part of the program. However, the most important processes are
triggered from there: the initialization of all lower-level modules is actuated and the time
stepping of the differential equations is managed. Also calls to subroutines responsible for
the air-sea interaction and the ouput of the results are managed. Details for each of the (few)
routines are given in the following.

1

14

2.2 GOTM - the main program

INTERFACE:

program main

DESCRIPTION:

This is the main program of GOTM. However, because GOTM has been programmed in
a modular way, this routine is very short and merely calls internal routines of other mod­
ules. Its main purpose is to update the time and to call the internal routines init_gotmO,
time_loopO, and clean_upO, which are defined in the module gotm as discussed in seetion
2.3.

USES:

use time
use gotm
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: main.F90,v $
Revision 1.7 2005/11/15 11:45:08 lars
documentation finish for print
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.4 2003/03/10 09:20:28 gotm
Added new Generic Turbulence Model +

- .~~. improved documentation and cleaned up code
Revision 1.3 2001/11/18 13:07:06 gotm
Cleaned
Revision 1.3 2001/09/19 08:26:08 gotm
Only calls CPU_time() if -DFORTRAN95
Revision 1.2 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation
- now according to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.
Revision 1.1.1.1 2001/02/12 15:55:59 gotm
initial import into CVS

15

2.3 Module gotrn - the general frarnework

INTERFACE:

module gotm

DESCRIPTION:

This is 'where it all happens'. This module provides the internal routines init_gotm0 to
initialise the whole model and time_loopO to manage the time-stepping of all fields. These
two routines in turn call more specialised routines e.g. of the meanflow and turbulence
modules to delegate the job.
Here is also the place for a few words on FORTRAN 'units' we used. The method of FOR­
TRAN units is quite rigid and also a bit dangerous, but lacking a better alternative we
adopted it here. This requires the definition of ranges of units for different purposes. In
GOTM we strongly suggest to use units according to the following conventions.

• unit=lO is reserved for reading namelists.

• units 20-29 are reserved for the airsea module.

• units 30-39 are reserved for the meanflow module.

• units 40-49 are reserved for the turbulence module.

• units 50-59 are reserved for the output module.

• units 60-69 are reserved for the extra modules like those dealing with sediments or
sea-grass.

• units 70- are not reserved and can be used as you wish.

USES:

:';0.. use meanflow
use observations
use time

use airsea, only: init_air_sea,air_sea_interaction
use airsea, only: set_sst,integrated_fluxes
use airsea, only: calc_fluxes
use airsea, only: tx,ty,I_O,heat,p_e

use turbulence, only: turb_method
use turbulence, only: init_turbulence,do_turbulence
use turbulence, only: num,nuh,nus
use turbulence, only: const_num,const_nuh

16

use turbulence,
use turbulence,

use kpp,

only: gamu,gamv,gamh,gams
only: kappa

use mtridiagonal,only: init_tridiagonal
use eqstate, only: init_eqstate

ifdef SEAGRASS
use seagrass

endif
ifdef BIO

use bio
use bio_fluxes

endif

use output

IMPLICIT NONE
private

PUBLIC MEMBER FUNCTIONS:

DEFINED PARAMETERS:

integer, parameter
ifdef SEAGRASS

integer, parameter
endif

- tidef BIO
integer, parameter

endif

REVISION HISTORY:

.. namlst=10

.. unit_seagrass=62

.. unit_bio=63

Original author(s): Karsten Bolding & Hans Burchard
$Log: gotm.F90,v $
Revision 1.24 2005/11/15 11:45:08 lars
documentation finish for print
Revision 1.23 2005/09/12 14:48:33 kbk
merged generic biological module support
Revision 1.22 2005/08/11 12:29:38 lars
added #ifdef for xP argument in do_turbulence()

Revision 1.21 2005/07/20 09:36:11 lars
bug-fix in variances output
Revision 1.20 2005/07/19 16:46:14 hb
removed superfluous variables - NNT, NNS, SSU, SSV
Revision 1.19 2005/07/19 16:33:22 hb
moved variances() from do_turbulence() to time_loop()
Revision 1.18 2005/07/12 10:13:21 hb
dependence of init_turbulence fromdepth, zOs, zOb removed
Revision 1.17 2005/07/06 15:30:17 kbk
added KPP, no bio, no sediment, updated documentation
Revision 1.16 2004/08/02 08:35:46 hb
no need to pass time information
Revision 1.15 2004/07/29 17:36:36 hb
separate reading fluxes from bio() - benefit of 3D models
Revision 1.14 2004/05/28 13:24:49 hb
Extention of bio_iow to fluff layer and surface nutrient fluxes
Revision 1.13 2004/03/30 11:31:52 kbk
h in parameter list to init_bio()
Revision 1.12 2004/03/04 10:13:01 kbk
calc_sediment --> do_sediment
Revision 1.11 2003/09/16 12:17:10 hb
added new biological model - bio_iow
Revision 1.10 2003/07/23 12:14:07 hb
preparing for general bio interface
Revision 1.9 2003/04/04 14:25:52 hb
First iteration of four-compartment geobiochemical model implemented
Revision 1.8 2003/04/01 17:01:00 hb
Added infrastructure for geobiochemical model
Revision 1.7 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.6 2003/03/28 09:11:30 kbk
removed tabs
Revision 1.5 2003/03/10 09:20:27 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.32001/11/18 15:58:02 gotm
Vertical grid can now be read from file
Revision 1.2 2001/06/13 07:40:39 gotm
Lon, lat was hardcoded in meteo.F90 - now passed via init_meteo()
Revision 1.1.1.1 2001/02/12 15:55:59 gotm
initial import into CVS

17

1

18

2.3.1 Initialise the model

INTERFACE:

subroutine init_gotm()

DESCRIPTION:

This internal routine triggers the initialization of the model. The first section reads the
namelists of gotmrun. inp with the user specifications. Then, one by one each of the modules
are initialised with help of more specialised routines like init_meanflow 0 or init_turbulence 0
defined inside their modules, respectively.
Note that the KPP-turbulence model requires not only a call to init_kppO but before also
a call to init_turbulenceO, since there some fields (fluxes, diffusivities, etc) are declared
and the turbulence namelist is read.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for the gotm module

2.3.2 Manage global time-stepping

INTERFACE:

subroutine time_loop()

DESCRIPTION:

This internal routine is the heart of the code. It contains the main time-Ioop inside of
which all routines required during the time step are called. The following main processes are
successively triggered.

1. The model time is updated and the output is prepared.

2. Air-sea interactions (flux, SST) are computed.

3. The time step is performed on the mean-flow equations (momentum, temperature).

4. Some quantities related to shear and stratification are updated (shear-number, buoy­
ancy frequency, etc).

19

5. Turbulence is updated depending on what turbulence closure model has been specified
by the user.

6. The results are written to the output files.

Depending on macros set for the Fortran pre-processor, extra features like the effects of
sea-grass or sediments are considered in this routine (see section 9).

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding &Hans Burchard
See log for the gotm module

2.3.3 The run is over - now clean up.

INTERFACE:

subroutine clean_up()

DESCRIPTION:

This function is just a wrapper for the external routine close_output 0 discussed in section
7. All open files will be closed after this call.

USES:

IMPLICIT NONE

'REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for the gotm module

20

21

3 The mean flow model

3.1 Introduction

This module contains the definitions of the most important mean flow variables used in
geophysical models. In GOTM, these are

• the mean horizontal velocity components, U and V

• the mean potential temperature, e, (or the mean buoyancy, B)

• the mean salinity, S

Note that in general a variable c/J describing a turbulent field can be decomposed into a mean
and a fluctuating part. In GOTM, we use the notation

1

c/J=(c/J)+c/J', (1)

where () denotes the ensemble mean and the prime the fluctuating part. In addition, for
brevity, we use the following conventions:

U = (u) for the x-velocity
V = (v) for the y-velocity
p = (p) for the pressure

(2)e (0) for the potential temperature
B (b) for the buoyancy
S (8) for the salinity

Note that, ifnot explicitly mentioned, GOTMuses the units kg, m, s, K. Further conventions
are introduced in the turbulence chapter section 4. All operations on these meanflow variables
are executed and coordinated in themeanflow module.

3.1.1 J>hysics

Due to the one-dimensional character of GOTM, the state-variables listed above are assumed
to be horizontally homogeneous, depending only on the vertical z-coordinate. As a con­
sequence, all horizontal gradients have to be taken from observations, or they have to be
estimated, parameterised or neglected.
For example, the surface slopes Gx(and Gy (representing the barotropic pressure-gradients
may be determined by means of local observations or results from three-dimensional numer­
ical models. It is also possible to prescribe a time series of the near-bed velocity components
for reconstructing the barotropic pressure gradient, see Burchard (1999). The implementa­
tion of these options forthe external pressure gradient is carried out in extpressure. F90,
described in section 3.7. The internal pressure-gradient, which results from horizontal density
gradients, can be prescribed from observations of horizontal gradients of e and S or from
three-dimensional model results (see intpressure. F90 in section 3.8). These gradients may
also be used for horizontally advecting e and S (see section 3.10 and section 3.11).

22

Another option in GOTM for parameterising the advection of e and S is to relax the model
results to observations. Evidently, this raises questions about the physical consistency of the
model, but it might help to provide a more realistic density field for studies of turbulence
dynamics. Nudging is also possible for the horizontal velocity components. This makes
sense in order to initialise inertial oscillations from observed velocity profiles, see section 3.5
and section 3.6. In the momentum equations, advection and horizontal diffusion terms are
neglected.
In hydrostatic ocean models, the vertical velocity is calculated by means of the continuity
equation, where the horizontal gradients of U and V are needed. Since these are not available
or set to zero, the assumption of zero vertical velocity would be consistent. In many applica­
tions however, a non-zero vertical velocity is needed in order to reflect the vertical adiabatic
motion of e.g. a thermocline. In GOTM, we have thus included the option of prescribing a
vertical velocity time series at one height level which might be vertically moving. Vertical ve­
locities at the surface and at the bottom are prescribed according to the kinematic boundary
conditions (w = 0 at the bottom and w = Öt(at the surface), and between these locations
and the prescribed vertical velocityat a certain height, linear interpolation is applied, see
updategrid. F90 in section 3.3. This vertical velocity is then used for the vertical advection
of all prognostic quantities.
Standard relations according to the law of the wall are used for deriving bottom boundary
conditions for the momentum equations (see friction. F90 in section 3.9). At the sea sur­
face, they have to be prescribed or calculated from meteorological observations with the aid
of bulk formulae using the simulated or observed sea surface temperature (see section 5.2).
In stratification.F90 described in section 3.14, the buoyancy b as defined in equation (33)
is calculated by means of the UNESCO equation of state (Fofonoff and Millard (1983)) or its
linearised version. In special cases, the buoyancy mayaiso be calculated from a simple trans­
port equation. stratification.F90 is also used for calculating the Brunt-Väisälä frequency,
N.
The turbulent fluxes are calculated by means of various different turbulence closure models
described in great detail in the turbulence module, see section 4.7. As a simplifying alterna­
tive, mixing can be computed according to the so-called 'convective adjustment' algorithm,
see section 3.15.

-Farthermore, the vertical grid is also defined in the meanflow module (see updategrid. F90
in section 3.3). Choices for the numerical grid are so-called a-coordinates with layers heights
having a fixed portion oE the water depth throughout the simulation. Equidistant and non­
equidistant grids are possible.

3.1.2 Nurnerics

For the spatial discretisation, the water column is divided into Ni layers of not necessarily
equal thickness hi,

i = 1, ... ,Ni, (3)

with nondimensional interfaces "Ii with "10 = -1, "li-I< "Ii and "INi = 0, see Burchard and
Petersen (1997).

23

The discrete values for the mean flow quantities U, V, 8, and S represent interval means and
are therefore located at the centres of the intervals, and the turbulent quantities like k, L, E,

Vt, vf, N, P, G, cJ.L' and dJ.L are positioned at the interfaces of the intervals (see section 4.7).
The indexing is such, that the interface above an interval has the same index as the interval
itself. This means that mean flow quantities range from i = 1, .. , Ni while turbulent quantities
range from i = 0, .. , Ni (see figure 1). The staggering of the grid allows for a straight-forward

Z=~(I)~j;i=N

Turbulent quantities

> i+1

h(i) { > i

;>i-1

Mean f10w quantilies

Figure 1: Spatial organisation and indexing of the numerical grid.

discretisation of the vertical fluxes of momentum and tracers without averaging. However,
for the vertical fluxes of e.g. k and E, averaging of the eddy diffusivities is necessary. This
is only problematic for the fiuxes near the surface and the bottom, where viscosities at the
boundaries have to be considered for the averaging. These can however be derived from the
law of the wall.
The time stepping is equidistant, based on two time levels and not limited by Courant num­
bers, because of the absence of advection and an implicit treatment of vertical diffusion, see

l

u ü -
u

/I.
U

Figure 2: Temporal organisation and indexing of the numerical grid. Here, a time stepping
slightly more implicit than the Crank and Nicolson (1947) scheme with (J" = 0.6 is shown.

24

figure 2. In the following, the discretisation of a simple diffusion equation,

öX _ ~ (1/ÖX) = 0 ,
öt öz öz

will be illustrated for Neumann-type boundary conditions

(4)

öX
1/- = Ps

öz
for z = (, (5)

and
öX

1/- = Pb for z = - H.
öz

The semi-implicit discretisation of (4) can then be written as

(6)

-, (7)

X!!'+1 - XTt
~ ~

tlt
=0, (8)

xn+l_xn
1 1

tlt

for 1 < i < Ni.

n x;,+'" - Xj+'"
1/1 O.5(h~+l+hf+l) - Pb
--~-.:--,-;~:....-_- = 0 ,

h~+l

Here, the semi-implicit time level is defined by

(9)

(10)

Thus, for (Y = 0, a fully explicit, for (Y = 1 a fully implicit, and for (Y = 0.5 the Crank and
Nicolson (1947) second-order scheme are obtained. Figure 2 shows an example for (Y = 0.6. It
should be noted that often a. time stepping is preferable which is slightly more implicit than

_the Crank and Nicolson (1947) scheme in order to obtain asymptotic stability. The resulting
linear system of equations (7) - (9) with tri-diagonal matrix structure is solved by means of
the simplified Gaussian elimination.
With the same strategy, a very similar system of equations can be derived for variables located
at the interfaces of the grid cells, i.e. variables describing turbulence.

25

This module provides all variables necessary for the meanflow calculation and also makes the
proper initialisations.

3.2 Module Mean Flow

INTERFACE:

module meanflow

DESCRIPTION:

USES:

IMPLICIT NONE
Default all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_meanflow

PUBLIC DATA MEMBERS:

coordinate z, layer thicknesses
REALTYPE, public, dimension(:), allocatable

the velocity components
REALTYPE, public, dimension(:), allocatable

velocity at old time step
REALTYPE, public, dimension(:), allocatable

potential temperature, salinity
REALTYPE, public, dimension(:), allocatable

boyancy frequency squared
(total, from temperature only, from salinity
REALTYPE, public, dimension(:), allocatable

shear-frequency squared
(total, from u only, from v only)
REALTYPE, public, dimension(:), allocatable

buoyancy, short-wave radiation,
extraproduction of tke by see-grass etc
REALTYPE, public, dimension(:), allocatable

.. z,h,ho

.. U,V,w

.. uO,vo

.. T,S,rho

only)
:: NN ,NNT ,NNS

.. SS, SSU , SSV

.. buoy,rad,xP

26

a dummy array
(most often used for diffusivities)
REALTYPE, public, dimension(:), allocatable .. avh

grid-related vertical velocity
REALTYPE, public, dimension(:), allocatable .. w_grid

extra friction terms due to e.g. seagrass
REALTYPE, public, dimension(:), allocatable .. fric,drag

shading in the water column
REALTYPE, public, dimension(:), allocatable .. bioshade

dummies for testing
REALTYPE, public, dimension(:), allocatable

ifdef EXTRA_OUTPUT

endif

the 'meanflow' namelist
REALTYPE, public
REALTYPE, public
logical, public
REALTYPE , public
REALTYPE, public
REALTYPE , public
integer, public
REALTYPE, public
REALTYPE, public

~- REALTYPE, public
REALTYPE , public
REALTYPE, public
REALTYPE , public
REALTYPE, public
REALTYPE , public
REALTYPE, public
character(LEN=PATH_MAX), public
REALTYPE, public
REALTYPE, public
REALTYPE, public
REALTYPE, public
REALTYPE, public

.. mean1,mean2,mean3,mean4,mean5

·. hOb=O.05
· . zOs_min=O.02

·. charnok=.false.

·. charnok_val=1400.

· . ddu=O.

·. ddl=O.
.. grid_method=1

· . c1ad=O.8

· . c2ad=O.O

· . c3ad=O.1
· . c4ad=O.1
· . Tgrid=3600.

·. NNnorm=O.2

· . SSnorm=O.2

·. dsurf=10.0
· . dtgrid=5.

· . grid_file='grid.dat'

· . gravity=9.81
· . rho_O=1027.

· . cp=3985.

· . avmolu=1.3e-6
· . avmolT=1.4e-7

Original author(s): Karsten Bolding & Hans Burchard
$Log: meanflow.F90,v $
Revision 1.11 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.10 2004/01/27 08:33:20 lars
omega-value bug fix
Revision 1. 9 2004/01/12 15: 21: 09 lars
added za for sediment-induced bottom roughness
Revision 1.8 2003/07/23 12:33:21 hb
fixed bioshade init and use
Revision 1.6 2003/04/05 07:01:16 kbk
moved bioshade variable to meanflow - to compile properly
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/2808:15:01 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 15:58:02 gotm

REALTYPE, public
integer, public
logical, public

the roughness lengths
REALTYPE , public

the coriolis parameter
REALTYPE , public

the friction velocities
REALTYPE, public

other stuff
integer, public
REALTYPE, public
REALTYPE , public
REALTYPE , public
REALTYPE, public

DEFINED PARAMETERS:

REALTYPE, public, parameter

REVISION HISTORY:

.. avmolS=1.1e-9

.. MaxltzOb=10

.. no_shear=.false.

.. zOb,zOs,za

.. cori

.. u_taub, u_taus

.. eq_state_method

.. depthO=O.

.. depth

.. obs_heat_content=O.

.. calc_heat_content=O.

.. pi=3.141592654

27

1

28

Vertical grid can now be read from file
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

3.2.1 Initialisation of the mean flow variables

subroutine init_meanflow(namlst,fn,nlev,latitude)

Allocates memory and initialises everything related to the 'meanflow' component oE GOTM.

Original author(s): Karsten Bolding &Hans Burchard
See log for the meanflow module

·. namlst
· . fn

·. nlev

· . latitude

IMPLICIT NONE

integer, intent(in)
character(len=*), intent(in)
integer, intent(in)
REALTYPE, intent(in)

USES:

INPUT PARAMETERS:

INTERFACE:

DESCRIPTION:

REVISION HISTORY:

DESCRIPTION:

INTERFACE:

1

(11)

only: depthO,depth,z,h,ho,ddu,ddl,grid_method
only: NN,SS,w_grid,grid_file,w
only: zeta_method,w_adv_method
only: w_adv,w_height,w_adv_discr

tanh ((dz + du) ~ - dz) + tanh(dz)
hk = D -1

tanh(dz) + tanh(du)

From this formula, the following grids are constructed:

use meanflow,
use meanflow,
use observations,
use observations,
IMPLICIT NONE

3. Cartesian layers. The height of every layer is read in from file, see gotnunean. inp. This
method is not recommended when a varying sea surface is considered.

• dz = du = 0 results in equidistant discretisations.

• dz > 0, du = 0 results in zooming near the bottom.

• dz = 0, du > 0 results in zooming near the surface.

.dz > 0, du > 0 results in double zooming nea both, the surface and the bottom.

2. Sigma-layers. The fraction that every layer occupies is read-in fromfile, see gotnunean. inp.

subroutine updategrid(nlev,dt,zeta)

29

1. Equidistant grid with possible zooming towards surface and bottom. The number of lay­
ers, nlev, and the zooming factors, ddu=du and ddl=dz, are specified in gotnunean. inp.
Zooming is applied according to the formula

3.3 The vertical grid

This subroutine calculates for each time step new layer thicknesses in order to fit them to the
changing water depth. Three differentgrids can be specified:

USES:

Furthermore, vertical velocity profiles are calculated here, if w_adv_method is 1 or 2, which
h.as to be chosen in the w_advspec namelist in obs. inp. The profiles of vertical velocity
are determined by two values, the height of maximum absolute value of vertical velocity,
w_height, and the vertical velocity at this height, w_adv. From w_height, the vertical
velocity is linearly decreasing towards the surface and the bottom, where is value is zero.

INPUT PARAMETERS:

Original author(s): Hans Burchard & Karsten Bolding
$Log: updategrid.F90,v $
Revision 1.15 2005/11/15 11:39:32 lars
documentation finish for print
Revision 1.14 2005/08/25 19:41:33 hb
small deviations between depth and depthO tolerated now
Revision 1.13 2005/08/15 20:23:40 hb
Vertical advection profiles triangle-shaped also for
temporally constant vertical velocity
Revision 1.12 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.11 2004/08/18 11:46:19 lars
updated documentation
Revision 1.10 2003/07/23 10:52:52 hb
proper initialisation of gridinit + cleaning
Revision 1. 9 2003/03/28 09: 20: 35 kbk
added new copyright to files
Revision 1.8 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.7 2003/03/10 13:43:42 lars
double definitions removed - to conform with DEC compiler
Revision 1.6 2003/03/10 08:50:08 . gotm
Improved documentation and cleaned up code
Revision 1.5 2002/02/08 08:33:44 gotm
Manuel added support for reading grid distribution from file
Revision 1.4 2001/11/27 19:51:49 gotm
Cleaned
Revision 1.3 2001/11/27 15:38:06 gotm
Possible to read coordinate distribution from file
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

30

integer, intent(in)
REALTYPE, intent(in)

REVISION HISTORY:

.. nlev

.. dt,zeta

INTERFACE:

.. nlev

.. dt
integer, intentCin)
REALTYPE, intentCin)

31

USE meanflow, only: u,v,cori
IMPLICIT NONE

subroutine coriolisCnlev,dt)

authorCs): Hans Burchard & Karsten Bolding
$Log: coriolis.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:38:03 lars
corrected typo in docu
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

USES:

DESCRIPTION:

3.4 The Coriolis rotation

INPUT PARAMETERS:

This subroutine carries out the Coriolis rotation by applying a 2 x 2 rotation matrix with the
angle f b.t on the horizontal velocity vector (U, V).

REVISION HISTORY:

32

3.5 The U-momentum equation

INTERFACE:

subroutine uequationCnlev,dt,cnpar,tx,num,gamu,Method)

DESCRIPTION:

This subroutine computes the transport of momentum in x-direction according to

(12)

where Ü denotes the material derivative of U, (the free surface elevation and B the mean
buoyancy defined in (33). Du is the sum of the turbulent and viscous transport terms
modelled according to

ä (äU -)Du = äz (Vt + v) äz - ru (13)

In this equation, Vt and v are the turbulent and molecular diffusivities of momentum, respec­
tively, and I'u denotes the non-Iocal fiux of momentum, see section 4.
Coriolis rotation is accounted for as described in section 3.4. The external pressure gradient
(second term on right hand side) is applied here only if surface slopes are directly given.
Otherwise, the gradient is computedas described in section 3.7, see Burchard (1999). The
internal pressure gradient (third term on right hand side) is calculated in intpressure. F90,
see section 3.8. The fifth term on the right hand side allows for nudging the velocity to
observed profiles with the relaxation time scale Ti{. This is useful for initialising velocity
profiles in case of significant inertial oscillations. Bottom friction is implemented implicitly
using the fourth term on the right hand side. Implicit friction may be applied on all levels in
order to allow for inner friction terms such as seagrass friction (see seetion 9.1).
Diffusion is numerically treated implicitly, see equations (7)- (9). The tri-diagonal matrix is
solved then by a simplified Gauss elimination. Vertical advection is inc1uded, see section 8.5.

- ·~USES:

use meanflow, only: gravity,avmolu
use meanflow, only: h,u,uo,v,w,avh
use meanflow, only: drag,SS
use observations, only: w_adv_method,w_adv_discr
use observations, only: uProf,vel_relax_tau,vel_relax_ramp
use observations, only: idpdx,dpdx
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence

IMPLICIT NONE

INPUT PARAMETERS:

diffusivity of momentum (m~2/s)

REALTYPE, intent(in) .. num(O:nlev)

time step (s)
REALTYPE, intent(in) .. dt

number of vertical layers
integer, intent(in) .. nlev

33

.. long=1.0D15

non-local flux of momentum (m~2/s~2)

REALTYPE, intent(in) .. gamu(O:nlev)

wind stress in x-direction
divided by rho_O (m~2/s~2)

REALTYPE, intent(in) .. tx

numerical lIimplicitness ll parameter
REALTYPE, intent(in) .. cnpar

method to compute external
pressure gradient
integer, intent(in) .. method

Original author(s): Lars Umlauf
(re-write after first version of
Hans Burchard and Karsten Bolding)

$Log: uequation.F90,v $
Revision 1.8 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.7 2004/08/18 11:44:49 lars
updated documentation
Revision 1.6 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.5 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.4 2003/03/10 08:50:07 gotm
Improved)documentation and cleaned up code
Revision 1.3 2001/05/31 12:00:52 gotm

REALTYPE, parameter

DEFINED PARAMETERS:

REVISION HISTORY:

34

Correction in the calculation of the shear squared calculation
--- now according to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.

35

(14)

(15)

.. nlev

.. dt

only: gravity,avmolu
only~ h,v,vo,u,w,avh
only: drag,SS
only: w_adv_method,w_adv_discr
only: vProf,vel_relax_tau,vel_relax_ramp
only: idpdy,dpdy
only: Dirichlet,Neumann
only: oneSided,zeroDivergence

use meanflow,
use meanflow,
use meanflow,
use observations,
use observations,
use observations,
use util,
use util,

IMPLICIT NONE

number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

numerical "implicitness" parameter

3.6 The V-momentum equation

subroutine vequation(nlev,dt, cnpar,ty,num,gamv, Method)

DESCRIPTION:

INTERFACE:

where 11 denotes the material derivative of V, (" the free surface elevation and B the mean
buoyancy defined in (33). Vv is the sum of the turbulent and viscous transport terms
modelled according to

USES:

This subroutine computes the transport of momentum in y-direction according to

INPUT PARAMETERS:

In this equation, l/t and 1/ are the turbulent and molecular diffusivities of momentum, respec­
and IV denotes the non-local flux of momentum, see section 4.

'-/UL'VJLL" rotation is accounted for as described in section 3.4. All other terms are completely
""U'CUV,t',Vl'O to those described in seetion 3.5.

36

REALTYPE, intent(in) .. cnpar

diffusivity of momentum (m-2/s)
REALTYPE, intent(in) .. num(O:nlev)

.. long=1.0D15REALTYPE, parameter

Original author(s): Lars Umlauf
(re-write after first version of
Hans Burchard and Karsten Bolding)

$Log: vequation.F90,v $
Revision 1.7 2005/06/2713:44:07kbk
modified + removed traling blanks
Revision 1.7 2004/08/18 11:44:49 lars
updated documentation
Revision 1.6 2003/03/28 09:20:35 kbk

~ added new copyright to files
Revision 1.5 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.4 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.3 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation
--- now according to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.

method to compute external
pressure gradient
integer, intent(in) .. method

non-Iocal flux of momentum (m-2/s-2)
REALTYPE, intent(in) .. gamv(O:nlev)

wind stress in y-direction
divided by rho_O (m-2/s-2)
REALTYPE, intent(in) .. ty

DEFINED PARAMETERS:

REVISION HISTORY:

DESCRIPTION:

USES:

1

.. method

.. nlev

method to compute external
pressure gradient
integer, intent(in)

number of vertical layers
integer, intent(in)

Original author(s): Hans Burchard &Karsten Bolding
$Log: extpressure.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:41:02 lars
corrected typo in docu

use meanflow, only: u,v,h
use observations, only: dpdx,dpdy,h_press
IMPLICIT NONE

subroutine extpressure(method,nlev)

37

3.7 The external pressure-gradient

INTERFACE:

INPUT PARAMETERS:

REVISION HISTORY:

This subroutine calculates the external pressure-gradient. Two methods are implemented
here, relating either to the velocity vector at a given height above bed prescribed or to the
vector for the vertical mean velocity. In the first case, dpdx and dpdy are x- and y-components
of the prescribed velocity vector at the height h_press above the bed. The velocity profile
will in this routive be shifted by a vertically constant vector such that the resulting profile
has an (interpolated) velocity at h_press which is identical to the prescribed value. In the
second case, dpdx and dpdy are x- and y-components of the prescribed vertical mean velocity
vector, and h_press is not used. Here the velocity profile is shifted in such a way that the
resulting mean velocty vector is identical to dpdx and dpdy.
For both cases, this is a recalculation of the external pressure gradient, since at all points the
same acceleration has been applied in this operator split method.
If the external pressure-gradient is prescribed by the surface slope, then it is directly inserted
in (12) and (14).
For details of this method, see Burchard (1999).

38

Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

39

1
I

(16)

(17)

(19)

(20)

(22)

(21)

oP
oz + g(p) = 0,

_2.. oP = _go(+1(oB dz'
Po OX OX z ox

oB B(S + b.xS, 8 + b.x8, P) - B(S, 8, P)
-o-x ~ ----''---------:b.:-x-----'------'----'-

oB B(S + b.yS, 8 + b.y8, P) - B(S, e, P)
oy ~ b.y ,

With the hydrostatic assumption

and

where P denotes the mean pressure, 9 = 9.81m s-2 the gravitational acceleration and (p) the
mean density, the components of the pressure-gradient may be expressed as

subroutine intpressure(nlev)

INTERFACE:

3.8 The internal pressure-gradient

_2.. oP = _g o(+1(oB dz' , (18)
pooy oy z oy

where (is the surface elevation and B the mean buoyancy as definedin (33).
The first term on the right hand side in (17) and (18) is the external pressure-gradient due to
surface slopes, and the second the internal pressure-gradient due to the density gradient. The
internal pressure-gradient will only be established by gradients of mean potential temperature
8 and mean salinity S. Sediment concentration is assumed to be horizontally homogeneous.
In this subroutine, first, the horizontal buoyancy gradients, oxB and oyB, are calculated from
the prescribed gradients of salinity, oxS and OyS, and temperature, ox8 and oy8, according
to the finite-difference expression

DESCRIPTION:

where the defintions

and

have been used. b.x and b.y are "small enough", but otherwise arbitrary length scales. The
buoyancy gradients computed with this method are then vertically integrated according to
(17) and (18).
The horizontal salinity and temperature gradients have to supplied by the user, either as
constant values or as profiles given in a file (see obs. inp).

USES:

Original author(s): Hans Burchard &Karsten Bolding
$Log: intpressure.F90,v $
Revision 1.7 2005/08/11 12:32:50 lars
corrected error in Latex referencing
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:43:51 lars
updated documentation
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleanedup code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CV8

REVISION HISTORY:

number of vertical layers
integer, intent(in) ., nlev

only: T,8
only: gravity,rho_O,h
only: dsdx,dsdy,dtdx,dtdy
only: idpdx,idpdy,int_press_method
only: eqstate1

use meanflow,
use meanflow,
use observations,
use observations,
use eqstate,
IMPLICIT NONE

INPUT PARAMETERS:

40

41

INTERFACE:

1

(23)

(24)

(25)

(26)

u~ = rJU[+ Vi2 ,

only: h,zOb,hOb,MaxItzOb,zOs,za
only: u,v,gravity
only: u_taub,u_taus,drag
only: charnok,charnok_val,zOs_min

IMPLICIT NONE

(U S)2Zo = a-*-
9

use meanflow,
use meanflow,
use meanflow,
use meanflow,

DESCRIPTION:

UI and VI are the components of the mean velocity at the center of the lowest cell.
used the abbreviation

USES:

3.9 The vertical friction

This subroutine updates the bottom roughness

b v b
Zo = 0.1[; + 0.03ho + Za

u*

subroutine frictionCkappa,avmolu,tx,ty)

The first term on the right hand side of (23) represents the limit far hydraulically smooth
surfaces, the second term the limit for completely rough surfaces. Note that the third term,
Za, is the contribution of suspended sediments to the roughness length, see Smith and McLean
(1977). It is updated during calls to the sediment-routines.
The law-of-the-wall relations are used to compute the friction velocity

The model constant a is read in as charnok_val from the meanflow namelist.

r = In (O.5~tzg) ,
where K, is the von Karman constant and the index' l' indicates values at the center of the first
grid box at the bottom (version 1). Another expressionfor r can be derived using the mean
value of the velocity in the lowest grid box, and not its value in the middle of the box (version
2). Also this method is supported in frictionO and can be activated by uncommenting one
line in the code.
If no breaking surface waves are considered, the law of the wall also holds at the surface. The
surface roughness length may be calculated according to the Charnok (1955) formula,

42

Original author(s): Hans Burchard & Karsten Bolding
$Log: friction.F90,v $
Revision 1.8 2005/08/11 12:31:54 lars
corrected error in documentation. Thanks to Patrizio Mariani
Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.6 2004/08/18 12:33:30 lars
updated documentation
Revision 1.5 2004/01/13 08:39:49 lars
included roughness due to suspended sediments
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

INPUT PARAMETERS:

REALTYPE, intent(in)

REVISION HISTORY:

.. kappa,avmolu, tx, ty

DESCRIPTION:

43

(27)

(28)

(29)

-n ß ((8 8) ß8 r-)
1/8 = ßz V t + v ßz - 8

only: avmolt,rho_O,cp
only: h,u,v,w,T,avh
only: bioshade
only: dtdx,dtdy,t_adv
only: w_adv_discr,w_adv_method
only: tprof,TRelaxTau
only: A,g1,g2

subroutine temperature(nlev,dt,cnpar,I_O,heat,nuh,gamh,rad)

use meanflow,
use meanflow,
use meanflow,
use observations,
use observations,
use observations,
use observations,

3.10 The temperature equation

INTERFACE:

This subroutine computes the balance of heat in the form

where e denotes the material derivative of the mean potential temperature 8, and 1)8 is the
sum of the turbulent and viscous transport terms modelled according to

USES:

The absorbtion coefficients rJl and rJ2 depend on the water type and have to be prescribed
~jther by means of choosing a Jerlov (1968) class (see Paulson and Simpson (1977)) or by
reading in a file through the namelist extinct in obs. inp.
Diffusion is numerically treated implicitly, see equations (7)- (9). The tri-diagonal matrix is
solved then by a simplified Gauss elimination. Vertical advection is included, see section 8.5.

this equation, vi> and v8 are the turbulent and molecular diffusivities of heat, respectively,
r8 denotes the non-local fiux of heat, see section 4.

HClriz;ontal advection is optionally included (see obs. inp) by means of prescribed horizontal
griotdients ßx 8 and ßy 8 and calculated horizontal mean velocities U and V. Relaxation with

time scale 7ft towards a precribed profile 8 obs, changing in time, is possible.
The sum of latent, sensible, and longwave radiation is treated as a boundary condition. Solar
radiation is treated as an inner source, I(z). It is computed according the exponentiallaw
(see Paulson and Simpson (1977))

INPUT PARAMETERS:

REVISION HISTORY:

OUTPUT PARAMETERS:

only: Dirichlet,Neumann
only: oneSided,zeroDivergence

non-local heat flux (Km/s)
REALTYPE, intent(in) .. gamh(O:nlev)

Original author(s): Hans Burchard &Karsten Bolding
$Log: temperature.F90,v $
Revision 1.14 2005/11/15 11:39:32 lars
documentation finish for print
Revision 1.13 2005/09/12 21:46:46 hb
use of bioshade corrected (should work on short
wave length part of light spectrum only)
Revision 1.12 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.11 2004/08/18 12:31:52 lars

diffusivity of heat (m~2/s)

REALTYPE, intent(in) .. nuh(O:nlev)

surface short waves radiation (W/m~2)

REALTYPE, intent(in) .. I 0

numerical "implicitness" parameter
REALTYPE, intent(in) .. cnpar

IMPLICIT NONE

time step (s)
REALTYPE, intent(in) .. dt

number of vertical layers
integer, intent(in) .. nlev

use util,
use util,

surface heat flux (W/m~2)

(negative for heat loss)
REALTYPE,intent(in) .. heat

shortwave radiation profile (W/m~2)

~- REALTYPE .. rad(O:nlev)

44

updated documentation
Revision 1.10 2004/07/28 11:29:10 hb
Bug removed, rad is not any more multiplied with bioshade;
bug found by Jorn Bruggeman, Amsterdam
Revision 1.9 2003/07/23 12:33:21 hb
fixed bioshade init and use
Revision 1.7 2003/04/05 07:01:16 kbk
moved bioshade variable to meanflow- to compile properly
Revision 1.6 2003/04/04 14:25:52 hb
First iteration of four-compartment geobiochemical model implemented
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:50:37 gotm
Cleaned
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

45

INTERFACE:

46

(30)

(31)

(32)at z = (,Vs = S(P -E),

ß ((s S) ßS -)Vs = ßz Vt + v ßz - r s

USES:

use meanflow, only: avmols
use meanflow, only: h,u,v,w,S,avh
use observations, only: dsdx,dsdy,s_adv
use observations, only: w_adv_discr,w_adv_method
use observations, only: sprof,SRelaxTau
use airsea, only: p_e
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence

IMPLICIT NONE

DESCRIPTION:

where S denotes the material derivative of the salinity S, and Vs is the sum of the turbulent
and viseous transport terms modelled aeeording to

subroutine salinity(nlev,dt,cnpar,nus,gams)

3.11 The salinity equation

This subroutine eomputes the balance of salinity in the form

In this equation, vf and vS are the turbulent and moleeular diffusivities of salinity, respee­
tively, and rs denotes the non-Ioeal flux of salinity, see seetion 4. In the eurrent version of
GOTM, we set vf = v? for simplicity.
Horizontal adveetion is optionally included (see obs. inp) by means of prescribed.horizontal
gradients ßxS and ßyS and calculated horizontal mean velocities U and V. Relaxation with
the time scale T~ towards a precribed (changing in time) profile Sobs is possible.
Inner sources or sinks are not considered. The surface freshwater flux is given by means of
the precipitation - evaporation data read in as P - E through the airsea. inp namelist:

with P-E given as a velocity (note that Vs is the flux in the direction of z, and thus positive
for a loss of salinity) . Diffusion is numerically treated implicitly, see equations (7)-(9). The
tri-diagonal matrix is solved then by a simplified Gauss elimination. Vertical advection is

_ iPcluded, see section 8.5.

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) .. nlev

time step (s)
REALTYPE, intent(in) .. dt

numerical "implicitness" parameter
REALTYPE, intent(in) .. cnpar

diffusivity of salinity (m-2/s)
REALTYPE, intent(in) .. nus(O:nlev)

non-local salinity flux (psu m/s)
REALTYPE, intent(in) .. gams(O:nlev)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: salinity.F90,v $
Revision 1.8 2005/06/27 13:44:07 kbk
modified + removedtraling blanks
Revision 1.7 2004/08/18 11:43:10 lars
updated documentation
Revision 1.6 2004/01/07 12:17:47 lars
Removed latex bug
Revision 1.5 2003/06/13 09:27:15 hb
Implemented freshwater fluxes
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk

'0; removed tabs
Revision 1.2 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

47

I

48

(33)

(34)

(35)

nlev

B = _ 9 (p) - Po ,
Po

time step (s)

number of vertical layers
integer, intent(in)

USES:

DESCRIPTION:

subroutine buoyancy(nlev,dt,cnpar,nub,gamb)

3.12 The buoyancy equation

where gis the accelaration of gravity, and (p) and Po are the mean potential density and the
reference density, respectively. A simplified transport equation for B can be written as

INTERFACE:

This subroutine solves a transport equation for the mean potential buoyancy,

where iJ denotes the material derivative of B, and Vb is the sum of the turbulent and viscous
transport terms modelIed according to

Inthis equation, v[3 and vB are the turbulent and molecular diffusivities of buoyancy, respec­
tively, and rB denotes the non-local fiux of buoyancy, see section 4. In the current version
of GOTM, we set v[3 = vi> for simplicity. Source and sink terms are completely disregarded,
and thus (34) mainly serves as a convenient tool for some idealized test cases in GOTM.
Diffusion is treated implicitly in space (see equations (7)- (9)), and then solved by a simplified
Gauss elimination. Vertical advection is included, see section 8.5.

INPUT PARAMETERS:

- ~ use meanflow, only: h,w,buoy,T,avh
use meanflow, only: w_grid,grid_method
use observations, only: b_obs_NN,b_obs_surf,b_obs_sbf
use observations, only: w_adv_discr,w_adv_method
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence
IMPLICIT NONE

REALTYPE, intent(in) .. dt

numerical "implicitness" parameter
REALTYPE, intent(in) .. cnpar

diffusivity of buoyancy (m~2/s)

REALTYPE, intent(in) .. nub(O:nlev)

non-local buoyancy flux (m~2/s~3)

REALTYPE, intent(in) .. gamb(O:nlev)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: buoyancy.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

49

where Uj = ~(Uj + Uj). The V-contribution is computed analogously. The shear obtained
from (37) plus the V-contribution is then used for the computation of the turbulence shear
production, see equation (146).

(37)

(36)

.. nlev

only: h,u,v,uo,vo
only: SS,SSU,SSV

IMPLICIT NONE

number of vertical layers
integer, intent(in)

use meanflow,
use meanflow,

USES:

INPUT PARAMETERS:

numerical "implicitness" parameter
REALTYPE, intent(in) .. cnpar

DESCRIPTION:

Original author(s): Lars Umlauf
$Log: shear.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

subroutine shear(nlev,cnpar)

REVISION HISTORY:

INTERFACE:

50

3.13 Calculation of the vertical shear

The (square of the) shear frequency is defined as

It is an important parameter in almost all turbulence models. The U- and V-contributions
to M 2 are computed using a new scheme which guarantees conservation of kinetic energy
for the convertion from mean to turbulent kinetic energy, see Burchard (2002a). With this
method, the discretisation of the U-contribution can be written as

2 - - - -

(
äU) ~ (Uj+l - Uj)(Uj+l - Uj)
äz (Zj+l - Zj)2

USES:

(39)

(41)

(38)

(42)

(40)

(p) = ß(8, S, PR) ,

This routine computes the mean potential density, (p), the mean potential buoyancy, B,
defined in (33), and the mean buoyancy frequency,

N 2 = _.!L öp = öB
Po öz öz'

DESCRIPTION:

INTERFACE:

which is based on potential density or buoyancy such that for N2 = 0, the entropy is constant
in the whole water column and mixing does not work against buoyancy forces. If GOTM
used as a turbulence library in your own three-dimensional model, you have to insure that
the N 2 computed by you, and passed to the turbulence routines in GOTM, is consistent with
the concept of potential density and your equation of state.
The mean potential density is evaluated from the equation of state, (239), according to

subroutine stratification(nlev,buoy_method,dt,cnpar,nub,gamB)

51

where 8 denotes the mean potential temperature, S the mean salinity and PR the mean refer­
ence pressure. The buoyancy frequency defined in (38) can be decomposed into contributions
due to potential temperature and salinity stratification,

3.14 Calculation of the stratification

where we introduced the quantities

2 9ÖPI ö8Ne = --~ = ga(8,S,PR)~,
Po uZ S uZ

with the thermal expansion coefficient defined in (241), and

N§ = _.!L öp I = -gß(8, S, PR) öS ,
Po ÖZ e öz

with the saline contraction coefficient defined in (242). It is important to note that in the
actual code the reference pressure, PR, has been replaced by the (approximate) hydrostatic
pressure. Only if this dependence is replaced by the constant reference pressure at the surface
in the equation of state, see section 8.7, the model is truely based on potential temperature
and density. Otherwise, the model is based on in-situ quantities.
Alternatively to the procedure outlined above, depending on the values of the parameter
buoy_method, the buoyancy may be calculated by means of the transport equation (34). This
equation then replaces the computation of 8 and Sand is only recommended for idealized
studies.

REVISION HISTORY:

OUTPUT PARAMETERS:

INPUT PARAMETERS:

only: h,S,T,buoy,rho
only: NN,NNT,NNS
only: gravity,rho_O
only: eqstate1

Original author(s): Karsten Bolding &Hans Burchard
$Log: stratification.F90,v $
Revision 1.7 2005/07/18 08:54:33 lars
changed docu for html compliance
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:50:37 gotm

method to compute buoyancy
integer, intent(in) .. buoy_method

non-Iocal buoyancy flux (m-2/s-3)
REALTYPE, intent(in) .. gamb(O:nlev)

diffusivity of buoyancy (m-2/s)
REALTYPE, intent(in) .. nub(O:nlev)

numerical "implicitness" parameter
REALTYPE, intent(in) .. cnpar

time step (s)
REALTYPE, intent(in) .. dt

number of vertical layers
integer, intent(in) .. nlev

use meanflow,
use meanflow,
use meanflow,
use eqstate,
IMPLICIT NONE

52

Cleaned
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

53

DESCRIPTION:

INTERFACE:

USES:

.. num(1:nlev),nuh(1:nlev)

.. nlev,buoy_method

.. g,rho_O

.. const_num,const_nuh

integer, intent(in)
REALTYPE, intent(in)
REALTYPE, intent(in)

REALTYPE, intent(out)

INPUT PARAMETERS:

Original author(s): Hans Burchard &Karsten Bolding
$Log: convectiveadjustment.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:39:10 lars
updated documentation
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files

use meanflow, only: h,t,s,buoy,NN
use eqstate, only: eqstate1
IMPLICIT NONE

3.15 Convective adjustment

subroutine convectiveadjustment(nlev,num,nuh,const_num,const_nuh, &
buoy_method,g,rho_O)

REVISION HISTORY:

In this subroutine, convective adjustment is performed for the temperature, 8, and the
salinity, S, or alternatively for the buoyancy, B, if a dynamic equation is solved for this
quantity. Beginning from the first interface below the surface, the water column is checked
for static instability. If the Brunt-Väisälä frequency squared, N 2 , is negative, the two adjacent
boxes are completely mixed. The stability for the interface below this homogenised upper
part of the water column is then analysed, and, if needed, mixing is 'performed again. By
doing so, the water column is scanned until the first interface with statically stable or neutral
stratification or the bottom is reached. An equation of state described in section 8.7 is used
for ca1culating the Brunt-Väisälä frequency.
The constant values const_num and const_nuh are then imposed for the eddy viscosity I/t

and the eddy difIusivity 1/:, respectively.

54

- :rJUTPUT PARAMETERS:

Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

55

l
I

56

57

4.1 Introduction

l

(43)

(44)V C k ~l vB = C' k~lt= p, , t P, ,

There are different types and levels of dosure models available in GOTM to compute the
vertical turbulent fluxes. Simple models rely on the idea that theses fluxes can be computed
as the product of a positive turbulent diffusivity and a mean flow gradient. Contributions to
the fluxes that are not 'down-gradient', are summarized in so-called counter-gradient terms.
Using these assumptions, the fluxes of momentum and buoyancy can be expressed as

I ') ßu - I ') ßv - (' ') B ßB -(u w = -Vt ßz +ru, (v w = -Vt ßz + rv , wb = -vt ßz +rB ,

where r(U,V,B) denote the counter-gradient fluxes. They can be important under very strong
stratification and in the case of convection. Note, that the current version of GOTM identifies

diffllS,ivilGies of heat and salt with vf (see section 3.10 and section 3.11).
Using an analogy to the kinetic theory of gases, the vertical turbulent diffusivities, Vt and
vf, are often assumed to be the product of a typical velocity scale of turbulence, q, times
a typicallength scale, I, see Tennekes and Lumley (1972). The velocity scale q can e.g. be
identified with the average value of the turbulent fluctuations expressed by the turbulent
kinetic energy, k = q2/2. Then, the diffusivities of momentum and heat can be written as

To dose the differential equations for momentum, heat, and salt, parameterisations of the
turbulent fluxes of momentum, (U'W'), heat (W'()'), and salinity (w's') are required. Since tur~

bulence 'feels' the effects of temperature and salinity fluctuations essentially through buoyancy
fluctuations, only the buoyancy flux, (w'b'), is discussed in the following. The assumptions
under which one can infer the fluxes of heat and salinity from the buoyancy flux are addressed
below.

4 The turbulence model

1. Both, k and I are computed from algebraic relations. The algebraic equation for k is
based on a simplified form of the transport equation of the turbulent kinetic energy. The
equation for the length-scale may result from different approaches. The most simple
models assurne an empirically motivated, prescribed vertical distribution of the length­
scale. This level of dosure corresponds to the 'level 2' model of Mellor and Yamada
(1982), but also to more recent approaches, see Cheng et al. (2002). Algebraic models
are an over-simplification in numerous situations.

where the dimensionless quantities Cp, and cp,' are usually referred to as the 'stability func-
. Depending on the level of turbulent dosure, these stability functions can be either

c2nstants, empirical functions, or functions of some non-dimensional flow parameters result­
ing from a higher-order turbulence model. The same applies to the counter-gradient fluxes
r(U,V,B) defined in (43).
There are different possibilities in GOTM to compute the scales q (or k) and I appearing
in (44). According to the level of complexity, they are ordered in GOTM in the following
fashion.

58

2. At the next level, k is computed from the differential transport equation for the tur­
bulent kinetic energy ('energy models'). As before, the length-scale is computed from
an empirically or theoretically based relation. Models of this type are quite popular in
geophysical modelling. A description is given in section 4.19.

3. In the so-called two-equation models, both, k and l, are computed from differential
transport equations. As before, k follows from the transport equation of the turbulent
kinetic energy. Now, however, also the length-scale is determined from a differential
transport equation. This equation is usually not directly formulated for the length­
scale, but for a related, length-scale determining variable. Presently, there are different
possibilities for the length-scale determining variables implemented in GOTM, such as
the rate of dissipation, c, or the product klo They are discussed in section 4.7.9.

The main advantage of the two-equation models is their greater generality. There
are, for example, a number of fundamental flows which cannot be reproduced with an
algebraically prescribed length-scale. Examples are the temporal decay of homogeneous
turbulence, the behaviour of turbulence in stratified homogeneous shear flows, and the
spatial decay of shear-free turbulence from a planar source. A discussion of these points
is given in section 4.7.3 and section 4.7.4. Also see Umlauf et al; (2003) and Umlauf
and Burchard (2003).

In addition to the hierarchy of turbulence models in terms of their methods used to compute
the turbulent kinetic energy and the length-scale, GOTM also supports an ordering scheme
according to the extent to which transport equations for the turbulent fluxes are solved.

1. At the lowest level of this scheme, it is postulated that CJ-t = cZ and c~ = c~ are constant.
Because these models implicitly assurne an isotropic tensor relation between the velocity
gradient and the tensor of the Reynolds-stresses, they usually fail in situations of strong
anisotropy, most notably in stably stratified, curved or shallow flows. In unstratified
flows with balanced aspect ratios (which seldom occur in nature), however, they may
compute reasonable results. Models of this type are referred to as the 'standard' models
in the following.

2. Some problems associated with standard versions of the models can be ameliorated
by making CJ-t and c~ empirical functions of one or several significant non~dimensional

flow parameters. At this level, the simplest approach would be to formulate empirical
relations suggested from observations in the field or in the laboratory. An example of
such a relation is the model of Schumann and Gerz (1995) which has been implemented
in GOTM (see section 4.29).

3. Another, more consistent, approach results from the solution of simplified forms of the
transport equations for the Reynolds-stresses and the turbulent heat fluxes in addition
to the transport equations for k and the length-scale determining variable. Surprisingly,
it turns out that under some assumptions, and after tedious algebra, the turbulent
fluxes computed by these models can be expressed by (44). Theimportant difference
is, however, that the existence of vertical eddy diffusivities is not a postulate, but a

l
I

(45)

(46)

(47)

Evidently, this short introduction cannot serve as an introductory text on one-point turbu­
lence modelling. It serves merely as a place to define the most important quantities and
relations used in this manual. Readers not familiar with this subject will certainly feel the
need fora more in-depth discussion. An excellent introduction to turbulence is still the book
of Tennekes and Lumley (1972). A modern and detailed approach to one and two-equation
models for unstratified flows is given in the book of Wilcax (1998), and the effects of strati­
fication are discussed e.g. by Radi (1987) and by Burchard (2002b).

with the shear-frequency, M, and the buoyancy frequency, N, computed as described
in section 3.5 and section 3.14, respectively. k and kb are the turbulent kinetic energy
and the buoyancy variance, respectively and € denotes the rate of dissipation.

The most well-known models of this type have been implemented into GOTM. An
up-to-date account of their derivation can be found in Canuta et al. (2001). Their
evaluation for the oceanic mixed layer has been extensively discussed by Burchard and
Balding (2001).

where Vij is the sum of the viscous and turbulent transport terms and (.:.) denots the
material derivative of the ensemble average. The shear-production, P ij , and the buoyancy
production, Gij, on the right hand side are defined as

4.2 Second-order models

4. Even more complete models include further differential equations for the buoyancy
variance and for some or all of the turbulent fluxes. These models cannot be reduced to
the form (44). The derivation of models of the type discussed in the latter two points
are reviewed in section 4.2

59

consequence of the model. The stability functions cJ-L and c~ can be shown to become
functions of some non-dimensional numbers like

Since one-point second-order models are an essential part of GOTM, this section is devoted
to a detailed discussion of the derivation and the properties of these models. Second-order
models result from the full or approximate solution of the transport equations for the tur­
l:n~entfluxes like (u'u') , (u'w') , (w'b'), etc. Model equations for the turbulent momentum
fluxes follow directly from the Navier-Stokes equations. The derivation of these equations for
stratified and rotating fluids is discussed e.g. in Sander (1998).
Considering the one-point correlations for the velocity fluctuations u~, the momentum fluxes

.can be expressed as

(48)

(49)

(51)

(52)

(54)

(55)

1 1
P = '2 Fii ' G = '2Gii

Similar to (46), the transport equation for the turbulent buoyaney flux is given by

(; ') b _ (") aB (") aUi b '. b buib - Vi - - UiUm -a - umb -a + Pt + 2Ut3kb + q>i - Ei ,
Xm Xm

60

where b' is the fluctuating part ofthe buoyaney, defined analogously to the mean buoyaney, B,
in (33). The tensor of the dissipation rate is assumed to be isotropie, leading to Eij = 2/3E5ij .
q>ij denotes the pressure redistribution terms diseussed below. The influenee of the Coriolis­
aeeeleration ean be summarized in the tensor Fij whieh is, however, negleeted in the eurrent
version of GOTM.
The eontraction of (46) yields the equation for the turbulent kinetic energy, (150), with
produetion terms defined by

where Vf denotes the viseous and turbulent transport terms, see Sander (1998). For the
dissipation, one has Ef = 0, following from isotropy. The redistribution terms q>f are diseussed
below. As in (46), the Coriolis term Fi

b is negleeted in the eurrent version of GOTM.
Note that kb is half the buoyaney varianee and relates to the turbulent potential energy, Ep ,

aeeording to
kb = (b,2) /2 = EpN 2 , (50)

where the square of the buoyaney frequency, N 2 , is defined in (38).
The erucial point in (46) is the model for the pressure-strain eorrelation. The most popular
models in engineering traee baek to suggestions by Launder et al. (1975) and Gibson and
Launder (1976). With the modifieations suggested of Speziale et al. (1991), this model ean
be written as

usually extended by the last term to aeeount for the effects of buoyaney, see Gibson and
Launder (1976), Gibson and Launder (1978). The model (51) is expressed here in terms of
the dimensionless tensor of the stress anisotropies,

(u~uj) 1
bij =~ - 35ij ,

and two traeeless and symmetrie tensors,

Buoyaney enters via the symmetrie and traeeless tensor

2
L,ij = Simbmj + Sjmbmi - 3Smnbmn5ij, Zij = Wimbmj + Wjmbmi , (53)

whieh depend on the symmetrie and the anti-symmetrie parts of the velocity gradient,

61

4.3 Aigebraic Models

(56)

(57)

(58)

k
T= -,

E

whieh is a reasonable model assumption in many applications (Canuto et al. (2001), Jin et al.
(2003)).
For Explicit Aigebraie Heat Flux Models, a quite general model for the pressure buoyancy­
gradient correlation appearing in (49) can be written as

<I>f = -CblT;l (uW) + Cb2 Sij(ujb') + Cb3Wij(ujb')

(
1 ') aB ~+Cb4 uiuj ox' - 2Cb5kbUi3 ,

J

where Tb = T is adopted for the return-to-isotropy time scale.
The models (51) and (57) correspond to some recent models used in theoretieal and engi­
neering studies (So et al. (2003), Jin et al. (2003», and generalize all explicit models so far
adopted by the geophysical community (see Burchard (2002b), Burchard and Bolding (2001)).
With all model assumptions inserted, (46) and (49) constitute a closed system of 9 coupled
differential equations, provided the dissipation time scale T and the buoyancy variance kb
are known. Models for the latter two quantities and simplifying assumptions reducing the
differential equations to algebraie expressions are discussed in the following subsection.

The key assumptions in deriving algebraie models have been formulated by Radi (1976) and
Gibsan and Launder (1976). These authors suggested to simplify the right hand sides of (46)
and (49) according to

. (U~U'.) .
(u~uj) - V ij = T (k - Vk) ,

with Gij as defined in (47). In view of the derivation of Explicit Aigebraic Models (EASMs),
the models implemented in GOTM neglect the term N ij on the right hand side of (51), whieh
is non-linear in bij, see Speziale et al. (1991). CI-C6 are model constants. In geophysieal
applications, in contrast to engineering, virually all authors used ci = 0 in (51). In GOTM,
the return-to-isotropy time scale Tu is identified with the dynamie dissipation time scale

whieh are reasonable approximations in many situations. Moreover, (58) can be shown to
hold exactly in stably stratified, homogeneous shear flows, when the flow approaches the so­
called weak-equilibrium limit, see Shih et al. (2000). Using (58) and the pressure-strain model
(51), it can be shown after some algebra that the transport equations forthe momentum flux
(46) reduces to

Nbij = -a1Sij - a2~ij - a3Zij - a4N ij - a5rij (59)

in dimensionless form. The ai relate to the coefficients used in (51) according to al =
2/3 - C2/2, a2 = 1 - C3/2, a3 = 1 - C4/2, a4 = C5/2, and a5 = 1/2 - C6/2. The dimensionless,
traceless and symmetrie tensors appearing on the right hand side of (59) are defined as

- k - k - k
Sij = -Sij, ~ij = -~ij, Zij = -Zij (60)

E E E

(62)

(63)

(64)

(66)

(65)

G
Rf = --,

P

Nb = ~ (P +G_1) + Cb1 +~ (Pb - 1)
2 E 2r €b

(w'b') G R
'"V-'"V- - - f/3 - / - --- - -- - ,

E € 1- Rf

I'ij = rij/E = (-t'3 -~'3 ;') , "Ii = - (U~b') (61)
"11 "12 3"13

has been introduced in (59) for convenience. Here, the "Ii correspond to the mixing efficiencies
in each coordinate direction, respectively. Note, that the vertical component,

can be identified with the classical mixing efficiency used in many studies of stratified fluids.
Most authors proceed know in deriving, with the help of (58), a dimensionless equation for
the normalised turbulent buoyancy flux, (i = (uW) IV(kkb), see So et al. (2002), Jin et al.
(2003). It can be shown, however, that the resulting algebraic equations alternatively can be
expressed, without further assumptions, in the form of equations for the mixing efficiencies,

Additionally,

62

Note that the vertical component of Ni can be identified with the square of the buoyancy
frequency, N 2 , made dimensionless with the dynamic dissipation time scale T = kl€.
(59) and (63) are linear in bij and "Ii, with a non-linear coupling introduced by the terms

N = P+G + C1_ 1
€ 2

- - - 1 - -
Nb'Yi = -ab1S ij'Yj - ab2 Wij'Yj + ab3bijNj + "3ab3Ni - ab4T5i3

Since efficiencies "Ii are the primary variables appearing on the right hand side of (59) through
the presence of the tensor I'ij defined in (61), and since they are variables with a clear physical
iriterpretatiori, we prefer (63) to a mathematicall equivalent equation for the normalised
buoyancy flux, (i'
The new dimensionless quantities entering the problem via (63) are

The production-to-dissipation ratios appearing in these expression are exclusively related to
known quantities and thus introduce no new independent variables. However, the time scale
ratio,

needs to be described.
(59) and (63) are a system of 9 coupled algebraic equations for the anisotropies bij and the
mixing efficiencies "Ii , depending solelyon the non-dimensional tensors Sij, W ij, the vector
Ni, and the scalar T. This system is linear, if N and Nb are treated as knowns and if the

63

(67)

(68)

(69)

(70)

- k -2-
Sv = -Sv, N = N3 ,

E

- k
Su = -Su,

E

(

0 0 su)
Lij = •0 O· Sv ,

o 0 0

(
a2) - (a2) - 4- :3 - a3 b13S U - :3 - a3 b23 S V - "3 a5'Y3 ,

= a2 + a3 b S a2+ a3 b S- 2 13 V - 2 23 u,

a2 - a3 - a2 + a3 - a2 - a3 - 1-
= - 2 bnSu - 2 b33S U - 2 b128 V - "2 a1Su - a5'Yl ,

velocity gradient simplifies to

Explicit models for vertical shear and stratification

nonlI:ne~l,r term Nij in (59) is neglected, a4 = O. No closed solution of the complete system in
dimensions has been reported so far in the literature. Nevertheless, separate solutions

three dimensions for (59) and (63), respectively, have been reported (see Jin et al. (2003)
the references therein).

geophysical applications, the system (59) and (63) can be considerably simplified by assum­
that the fluid is horizontally homogeneous (boundary layer approximation), and closed

solllltH)nS can be obtained (see Cheng et al. (2002)). The procedure to obtain such solutions
discussed in the following subsection.

In the following, we restrict ourselves to flows with vertical shear and stratification, and
assume that mean quantities are horizontally homogeneous. Under these conditions, (64)
yiels NI = N2 = 0 and

(59) reduces to

'where Su = 8U/ 8z and Sv = 8V/ 8z are the vertical shear in U and V, respectively.
Under these conditions, and using the conventions

(71)

(72)

(74)

(75)

(76)

(77)

r -Er- ,

With the help of (72), the last of (71) can be re-written as

Note that the new parameter ab5 = rab4 depends on the time scale ratio, r, and is, in general,
notconstant. Nevertheless, constant r = Cb is frequently assumed (see below).
In the general case, (70) and (71) can be inverted directly to yield a solution of the form

In geophysical applications, a reasonable assumption is Pb = Eb to elimmate the dependence
of (71) on T. From (158), using (62) and (66), it follows that T can be expressed in the form

64

Similarly, for the mixing efficiencies, (63) yields

(74) corresponds in form exactly to (43). Note that, adopting the equilibrium assumption
(72), the dependence on r drops in (74). From (44) and (75), and using the definition of the
dissipation rate (153), it is clear that

The structure of the dimensionless parameter functions apearing in (74) is given by

from which, by insertion into (70) and (71), all other quantities can be determined. Since
N and Nb defined in (65) have been treated as known, the solution is not yet completely
explicit. In the numerical scheme of GOTM, they are updated from their values at past time
steps. By identifying

where the numerators and the denominator are polynomials of the square of the shear number,
-2 -2 -2 -2

aM = S = Su + Sv, the square of the buoyancy number, aN = N , themixed scalar,

65

(78)

aB = T, and the functions N and Nb' The latter two functions depend on the production­
to-dissipation ratios for k and kb, which for vertical shear and stratification can be written
as

4.4.1 Equilibrium states

Some authors use simplifying assumptions to derive more compact forms of the expressions
the solution in (74). In the following, a few examples, which are special cases of the

general solution discussed here, are reviewed.
deriving their version of the general solution (74), Canuto et al. (2001) e.g. assumed Pb = Eb

ahd constant r. Under these conditions, because of (72), the dependence on T dissapears,
and the counter-gradient term rB in (74) drops. It was further assumed that P + G = E in
(65) only, leading to N = (Cl + ci)/2 and Nb = Cbl. These particularly simple expressions
linearize the system, and a fully explicit solution can be obtained, provided k and E are known.
Burchard and Bolding (2001) adopted the solution of Canuto et al. (2001) and complemented
it by k and Ecomputed from dynamical equations ('k-E mode!').
In contrast, Canuto et al. (2001) and Cheng et al. (2002) decided for a further simplification.
They solved (74) with k and E from algebraic expressions. In their case, k followed from the
approximation P + G = E of (150) (see section 4.17), and E from a prescribed length-scale.
Using (74), (77), and (78), it is easy to show that the assumption (P + G)/E leads to

-2 -2
NnS - NbN - D = 0 , (79)

-2
Pb _G!...-N2=_rGN
Eb E Eb E T

Once k and kb (and their dissipation ratios, E and Eb) are known, also the time scale ratio r

defined in (66) can be computed, and the problem can be solved. Different possibilities to
derive these quantities are discussed in the following.

G

which is polynomial equation in 8 and N. This expression can be used to replace one
of the latter two variables by the other. An interesting consequence is the fact that all
non-dimensional turbulent quantities can be expressed in terms of the Richardson number
Ri = N

2/82
only. Replacing N

2
by 82

Ri in (79), a quadratic equation for aM = 82
in terms

for Ri can be established (see e.g. Cheng et al. (2002). Using the definitions given in section
4.26, this equation can be written as

a~I (-d5 + n2 - (d3 - nl + nb2) Ri - (d4 + nbl) Ri2)+aM (-d2 + no - (dl + nbo) Ri)-do = 0
(80)

The solution for aM can, via (79), be used to expressed also N
2

in terms of Ri. This implies
that also the stability functions and hence the complete solution of the problem only depends
on Ri.

66

(81)

0.96
CCH02

1.02
CHCD01B

0.85
CHCD01A

0.24
KC94

0.47
GL78

4.4.2 Stability of explicit models

A physically reasonable condition for an explicit second order model expressed the fact that
increasing (non-dimensional) shear S should lead to increasing vertical shear-anisotropies of
turbulence, bI3 and b23. It has been shown by Burchard and Deleersnijder (2001) that a
violation of this condition may lead to numerical instabilities of the models.
Mathematically, the shear-condition is expressed by

22 1 --
a(bl3 + b23)2 =! acp,S > 0 (82)

oS 2 oS - ,
where (74) has been used. Using the equilibrium form of the stability function described in

section 4.26, this condition leads to a cubic equation in O'.M = S2. A simpler condition can
be obtained, when this equation is solved after terms multiplied by d5 and n2, which usually
are very small, are neglected.
The resulting approximate condition is

O'.M < dono + (donl + dIno)O'.N + (dInl + d4no)O'.~ + d4n IO'.1v (83)
- d2no + (d2n l + d3no)O'.N + d3n IO'.N

Burchard and Deleersnijder (2001) showed that using (83) the most well-known models yield
numerically stable results. However, for some models like those of Mellor and Yamada (1982)
and Kantha and Clayson (1994), the limiter (83) is almost always 'active', and hence replaces
the actual turbulence model in a questionable way.

Table 1: Critical Richardson number for some models

Solutions of this equation for some popular models are given in table 1. For Ri = Ric , equilib­
rium models predict complete extinction of turbulence. For non-equilibrium models solving
dynamical equations like (150), however, Ric has no direct signifcance, because turbulence
may be sustainned by turbulent transport and/or the rate term.

Investigating the solution of the quadratic equation (80), it can be seen that O'.M becomes
infinite if the factor in front of 0'.1- vanishes. This is the case for a certain value of the
Richardson number, Ri = Ric , following from

4.5 Parameter conversion for other models

Virtually all pressure-redistribution models used in engineering and geophysical applications
can be considered as special cases of (51) and (57). However, most authors adopted a different
notation and different parameter values. In this section, paramater conversions for the most
well-known models are discussed.

4.5.2 The model of Canuto et al. (2001)

Canuto et al. (2001) and Cheng et al. (2002) use a model that is virtually identieal to the
traditional ll10del of Launder et al. (1975) and Gibson and Launder (1978). The values of
their model parameters and their notation, however, are somewhat different.

67

(85)

(86)

(88)

2 4
Pij = -2kL,ij - 2kZij + "3 P <5ij - "3kSij ,

2 4
Dij = -2kL,ij + 2kZij + "3 P <5ij - "3kSij ,

can be re-written in the form

The model of Gibson and Launder (1978)

pressure-strain model of this important dass of engineering models has been originally
sugJ';ested by Launder et al. (1975). It ean be written as

iJ?ij = -2CI€bij - C2kSij - C3 (llj - ~P<5ij) - C4 (Dij - ~P<5ij) + C6rij , (84)

that last term has been added by Gibson and Launder (1978) to aeeount for the effeets
gravity in stratified fluids. This term is identieal to the last term in (51). The new

produetion-of-anisotropy tensor Dij is defined as

D i . = -(u~u') oUm _ (u'.u')oUm
J ~ m OXj J m OXi

Using the tensor relations

iJ?ij = - 2CI€bij + (~(C3 + (4) - (2) kSij + 2 (C3 + (4) kL,ij + 2 (C3 - (4) kZij + C6rij . (87)

lJomp,art,mg with (51), the following relations ean be estabilished: Cl =2c1, C2 = 4/3(C3 +
- C2, C3 = 2(C3 + (4), C3 = 2(C3 - (4), C5 = 0, and C6 = C6.

Gibson and Launder (1978) use a slightly different notation for the pressure-seambling model
(57). Their model is somewhat simplified form of the model of Jin et al. (2003), whieh ean
be written as

iJ?f = -Cbli (uw) + Cb2 Lij(ujb') + Cb3 Lji{ujb')

- (, ') oB 2- k"+Cb4 uiuj ox. - Cb5 bUi3
J

Using the deeomposition of the velocity gradient in its symmetrie and anti- symmetrie part,
(54), the following parameter relation are evident: Cbl = Cbl, Cb2 = Cb2 + Cb3, Cb3 = Cb2 - Cb3,
CM = Cb4, Cb5 = Cb5.
Parameter values for this model ,are eompiled in table 3. 'GLNEW' denotes the revised
parameter set for the pressure-strain model given in Wilcox (1998) and for the pressure­
buoyaney gradient model in Zhao et al. (2001).

(89)

(91)

(90)

(92)

0.48
0.318
0.547

o
o

0.643

0.4
0.4

0.786

0.33 0.8
0.4 0.8

11.9
11.2

11.04

0.12
0.101
0.1

0.33 0 0
0.4 0 0

0.0864
0.0906
0.0864

0.0032
0.00336
0.0032

0.6 0 0.5 3
0.78 0.2545 0.3 3.28

2/3 0.107
2/3 0.127
2/3 0.107

0.4
0.4
0.4

1.8 0
1.8 0

Table 3: Some parameter sets for the model of Canuto et al. (2001)

GL78
GLNEW

CHCDOlA
CHCDOlB

CCH02

68

Table 2: Some parameter sets for the model of Gibson and Launder (1978)

bij = -AISij - 2A2'Eij - 2A3Zij - A4I'ij .

The return-to-isotropy part of the pressure-strain model of Canuto et al. (2001) reads

from which, by eomparing with (51), it follows that Cl = 2/A and ci = 0, and henee from
(65) N = 1/A. Thus, adopting the relations al = A1/A, a2 = 2A2/A, a3 = 2A3/A, a4 = 0, and
a5 = A4/A, (89) eorresponds exaetly to (59),
Similarly, equation (10a) of Cheng et al. (2002) ean be re-expressed in the form

from which folIows, by eomparison with (57) and (65), that Nb = Cbl = A5/2. Comparing
(91) with (63) one finds, by inspeetion, the relations abI = A6' ab2 = A7' ab3 = 2, ab4 = 2Ao,
and ab5 = 2A8' Some parameter sets for this model are eompiled in table 3.

Looking for eonversion relations, it should be noted that the anisotropy tensor bgCHD used by
Canuto et al. (2001) is twiee the tensor defined in (52), bgCHD = 2kbij . Also the dissipative
time seale 7CCHD of Canuto et al. (2001) is twice the time seal defined in (56), 7CCHD = 27.
If one further notes that the turbulent heat flux hi = (u~e') is related to the buoyaney flux
aeeording to (uW) = aghi , relations between the model parameters ean be found.
With these relations, equation (10a) of Canuto et al. (2001) ean be re-written as

The somewhat simpler model of Canuto et al. (2001) adopts the equilibrium assumption

(72), and replaees the last term in (91) by -Aor'Y3N2bi3 and, assuming eonstant r, identifies
Aor = A8. The time seale ratio r is eomputed in equation (20a) of Canuto et al. (2001).
The return-to-isotropy part of this model (see equation (6e) of Cheng et al. (2002)) reads

69

4.6 Numerics

(94)

(95)

(96)

o 0
0.7 0.2
0.7 0.2

0.08
0.08
0.038

~~ = P - QX, P, Q > 0

10.1
10.1
11.6

16.55
16.55
16.55

0.74
0.74
0.62

MY82 0.92
KC94 0.92
K03 0.58

BI
<I>ij = - 3A

I
Ebij +4Cl kSij , (93)

which, by comparison with (51), yields Cl = BI/(3AI) and C2 = 4CI . All other parameters
are zero.
Similarly, the pressure-scrambling model of Mellor and Yamada (1982) (using the extensions
suggested by Kantha and CZayson (1994) and Kantha (2003)) reads

b BI E (, ') () (, ')<I>i = - 6A
2
k uib + C2 Sij + Wij ujb - 2C3kboi3 ,

which can be compared to (57) to obtain Cbl = BI/(6A2) and Cb2 = C2, Cb3 = C 2 , Cb5 = C 3 .

All other parameters are zero.
Several parameter sets suggested for this model are compiled in table 4

Table 4: Some parameter sets for the model of Mellor and Yamada (1982)

The numerical approximation of the turbulence equations is in principle carried out as ex­
plained in section 3.1.2. One basic difference is however due to the fact that turbulent
quantities are generally non-negative such that it is necessary that the discretised forms of
t.ß.e physical equations retain the principle of non-negativity. A typical model problem would
be the following:

4.5.3 The model of Mellor and Yamada (1982)

The pressure-strain model of Mellor and Yamada (1982) is expressed in terms of q2 = 2k and
the dissipation length scale Z = q3/(BI E), where BI is a model constant. The time scale ratio
in this model is set to r = Cb = BI/B2. Using these expression, their model can be re-written
as

with X denoting any non-negative quantity, Pa non-negative source term, QX a non-negative
linear sink term, and t denoting time. P and Q may depend on X and t. It can easily be
shown that with (95), X remains non-negative for any non-negative initial value X o and
limited Q. For the q2Z-equation and the E-equation (described in section 4.14 and section
4.15), Q would be proportional to q/Z and E/k, repsectively.
A straight-forward, explicit discretisation in time of (95) can be written as

X n+1 xn
= p n _QnXn

b..t

Thus, the so-called quasi-implicit formulation (99) by Patankar (1980) is a sufficient condition
for positivity applied in almost all numerical turbulence models.

Since it is computationally unreasonable to restrict the time step in such a way that (98) is
avoided, a numerical procedure first published by Patankar (1980) is generally applied

with the superscripts denoting the old (n) and the new (n + 1) time level and ~t denoting
the time step. In this case, the numerical solution on the new time level would be

(98)

(97)

(99)

(100)

x n+1 X n
------,-__ = pn _ QnXn+ 1 ,

~t

xn+l = x n + ~tpn

1 + ~tQn

X!1'+l = X!t(l - ~tQ~) + ~tP'!1Z Z Z Z ,

which yields an always non-negative solution for Xn+l,

70

which is negative for negative right hand side of (96), provided that

X n

~t > xnQn _pn

module turbulence

IMPLICIT NONE

.. tkeo

.. kb,epsb
buoyancy variance and its destruction
REALTYPE, public, dimension(:), allocatable

TKE at old time level
REALTYPE, public, dimension(:), allocatable

TKE, rate of dissipation, turbulent length-scale
REALTYPE, public, dimension(:), allocatable .. tke,eps,L

public init_turbulence, do_turbulence
public k_bc,q2over2_bc,epsilon_bc,psi_bc,q21_bc

default: all is private.
private

4.7 Module turbulence: its all in here ...

DESCRIPTION:

INTERFACE:

USES:

71

In this module, variables of the turbulence model and some member functions to manipulate
them are defined. The key-functions are init_turbulence 0, which initialises the model, and
do_turbulence 0, which manages the time step for the whole procedure. These two functions
are the only 'public' member functions Le. they are callable from outside the module. There
are many more internal functions, for which descriptions are provided seperately.
It should be pointed out that the turbulence module of GOTM may be used in combination
with virtually any shallow-wate 3-D circulation model using a structured grid in the vertical
direction. To this end, a clear interface separating the mean flow and the turbulence part of
GOTM is required. Vertical columns of the three-dimensional fields have to copied into one­
dimensional vectors, which are passed to GOTM. With the help of this information, GOTM
updates the turbulent fields and returns one-dimensional vectors of the turbulent diffusivities
and/or the turbulent fluxes to the 3-D model. The 'door' between the 3-D model and GOTM
is the function do_turbulence 0, which has been designed with these ideasin mind.

PUBLIC MEMBER FUNCTIONS:

PUBLIC DATA MEMBERS:

72

shear and buoyancy production
of tke and buoyancy variance
REALTYPE, public, dimension(:), allocatable

turbulent diffusivities
of momentum , temperature, salinity
REALTYPE, public, dimension(:), allocatable

non-local fluxes of momentum
REALTYPE, public, dimension(:), allocatable

non-local fluxes
of buoyancy, temperature, salinity
REALTYPE, pUblic, dimension(:), allocatable

non-dimensional stability functions
REALTYPE, public, dimension(:), allocatable

non-dimensional counter-gradient term
REALTYPE, public, dimension(:), allocatable

alpha_M, alpha_N, and alpha_B
REALTYPE, pUblic, dimension(:), allocatable

time scale ratio r
REALTYPE, public, dimension(:), allocatable

the gradient Richardson number
REALTYPE, public, dimension(:), allocatable

the flux Richardson number
REALTYPE, public, dimension(:), allocatable

turbulent velocity variances
REALTYPE, public, dimension(:), allocatable

ifdef EXTRA_OUTPUT

dummies for testing
REALTYPE, public, dimension(:), allocatable

endif

some additional constants

.. P,B,Pb

.. num,nuh,nus

.. gamu,gamv

.. gamb, gamh, gams

.. cmue1, cmue2

.. gam

.. aS,an,at

.. r

.. Rig

.. xRf

.. uU,vv,WW

.. turb1,turb2,turb3,turb4,turb5

REALTYPE, public

parameters for wave-breaking
REALTYPE, public

73

PrandtlO

· . k_ubc=1

·. k_lbc=1

·. kb_ubc=1

· . kb_lbc=1

· . psi_ubc=1

·. psLlbc=1
· . ubc_type=1

· . Ibc_type=1

·. cmO_fix=O.5477

·. PrandtlO_fix=O.74

· . cw=100.0
compute_kappa=.false.

· . kappa=O.4

·. compute_c3=.false.

·. ri st=O.25

·. length_lim=.false.

·. galp=O.53
· . const_num=5.0e-4

const_nuh=5.0e-4
· . k_min=1.0e-8

· . eps_min=1.0e-12

· . kb_min=1.0e-8

·. epsb_min=1.0e-12

.. cmO,cmsf,cde,rcm, b1

.. turb_method=2

.. tke_method=2

.. len_scale_method=8

.. stab_method=3

.. compute_param=.false.

.. gen_m=1.5

public
public
public
public
public
public
public
public

the 'turbulence' namelist
integer, public
integer, public
integer, public
integer, public

Prandtl-number in neutrally stratified flow
REALTYPE , public

the 'bc' namelist
integer, public
integer, public
integer, public
integer, public
integer j public
integer, public
integer, public
integer, public

logical,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE ,

the 'generic' namelist
logical
REALTYPE, public

the 'turb_param' namelist
REALTYPE, public
REALTYPE , public
REALTYPE, public
logical
REALTYPE , public
logical

,~ REALTYPE

74

REALTYPE, public ·. gen_n=-i.0
REALTYPE, public · . gen_p=3.0
REALTYPE, public ·. cpsi1=i.44
REALTYPE, public ·. cpsi2=1. 92
REALTYPE, public ·. cpsi3minus=0.0
REALTYPE, public ·. cpsi3p1us=i.0
REALTYPE ·. sig_kpsi=i.0
REALTYPE, public ·. sig_psi=i.3
REALTYPE ·. gen_d=-1.2
REALTYPE ·. gen_a1pha=-2.0
REALTYPE ·. gen_1=0.2

the 'keps' namelist
REALTYPE, public · . cei=1.44
REALTYPE, public · . ce2=i.92
REALTYPE, public · . ce3minus=0.0
REALTYPE, public ·. ce3p1us=i.0
REALTYPE, public · . sig_k=i.0
REALTYPE, public · . sig_e=1.3
logica1, public ·. sig_peps=.false.

the 'my' namelist
REALTYPE, public ·. ei=i.8
REALTYPE, public · . e2=1.33
REALTYPE, public ·. e3=1.8
REALTYPE, public ·. sq=0.2
REALTYPE, pub1ic · . sl=0.2
integer, public ·. my_1ength=i
logica1, public ·. new_constr=.fa1se.

".
the 'send' namelist
integer ·. scnd_method
integer ·. kb_method
integer ·. epsb_method
integer · . scnd_coeff
REALTYPE ,public ·. cci
REALTYPE, public ·. cti,ctt
REALTYPE, public · . cc2,cc3,cc4,cc5,cc6
REALTYPE, public ·. ct2,ct3,ct4,ct5

the a_i's for the ASM
REALTYPE, public ·. ai,a2,a3,a4,a5
REALTYPE, public · . ati,at2,at3,at4,at5

the 'iw' namelist
integer, public
REALTYPE, public
REALTYPE, public
REALTYPE, public
REALTYPE, public
REALTYPE, public
REALTYPE, public

DEFINED PARAMETERS:

general outline of the turbulence model
integer, parameter, public
integer, parameter, public
integer, parameter, public
integer, parameter, public

method to update TKE
integer, parameter, public
integer, parameter, public
integer, parameter, public

stability functions
integer, parameter, public
integer, parameter, public
integer, parameter, public
integer, parameter, public

method to update length scale
integer, parameter
integer, parameter

~ integer, parameter
integer, parameter
integer, parameter
integer, parameter
integer, parameter
integer, parameter, public
integer, parameter, public
integer, parameter, public

boundary conditions
integer, parameter, public
integer, parameter, public
integer, parameter, public

.. iw_model=O
alpha=O.O

.. klimiw=1e-6

.. rich_cr=O. 7

.. numiw=1. e-4

.. nuhiw=5. e-5

.. numshear=5.e-3

.. convective=O

.. algebraic=1

.. first_order=2

.. second_order=3

tke_local_eq=1
.. tke_keps=2
.. tke_MY=3

.. Constant=1

.. MunkAnderson=2

.. SchumGerz=3

.. EiflerSchrimpf=4

· . Parabola=1

·. Triangle=2

·. Xing=3

· . RobertOuellet=4

· . Blackadar=5
· . BougeaultAndre=6
· . ispra_length=7

· . diss_eq=8

· . length_eq=9

·. generic_eq=10

.. Dirichlet=O

.. Neumann=1

.. viscous=O

75

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal,
Lars Umlauf

The algebraic equation for the TKE is not save
to use at the moment. Use it only in conncection
with the prescribed length-scale profiles. The
functions report_model() will report wrong things
for the algebraic TKE equation. To be fixed with
the next version.

.. lögarithmic=l

.. injection=2

.. quasiEq=l

.. weakEqKbEq=2

.. weakEqKb=3

.. kb_algebraic=l

.. kb_dynamic=2

.. epsb_algebraic=l

.. epsb_dynamic=2

integer, parameter, public
integer, parameter, public

type of second-order model
integer, parameter
integer, parameter
integer, parameter

method to solve equation for k_b
integer, parameter
integer, parameter

method to solve equation for epsilon_b
integer, parameter
integer, parameter

$Log: turbulence.F90,v $
Revision 1.15 2005/11/15 11:35:02 lars
documentation finish for print

. Revision 1.14 2005/09/13 10:00:54 kbk
init_turbulence() now prints version - obtained from Makefile
Revision 1.13 2005/08/11 13:00:15 lars
Added explicit interface for xP. Bug found by Vicente Fernandez.
Revision 1.12 2005/07/19 16:46:14 hb
removed superfluous variables - NNT, NNS, SSU, SSV
Revision 1.11 2005/07/19 16:33:22 hb
moved variances() from do_turbulence() to time_loop()
Revision 1.10 2005/07/12 10:13:22 hb
dependence of init_turbulence from depth, zOs, zOb removed

76

BUGS:

DESCRIPTION:

NTERFACE:

·. namlst

·. fn

· . nlev

intent(in)
intent(in)
intent(in)

integer,
character(len=*),
integer,

IMPLICIT NONE

INPUT PARAMETERS:

USES:

4.7.1 Initialise the turbulence module

77

Revision 1.9 2005/07/06 14:07:17 kbk
added KPP, updated documentation, new structure of turbulence module
Revision 1.7 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.6 2003/03/28 08:20:01 kbk
removed tabs
Revision 1.5 2003/03/10 09:02:06 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.3 2001/11/27 19:42:58 gotm
Cleaned
Revision 1.2 2001/11/18 16:15:30 gotm
New generic two-equation model
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

subroutine init_turbulence(namlst,fn,nlev)

Initialises all turbulence related stuff. This routine reads a number of namelists and allo­
cates memory for turbulence related vectors. The core consists of calls to the the internal
functions generate_model 0 and analyse_model 0, discussed in great detail in section 4.7.3
and section 4.7.4, respectively. The former function computes the model coefficients for the
generic two-equation model (see Umlauf et al. (2003)) from physically motivated quantities
like the von Karman constant, K" the decay rate in homogeneous turbulence, d, the steady­
s~ate Richardson number, Rist, and many others. The latter function does the inverse: it
computes the physically motivated quantities from the model constants of any model cur­
rently available in GOTM. After the call to either function, all relevant model parameters are
known to GOTM. Then, the function report_model 0 is called, which displays all results on
the screen.

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal,
Lars Umlauf

·. cc1GL78 = 3.6000

·. cc2GL78 0.8000
cc3GL78 1.2000

· . cc4GL78 1.2000

·. cc5GL78 = 0.0000

·. cc6GL78 = 0.5000

·. cUGL78 3.0000

· . ct2GL78 0.3333

· . ct3GL78 = 0.3333

· . ct4GL78 = 0.0000

·. ct5GL78 0.3333

· . cttGL78 0.8000

·. cc1MY82 = 6.0000

·. cc2MY82 0.3200
parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

REALTYPE ,
REALTYPE,

REALTYPE ,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE ,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,

integer, intent(in)

IMPLICIT NONE

subroutine init_scnd(scnd_coeff)

USES:

DEFINED PARAMETERS:

INPUT PARAMETERS:

DESCRIPTION:

4.7.2 Initialize the second-order model

78

INTERFACE:

This subroutine computes the ai's defined in (59) and the abi's defined in (63) from the model
parameters ofthe pressure redistribution models (51) and (57). Parameter sets from different
authors are converted to the GOTM notation according to the relations discussed in section
4.5.

REVISION HISTORY:

80

REALTYPE, parameter · . ct2CHCD01A = 0.6000
REALTYPE, parameter ·. ct3CHCD01A = 1.0000
REALTYPE, parameter ·. ct4CHCD01A = 0.0000
REALTYPE , parameter ·. ct5CHCD01A 0.3333
REALTYPE , parameter · . cttCHCD01A 0.7200

REALTYPE, parameter ·. cc1CHCD01B 5.0000
REALTYPE, parameter ·. cc2CHCD01B = 0.6983
REALTYPE, parameter ·. cc3CHCD01B 1.9664
REALTYPE , parameter ·. cc4CHCD01B 1.0940
REALTYPE , parameter ·. cc5CHCD01B = 0.0000
REALTYPE, parameter ·. cc6CHCD01B 0.4950
REALTYPE, parameter · . ct1CHCD01B 5.6000
REALTYPE, parameter ·. ct2CHCDOiB = 0.6000
REALTYPE , parameter · . ct3CHCD01B 1.0000
REALTYPE , parameter ·. ct4CHCD01B = 0.0000
REALTYPE, parameter · . ct5CHCD01B 0.3333
REALTYPE, parameter ·. cttCHCD01B 0.4770

REALTYPE , parameter · . cc1CCH02 5.0000
REALTYPE, parameter ·. cc2CCH02 = 0.7983
REALTYPE , parameter · . cc3CCH02 1.9680
REALTYPE, parameter · . cc4CCH02 = 1.1360
REALTYPE, parameter · . cc5CCH02 0.0000
REALTYPE, parameter ·. cc6CCH02 = 0.5000
REALTYPE , parameter · . ct1CCH02 5.5200
REALTYPE , parameter ·. ct2CCH02 0.2134
REALTYPE, parameter · . ct3CCH02 0.3570
REALTYPE, parameter ·. ct4CCH02 = 0.0000
REALTYPE, parameter · . ct5CCH02 0.3333
REALTYPE, parameter ·. cttCCH02 0.8200

".

integer, parameter LIST = 0
integer, parameter ·. GL78 = 1
integer, parameter ·. MY82 = 2
integer, parameter ·. KC94 = 3
integer, parameter LDOR96 = 4
integer, parameter ·. CHCD01A = 5
integer, parameter · . CHCD01B = 6
integer, parameter ·. CCH02 = 7

REVISION HISTORY:

Original author(s): Lars Umlauf

LJ'-_'~I "PTION:

subroutine generate_model

81

(101)

(102)

Generate a two-equation model

the call to generate_modelO, all parameters of the generic two-equation model are
The user has full control over specific properties of the resulting model (see section

Computes the parameters of an instance of the 'generic' two-equation model according to
specifications set in gotmturb. inp. This model solves (150) for the k and (166) for the

generic length-scale defined in section 4.16 together with an Algebraic Stress Model. For
several 'simple turbulent flows, analytical solutions of this models exist and can be used to
<;alibrate the model coefficients. The method is described in great detail in Umlauf and
Burchard (2003). Also users that are not interested in the generic part of GOTM should

a look in this section, because results derived here are referenced in later parts of the

following sections, the effects of model parameters on the behaviour of two-equation
mOldeJ[s in specific situations are briefly reviewed. For a more in-depth discussion, see Umlauf

K?l.rrh.n.rrf. (2003).

The logarithmic boundary layer

In the logarithmic boundary layer one has P = € and k cx u; by defintion. Under these
conditions it is easy to show that a solution of (150) is

and a solution of (166) can only be obtained if the condition

Decay of homogeneous turbulence

is satisfied. (101) can be conveniently used to obtain boundary conditions for k, whereas
(102) yields for example the value for the turbulent Schmidt-number (7'ljJ as a function of the
von Karman constant (provided, of course, that the other constants are known). The value
of the von Karman constant is usually assumed to be "" ~ 0.4.

82

Homogeneous turbulent shear-flows

(103)

(104)

(105)

2n
d=

1 dl 1 1 d'lj; m 1 dk
=-------

l dt n 'Ij; dt n k dt

2m+n-2~2 '

andthus depends önly on the exponents m·and n defined in (165) and the model constant C1j;2'

For given exponents m and n, the experimental values of d can be used to derive the value
of the model constant C1j;2. Note, that the predieted decay rate, d, is completely independent
of the ASM (or the stability functions in other words).

k (t)d--A -
ko - 70 '

with constant A and initial values of the kinetic energy, ko, and the eddy turnover time,
70. The decay rates, d, have been thoroughly documented. Experiments (Bradshaw (1975),
Townsend (1976), Domaradzki and Mellor (1984), Mohamed and Larue (1990)) suggest that
d is in the range -1.3 < d < -1. DNS, generally conducted at low Reynolds numbers,
produce consistently higher values. For example, Briggs et al. (1996) obtain a value near
-1.5 from their DNS. .
In homogeneous decaying turbulence, (150) and (166) reduce to a balance between the rate
and dissipation terms, respectively. The coupled system of ordinary differential equations
can be solved for given initial values ko and 'lj;o (see e.g. Wilcox (1998)). The solution can be
shown to reduce to (103) at large times. Then, the decay exponent, d, is determined by

Another example of a simple but fundamental turbulent situation is the temporal decay of
isotropie, homogeneous turbulence (approximated by the spatial decay of turbulence behind
grids in laboratory settings). At large times, t, data from many experiments are well described
by apower law of the form

A natural extension of decaying homogeneous turbulence is the indusion of a homogeneous
shear and an aligned homogeneous stratification. Since turbulence is still assumed to be
homogeneous, the divergence of any turbulent transport term vanishes and the interplay

,::-between the stabilizing effects of stratification and the destabilizing action of shear can be
isolated. Thus, it is not surprising that this interesting special case of turbulence has been ex­
plored extensively by laboratory experiments (Tavoularis and Corrsin (1981a,b), Tavoularis
and Karnik (1989), Rohr et al. (1988)), by Direct Numerical Simulation (Gerz et al. (1989),
Holt et al. (1991), Jacobitz et al. (1997), Shih et al. (2000)) and by Large-Eddy Simulation
(Kaltenbach et al. (1994)). That flows of this kind are crucial also in many oceanographie
flows has been pointed out by Baumert and Peters (2000).
In the context of the generic two-equation model, this turbulent flow is mathematieally es­
tablished by neglecting the turbulent transport terms and the advective part of the material
time derivative. Then, (150) and (166) reduce to a set of ordinary differential equations.
Using the chain rule of differentiation, the relation

83

(106)

(107)

(108)

C1j;l =m,

k = K(z + zo)Cl:, 1= L(z + zo) ,

1 dl

1dt

is used in the subroutine to determine the model parameter C1j;l. A more detailed
discm;sicln of this method is given in Umlauf and Burchard (2003).

Tennekes (1989) derived an equation similar to (106), however only for the special case ofthe
model applied to unstratified fiows, and stated that 'on dimensional grounds, 1 cannot

aej?el1~a upon the shear because the shear is homogeneous and cannot impose a length scale '.
argument requires immediately

the mixing length, l, follows immediately from (165). With (105), the generic model
eXI:.ressed by (150) and (166) can be used to derive an evolution equation for the integral

scale, l,

~IlLeaLr-:rrE!e turbulence, wave-breaking

where K, L, and Zo are constants, and the source of turbulence has been assumed to be at
z = O. In these experiments, Zo = l/L at z = 0 is not related to any kind of surface roughness
length. Rather, it is connected to the length scale of injected turbulence, uniql,lely determined
by the spectral properties of turbulence at the source. Experiments suggest that the decay
rate for the turbulent kinetic energy is likely to be in the range -3 < a < -2. The value of
L, Le. the slope of the turbulent length scale, l, was found to be consistently smaller than in
wall-bounded shear fiows, L < /'i, :::::i 0.4, see Umlauf et al. (2003).
In stationary, shear-free, unstratified turbulence, the generic model simplifies to a balance
between the turbulent transport terms and the dissipative terms in (150) and (166). Using
the definition of 'ljJ in (165) and the scaling for the rate of dissipation, (153), the transport

first step in understanding the behaviour of two-equation models in the surface layer
aUect;ed by breaking gravity waves is the investigation of a special case, in which turbulence
ael~a)TS spatially away from a planar source without mean shear. Turbulence generated by
an oscillating grid in a water tank has been üsed in various laboratory settings to study the
SP1'l,tUll decay of velocity fiuctuations in this basic turbulent fiow, where turbulent transport
and dissipation balance exactly. For a summary of these results, see Umlauf et al. (2003).
All grid stirring experiments confirmed apower law for the decay of k and a linear increase

the length scale, l, according to

(109)

(110)

(111)

(112)

where the constant ratio R = cUcp, follows uniquely from the respective ASM. The power-law
(108) can also be inserted in (109h to yield

(am + n) ((~ + m) a + n) L 2 = (c~)2 RO"1j;c1j;2

Note, that in shear-free turbulence, the shear-number defined in (45) is aM = 0 by definition,
and stability functions always reduce to a constant which is, however, different from the
constant c~ approached in the logarithmic boundary layer, see section 4.7.13.
For the solution of this non-linear system, we inserted the expressions (108) in (109). From
(153) and (44), power-laws follow then also for € = E(z + zo)ß and Vt = N(z + zo)'.
Inserting (108) into (109h yields the equation

(aL)2 = ~(c~)2Rot,

We note that with the help of (104) and (107), the relation (102) can be rewritten as

2",2d
0"1j; = (c~)2(d + 2) n .

Expressing now 0"1j; with (112) and C1j;2 with the help of (104) on the right hand side of (111),
an equation expressing the exponent m in terms of n (or vice-versa) can be obtained. The
result for n can be written as

~ n = - 4(2 + d)(~'R _ 0) (4d~'Rm- (1 +4m)(2 + d)aL'

+ 8m(1 + 2m)(2 + d)'(~'R - L')a'L' + (- 4d~'R m + (2 + d)(l + 4m)aL')')

(113)
After assigning appropriate values for the von Karman constant, "', the decay coefficient of
homögeneous turbulence, d, the spatial decay rate, a, and the slope, L, an infinite number of
pairs of m and n satisfying (113) can be derived. Each corresponds to a different two-equation
model. Some example are given in table 5 (see Umlauf and Burchard (2003)).
Even though each line in this table represents a different two-equation model with completely
different model constants, each of the two groups of models (with a = -2.0 and a = -2.5,
respectively) performs completely identical in all situations discussed until here. Thus, the
generic model allows for the formulation of groups of two-equation models with fully controlled

and dissipation of k and 'ljJ are balanced according to

84

(114)

85

a L m n C'ljJ2
(J"'ljJ (J"'ljJk

-2.0 0.20 1.00 -0.67 1.22 0.80 1.07
-2.0 0.20 2.00 -1.09 2.36 0.80 1.75

-2.5 0.20 1.00 -1.05 1.35 1.25 1.68
-2.5 0.20 2.00 -1.74 2.58 1.25 2.78

Table 5: Some parameter sets for the generic model with K, = 0.4, d = -1.2, (c~? = 0.3,
C'ljJl = m and obeying the log-layer compatibility relation (112).

properties from the outset. As discussed by Umlauf and Burchard (2003), one more constraint
is necessary to obtain the final values of all parameters, including the exponents m and n.
These authors suggested that the first line in table 5 yields a model with excellent properties
in all flows they considered.

Mixed layer deepending

correct prediction of mixed layer deepening into a stratified fluid due to a wind stress
at the surface is one of the most crucial requirements for an oceanic turbulence model. This
sitl1ation has been frequently interpreted by analogy with the classical experiment of Kato
and Phillips (1969) and its r~-interpretationby Price (1979), in which the entrainment in a
linearly stratified fluid subject to a constant surface stress was investigated. The results of
this experiment have been used by numerous authors to calibrate their turbulence models.
In particular, it has been shown by Burchard and Bolding (2001) for the k-€ model of Rodi
(1987), by Burchard (200lb) for the q2l model of Mellor and Yamada (1982), and by Umlauf
et al. (2003) for the k-w modelof Wilcox (1988) that, remarkably, the mixed layer depth
predicted by these models depends almost exclusively on the value of the Richardson num­
ber, Ri = N 2/ M 2 , computed in a homogeneous, stratified shear-flow in steady-state. This
value is usually referred to as the steady-state Richardson number, Rist (Rohr et al. (1988),
Kaltenbach et al. (1994), Jacobitz et al. (1997), Shih et al. (2000)).
Umlauf et al. (2003) showed that in the context of models considered in GOTM, the steady­
state Richardson number is determined by the relation

R
. _ cI-! C'ljJ2 - c'ljJl
~st --

cI-!I C'ljJ2 - C'ljJ3

Since it is well-known that, with the equilibrium assumption P + G = €, stability functions
reduce to functions of Ri only (Mellor and Yamada (1974), Galperin et al. (1988)), (114)
is a non-linear equation for the model constant C'ljJ3 for given Rist. Note, that the structure
parameters, m and n, do not appear in (114). This implies that the type of the two-equation
model is irrelevant for the prediction of the mixed layer depth, as long as (114) is fulfilled for
identical Rist. Numerical examples with very different values of m and n confirmed indeed
that the mixed layer depth only depends on Rist. The experiment of Kato and Phillips (1969)

86

could almost perfectly be reproduced, provided the parameter C'lj;3 was chosen to correspond
to Rist:::::! 0.25, see Umlauf et al. (2003).
Note, that in instable situations, a different value of the parameter C'lj;3 needs to be used.
This does not cause a discontinuity in the model because the buoyancy term in (166) is zero
at the transition. An evaluation of the length-scale equations in convective flows, however, is
intimately related to the third-order modelling of the tripie correlation terms, a topic outside
the scope of this documentation.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.4 Analyse the turbulence models

INTERFACE:

subroutine analyse_model

DESCRIPTION:

This routine analyses all models in GOTM for theirphysical properties implied by chosen
model parameters. These results can be displayed by calling the internal routine report_model 0,
also defined in the turbulence module (see section 4.7.5).
In most cases, the relations connecting model parameters and physical properties have already
been derived in seetion 4.7.3: the von Karman constant, f'i" follows from (102), the decay rate
in homogeneous turbulence , d, from (104), and the steady-state Richardson-number from

~(114). These relations have been obtained in 'generic' form (see section 4.16), but relations
for specific models, like the k-f. model or the k-w model, can be derived by simply adopting
the parameters compiled in table 8 and table 9 in section 4.16.
The decay rates a and L in shear-free turbulence follow from the physically meaningful roots
of (110) and (111), which are

1 1 ,

(1 + 4m)((jt)"2 - ((jt + 24(j'lj;C'lj;2) "2

L = cOR~ ((1 + 4m + 8m2)(jt + 12(j'lj;c'lj;2 - (1 + 4m)((jt((jt + 24(j'lj;C'lj;2))~) ~
~ 12~

(115)

87

where it should be recalled that R = c~/cw For the standard models (without ASM), R = 1
may be assumed. Then, with the values from table 8 and table 9, solutions for the k-E model
of Rodi (1987), and the k-w model of Umlauf et al. (2003) can be direct1y recovered as special
cases of this equation.
Due to its wall-functions, the model of Mellor and Yamada (1982) described in section 4.14
requires a slightly more complicated analysis. For this model, the von Karman constant is
computed according to

(117)

(116)

(118)

1 1

5K,B! Sz + (12E2(2Sz - Sq) + BIK,2SZ(Sz + 12Sq)) '2
a = 1

3K,B! (Sq - 2Sz)

L = (N)~
K, 6Sq(E2 - BIK,2SZ)2 '

where we introduced the abbreviation

K, = JE2 - EI + 1
SZBI

The decay rates in shear-free turbulence can be shown to be

N = 6E2 (2Sz - Sq) + B IK,2Sz(13Sz + 6Sq)
1 1

5B! K,Sz (12E2(2Sz - Sq) + B IK,2SZ(Sz + 12Sq))2

These equations replace (115) for the model of Mellor and Yamada (1982). Decay-rates for
this model do not at all depend on the stability functions. However, they depend on the
parameter E 2 of the wall-functions. This parameter, however, has been derived for wall­
bounded shear flows, and it is not very plausible to find it in an expression for shear-free
flows.
The routine analyse_model 0 works also for one-equation models, where the length-scale, l,
is prescribed by an analytical expression (see section 4.19). However, some attention has to
be paid in interpreting the results. First, it is elear that these models cannot predict homo­
geneous turbulence, simply because all formulations rely on some type of modified boundary
layer expressions for the length-scale. This impies. that a well-defined decay rate, d, and a
stBady-state Richardson-number, Rist, cannot be computed. Second, the von Karman con­
stant, K" does not follow from (102) or (116), because K, now relates direct1y to the prescribed
slope of the length-scale elose to the bottom or the surface. Third, in shear-free flows, (115) I

or (117h remain valid, provided the planar source of the spatially decaying turbulence is
located at z = O. Then, the slope of the length-scale, L, defined in (108) can be identified
with the prescribed slope, K" and (115h or (117h are identical to the solutions suggested by
Craig and Banner (1994).
In this context, it should be pointed out that the shear-free solutions also have a direct
relation to an important oceanic situation. If the planar source of turbulence is assumed to
be located at z = 0, and if the injected turbulence is identified with turbulence caused by
breaking surface-waves, then it can be shown that (115) or (117) are valid in a thin boundary
layer adjacent to the suface. Further below, to elassicallaw of the wall determines the flow,
see Craig and Banner (1994) and citeUmlaufeta12003.

88

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.5 Report turbulence model

INTERFACE:

subroutine report_model

DESCRIPTION:

This routine reports on the parameters and the propeties of all turbulence models imple­
rnented in GOTM. Results are written to the screen.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Lars Umlauf

,"; 4.7.6 Manage turbulence time-stepping

INTERFACE:

subroutine do_turbulence(nlev,dt,depth,u_taus,u_taub,zOs,zOb,h, &
NN,SS,xP)

DESCRIPTION:

This routine is the central point ofthe turbulence scheme. It determines the order, in which
turbulence variables are updated, and calls other member functions updating the TKE,
the length-scale, the dissipation rate, the ASM etc. Note, that the list of arguments in
do_turbulenceO corresponds exactly to those mean fiow and grid-related variables required

89

USES:

• turb_method = 1 corresponds to a purely algebraic description of the turbulent diffu­
sivities.

.. nlev

.. NN(O:nlev)

.. SS(O:nlev)

interface
subroutine production(nlev,NN,SS,xP)

integer, intent(in)
REALTYPE, intent(in)
REALTYPE, intent(in)

IMPLICIT NONE

• turb_method = 0 corresponds to the "convective adjustment" algorithm, see seetion
3.15. Since this model is not areal one-point turbulence c1osure, it is not called from
do_turbulence but directly from the main GOTM loop.

• second_method = 2 corresponds to algebraic models assuming Pb = Eb, and hence
using (72). Furthermore, full equilibrium P + G = E and Pb = Eb is assumed for the
computation of N and Nb in (65), see section 4.26

• second_method = 3 corresponds to algebraic models assuming full equilibrium P+G =
E and Pb = Eb for the computation of N and Nb in (65). Now, however, also an equation
for (half) the buoyancy variance kb is solved, leading to the appearance of the counter­
gradient term in (74), see seetion 4.25. This model is not yet fully tested and therefore
not available.

• turb_method = 2 corresponds to models computing the diffusivities from the TKE and
the turbulent length scale according to (44). TKE and length scale are computed from
dynamic PDEs or algebraic relations, an empirical (Le. not derived from a second-order
model) stability function is used, see section 4.7.12.

to update the turbulent quantities. These variables have to be passed from a 3-D model, ifthe
turbulence module of GOTM is used for the computation of the turbulent fluxes. Do not for­
get to call init_turbulence 0 from the 3-D model before the first call to do_turbulence O.
The variable turb_method determines the essential structure of the calls in do_turbulence O.
At the moment, the following model types are available:

• turb_method = 3 corresponds to a second-order model for the turbulent fluxes.

The second-order models fall into different categories, depending on the value of second_method.
models, discussed in detail in section 4.4, are listed in the following.

• second_method = 1 corresponds to algebraic quasi-equilibrium models with scaling in
the spirit of Galperin et al. (1988), see section 4.27.

Depending on the values of kb_method and epsb_method, different algebraic or differential
equations for kb and Eb are solved for second_method = 3,4.

Original author(s): Karsten Bolding, Hans Burchard,
Lars Umlauf

90

REALTYPE, intent(in), optional
end subroutine production

end interface

INPUT PARAMETERS:

number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

distance between surface
and bottom(m)
REALTYPE, intent(in)

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

boyancy frequency squared (1/s~2)

REALTYPE, intent(in)

shear-frequency squared (1/s~2)

REALTYPE, intent(in)

TKE production due to seagrass
friction (m~2/s~3)

REALTYPE, intent(in), optional

REVISION HISTORY:

.. xP(O:nlev)

.. nlev

.. dt

.. depth

.. u_taus, u_taub

.. zOs,zOb

.. h(O :nlev)

.. NN(O:nlev)

.. SS(O:nlev)

.. xP(O:nlev)

IMPLICIT NONE

91

DESCRIPTION:

.. nlev

.. dt,u_taus,u_taub,zOs,zOb

.. h(O:nlev)

.. NN(O:nlev),SS(O:nlev)

intent(in)
intent(in)
intent(in)
intent(in)

integer,
REALTYPE ,
REALTYPE,
REALTYPE,

subroutine do_kb(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

INPUT PARAMETERS:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal, Lars Umlauf

USES:

Based on user input, this routine calls the appropriate routines for calculating the turbulent
kinetic energy. The user has the choice between an algebraic equation described in section
4.17, and two versions of the dynamic transport equation of the TKE described in section
4.11 and section 4.12. The former uses k-f. notation, the latter the notation of Mellor and
Yamada (1982). Apart from this, both equations are identical and update the vectors tke
and tkeo, which is the value of the tke at the old time step.

4.7.7 Update the turbulent kinetic energy

subroutine do_tke(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

INTERFACE:

USES:

REVISION HISTORY:

4 ..1.8 Update the buoyancy variance

DESCRIPTION:

INTERFACE:

Based on the value of kb_method, this routine calls the appropriate routines for calculating
(half) the buoyancy variance kb defined in (50). The user has the choice between a simple
algebraic expression, described in section 4.18, and a dynamic equation for k b, described in
section 4.13.

92

DESCRIPTION:

.. nlev

.. dt,u_taus,u_taub,zOs,zOb

.. h(O:nlev)

.. NN(O:nlev),SS(O:nlev)

.. nlev

.. dt,depth,u_taus,u_taub,zOs,zOb

.. h(O:nlev)

.. NN(O:nlev),SS(O:nlev)

intentCin)
intent(in)
intent(in)
intentCin)

intent(in)
intent(in)
intent(in)
intentCin)

Original author(s): Lars Umlauf

integer,
REALTYPE,
REALTYPE ,
REALTYPE,

integer,
REALTYPE ,
REALTYPE ,
REALTYPE,

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

subroutine do_lengthscale(nlev,dt,depth,u_taus,u_taub, zOs,zOb,h,NN,SS)

4.7.9 Update the dissipation length-scale

USES:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal,
Lars Umlauf

INTERFACE:

Based on the value of len_scale_method, this routine calls the appropriate routines for cal­
culating the turbulent length-scale, l, and the rate of dissipation, E. The user has the choice
between several algebraic equations described in section 4.19, and several differential trans­
port equations for a length-scale determining variable. At the moment, GOTM implements
equations for the rate of dissipation, described in section 4.15, for the Mellor-Yamada model
described in section 4.14, and for the generic scale formulated by Umlauf and Burchard (2003)
and described in section 4.16. This last transport equation generalises all of the previously
mentioned models. For example, the k-E model and the k-w model can be recovered as special
cases of the generic equation, see Umlauf and Burchard (2003).

REVISION HISTORY:

~ IMPLICIT NONE

INPUT PARAMETERS:

IMPLICIT NONE

IMPLICIT NONE

.. nlev

.. dt,u_taus,u_taub,zOs,zOb

.. h(O :nlev)

.. NN(O:nlev),SS(O:nlev)

intent(in)
intent(in)
intent(in)
intent(in)

integer,
REALTYPE ,
REALTYPE ,
REALTYPE,

Original author(s): Lars Umlauf

~ subroutine kolpran(nlev)

NTERFACE:

4.7.10 Update the desctruction rate of buoyancy variance

INPUT PARAMETERS:

USES:

DESCRIPTION:

subroutine do_epsb(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

93

INTERFACE:

Based on the value of epsb_method, this routine calls the appropriate routines for calculating
the molecular destruction rate of kb, defined in (158). Presently, only a simple algebraic
expression, described in section 4.20, is available in GOTM.

REVISION HISTORY:

4.7.11 Update diffusivities (Kolmogorov-Prandtl relation)

USES:

DESCRIPTION:

Eddy viscosity and diffusivity are calculated by means of the relation of Kolmogorov and
Prandtl from the updated values of k, land the stability functions according to (44). In
addition, the counter-gradient term rB = Er is updated, see (35) and (75).
Note, that this routine relies on the fact that the lowest and uppermost values of the stability
functions and of k, l, and r have been computed using the correct boundary conditions. No
special treatment of Vt, vf, and rB at the boundaries is processed.

Based on the user's specifications in gotmtub. inp, this internal routine selects the desired
stability functions defined in (44). These simple functions depend on aM and aN defined in
(45), which are in most cases only used to compute the Richardson-number

IMPLICIT NONE

INTERFACE:

(119)

.. nlev

.. nlev

subroutine compute_cmO(turb_method,stab_method,scnd_method)

Original author(s): Hans Burchard, Karsten Bollding, Lars Umlauf

R ' aN
~=-

aM

integer, intent(in)

4.7.13 Compute special values of stability functions

INPUT PARAMETERS:

USES:

REVISION HISTORY:

subroutine stabilityfunctions(nlev)

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal, Lars Umlauf

A description of individual stability functions starts from section 4.28.

DESCRIPTION:

integer, intent(in)

INTERFACE:

4.7.12 Update stability functions

INPUT PARAMETERS:

REVISION HISTORY:

94

95

DESCRIPTION:

(123)

.. turb_method

.. stab_method
scnd_method

Original author(s): Lars Umlauf

integer, intent(in)
integer, intent(in)
integer, intent(in)

Computes the values of the stability function cp, defined in (44) in the logarithmic boundary­
layer, c~, and in shear-free, spatially deeaying turbulenee, cU (see seetion4.7.4).
c~ is the value of cp, in unstratified equilibrium flows, Le. in the logarithmic wall region. It
can be obtained from the relation P = €, aeeording to (78) written in the form

P = Cp,D:M = 1 (120)
€

In unstratified flows, cp, only depends on D:M (see seetions 4.24-4.26), and (120) is a polyno­
mial equation for the value of D:M in equilibrium. Its solution is

3N2
D:M - (121)

- a§ - 3a~ + 3a l N '

where, aeeording to (65) in equilibrium N = (Cl + ci)/2. The value of the stability function
in equilibrium follows direetly from (120),

AO a§ - 3a~ + 3a l N
cp, = 3N2 (122)

that c~ = (c~)4 aecording to (76).
Al)g;et)raic Stress Models exhibit an interesting behaviour in unstratified, shear-free turbulenee.
Clearly, in the absence of shear, these models prediet isotropie turbulence, bij = 0, aecording
to (59). This is a direet eonsequenee of the assumption (58), implying an infinitely small
return-to-isotropy time seale. Formally, however, the limit of the stability function cp, for
D:M -> 0 follows from (74) and the definitions given in seetions 4.24-4.26. The limiting value
is

USES:

IMPLICIT NONE

INPUT PARAMETERS:

1. AASf al
1m Cp, = Cp, = N'

aM->O

where, aeeording to (65), one has either N = cI/2 - 1 or N = (Cl + ci)/2, see section 4.24
and section 4.26, respeetively. The above limit eorresponds to nearly isotropie turbulenee
supporting a very small momentum flux caused by a very small shear.
llote that cU = (c~)3c~f aeeording to (76).

REVISION HISTORY:

DESCRIPTION:

(124)

(125)

(126)

(127)

k = K(z + zor:)!

Vt Bk cp, 2 2a
Fk = --- = --K2La(z+zo)2 ,

(Jk Bz (Jk

4.7.14 Boundary conditons for the k-equation (k-epsilon style)

INTERFACE:

REALTYPE function k_bcCbc,type,zi,zO,u_tau)

Computes prescribed and flux boundary conditions for the transport equation (150). The
formal parameter bc determines whether Dirchlet or Neumann-type boundary conditions are
computed. Depending on the physical properties of the boundary-Iayer, the parameter type
relates either to a visous, a logarithmic, or an injection-type boundary-Iayer. In the
latter case, the flux of TKE caused by breaking surface waves has to be specified. Presently,
there is only one possibility to do so implemented in GOTM. It is described in section 4.34.
All parameters that determine the boundary layer have to be set in gotmturb. inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface),
and not the standard coordinate of the same name used in GOTM.

Viscous boundary-Iayers

Logarithmic boundary-Iayers

Thistype.is not implemented yet in GOTM.

96

The Neumann (flux) boundary condition can be derived from the constancy of k in the
logarithmic region. This fact can be written as

The Dirichlet (prescribed) boundary condition follows from (101) as

Shear-free boundary-Iayers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-Iaw in (108),

The Neumann (flux) boundary condition can be written as

IMPLICIT NONE

INTERFACE:

DESCRIPTION:

(128)

.. be,type
zi,zO,u_tau

integer, intent(in)
REALTYPE, intent(in)

Original author(s): Lars Umlauf

INPUT PARAMETERS:

REVISION HISTORY:

K= (-~Fk)~ :,
cltaL Zo

where the specification of the flux Fk and the value of Zo have to be determined from a
suitable model of the wave breaking process.

4.7.15 Boundary conditons for the k-equation (Mellor-Yamada style)

USES:

97

which follows immediately from (108) and the expression for the turbulent diffusivity, (44).
The parameter K can be determined from an evaluation of (127) at z = O. The result is

Logarithmic boundary-Iayers

REALTYPE funetion q2over2_be(bc,type,zi,zO,u_tau)

Viscous boundary-Iayers

Computes prescribed and flux boundary conditions for the transport equation (154). The
formal parameter bc determines whether Direhlet or Neumann-type boundary conditions are
qomputed. Depending on the physical properties of the boundary-layer, the parameter type
relates either to a visous, a logarithmic, or an injection-type boundary-layer. In the
latter case, the flux of TKE caused by breaking surface waves has to be specified. Presently,
there is only one possibility to do so implemented in GOTM. It is described in section 4.34.
All parameters that determine the boundary layer have to be set in gotmturb. inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface),
and not the standard coordinate of the same name used in GOTM.

This type is not implemented yet in GOTM.

98

IMPLICIT NONE

(130)

(129)

(131)

(132)

(133)

.. bc,type

.. zi,zO,u_tau

22 -
q2/2 = u*Bt

2

Bk
Fq = -Sqql- = 0Bz

q2
2 = k = K(z + zoY~ .

Original author(s): Lars Umlauf

integer, intent(in)
REALTYPE, intent(in)

The Dirichlet (prescribed) boundary condition follows from (101) and (157) as

The Neumann (flux) boundary condition can be derived from the constancy of q2/2 in the
logarithmic region. This fact can be written as

Shear-free boundary-Iayers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-Iaw in (108),

The Neumann (flux) boundary condition can be written as

which follows immediately from (108). The parameter K can be determined from an evalu­
ation of (132) at z = O. The result is

INPUT PARAMETERS:

REVISION HISTORY:

where the specification of the flux Fq and the value of Zo have to be determined from a
suitable model of the wave breaking process.

'"
USES:

DESCRIPTION:

99

(135)

(134)

Logarithmic boundary-Iayers

ViI3C<JtUS boundary-Iayers

Computes prescribed and flux boundary conditions for the transport equation (163). The
formal parameter bc determines whether Dirchlet or Neumann-type boundary conditions are
computed. Depending on the physical properties of the boundary-Iayer, the parameter type
relates either to a visous, a logarithmic, or an injection-type boundary-Iayer. In the

case, the flux of TKE caused by breaking surface waves has to be specified. Presently,
there is only one possibility to do so implemented in GOTM. It is described in section 4.34.
All parameters that determine the boundary layer have to be set in gotmturb. inp.
Nöte that in this section, for brevity, z denotes the distance from the wall (or the surface),

not the standard coordinate of the same name used in GOTM.

4.7.16 Boundary conditons for the epsilon-equation

type is not implemented yet in GOTM.

REALTYPE function epsilon_bc(bc,type,zi,ki,zO,u_tau)

The Dirichlet(prescribed) boundary condition follows from (153) as

where we used the law-of-the-wall relation l = K,(z + zo).
TJie Neumann (flux) boundary condition can be expressed as

Shear-free boundary-Iayers with injection of TKE

by inserting l = K,(z + zo) into the expression for the diffusivity in (44). Note, that in (134)
and (135), we use ki, the value of k at the current time step, to compute the boundary
conditions. By means of (101), it would have been also possible to express the boundary
conditions in terms of the friction velocity, u*. This, however, causes numerical difficulties in
case of a stress-free surface boundary-Iayer as for example in the pressure-driven open channel
flow.

IMPLICIT NONE

INTERFACE:

(136)

(137)

.. be,type
zi,ki,zO,u_tau

integer, intent(in)
REALTYPE, intent(in)

Original author(s): Lars Umlauf

INPUT PARAMETERS:

E= (c~)3K!L-l(z+zo)!a-l

The Neumann (flux) boundary condition is

FE = - l/t ÖE = _ CM(C~)3 K 2 (~a _1) (z + zo)2a-l ,
O"E ÖZ O"E 2

REVISION HISTORY:

REALTYPE funetion pSi_be(be,type,zi,ki,zO,u_tau)

which follows from (108) and (44). The parameter K is computed as described in the context
of (128).

USES:

4.7.17 Boundary conditons for the psi-equation

Computes prescribed and flux boundary conditions for the transport equation (166). The
formal parameter be determines whether Direhlet or Neumann-type boundary conditions are
computed. Depending on the physical properties of the boundary-layer, the parameter type
relates either to a visous, a logarithmie, or an injeetion-type boundary-layer. In the
latter case, the flux of TKE caused by breaking surface waves has to be specified. Presently,
there is only one possibility to do so implemented in GOTM. It is described in section 4.34.
All parameters that determine the boundary layer have to be set in gotmturb. inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface),
and not the standard coordinate of the same name used in GOTM.

100

The Dirichlet (prescribed) boundary condition follows simply from the power-law (108) in­
serted in (153). This yields

Viscous boundary-layers

<': DESCRI PTION:

101

This type is not implemented yet in GOTM.

(138)

(139)

(141)

(140)

.. be,type
zi,ki,zO,u_tau

Original author(s): Lars Umlauf

IMPLICIT NONE

integer, intent(in)
REALTYPE, intent(in)

Logarithmic boundary-Iayers

USES:

The Dirichlet (prescribed) boundary condition follows from (165) as

'IjJ = (c~)p/'t,nkm (z + zot ,

where we used the law-of-the-wall relation l = /'t,(z + zo).
Neumann (flux) boundary condition can be written as

F'I/J = _!!!... o'lj; = _ n(c~)P+l/'t,n+l km+~(z+zot
O"'I/J oz O"'I/J

by inserting l = /'t,(z + zo) into the expression für the diffusivity in (44). Note, that in (138)
and (139), we use ki, the value of k at the current time step, to compute the boundary
conditions. By means of (101), it would have been also possible to express the boundary
conditions in terms of the friction velocity, u*. This, however, causes numerical difficulties in
case of a stress-free surface boundary-Iayer as for example in the pressure-driven open channel

Shear-free boundary-Iayers with injection of TKE

INPUT PARAMETERS:

'Ij; = (co)PKmLn(z + zo)ma+n
J1 .

The Neumann (flux) boundary condition is

The Dirichlet (prescribed) boundary condition follows simply from the power-Iaw (108) in­
serted in (165). This yields

REVISION HISTORY:

DESCRIPTION:

102

(142)

(143)

(144)

The Dirchlet (prescribed) boundary conditions can be written as

where we used the law-of-the-wall relation l = ",(z + zo).
Neumann (flux) boundary condition can be written as

Viscous boundary-Iayers

Computes prescribed and flux boundary conditions for the transport equation (160). The
formal parameter bc determines whether Dirchlet or Neumann-type boundary conditions are
computed. Depending on the physical properties of the boundary-Iayer, the parameter type
relates either to a visous, a logarithmic, or an injection-type boundary-Iayer. In the
latter case, the flux of TKE caused by breaking surface waves has to be specified. Presently,
there is only one possibility to do so implemented in GOTM. It is described in section 4.34.
All parameters that determine the boundary layer have to be set in gotmturb. inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface),
and not the standard coordinate of the same name used in GOTM.

4.7.18 Boundary conditons for the q21-equation

Logarithmic boundary-Iayers

This type is not implemented yet in GOTM.

INTERFACE:

REALTYPE function q21_bcCbc,type,zi,ki,zO,u_tau)

Shear-free boundary-Iayers withinjection of TKE

ßq2l In 2 3
Fz = -81ql ßz = -2y 281'" k'i (z + zo)

by inserting l = ",(z + zo) (q is constant in the log-layer). Note, that in (142) and (143),
we use ki, the value of kat the current time step, to compute the boundary conditions. By
means of (101), it would have been also possible to express the boundary conditions in terms
of the friction velocity, u*. This, however, causes numerical difficulties in case of a stress-free
surface boundary-Iayer as for example in the pressure-driven open channel flow.

The Dirichlet (prescribed) boundary condition follows simply from the power-Iaw (108), yield­
ing

which follows from (108). The parameter K is computed as described in the context of (133).

Neumann (flux) boundary condition is

öq2 l In 3 2 3 a+!
Fz = -SNl öz = -2v 2Sz(a+ 1)K'iL (z+zo)'i ,

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in)
REALTYPE, intent(in)

REVISION HISTORY:

Original author(s): Lars Umlauf

.. be,type

.. zi,ki,zO,u_tau

103

(145)

104

(147)

(148)

.. nlev

.. NN(O:nlev)

B 2 -G= -llt N +rB,

number of vertical layers
integer, intent(in)

boyancy frequency squared (1/s~2)

REALTYPE, intent(in)

subroutine production(nlev,NN,SS,xP)

DESCRIPTION:

use turbulence, only: P,B,Pb
use turbulence, only: num,nuh
use turbulence, only: alpha,iw_model
IMPLICIT NONE

4.8 Update turbulence production

INTERFACE:

This subroutine calculates the production terms of turbulent kinetic energy as defined in
(152) and the production of buoayancy variance as defined in (159). The shear-production is
computed according to

P = lIt(M2 + aw N 2) + Xp , (146)

with the turbulent diffusivity of momentum, lIt, defined in (44). The shear-frequency, M,
is discretised as described in section 3.13. The term multiplied by a w traces back to a
parameterisation of breaking internal waves suggested by Mellor (1989). Xp is an extra
production term, connected for example with turbulence production caused by sea-grass, see
(246) in section 9.1. xP is an optional argument in the FORTRAN code.
Similarly, according to (78), the buoyancy production is computed from the expression

with the turbulent diffusivity, 11.[3, defined in (44). The second term in (147) represents the
non-local buoyancy flux. The buoyancy-frequency, N, is discretised as described in section
3.14.
The production of buoyancy variance by vertical meanflow gradients follows from (78) and
(147)

INPUT PARAMETERS:

Thus, according to the definition of the potential energy (50), the buoyancy production G
describes the conversion between turbulent kinetic and potential energy in (150) and (158),
respectively.

Original author(s): Karsten Bolding, Hans Burchard
$Log: production.F90,v $
Revision 1.4 2005/08/28 09:40:03 hb
Misspelling in documentation corrected.
Revision 1.3 2005/08/11 13:01:49 lars
Added explicit loops for 3-D z-level support. Thanks to Vicente Fernandez.
Revision 1.2 2005/07/19 16:46:14 hb
removed superfluous variables - NNT, NNS, SSU, SSV
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed
Revision 1.6 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.5 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.4 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.3 2002/02/08 08:59:57 gotm
Revision 1.2 2001/11/18 16:02:16 gotm
Allow no_shear calculation
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

shear-frequency squared (1/s~2)

REALTYPE, intent(in)

TKE production due to seagrass
friction (m~2/s~3)

REALTYPE, intent(in) , optional

REVISION HISTORY:

SS(O:nlev)

.. xP (0 :nlev)

105

This subroutine updates the dimensionless numbers aM, aN, and ab according to (45). Note
that according to (64) and (67) the following identities are valid

INTERFACE:

(149)

tke,eps,kb
aS,an,at

.. nlev

.. NN(O:nlev),SS(O:nlev)

only:
only:

-2 -2
aM = S, aN = N, ab = T .

Original author(s): Lars Umlauf
$Log: alpha_mnb.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

subroutine alpha_mnb(nlev,NN,SS)

use turbulence,
use turbulence,
IMPLICIT NONE

integer, intent(in)
REALTYPE, intent(in)

4.9 Update dimensionless alpha's

106

USES:

DESCRIPTION:

INPUT PARAMETERS:

REVISION HISTORY:

4.10 Update time scale ratio

This routine updates the ratio r of the dissipation time scales as defined in (66).

Original author(s): Lars Umlauf
$Log: r_ratio.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

107

.. nlev

tke,eps,kb,epsb
r

only:
only:

subroutine r_ratio(nlev)

integer, intent(in)

use turbulence,
use turbulence,

IMPLICIT NONE

USES:

INTERFACE:

DESCRIPTION:

INPUT PARAMETERS:

REVISION HISTORY:

108

INTERFACE:

(150)

(151)

(152)

(153)

-(u'w') ßU _ (v'w') ßV ,
ßz ßz

(w'b') ,

k = Vk + P + G - € ,

P

G

only: P,B,num
only: tke,tkeo,k_min,eps
only: k_bc, k_ubc, k_lbc, ubc_type, Ibc_type
only: sig_k
only: Dirichlet,Neumann

3

o 3 k2
€ = (cJ.J -Z '

use turbulence,
use turbulence,
use turbulence,
use turbulence,
use util,

IMPLICIT NONE

4.11 The dynamic k-equation

The transport equation for the turbulent kinetic energy, k, follows immediately from the
contraction of the Reynolds-stress tensor. In the case of a Boussinesq-fluid, this equation can
be written as

DESCRIPTION:

subroutine tkeeq(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

where k denotes the material derivative of k. P and Gare the production of k by mean
shear and buoyancy, respectively, and € the rate of dissipation. Vk represents the sum of the
viscous and turbulent transport terms. For horizontally homogeneous flows, the transport
term Vk appearing in (150) is presently expressed by a simple gradient formulation,

where (Jk is the constant Schmidt-number for k.
In horizontally homogeneous flows, the shear and the buoyancy production, P and G, can be
written as

USES:

see (48). Their computation is discussed in section 4.8.
The rate of dissipation, €, can be either obtained directly from its parameterised transport
equation as discussed in section 4.15, or from any other model yielding an appropriate de­
scription of the dissipative length-scale, Z. Then, € follows from the well-known cascading
relation of turbulence,

where c~ is a constant of the model.

109

Original author(s): Lars Umlauf
(re-write after first version of
H. Burchard and K. Bolding)

$Log: tkeeq.F90,v $
Revision 1.9 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1. 8 2005/11/03 20: 53: 37 hb

.~ Patankar trick reverted to older vers ions for
stabilising 3D computations
Revision 1.7 2005/08/11 13:11:50 lars
Added explicit loops for diffusivities for 3-D z-level support.
Thanks to Vicente Fernandez.
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/10 09:02:06 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code

.. nlev

.. dt

.. zOs,zOb

.. h(O :nlev)

.. u_taus, u_taub

.. NN(O:nlev),SS(O:nlev)

number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s~2)

REALTYPE, intent(in)

INPUT PARAMETERS:

REVISION HISTORY:

110

(154)

(155)

(157)

.. nlev

&.(&q2/2)
'Dq = &z qlSq--a;- ,

only: P,B
only: tke,k_min,eps,L
only: q2over2_bc, k_ubc, k_lbc, ubc_type, Ibc_type
only: sq
only: Dirichlet,Neumann

(CO)-2 = ~B~
J.L 2 I

use turbulence,
usa turbulence,
use turbulence,
use turbulence,
use util,

IMPLICIT NONE

number of vertical layers
integer, intent(in)

time step (s)

INTERFACE:

subroutine q2over2eq(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

DESCRIPTION:

4.12 The dynamic q2/2-equation

The transport equation for the TKE q2/2 = k can be written as

where q2/2 denotes the material derivative of q2/2. With P and G following from (152),
evidently, this equation is formally identical to (150). The only reason why it is discretized
seperately here, is the slightly different down-gradient model for the transport term,

USES:

where Sq is a model constant. The notation has been chosen according to that introduced
by Mellor and Yamada (1982). Using their notation, also (153) can be expressed in mathe­
matically identical form as

q3
E = Bll ' (156)

where BI is a constant of the model. Note, that the equivalence of (153) and (156) requires
that

INPUT PARAMETERS:

Original author(s): Lars Umlauf
$Log: q2over2eq.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 09:04:04 gotm
Fixed comment char
Revision 1.1 2003/03/10 09:00:36 gotm
Part of new generic turbulence model

REALTYPE, intent(in)

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s~2)

REALTYPE, intent(in)

REVISION HISTORY:

.. dt

.. u_taus, u_taub

.. zOs,zOb

.. h(O:nlev)

.. NN(O:nlev),SS(O:nlev)

111

112

(158)

(159)

.. nlev

.. dt

only: Pb,epsb,nuh
only: kb,kb_min
only: k_ubc, k_lbc, ubc_type, Ibc_type
only: Dirichlet,Neumann

use turbulence,
use turbulence,
use turbulence,
use util,

IMPLICIT NONE

number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

surface and bottom
friction velocity (m/s)

INTERFACE:

subroutine kbeq(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

4.13 The dynamic kb-equation

The transport equation for (half the) buoyancy variance, kb = (b'2)/2, follows from the
equation for the buoyancy fluctations (see Sander (1998)). In the case of a Boussinesq-fluid,
this equation can be written as

DESCRIPTION:

USES:

where kb denotes the material derivative of kb. Pb is the production of kb be mean density
gradients, and tb the rateof molecular destruction. 'Db represents the sum of the viscous and
turbulent transport terms. It is presently evaluated with a simple down gradient model in
GOTM.
The production of buoyancy variance by the vertical density gradient is

Hs computation is discussed in section 4.8.
The rate of molecular destruction, f-b, can be computed from either a transport equation or
a algebraic expression, section 4.7.10.

INPUT PARAMETERS:

$Log: kbeq.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s~2)

REALTYPE, intent(in)

REVISION HISTORY:

Original author(s): Lars Umlauf

.. u_taus, u_taub

.. zOs ,zOb

.. h(O:nlev)

.. NN(O:nlev),SS(O:nlev)

113

(160)

(161)

(162)

1.8 1.33 1.816.6 0.2 0.2

& (&q21)
1)1 = &z qlSI &z '

Mellor and Yamada (1982)

Table 6: Constants appearing in (160) and (156)

/i; being the von Karman constant and L z some measure for the distance from the wall.
Different possiblities for L z are implemented in GOTM, which can be activated be setting
the parameter MY_length in gotmturb . inp to appropriate values. Close to the wall, however,
one always has L z = z, where z is the distance from the wall.
For horizontally homogeneous fiows, the transport term 1)1 appearing in (160) is expressed
by a simple gradient formulation,

DESCRIPTION:

4.14 The dynamic q21-equation

where q21denotes the material derivative of q21. The production terms P and G follow from
(152), and E can be computed either directly from (156), or from (153) with the help (157).
The so-called wall function, F, appearing in (160) is defined by

F = 1 + E 2 (/i;~z) 2 ,

INTERFACE:

subroutine lengthscaleeq(nlev,dt,depth,u_taus,u_taub,zOs,zOb,h,NN,88)

Following suggestions of Rotta (1951), Mellor and Yamada (1982) proposed an equation for
the product q21 expressed by

114

USES:

At the end of this routine the length-scale can be constrained according tö a suggestion of
Galperin et al. (1988). This feature is optional and can be activated by setting length_lim
= . true. in gotmturb. inp.

where SI is a constant of the model. The values for the model constants recommended by
Mellor and Yamada (1982) are displayed in table 6. They can be set in gotmturb. inp. Note,
that the parameter Es in stably stratifed fiows is in principle a function of the so-called steady

~state Richardson-number, as discussed by Burchard (2001b), see discussion in the context of
(114).

IMPLICIT NONE

Original author(s): Lars Umlauf
(re-write after first version of
H. Burchard and K. Bolding

$Log: lengthscaleeq.F90,v $
Revision 1.7 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.6 2005/11/03 20:53:37 hb

115

.. nlev

.. depth

.. dt

.. h(O :nlev)

.. zOs,zOb

.. NN(O:nlev),SS(O:nlev)

use turbulence, only: P,B
use turbulence, only: tke,tkeo,k_min,eps,eps_min,L
use turbulence, only: kappa,e1,e2,e3,b1
use turbulence, only: MY_length,cmO,cde,galp,length_lim
use turbulence, only: q21_bc, psi_ubc, psi_lbc, ubc_type, Ibc_type
use turbulence, only: sI
use util, only: Dirichlet,Neumann

number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

local water depth (m)
REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s~2)

REALTYPE, intent(in)

INPUT PARAMETERS:

REVISION HISTORY:

116

Patankar trick reverted to older vers ions for
stabilising 3D computations
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code

USES:

117

(163)

(164)

use turbulenee, only: P,B,num
use turbulenee, only: tke,tkeo,k_min,eps,eps_min,L
use turbulenee, only: ee1,ee2,ee3plus,ee3minus
use turbulenee, only: emO,ede,galp,length_lim
use turbulenee, only: epsilon_be, psi_ube, psLlbe, ube_type, lbe_type

Rodi (1987) 0.5577 1.0 1.3 1.44 1.92

4.15 The dynamic epsilon-equation

INTERFACE:

DESCRIPTION:

subroutine dissipationeqCnlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

Table 7: Constants appearing in (163) and (153).

The k-E model in its form suggested by Rodi (1987) has been implemented in GOTM. In this
model, the rate of dissipation is balanced according to

€ = De + ~(CelP + Ce3G - Ce2E) ,

where € denotes the material derivative of E. The production terms P and G follow from
(152) and De represents the sum of the viscous and turbulent transport terms.
For horizontally homogeneous fiows, the transport term De appearing in (163) is presently
expressed by a simple gradient formulation,

At the end of this routine the length-scale can be constrained according to a suggestion of
Galperin et al. (1988). This feature is optional and can be activated by setting length_lim
= .true. in gotmturb. inp.

where (je is the constant Schmidt-number for E.

It should be pointed out that not all authors retain the buoyancy term in (163), see e.g.
Gibson and Launder (1976). Similar to the model of Mellor and Yamada (1982), Craft et al.
(1996) set Cel = Ce3' However, in both cases, the k-E model cannot predict a proper state of
full equilibrium in stratified fiows at a predefined value ofthe Richardson number (see Umlauf
et al. (2003) and discussion around (114)). Model constants are summarised in table 7.

118

IMPLICIT NONE

use turbulence, only: sig_e,sig_eO,sig_peps
use util, only: Dirichlet,Neumann

.. nlev

.. dt

.. u_taus, u_taub

.. zOs,zOb

.. h(O :nlev)

.. NN(O:nlev),SS(O:nlev)

time step (s)
REALTYPE, intent(in)

number of vertical layers
integer, intent(in)

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s A 2)
REALTYPE, intent(in)

Original author(s): Lars Umlauf
(re-write after first version of
H. Burchard and K. Bolding

$Log: dissipationeq.F90,v $
Revision 1.9 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.8 2005/11/03 20:53:37 hb
Patankar trick reverted to older versions for
stabilising 3D computations
Revision 1.7 2005/08/11 13:11:50 lars
Added explicit loops for diffusivities for 3-D z-level support.
Thanks to Vicente Fernandez.
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks

INPUT PARAMETERS:

REVISION HISTORY:

Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/10 13:43:42 lars
double definitions removed - to conform with DEC compiler
Revision 1.3 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code

119

120

(166)

(167)1J = ~ (!!.!. ß1/J)
'l/J ßz (j'l/J ßz

1/J two-equation model by: p m n

w Wilcox (1988) -1 1 -1'2
kl Mellor and Yamada (1982) 0 1 1

E Rodi (1987) 3 3 -1'2
kr Zeierman and Wolfshtein (1986) -3 1 1'2

subroutine genericeq(nlev,dt,u_taus,u_taub,zOs,zOb,h,NN,SS)

INTERFACE:

DESCRIPTION:

4.16 The dynamic psi-equation

Table 8: Exponents p, n, m defined in (165), and their relation to the variable of the seeond
equation in some well-known two-equation models.

The transport equation for 1/J ean written as

where'0 denotes the material derivative of 1/J, see Umlauf and Burchard (2003). The produe­
tion terms P and G follow from (152). 1J'l/J represents the sum of the viseous and turbulent
transport terms. The rate of dissipation ean eomputed by solving (165) for land inserting
the result into (153).
For horizontally homogeneous flows, the transport terms 1J'l/J appearing in (166) are expressed
by a simple gradient formulation,

This model has been formulated by Umlauf and Burchard (2003), who introduced a 'generie'
variable,

1/J = (c~)Pkmln , (165)

where k is the turbulent kinetie energy computed from (150) and 1 is the dissipative length­
seale defined in (153). For appropriate ehoices of the exponents p, m, and n, the variable
1/J ean be direetly identified with the classic length-seale determining variables like the rate
of dissipation, E, or the product kl used by Mellor and Yamada (1982) (see seetion 4.14 and
seetion 4.15). Some examples are eompiled in table 8.

For appropriate ehoiees of the parameters, most of the classic transport equations ean be
direetly reeovered from the generie equation (166). An example is the transport equation

121

USES:

IMPLICIT NONE

(168)

.. nlev
number of vertical layers
integer, intent(in)

cO (J'l/J (J'l/J C'l/Jl C'l/J2 C'l/J3fb k

k-E, Rodi (1987) : 0.5477 1.0 1.3 1.44 1.92 (see eq. (114))

k-kl, Mellor and Yamada (1982) : 0.5544 1.96 1.96 0.9 0.5 0.9

k-w, Wilcox (1988) : 0.5477 2 2 0.555 0.833 (see eq. (114))

k-T Zeierman and Wolfshtein (1986): 0.5477 1.46 10.8 0.173 0.225 (-)

use turbulence, only: P,B,num
':,. use turbulence, only: tke,tkeo,k_min,eps,eps_min,L

use turbulence, only: cpsil,cpsi2,cpsi3plus,cpsi3minus,sig_psi
use turbulence, only: gen_m,gen_n,gen_p
use turbulence, only: cmO,cde,galp,length_lim
use turbulence, only: psLbc, psi_ubc, psi_lbc, ubc_type, Ibc_type
use util, only: Dirichlet,Neumann

w= 'Dw + ~(CWIP + CW3 G - Cw2E) ,

which is dearly a special case of (166). Model constants for this and other traditional models
are given in table 9. Apart from having to code only one equation to recover all of the

for the inverse turbulent time scale, w cx: E/k, which has been formulated by Wilcox (1988)
and extended to buoyancy affected fiows by Umlauf et al. (2003). The precise definition of w
follows from table 8, and its transport equation can be written as

INPUT PARAMETERS:

Table 9: Model constants of some standard models, converted to the notation used here. The
Schmidt-numbers for the model of Mellor and Yamada (1982) are valid only in the logarithmic
boundary-layer, because the diffusion models (155) and (162) are slightly different from (151)
and (167). There is no indication that one dass of diffusion models is superior.

tn:Ldi1tio:nal models, the main advantage of the generic equation is its fiexibility. After choosing
meaningful values for physically relevant parameters like the von Karman constant, fl" the
temporal decay rate for homogeneous turbulence, d, some parameters related to breaking
surface waves, etc, a two-equation model can be generated, which has exactly the required
properties. This is discussed in great detail in Umlauf and Burchard (2003). All algorithms
have been implemented in GOTM and are described in section 4.7.3.

Original author(s): Lars Umlauf and Hans Burchard

.. dt

.. h(O :nlev)

.. zOs,zOb

.. NN(O:nlev),SS(O:nlev)

time step (s)
REALTYPE, intent(in)

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

surface and bottom
roughness length (m)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s~2)

REALTYPE, intent(in)

$Log~ genericeq.F90,v $
Revision 1.8 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1. 7 2005/11/03 20: 53: 37 hb
Patankar trick reverted to older versions for
stabilising 3D computations
Revision 1.6 2005/08/11 13:11:50 lars
Added explicit loops for diffusivities for 3-D z-level support.
Thanks to Vicente Fernandez.
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code

122

REVISION HISTORY:

DESCRIPTION:

123

(170)

(169)

.. nlev

.. u_taus, u_taub

.. NN(O:nlev),SS(O:nlev)

P+G-c=O

only: tke,tkeo,L,k_min
only: cmue2,cde,cmuel,cmO

use turbulence,
use turbulence,

IMPLICIT NONE

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in)

square of shear and buoyancy
frequency (1/s A 2)
REALTYPE, intent(in)

number of vertical layers
integer, intent(in)

USES:

subroutine tkealgebraic(nlev,u_taus,u_taub,NN,SS)

4.17 The algebraic k-equation

INTERFACE:

INPUT PARAMETERS:

This subroutine computes the turbulent kinetic energy based on (150), but using the local
equilibrium assumption

This statement can be re-expressed in the form

DEFINED PARAMETERS:

were we used the expressions in (152) together with (43) and (44). The rate of dissipaton, c,
has been expressed in terms of l via (153). This equation has been implemented to update k in
a diagnostic way. It is possible to compute the value of k as the weighted average of (170) and
the value of kat the old timestep. The weighting factor is defined by the parameter c_filt.
It is recommended to take this factor small (e.g. c_f ilt = 0.2) in order to reduce the strong
osc:illl1tiC)llS associated with this scheme, and to couple it with an algebraically prescribed

scale with the length scale limitation active (length_lim=. true. in gotmturb. inp,
see Galperin et al. (1988)).

124

REALTYPE , parameter

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: tkealgebraic.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:29:16 kbk
removed tabs
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

125

(171)

(172)

.. nlev

tke,eps,kb,Pb
ctt,kb_min

only:
only:

use turbulence,
use turbulence,

subroutine kbalgebraic(nlev)

Original author(s): Lars Umlauf
$Log: kbalgebraic.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

IMPLICIT NONE

number of vertical layers
integer, intent(in)

USES:

4.18 The algebraic kb-equation

INPUT PARAMETERS:

INTERFACE:

DESCRIPTION:

The algebraic equation for kb simply assumes equilibrium in (158),

where we used the definition of the time scale ratio r in (66), and assumed that r = Cb is a
constant.

This equation can be re-written as

REVISION HISTORY:

(176)

(174)

(173)

where it should be noted that only for large water depth this equation converges to
K,(z + zo) near the bottom or near the surface.

2. The triangular profile is defined according to

l = K, min(ds + zg, db + zg) ,

This subroutine computes the vertical profile of the turbulent scale l from different types
of analytical expressions. These range from simple geometrical forms to more complicated
expressions taking into account the effects of stratification and shear. The users can select
their method in the input file gotmturb. inp. For convenience, we define here db and ds as
the distance from the bottom and the surface, respectively. The water depth is then given by
H = db + ds, and zg and zg are the repective roughness lengths. With these abbreviations,
the expressions implemented in GOTM are as follows.

1. The parabolic profile is defined according to

l
- (ds +zg)(db + zg)
- K, b'

ds + db + Zo + zg

126

INTERFACE:

DESCRIPTION:

subroutine algebraiclength(method,nlev,zOb,zOs,depth,h,NN)

where it should be noted that only for large water depth this equation converges to
K,(z + zo) near the bottom. Near the surface, the slope of l is always different from the
law of the wall, a fact that becomes important when model solutions for the case of
breaking waves are computed, see section 4.7.4.

4.19 Some algebraic length-scale relations

which converges always to K,(z + zo) near the bottom or near the surface.

3. A distorted parabola can be constructed by using a slightly modified form of the equa-
tion used by Xing and Davies (1995),

l (ds + zg)(d~ing + zg) dXing _ d (ßdb)
= K, x· 'b - b exp - H ' (175)

ds + dbmg + zg + zg
"" where it should be noted that only for large water depth this equation converges to

K,(z + zo) near the bottom or near the surface. The constant ß is a form parameter
determining the distortion of the profile. Currently we use ß = 2 in GOTM.

4. A distorted parabolacan be constructed by using a slightly modified form ofthe equa­
tion used by Robert and Ouellet (1987),

b . / db - zg
l = K,(db + zo)y 1 - H '

where

127

(177)

.. method

.. nlev

.. depth

.. zOb,zOs

.. h(O :nlev)

.. NN(O :nlev)

surface and bottom roughness (m)
REALTYPE, intent(in)

layer thicknesses (m)
REALTYPE, intent(in)

number of vertical layers
integer,. intent(in)

local depth (m)
REALTYPE, intent(in)

type of length scale
integer, intent(in)

use turbulence, only: L,eps,tke,k_min,eps_min
use turbulence, only: cde,galp,kappa,length_lim
IMPLICIT NONE

buoyancy frequency (1/s~2)

REALTYPE, intent(in)

f!.Hktzdz
Za = 1'0 1 (178)

f!.HHdz
is the natural kinetic energy scale resulting from the first moment of the rms turbulent
velocity. The constant 1'0 usually takes the value 1'0 = 0.2. It should be noted that
this expression for Z converges to r;,(z + zo) at the surface and the bottom only for large
water depth, and when Za plays only a minor role.

5. Also the famous formula of BZackadar (1962) is based on a parabolic shape, extended by
an extra length-scale Za. Using the form of Luyten et aZ. (1996), the algebraic relation
is expressed by

6. The so-called ISPRAMIX method to compute the length-scale is described in detail in
seetion 4.22.

USES:

After the length-scale has been computed, it is optionally limited by the method suggested by
GaZperin et aZ. (1988). This option can be activated in gotmturb. inp by setting length_lim
= .true. The rate of dissipation is computed according to (153).

INPUT PARAMETERS:

128

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: algebraiclength.F90,v $
Revision 1.6 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:03 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

DEFINED PARAMETERS:

integer, parameter
integer, parameter
integer, parameter
integer, parameter
integer, parameter
integer, parameter

REVISION HISTORY:

.. Parabola=1

.. Triangle=2

.. Xing=3

.. RobertOuellet=4

.. Blackadar=5

.. ispra_length=7

129

(179)

.. nlev

tke,eps,kb,epsb
ctt,epsb_min

only:
only:

Original author(s): Lars Umlauf
$Log: epsbalgebraic.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

subroutine epsbalgebraic(nlev)

use turbulence,
use turbulence,

IMPLICIT NONE

number of vertical layers
integer, intent(in)

USES:

4.20 The algebraic epsilonb-equation

DESCRIPTION:

INPUT PARAMETERS:

INTERFACE:

The algebraic equation for €b, the molecular rate of destruction of buoyancy variance, see
(158), simply assumes a constant time scale ratio r = Cb, see (66). Prom this assumption, it
follows immediately that

REVISION HISTORY:

Using (70) and the solution shown in (74) and the variances of the turbulent velocity flucta­
tions can be evaluated according to

where the diffusivities are computed according to (44) (also see section 4.26 and section 4.27),
and the buoyancy praduction, G, follows fram (147).

(180)

.. SSU(O:nlev),SSV(O:nlev)

.. nlev

uu,vv,ww
tke,eps,P,B,num
cc1,ct1,a2,a3,a5

only:
only:
only:

2 1 ((a2) (8U)2 2 (8V)2 4)- + - - + a3 Vt - - -a2Vt - - -a5G
3 Ne 3 8z 3 8z 3

2 1 ((a2) (8V) 2 2 (8U) 2 4)- + - - + a3 Vt -- - -a2Vt - - -a5G
3 Ne 3 8z 3 8z 3

(U
f2

)
=

k

(vf2
)

=
k

use turbulence,
use turbulence,
use turbulence,
IMPLICIT NONE

number of vertical layers
integer, intent(in)

square of shear frequency (1/s~2)

(from u- and v-component)
REALTYPE, intent(in)

subroutine variances(nlev,SSU,SSV)

Original author(s): Lars Umlauf
$Log: variances.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

4.21 The algebraic velocity variances

DESCRIPTION:

130

INTERFACE:

USES:

INPUT PARAMETERS:

REVISION HISTORY:

DESCRIPTION:

INTERFACE:

131

(181)

.. nlev

.. h(O :nlev)

.. depth

.. NN(O:nlev)

l = /'i,Z_ (1 _ R)€
1+~ f

c2"hm

layer thickness (m)
REALTYPE, intent(in)

number of vertical layers
integer, intent(in)

buoyancy frequency (1/s-2)
REALTYPE, intent(in)

local depth (m)
REALTYPE, intent(in)

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: ispralength.F90,v $

IMPLICIT NONE

subroutine ispralength(nlev,NN,h,depth)

use turbulence, only: L,tke,k_min,eps_min,xRF,kappa,cde

USES:

4.22 Algebraic length-scale from ISPRAMIX

This subroutine calculates the lengthscale used in the ISPRAMIX model, see Eifier and
Schrimp! (1992) and Demirov et al. (1998). In both mixing regions (elose to the surface and
the bottom), l is obtained from the formula

INPUT PARAMETERS:

where z is the distance from the interface (surface or bottom). The fraction in (181) predicts
an approximation to a linear behavior of l near boundaries and a value proportional to the
thickness of the mixed layer far from the interface, l = c2hm, where C2 = 0.065 is estimated
from experimental data as discussed in Eifier and Schrimp! (1992). The factor (1 - R f),
with the flux Richardson number Rf = -GIP, accounts for the effect of stratification on the
length-scale. The parameter e is here a tuning parameter (pers. comm. Walter Eifler, JRC,
Ispra, Italy) which is usually set to e = 1.

REVISION HISTORY:

132

Revision 1.7 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:30:15 kbk
removed tabs
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

133

From lu and ld two length-scales are defined: lk, a characteristic mixing length, and l€, a
characteristic dissipation length. They are computed according to

(182)

(183)

(184)

.. nlev

.. zOb,zOs

.. h(O:nlev)

J:aO+1u(zo)(b(zo) - b(z))dz = k(zo) ,

J:ao_1d(zo)(b(z) - b(zo))dz = k(zo)

bottom and surface roughness (m)
REALTYPE, intent(in)

use turbulence, only: L,eps,tke,k_min,eps_min
use turbulence, only: cde,galp,kappa,length_lim

layer thickness (m)
REALTYPE, intent(in)

local depth (m)

€ = C€k3
/

2l-1 C€ = 0.7 .€ ,

number of vertical layers
integer, intent(in)

subroutine potentialml(nlev,zOb,zOs,h,depth,NN)

.,. IMPLICIT NONE

4.23 Algebraic length-scale with two master scales

Computes the length scale by defining two master length scales lu and ld

USES:

DESCRIPTION:

INTERFACE:

INPUT PARAMETERS:

lk is used in kolpranO to compute eddy viscosityjdifussivity. l€ is used to compute the
dissipation rate, € according to

Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: potentialml.F90,v $
Revision 1.6 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:59 gotm

134

REALTYPE, intent(in)

buoyancy frequency (1/s-2)
REALTYPE, intent(in)

REVISION HISTORY:

.. depth

.. NN(O :nlev)

(185)

(187)

(188)

(186)

da 36N3Nf ,

d1 84a5ab3JV2Nb ,

d2 9(a~2 - a~1)N3 + 12(3a~ - a§)NN~ ,

d3 - 12(a2abl - 3a3ab2)a5ab3N + 12(a~ - a§)a5ab3Nb ,

d4 48aga~3N ,

d5 3(3a~ ~ a§)(a~2 - a~l)N
'"

subroutine cmue_a(nlev)

4.24 The non-local, exact weak-equilibrium stability function

135

D

INTERFACE:

Nr

DESCRIPTION:

The solution of (70) and (71) has the shape indicated by (74). This subroutine is used to
update the quantities cjl' c~ and f, defined in (74), from which all turbulent fluxes can be
computed. The non-linear terms N and Nb are updated by evaluating the right hand side of
(65) at the old time step.
The numerators and the denominator appearing in (77) are polynomials of the form

The coefficients of the numerators N n and Nb can be expressed as

na 36a1N 2N~ ,

nl = -12a5ab3(abl + ab2)N2 - 8a5ab3(-6al + a2 + 3a3)NNb ,

n2 9al (a~2 - a~l)N2 ,

n3 36a5ab4(abl + ab2)N2+ 24a5ab4(a2 + 3a3)NNb ,

nbO 12ab3N3Nb ,

The coefficients of D are given by

136

and the numerator of the term r is

90 = 36ab4N3Nb ,

91 = 36a5ab3ab4N2,

92 12ab4(3a~ - a§)NNb

USES:

use turbulence, only: eps
use turbulence, only: P,B,Pb,epsb
use turbulence, only: an,as,at,r
use turbulence, only: cmue1,cmue2,gam
use turbulence, only: cmO
use turbulence, only: cei
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) .. nlev

BUGS:

Test stage. Do not yet use.

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: cmue_a.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

(189)

137

This subroutine is used to update the quantities clt ' c~ and r, defined in (74), from which all
turbulent fiuxes can be computed. This done exactly as described in section 4.24, with the
exception that equilibrium P + G = E and Pb = Eb is assumed in computing the non-linear
terms in (65), leading to the particularly simple expressions

(190)N -- Cl Ar
2' JVb = Cbl

number of vertical layers
integer, intent(in) .. nlev

IMPLICIT NONE

Original author(s): Lars Umlauf
$Log: cmue_b.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

subroutine cmue_b(nlev)

Test stage. Do not yet use.

USES:

use turbulence, only: an,as,at
use turbulence, only: cmue1,cmue2,gam
use turbulence, only: cmO
use turbulence, only: cc1
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

ButS:

DESCRIPTION:

INPUT PARAMETERS:

4.25 The non-local, approximate weak-equilibrium stability function

INTERFACE:

REVISION HISTORY:

INTERFACE:

(191)

(192)

(193)

(194)

4.26 The local, weak-equilibrium stability functions

138

and

This subroutine updates the explicit solution of (70) and (71) with shape indicated by (74).
In addition to thesimplifications discussed in section 4.25, Pb = Eb is assumed in (71) to
eliminate the dependency on T according to (72). As discussed in section 4.4, this implies
that the last of (71) is replaced by (73). Thus, the r-term in (74) drops out, and the solution
is characterized by cJ.L and c~ only.
As a consequence, the numerators and the denominator appearing in (77) are of somewhat
different form compared to the Tesult in section 4.24. They can be written as

-2 -2 -2-2 -4 -4
D da + dlN + d2S + d3N S + d4N + d5S ,

DESCRIPTION:

subroutine cmue_cCnlev)

-2 -2
Nb = nbO + nbl N + nb2S

The coefficients of D are given by

da 36N3N;,

d1 84a5ab3N2Nb + 36ab5N3Nb ,

d2 9(a~2 - a~1)N3 + 12(3a~ - a§)NN; ,

d3 = 12(a2abl - 3a3ab2)a5ab3N + 12(a~ - a§)a5ab3Nb

+ 12(3a~ - a§)ab5NNb ,

d4 48aga~3N + 36a5ab3ab5N2 ,

d5 3(3a~ - a§)(a~2 - a~l)N ,
~

. and the coefficients of the numerators are

na 36a1N2N; ,

nl = -12a5ab3(abl +ab2)N2 -8a5ab3(-6al +a2+3a3)NNb

+ 36alab5N2Nb,

n2 = 9al (a~2 - a~1)N2

IMPLICIT NONE

INPUT PARAMETERS:

139

.. asLimitFact=1.OdO

.. anLimitFact=0.5dO
REALTYPE, parameter
REALTYPE, parameter

Original author(s): Lars Umlauf
$Log: cmue_c.F90,v $

~Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

number of vertical layers
integer, intent(in) .. nlev

USES:

use turbulence, only: an,as,at
use turbulence, only: cmue1,cmue2
use turbulence, only: cmO
use turbulence, only: cc1
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

DEFINED PARAMETERS:

REVISION HISTORY:

These polynomials correspond to a slightly generalized form of the solution suggested by
Canuto et al. (2001) and Cheng et al. (2002). For cases with unstable stratification, the same
clipping conditions on aN is applied as described in section 4.27. For the cases of extreme
shear, the limiter described in the context of (83) is active.

This subroutine updates the explicit solution of (70) and (71) under the same assumptions
as those discussed in section 4.26. Now, however, an additional equilibrium assumption is
invoked. With the help of (78), one can write the equilibrium condition for the TKE as

where (149) has been used. This is an implicit relation to determine aM as a funetion of aN.

With the definitions given in section 4.26, it turns out that aM(aN) is a quadratic polynomial
that is easily solved. The resulting value for aM is substituted into the stability funetions
described in section 4.26. For negative aN (convection) the shear number (YM computed in
this way may become negative. The value of aN is limited such that this does not happen,
see Umlauf and Burchard (2005).

INTERFACE:

(195)

O.5DO
1. OD-l0

.. anLimitFaet

.. small

P+G ~ () ~I () 1--- = c", aM, aN aM - c'" aM, aN aN = ,
€

REALTYPE, parameter
REALTYPE, parameter

USES:

use turbulenee, only: an,as,at
use turbulenee, only: emuel,emue2
use turbulenee, only: emO
use turbulenee, only: eel
use turbulenee, only: etl, ett
use turbulenee, only: al,a2,a3,a4,a5
use turbulenee, only: atl,at2,at3,at4,at5

4.27 The quasi-equilibrium stability functions

DESCRIPTION:

subroutine emue_d(nlev)

IMPLICIT NONE

number of vertieal layers
integer, intent(in) .. nlev

140

INPUT PARAMETERS:

DEFINED PARAMETERS:

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: cmue_d.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

141

This subroutine computes the stability functions according to Munk and Anderson (1948).
These are expressed by the empirical relations

where where Ri is the gradient Richardson-number and Pr~ is the turbulent Prandtl-number
for Ri ~ O. Pr~ and the fixed value c~ have to be set in gotmturb. inp.

DESCRIPTION:

(196)Ri '2 0

Ri < 0,

.. nlev

, cJ.t (1 + lORi)1/2
C ---

J.t - Pr~ (1 + 3.33Ri)3/2 '
dJ.t = cJ.t,

CJ.t = c~,

integer, intent(in)

INPUT PARAMETERS:

REVISION HISTORY:

Original author(s): Hans Burchard &Karsten Bolding
$Log: cmue_ma.F90,v$

~ Revision 1.9 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.8 2005/07/18 08:54:56 lars
changed docu for html compliance
Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.6 2004/08/18 12:53:07 lars
updated documentation
Revision 1.5 2003/03/28 09:38:54 kbk
removed tabs
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyrightto files
Revision 1.3 2003/03/10 09:02:04 gotm

142

use turbulence, only: cmO_fix,PrandtlO_fix
use turbulence, only: cmue1,cmue2,as,an
IMPLICIT NONE

USES:

subroutine cmue_ma(nlev)

INTERFACE:

4.28 The Munk and Anderson (1948) stability function

Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm

Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

143

with constant c~. Based simulation data on stratified homogeneous shear-flows, Schumann
and Gerz (1995) proposed the empirical relation for the turbulent Prandtl-number,

(197)

(198)

o
I CIb

C =­
Ib Prt

.. nlev

o (Ri) Ri
Prt = Prt exp - Pr?Rioo - RiOO '

subroutine cmue_sg(nlev)

use turbulence, only: PrandtlO_fix,cmO_fix
use turbulence, only: cmue1,cmue2,as,an
IMPLICIT NONE

Original author(s): Hans Burchard & Karsten Bolding
$Log: cmue_sg.F90,v $
Revision 1.7 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.6 2005/07/18 08:54:56 lars
changed docu for html compliance
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2004/08/18 12:53:07 lars
updated documentation
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files

4.29 The Schumann and Gerz (1995) stability function

DESCRIPTION:

INTERFACE:

144

USES:

This subroutine computes stability functions according to

integer, intent(in)

INPUT PARAMETERS:

REVISION HISTORY:

where where Ri is the gradient Richardson-number and Pr? is the turbulent Prandtl-number
for Ri -7 o. Pr? and the fixed value c~ have to be set in gotmturb. inp. Schumann and Gerz
(1995) suggested Pr? = 0.74 and Rioo = 0.25.

Revision 1.2 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

145

INTERFACE:

(199)

(200)

(201)

(202)

(203)

.. nlev

CJ.t = const = 0.5,

c~ = cJ.tf(Rf) = cJ.t ~O (1 - Rf)1/2.
r

integer, intent(in)

use turbulence, only: cmO_fix,PrandtlO_fix,xRF
use turbulence, only: cmuel,cmue2,an,as
IMPLICIT NONE

USES:

subroutine cmue_rf(nlev)

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: cmue_rf.F90,v $
Revision 1.8 2005/11/15 11:35:02 lars
documentation finish for print

4.30 Flux Richardson number stability function

DESCRIPTION:

where Ri is the gradient Richardson number.

The neutral Prandtl number used there is P~ = 0.7143. The function f(Rf) is assumed to
lay between the values 0.18 (corresponding to a supercritically stratified situation) and 2.0
(preventing it from growing too much under unstable conditions).
A formulation for (1 - Rf) can be derived from the definition of the flux Richardson number

with

and (200), see Beckers (1995):

In the ISPRAMIX ocean model (see Eifler and Schrimpf (1992)), another approach is used
for considering stability effects on vertical mixing. The stability functions in this model are
of the form:

REVISION HISTORY:

INPUT PARAMETERS:

146

Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.6 2004/08/18 12:53:07 lars
updated documentation
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:37:27 kbk
removed tabs
Revision 1.3 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm

Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

147

148

INTERFACE:

DESCRIPTION:

.. cl,c2,Ri

use turbulence, only: an,as,cmuel,cmue2
use turbulence, only: cmO,cmO_fix,PrandtlO_fix
use turbulence, only: turb_method,stab_method
use turbulence, only: Constant
use turbulence, only: MunkAnderson
use turbulence, only: SchumGerz
use turbulence, only: EiflerSchrimpf
IMPLICIT NONE

Original author(s): Hans Burchard, Lars Umlauf
$Log: compute_cpsi3.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

REALTYPE function compute_cpsi3(cl,c2,Ri)

4.31 Calculate c3 frorn steady-state Richardson nurnber

USES:

Numerically computes C'ljJ3 for two-equation models from given steady-state Richardson­
number Rist and parameters C'ljJl and C'ljJ2 according to (114). A Newton-iteration is used
to solve the resulting implicit non-linear equation.

INPUT PARAMETERS:

REALTYPE, intent(in)

REVISION HISTORY:

REALTYPE function compute_rist(cl,c2,c3)

Original author(s): Hans Burchard, Lars Umlauf

4.32 Calculate steady-state Richardson number from c3

.. cl,c2,c3

use turbulence, only: as,an,cmuel,cmue2
use turbulence, only: cmO
use turbulence, only: turb_method,stab_method
use turbulence, only: cmO_fix,PrandtlO_fix
use turbulence, only: Constant
use turbulence, only: MunkAnderson
use turbulence, only: SchumGerz
use turbulence, only: EiflerSchrimpf
IMPLICIT NONE

149

REALTYPE, intent(in)

USES:

INPUT PARAMETERS:

REVISION HISTORY:

DESCRIPTION:

INTERFACE:

Numerically computes the steady-state Richardson-number Rist for two-equations models
from the given C1/J3 and the parameters C1/Jl and C1f;2 according to (114). A (very tricky)
double Newton-iteration is used to solve the resulting implicit non-linear equation.

INTERFACE:

(206)

(204)

(205)

(208)

(207)

~<o .

Ri > 0.7,

o< ~ < 0.7,

.. nlev

.. NN(O:nlev),SS(O:nlev)

iw_model,alpha,klimiw,rich_cr
numiw,nuhiw,numshear
tke,num,nuh

only:
only:
only:

V
81 - v'81 - 0t - t - ,

V 81 = v'81 = 5.10-3(1 _(Ri) 2) 3
t t 0.7'

USES:

lW 81
Vt = Vt + Vt ,

Imposes eddy viseosity and diffusivity eharaeteristie of internal wave aetivity and shear in­
stability when there is extinction of turbulenee as suggested by Kantha and Clayson (1994).
In this ease, the new values of Vt and v: = vf, defined in (43), are used instead of those
eomputed with the model.
When k is small (extinetion of turbulenee, diagnosed by k <klimiw), Vt and v: are set to
empirieal values typical in the presenee of internal wave aetivity (lW) and shear instability
(SI). This model is deseribed by

DESCRIPTION:

where

integer, intent(in)
REALTYPE, intent(in)

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal

subroutine internal_wave(nlev,NN,SS)

150

4.33 Update internal wave mixing

use turbulence,
use turbulence,
use turbulence,
IMPLICIT NONE

INPUT PARAMETERS:

V[W = 10-4 , v?W = 5 . 10-5

The 'SI' parts are functions of the Riehardsonnumber aeeording to

v[1 = v:81 ~ 5 . 10-3 ,

The unit of all diffusivities is m2s-1 •

REVISION HISTORY:

D _ 3
L'k - rJU* .

This functions returns the fiux of k caused by breaking surface waves according to

151

(209)

eta=100.

REALTYPE function fk_craig(u_tau)

REALTYPE, parameter

Original author(s): Lars Umlauf
$Log: fk_craig.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2004/08/18 12:50:57 lars
updated documentation

~ Revision 1.2 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.1 2003/03/10 09:00:36 gotm
Part of new generic turbulence model

REALTYPE, intent(in)

IMPLICIT NONE

USES:

INPUT PARAMETERS:

4.34 TKE flux from wave-breaking

DESCRIPTION:

DEFINED PARAMETERS:

REVISION HISTORY:

INTERFACE:

This form has also been used by Craig and Banner (1994), who suggested rJ ~ 100.

152

(210)

(212)

(211)

(213)

(215)

d
O"="h'

(w'q/) = _vfß~~) + f 4> '

G(O") = 0" [1 + 0"((0" - 2) + (3 - 20") G(l) + (0" - 1) G'(l))]

This implentation of the KPP turbulence parameterisation is based on the publications of
Large et al. (1994) and Durksi et al. (2004). The general expression for the turbulent fluxes
used in the KPP model is identical to that suggested in (43). It assurnes that the turbulent
flux is the sum of a down-gradient flux and a non-local contribution,

where the super- or subscript <p is a placeholder for the symbols m, h, and s, indicating
whether a quantity relates to momentum, heat, or salinity (or any other tracer), respectively.
Note that turbulence parameters due to salinity stratification are updated only if the pre­
processor macro KPP_SALINITY has been defined in cppdefs . h.
In the notation of the KPP model, the non-local flux is expressed as

module kpp

INTERFACE:

4.35 Module kpp: the KPP-turbulence model

DESCRIPTION:

where h denotes the thickness of the boundary layer, computed according to the algorithm
discussed below. The non-dimensional boundary layer coordinate 0" is defined according to

where independent models are valid for vt and 14>' The KPP model assurnes that the turbu­

lent diffusivity, vt, inside the surface or bottom boundary layer is determined by a relation
of the form

Apart from the boundary layer diffusivities, the KPP model also computes "interior" diffu­
sivities, here denoted by v:. The function G and its derivative can be evaluted from the

where dis the distance from the free surface (or the bottom boundary). The velocity scale,
w4>' in (212) is computed as described in section 4.35.6. The dimensionless shape function G
is a cubic polynomial,

G(O") = ao + aw + a20"2 + a30"3 . (214)

Physical arguments discussed in Large et al. (1994) require ao = 0, al = 1. The remaining
two parameters a2 and a3 may be re-expressed in termsof the value of G and its derivative,
G', at the edge of theboundary layer, 0" = 1. Then, (214) can be re-expressed as

153

(216)

(218)

(217)

(219)

(220)

(221)

8wI BI-8 = -5hw</> (1) 4 ,
a a=l U*

G'(l) = BI v~1 __1_8v~ I
u~ tz Z=Zbl w(l) 8z Z=Zbl'

G'(l) __ G(l) 8w I __1_ 8v~ I
- w(l) 8a a=l w(l) 8z Z=Zbl'

where we used the relation

_ 1 </>

G(l) - hw</>(l) Vti(Zbl) ,

where Zbl denotes the vertical eoordinate of the surfaee (or bottom) boundary layer.
A eondition for the eontinuity of the derivatives of vt and v~ ean be obtained by earrying
out the derivative with respeet to Z of (212), and setting it equal to the z-derivative of v~.
For the surfaee layer this results in

requirement that, at the edge of the boundary layer, the boundary layer diffusivity and its
derivative eorrespond exaetly to the interior diffusivity and its derivative, respeetively.
Continuity of the boundary and interior diffusivites is obviously insured, see (212), if we
require that

valid for both, bottom and surfaee boundary layers. Note that in the original publieation of
Large et al. (1994), erroneously, there appears an additional factor K, in this relation.
With the help of (219), one ean re-write (217) as

if the motion of the free surfaee is ignored.
The derivative of w</> appearing in (217) ean be evaluted with the help of the formulae given
in seetion 4.35.6. As diseussed in seetion 4.35.6, at a = 1, the derivative of w</> is different
from zero only for stably stratifiedfl.ows. Then, the non-dimensional function <P </> appearing
in (225) is given by (227), and it is easy to show that

valid only for the surfaee boundary layer. For the bottom boundary layer, the minus sign in
(218) disappears, with the eonsequenee that the minus sign in (220) has to be replaeed by
a plus. Note that if the pre-proeessor maero KPP_CLIP_GS is defined in cppdef . h, the slope
of G is set to zero for negative slopes. For stably stratified f1.ows with a stabilizing buoyaney
f1.ux, this limiter breaks the eontinuity of the first derivatives.
The non-Ioeal transport term defined in (211) is eomputed as deseribed in Large et al. (1994),
if the pre-proeessor maero NONLOCAL is defined. Otherwise, non-Ioeal transport is ignored.
The position of the surfaee boundary layer depth, Zbl, eorresponds to the position where the
bulk Riehardson number,

IMPLICIT NONE

154

(223)

(222)R
' () Ritop(Zbl) R'
'tb Zbl = R' () = 'te ,

'tbot Zbl

only: num,nuh,nus
only: gamu,gamv,gamh,gams
only: Rig
only: kappa

use turbulence,
use turbulence,
use turbulence,
use turbulence,

use eqstate

private

ifdef EXTRA_OUTPUT
use turbulence, only: turb1,turb2,turb3,turb4,turb5

endif

two methods have been implemented in GOTM. The first method simply evaluates (222)
with a linear interpolation scheme. The second method is activated if the pre-processor
macro KPP_IP-FC is defined. Then, the condition (222) is reformulated as

defined by Large et al, (1994), reaches the critical value Rie, The subscript "r" in (221)
denotes a certain reference value of the buoyancy and velocity dose to the surface. The
choice of this reference value is not unique, and several possibilities have been implemented
in numerical models. Presently, GOTM uses the uppermost grid point as the reference value.
The bulk Richardson-number is then computed at the grid faces by linear interpolation of
quantities defined at the centers (if KPP_TWOPOINLREF is defined) or by simply identifying
the neighbouring center-value with the value at the face. The "turbulent velocity shear", Vt,
is computed as described by Large et al. (1994). The value of Zbl is then found from (221) by
linear interpolation.
To check the boundary layer limit according to the condition

USES:

The position where the function Fe changes sign is computed from linear interpolation. This
method has been suggested in the ROMS code as the numerically more stable alternative.
Clearly, all approaches are grid-depending, a difficulty that cannot be overcome with the
KPP model.
Finally, provided clip_mld=. true. in kpp. inp, the boundary layer is cut if it exceeds the
Ekman or the Monin-Obukhov length scale, see Large et al. (1994).

PUBLIC MEMBER FUNCTIONS:

PUBLIC DATA MEMBERS:

z-position of surface boundary layer depth
REALTYPE , public .. zsbl

z-position of bottom boundary layer depth
REALTYPE , public .. zbbl

DEFINED PARAMETERS:

non-dimensional extent of the surface layer (epsilon=O.1)
REALTYPE, parameter :: epsilon = 0.1

critical gradient Richardson number below which turbulent
mixing occurs (RiO=0.7)
REALTYPE, parameter :: RiO = 0.7

value of double-diffusive density ratio where mixing goes
to zero in salt fingering (RrhoO=1.9)
REALTYPE, parameter :: RrhoO = 1.9

buoancy frequency (1/s2) limit for convection (bvfcon=-2.0E-5)
REALTYPE, parameter :: bvfcon = -2.0E-5

scaling factor for double diffusion of temperature in salt
fingering case (fdd=0.7)
REALTYPE, parameter :: fdd = 0.7

maximum interior convective viscosity and diffusivity
due to shear instability (nuOc=O.01)
REALTYPE, parameter :: nuOc = 0.01

maximum interior viscosity (m2/s) due to shear
instability (nuOm=10.0E-4)
REALTYPE, parameter :: nuOm = 10.0E-4

maximum interior diffusivity (m2/s) due to shear
instability (nuOs=10.0E-4)
REALTYPE, parameter :: nuOs = 10.0E-4

155

156

scaling factor for double diffusion in salt fingering (nu=1.5E-6)
REALTYPE, parameter :: nu = 1.5E-6

scaling factor for double diffusion in salt fingering (nuf=10.0E-4)
REALTYPE, parameter :: nuf 10.0E-4

interior viscosity (m2/s) due to wave breaking (nuwm=1.0E-5)
REALTYPE, parameter :: nuwm = 1.0E-5

interior diffusivity (m2/s) due to wave breaking (nuwm=1.0E-6)
REALTYPE, parameter :: nuws = 1.0E-6

double diffusion constant for salinity in diffusive
convection case (sdd1=0.15)
REALTYPE, parameter :: sdd1 = 0.15

double diffusion constant for salinity in diffusive convection
(sdd2=1.85)
REALTYPE, parameter :: sdd2 = 1.85

double diffusion constant for salinity in diffusive convection
(sdd3=0.85)
REALTYPE, parameter:: sdd3 = 0.85

double diffusion constant for temperature in diffusive convection
(tdd1=0.909)
REALTYPE, parameter :: tdd1 =0.909

double diffusion constant for temperature in diffusive convection
(tdd2=4.6)
REALTYPE, paramete~ :: tdd2 = 4.6

double diffusion constant for temperature in diffusive convection case
(tdd3=0.54).
REALTYPE, parameter:: tdd3 = 0.54

proportionality coefficient parameterizing nonlocal transport
(Cstar=10.0)
REALTYPE, parameter :: Cstar = 10.0

ratio of interior Brunt-Vaisala frequency to that
at entrainment depth (Cv=1.5-1.6)
REALTYPE, parameter :: Cv = 1.6

ratio of entrainment flux to surface buoyancy flux (betaT=-0.2)
REALTYPE, parameter :: betaT = -0.2

constant for computation of Ekman scale (cekman=0.7)
REALTYPE, parameter :: cekman = 0.7

constant for computation of Monin-Obukhov scale (cmonob = 1.0)
REALTYPE, parameter :: cmonob = 1.0

coefficient of flux profile for momentum in their
1/3 power law regimes (am=1.26)
REALTYPE, parameter :: am = 1.257

coefficient of flux profile for momentum in their
1/3 power law regimes (as=-28.86)
REALTYPE, parameter :: as = -28.86

coefficient of flux profile for momentum in their
1/3 power law regimes (cm=8.38)
REALTYPE, parameter :: cm 8.38

coefficient of flux profile for momentum in their
1/3 power law regimes (cs=98.96)
REALTYPE, parameter :: es 98.96

maximum stability parameter "zeta" value of the 1/3
power law regime of flux profile for momentum (zetam=-0.2)
REALTYPE, parameter:: zetam = -0.2

maximum stability parameter "zeta" value of the 1/3
power law regime of flux profile for tracers (zetas=-1.0)

.;;- REALTYPE, parameter:: zetas = -1.0

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: kpp.F90,v $
Revision 1.3 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.2 2005/07/21 10:20:00 lars
polished documentation
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

157

Cg

Vtc

g

gorhoO

Ric

kpp_interior

ksblOld
zsblOld

coefficient from computation of
turbulent shear velocity
REALTYPE

proportionality coefficient for
parameterizing non-Iocal transport
REALTYPE

acceleration of gravity
REALTYPE

g/rho_O
REALTYPE

reference density
REALTYPE

critical bulk Richardson number
REALTYPE

compute surface and bottom BBL
logical

compute internal mixing
logical

use clipping of MLD at Ekman and Monin-Oboukhov scale
logical .. clip_mld

positions of grid faces and centers
REALTYPE, dimension(:), allocatable

distance between centers
REALTYPE, dimension(:), allocatable

integer
REALTYPE

LOCAL VARIABLES:

158

DESCRIPTION:

INTERFACE:

.. namlst

.. fn

.. hO

.. h(O:nlev)

.. nlev

intent(in)

namelist reference
integer, intent(in)

number of grid cells
integer, intent(in)

filename containing namelist
character(len=*), intent(in)

bathymetry (m)
REALTYPE,

acceleration of gravity (m/s A 2)
REALTYPE, intent(in)

size of grid cells (m)
REALTYPE, intent(in)

reference density (kg/mA 3)
REALTYPE, intent(in)

IMPLICIT NONE

subroutine init_kpp(namlst,fn,nlev,hO,h,kpp_g,kpp_rho_O)

USES:

159

INPUT PARAMETERS:

4.35.1 Initialise the KPP module

REVISION HISTORY:

This routine first reads the namelist kpp, which has to be contained in a file with filename
specified by the string fn (typically called kpp. inp). Since the kpp module uses fields defined
in the turbulence module, it has to allocate dynamic memory far them. Apart from this,
this routine reports the model settings and initialises a number of parameters needed later in
the time loop.
If you call the GOTM KPP routines from a three-dimensional model, make sure that this
function is called after the call to init_turbulence O. Also make sure that you pass the
correct arguments.

160

Original author(s): Lars Umlauf

4.35.2 Loop over the KPP-algorithrn

INTERFACE:

subroutine do_kpp(nlev,hO,h,rho,u,v,NN,NNT,NNS,SS,u_taus,u_taub, &
tFlux,btFlux,sFlux,bsFlux,tRad,bRad,f)

DESCRIPTION:

Here, the time step for the KPP model is managed. If kpp_interior=. true. in kpp. inp,
the mixing algorithm for the eomputation of the interior diffusivities is ealled first. This
algorithm is deseribed in seetion 4.35.3. Then, if kpp_sbl=. true. and kpp_bbl=. true.,
the algorithms for the surfaee and bottom boundary layer are called. They are described in
seetion 4.35.4 and seetion 4.35.5, respectively.
If this routine is called from a three-dimensional code, it is essential to pass the eorreet
arguments. The first 3 parameters relate to the numerieal grid, diseussed in section 3.1.2.
Note that hO denotes the loeal bathymetry, Le. the positive distanee between the referenee
levelz = Oand the bottom.
The next three parameters denote the potential density, p, and the two mean velocity com­
ponents, U and V. The buoyancy frequeney, N 2 , and the different eontributions to it, N&
and N};, have to be eomputed from the potential density as diseussed in seetion 3.14. The
shear frequeney, M 2 , is defined in (36). The vertical diseretisation does not necessarly have
to follow (37), sinee in the KPP model no TKE equation is solved and thus energy conserva­
tion is not an issue. All three-dimensional fields have to be interpolated "in a smart way" to
the water eolumn defined by GOTM. The eorresponding interpolation schemes may be quite
different for the different staggered grids, finite volume, and finite element approaches used
in the horizontal. Therefore, we eannot offer a general recipe here.

.:" The bottom frietion velocity is eomputed as described in section 3.9. If this parameter is
passed from a three-dimensional code, it has to be insured that the parameter r in (24) is
eomputed eonsistently, see (25).
All fluxes without exeeption are counted positive, if they enter the water body. Note that for
eonsisteney, the equations of state in GOTM eannot be used if the KPP routines are called
from a 3-D model. Therefore, it is neeessary to pass the temperature and salinity fluxes, as
well as the eorresponding buoyancy fluxes. The same applies to the radiative fluxes. The
user is responsible for performing the flux eonversions in the eorreet way. To get an idea have
a look at seetion 8.9.
The last argument is the Coriolis parameter, f. It is only used for c1ippling the mixing depth
at the Ekman depth.

USES:

161

IMPLICIT NONE

INPUT PARAMETERS:

number of grid cells
integer .. nlev

bathymetry (m)
REALTYPE .. hO

thickness of grid cells (m)
REALTYPE .. h(O :nlev)

potential density at grid centers (kg/m-3)
REALTYPE .. rho(O:nlev)

velocity components at grid centers (m/s)
REALTYPE .. u(O:nlev),v(O:nlev)

square of buoyancy frequency (1/s-2)
REALTYPE .. NN(O:nlev)

square of buoyancy frequency caused by
temperature and salinity stratification
REALTYPE .. NNT(O:nlev),NNS(O:nlev)

square of shear frequency (1/s-2)
REALTYPE .. SS(O:nlev)

surface and bottom friction velocities (m/s)
REALTYPE .. u_taus,u_taub

"" surface temperature flux (K m/s) and
salinity flux (psu m/s) (negative for loss)
REALTYPE .. tFlux,sFlux

surface buoyancy fluxes (m-2/s-3) due to
heat and salinity fluxes
REALTYPE btFlux,bsFlux

radiative flux [I(z)/(rho Cp)] (K m/s)
and associated buoyancy flux (m-2/s-3)
REALTYPE .. tRad(O:nlev),bRad(O:nlev)

Coriolis parameter (rad/s)

IMPLICIT NONE

USES:

• The shear instability algorithm is active if the macro KPP_SHEAR is defined.

.. f

.. nlev

.. NN(O :nlev)

.. NNT(O:nlev),NNS(O:nlev)

number of grid cells
integer

square of buoyancy frequency (1/s~2)

REALTYPE

square of buoyancy frequencies caused by
temperature and salinity stratification
REALTYPE

Original author(s): Lars Umlauf

• The double-diffusion algorithm is active if the macro KPP_DDMIX is defined. Note that
in this case, the macro SALINITY has to be defined as weIl.

• The internal wave algorithm is active if the macro KPP_INTERNAL_WAVE is defined.

• The convective instability algorithm is active if the macro KPP_CONVEC is defined.

REALTYPE

subroutine interior(nlev,NN,NNT,NNS,SS)

162

REVISION HISTORY:

INTERFACE:

4.35.3 Compute interior fluxes

DESCRIPTION:

Here, the interior diffusivities (defined as the diffusivities outside the surface and bottom
boundary layers) are computed. The algorithms are identical to those suggested by Large
et al. (1994). For numerical efficiency, the algorithms for different physical processes are
active only if certain pre-processor macros are defined incppdefs. h.

INPUT PARAMETERS:

In this routine all computations related to turbulence in the surface layer are performed. The
algorithms are described in section 4.35. Note that these algorithms are affected by some
pre-processor macros defined in cppdefs . inp, and by the parameters set in kpp. inp, see
section 4.35.

IMPLICIT NONE

USES:

163

.. h(O:nlev)

.. nlev

.. u(O:nlev),v(O:nlev)

.. rho(O:nlev)

.. hO

.. SS(O:nlev)

Original author(s): Lars Umlauf

velocity components at grid centers (m/s)
REALTYPE

subroutine surface_layer(nlev,hO,h,rho,u,v,NN,u_taus,u_taub, &
tFlux,btFlux,sFlux,bsFlux,tRad,bRad,f)

potential density at grid centers (kg/m~3)

REALTYPE

bathymetry (m)
REALTYPE

square of shear frequency (1/s~2)

REALTYPE

thickness of grid cells (m)
REALTYPE

number of grid cells
"'-integer

INPUT PARAMETERS:

4.35.4 Compute turbulence in the surface layer

DESCRIPTION:

REVISION HISTORY:

INTERFACE:

164

square of buoyancy frequency (1/s~2)

REALTYPE .. NN(O :nlev)

surface and bottom friction velocities (m/s)
REALTYPE .. u_taus,u_taub

surface temperature flux (K m/s) and
salinity flux (sal m/s) (negative for loss)
REALTYPE .. tFlux,sFlux

surface buoyancy fluxes (m~2/s~3) due to
heat and salinity fluxes
REALTYPE .. btFlux,bsFlux

radiative flux [I(z)/(rho Cp)] (K m/s)
and associated buoyancy flux (m~2/s~3)

REALTYPE .. tRad(O:nlev),bRad(O:nlev)

Coriolis parameter (radis)
REALTYPE .. f

REVISION HISTORY:

Original author(s): Lars Umlauf

4.35.5 Compute turbulence in the bottom layer

INTERFACE:

subroutine bottom_layer(nlev,hO,h,rho,u,v,NN,u_taus,u_taub, &
tFlux,btFlux,sFlux,bsFlux,tRad,bRad,f)

DESCRIPTION:

In this routine all computations related to turbulence in the bottom layer are performed. The
algorithms are described in section 4.35. Note that these algorithms are affected by some
pre~processor macros defined in cppdefs. inp, and by the parameters set in kpp. inp, see
section 4.35.
The computation of the bulk Richardson number is slightly different from the surface bound­
ary layer, since for the bottom boundary layer this quantity is defined as,

R· (B(Zbz) - Br)d (224)
'lb = !U(Zbl) - U r l2 + V?(Zbz) ,

165

where Zbl denotes the position of the edge of the bottom boundary layer.
Also different from the surfaee layer eomputations is the absence of non-Ioeal fluxes.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

number of grid cells
integer .. nlev

bathymetry (m)
REALTYPE .. hO

thickness of grid cells (m)
REALTYPE .. h(O:nlev)

potential density at grid centers (kg/m A 3)
REALTYPE .. rho(O:nlev)

velocity components at grid centers (m/s)
REALTYPE .. u(O:nlev),v(O:nlev)

square of buoyancy frequency (1/s A 2)
REALTYPE .. NN(O:nlev)

surface and bottom friction velocities (m/s)
REALTYPE .. u_taus,u_taub

bottom temperature flux (K m/s) and
salinity flux (sal m/s) (negative for loss)

;;-REALTYPE tFlux, sFlux

bottom buoyancy fluxes (m A 2/s A 3) due to
heat and salinity fluxes
REALTYPE .. btFlux,bsFlux

radiative flux [I(z)/(rho Cp)] (K m/s)
and associated buoyancy flux (m A 2/s A 3)
REALTYPE .. tRad(O:nlev),bRad(O:nlev)

Coriolis parameter (rad/s)
REALTYPE .. f

INTERFACE:

(225)

(227)

.. d

" Bfsfe

<l>r/J = 1 + (,

buoyaney flux (m-2/s-3)
REALTYPE, intent(in)

frietion veloeity (m/s)
REALTYPE, intent(in)

(limited) distanee (m)
REALTYPE, intent(in)

This routine computes the turbulent velocity scale for momentum and tracer as a function of
the turbulent friction velocity, U*, the "limited" distance, dlim, and the total buoyancy flux,
Bf' according to

subroutine wseale(Bfsfe,u_taus,d,wm,ws)

DESCRIPTION:

4.35.6 Compute the veloeity scale

166

REVISION HISTORY:

Original author(s): Lars Umlauf

/'i,U*

wr/J = <l>r/J(()

In this equation, <l> r/J is a non-dimensional function of the stability parameter (= dlim/L,
using the Monin-Obukhov length,

3
L=~ (226)

/'i,Bf

In stable situations, Bf 2:: 0, the length scale dlim is just the distance from the surface or
bottom, d. Then, the non-dimensional function is of the form

and identical for momentum, heat, and tracers.
In unstable situations, Bf < 0, the scale dlim corresponds to the distance from surface or
bottom only until it reaches the end of the surface (or bottom) layer at d = Eh. Then it stays
constant at this maximum value.
The different functional forms of <l>r/J(() for unstable flows are discussed in Large et al. (1994) .

IMPLICIT NONE

INPUT PARAMETERS:

. USES:

OUTPUT PARAMETERS:

velocity scale (m/s)
for momentum and tracer
REALTYPE , intent(out)

REVISION HISTORY:

Original author(s): Lars Umlauf

•• WIll, ws

167

168

INTERFACE:

.. unit

IMPLICIT NONE

subroutine gotm_lib_version(unit)

Original author(s): Karsten Bolding &Hans Burchard
$Log: gotm_lib_version.F90,v $
Revision 1.5 2005/11/15 11:35:02 lars
documentation finish for print
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model +
improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

USES:

4.36 Printing GOTM library version

DESCRIPTION:

integer, intent(in)

INPUT PARAMETERS:

Simply prints the version number of the GOTM turbulence library to unit.

REVISION HISTORY:

169

5 Air-Sea interaction

5.1 Introduction

This module pravides the surface forcing for GOTM. For all dynamic equations, surface
boundary conditions need to be specified. For the momentum equations described in section
3.5 and section 3.6, these are the surface momentum fluxes T~ and T~ in N m-2 • For the
temperature equation described in section 3.10, it is the total surface heat flux,

(228)

in W m-2 that has to be determinedl . The total surface heat flux Qtot is calculated as the
sum of the latent heat flux QE, the sensible heat flux QH, and the long wave back radiation
QB. In contrast to the total surface heat flux Qtot, the net short wave radiation at the surface,
10, is not used as a boundary condition but as a source of heat, as calculated by means of
equation (29), see Paulson and Simpson (1977). For the salinity equation described in section
3.11, the fresh water fluxes at the surface are given by the difference of the evaporation and
the precipitation, Pe, given in ms-I , see also the surface boundary condition for salinity,
(32). The way how boundary conditions for the transport equations of turbulent quantities
are derived, is discussed in section 4.
There are basically two ways of calculating the surface heat and momentum fluxes imple­
mented into GOTM. They are either prescribed (as constant values or to be read in fram
files) or calculated on the basis of standard meteoralogical data which have to be read in fram
files. The necessary parameters are the wind velocity vector at 10 m height in ms-I, the
sea surface temperature (SST in Celsius), air temperature in Celsius), air humidity (either
as relative humidity in %, as wet bulb temperature or as dew point temperature in Celsius)
and air pressure (in hectopascal), each at 2 m height above the sea surface, and the wind
velocity vector at 10 m height in ms-I. Instead ofthe observed SST, also the SST fram the
model may be used. For the calculation of these fluxes, the bulk formulae of Kondo (1975)
or Fairall et al. (1996) are used.

INote, that Qtot has to be divided by the mean density and the specific heat capacity to be used as a
boundary condition in (27), since this equation is formulated in terms of the temperature, and the the internal
energy

INTERFACE:

170

.. init_air_sea

.. air_sea_interaction

.. set_sst

.. integrated_fluxes

.. calc_fluxes=.false.

.. tx,ty

.. LO,heat

public
public
public
public

logical, public

surface stress components (Pa)
REALTYPE, public

surface short-wave radiation
and surface heat flux (W/m-2)
REALTYPE, public

precipitation minus evaporation
(m/s)
REALTYPE, public

use time, only: julian_day, time_diff, calendar_date
use observations, only: read_obs
IMPLICIT NONE

module airsea

default: all is private.
private

5.2 Module airsea - atmospheric fluxes

DESCRIPTION:

USES:

This module calculates the heat, momentum and freshwater fluxes between the ocean and
the atmosphere as weIl as the incoming solar radiation. Fluxes and solar radiation may be
prescribed. Alternatively, they may be calculated by means of bulk formulae from observed or
modelled meteorological parameters and the solar radiation may be calculated from longitude,
latitude, time and cloudiness. For the prescibed fluxes and solar radiation, values may be
constant or read in from files. All necessary setting have to be made in the namelist file
airsea. inp.

PUBLIC MEMBER FUNCTIONS:

PUBLIC DATA MEMBERS:

171

.. CONSTVAL=1

.. FROMFILE=2

.. cpa=1008.

.. cp=3985.

.. emiss=0.97

.. bolz=5. 67e-8

.. Kelvin=273. 16

.. const06=0.62198

.. pi=3.14159265358979323846

.. deg2rad=pi/180.

.. rad2deg=180./pi

.. meteo_unit=20

.. heat_unit=21

.. momentum_unit=22

.. p_e_unit=23

.. sst_unit=24

.. sss_unit=25

parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

integer,
integer,

integer,
integer,
integer,
integer,
integer,
integer,

Original author(s): Karsten Bolding, Hans Burchard
$Log: airsea.F90,v $
Revision 1.12 2005/11/15 11:42:33 lars
documentation finish for print
Revision 1.11 2005/07/06 13:58:07 kbk
added fresh water, updated documentation
Revision 1.10 2004/07/30 09:19:03 hb
wet_mode now red from namelist

REALTYPE,
REALTYPE ,
REALTYPE ,
REALTYPE ,
REALTYPE,
REALTYPE ,
REALTYPE,
REALTYPE,
REALTYPE,

sum of short wave radiation
and surface heat flux (J/m~2)

REALTYPE, public

integrated short-wave radiation,
surface heat flux (J/m~2)

REALTYPE , public

sea surface temperature (degC) and
sea surface salinity (psu)
REALTYPE, public .. sst,sss

REVISION HISTORY:

DEFINED PARAMETERS:

172

Revision 1.9 2004/06/25 07:50:29 hb
Preliminary wet mode choices improved
Revision 1.8 2004/05/28 13:14:14 hb
airsea.F90 extended for dew point temperature
Revision 1.7 2003/06/13 09:27:16 hb
Implemented freshwater fluxes
Revision 1.6 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1. 5 2003/03/28 08: 13: 47 kbk
removed tabs
Revision 1.4 2003/03/10 08:37:56 gotm
HB fixed the Kondo calculations
Revision 1.3 2001/11/18 11:43:48 gotm
Cleaned
Revision 1.2 2001/06/13 07:40:39 gotm
Lon, lat was hardcoded in meteo.F90 - now passed via init_meteo()
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

5.2.1 Initialise the air-sea interaction module

INTERFACE:

subroutine init_air_sea(namlst,lat,lon)

DESCRIPTION:

This routine initialises the air-sea module by reading various variables from the namelist
airsea. inp and opens relevant files. These parameters are:

heatflux_file
momentum_method

const_tx
const_ty
momentumflux_file
p_e_method

const_p_e
p_e_flux_file
sst_method

sst_file
sss_method

173

. true.: Surface fluxes are ca1culated by means of bulk formulae.
Solar radiation is ca1culated from time, latitude,
longitude and clouds. In this case, meteo_file must be given
and wet_mode must be specified.
. f alse.: Surface fluxes and solar radiation are prescribed.
file with meteo data (for calc_fluxes=. true.) with
date: yyyy-mm-dd hh:mm: ss
x-component of wind (10m) in ms-1

y-component of wind (10m) in ms-1

air pressure (2 m) in hectopascal
dry air temperature (2 m) in Celsius
rel. hum. in % or wet bulb tempo in C or dew point tempo in C
cloud cover in 1/10
Example:
1998-01-01 00:00:00 6.87 10.95 1013.0 6.80 73.2 0.91
1: relative humidity given as 7. column in meteo_file
2: wet bulb temperature given as 7. column in meteo_file
3: dew point temperature given as 7. column in meteo_file
0: heat flux not prescribed
1: constant value for short wave radiation (const_swr)
and surface heat flux (const_qh)
2: swr, heat are read from heatflux_file
constant value for short wave radiation in W m-2

(always positive)
constant value for surface heat flux in W m-2

(negative for heat loss)
file with date and swr and heat in Wm-2

0: momentum flux not prescribed
1: constant momentum fluxes const_tx, const_tx given
2: surface momentum fluxes given from file momentumflux_file
x-component of constant surface momentum flux in Nm-2

y-component of constant surface momentum flux in Nm-2

File with date, tx and ty given
0: surface freshwater fluxes not applied
1: constant value for P-E used (P-E = precipitation-evaporation)
2: values for P-E read from file p_e_flux_file
value for P-E in ms-1

file with date and P-E in ms-1

0: no independent SST observation is read from file
2: independent SST observation is read from file, only for output
file with date and SST (sea surface temperature) in Celsius
0: no independent SSS observation is read from file
2: independent SSS observation is read from file, only for output
file with date and SSS (sea surface salinity)in psu

subroutine air_sea_interaction(jul,secs)

Depending on the value of the boolean variable calc_fluxes, the subroutines for the calcu­
lation of the fluxes and the short wave radiation are called or the fluxes aredirectly read in
from the namelist airsea. inp as constants or read in from files. Furthermore, the surface
freshwater flux is set to a constant value or is read in from a file.

., namlst

., lat,lon

.. jul,secs

Original author(s): Karsten Bolding
See log for airsea module

integer, intent(in)
REALTYPE, intent(in)

integer, intent(in)

Original author(s): Karsten Bolding
See log for airsea module

IMPLICIT NONE

IMPLICIT NONE

USES:

INPUT PARAMETERS:

USES:

REVISION HISTORY:

174

5.2.2 Obtain the air-sea fluxes

INTERFACE:

DESCRIPTION:

INPUT PARAMETERS:

REVISION HISTORY:

IMPLICIT NONE

IMPLICIT NONE

.. a1=6.107799961
a2=4.436518521e-1

.. a3=1.428945805e-2

REALTYPE, parameter
REALTYPE, parameter
REALTYPE , parameter

Original author(s): Karsten Bolding
See log for airsea module

USES:

5.2.3 Finish the air-sea interactions

subroutine exchange_coefficients()

INTERFACE:

All files related to air-sea interaction which have been opened are now closed by this routine.

175

DESCRIPTION:

REVISION HISTORY:

DESCRIPTION:

5.2.4 Cornpute the exchange coefficients

USES:

INTERFACE:

DEFINED PARAMETERS:

Based on the model sea surface temperature, the wind vector at 10 m height, the air pressure
at 2 m, the dry air temperature and the air pressure at 2 m, and the relative humidity (either
directly given or reca1culated from the wet bulb or the dew point temperature), this routine
computes the coefficients for the surface momentum flux (cdd) and the latent (ced) and
tne sensible (chd) heat flux according to the Kondo (1975) bulk formulae. The setting for
wet_mode but be in agreement with the type of air humidity measure given in the meteo_file
as 7. column, Le. 1 for relative humidity, 2 for wet bulb temperature and 3 for dew point
temperature.

IMPLICIT NONE

DESCRIPTION:

subroutine do_calc_fluxes(heatf,taux,tauy)

.. a4=2.650648471e-4

.. a5=3.031240396e-6

.. a6=2.034080948e-8

.. a7=6.13682092ge-ll

.. eps=1.0e-12

.. heatf ,taux, tauy

REALTYPE, parameter
REALTYPE, parameter
REALTYPE , parameter
REALTYPE, parameter
REALTYPE, parameter

Original author(s): Karsten Bolding
See log for the airsea module

REALTYPE, optional, intent(out)

176

REVISION HISTORY:

INTERFACE:

5.2.5 Ca1culate the heat fluxes

Thelatent and the sensible heat flux, the long~wave back radiation (and thus the total net
surface heat flux)and the surface momentum flux are calculated here, based on the exchange
coefficients Cdd, Ced and Chd, calculated in the subroutine exchange_coefficients:

USES:

OUTPUT PARAMETER&

Qh = chdCpaPaW(Tw - Ta)

with the air density Pa, the wind speed at 10 m, W, the x- and the y-component of the wind
velocity vector, Wx and Wy , respectively, the specific evaporation heat of sea water, L, the
specific saturation humidity, qs, the actual specific humidity qa, the specific heat capacity of
air at constant pressure, Cpa, the sea surface temperature, Tw and the dry air temperature,
Ta. For the long-wave back radiation, the formulae of Clark et al. (1974) and Hastenrath and
Lamb (1978) may be used as alternatives, the setting for has to be made directly in the code,
see the variable back_radiation_method.

INTERFACE:

DESCRIPTION:

REVISION HISTORY:

(230)

.. clark=1

.. hastenrath=2

.. jul,secs

.. Ion, lat

Qs = Qtot(1 - 0.62C + 0.0019ß)(1 - a),

integer, parameter
integer, parameter

Original author(s): Karsten Bolding
See log for airsea module

DEFINED PARAMETERS:

REVISION HISTORY:

integer, intent(in)
REALTYPE, intent(in)

OUTPUT PARAMETERS:

Original author(s): Karsten Bolding
See log for airsea module

USES:

"- IMPLICIT NONE

INPUT PARAMETERS:

subroutine short_wave_radiation(jul,secs,lon,lat,swr)

5.2.6 Calculate the short-wave radiation

REALTYPE, optional, intent(out) swr

This subroutine calculates the short-wave net radiation based on latitude, longitude, time,
fractional cloud cover and albedo. The albedo monthly values from Payne (1972) are given
here as means of the values between at 30° N and 40° N for the Atlantic Ocean (hence
the same latitudinal band of the Mediterranean Sea). The basic formula for the short-wave
radiation at the surface, Qs, has been taken from Rosati and Miyakoda (1988), who adapted
the work of Reed (1977) and Simpson and Paulson (1999):

177

with the total radiation reaching the surface under clear skies, Qtot, the fractional cloud
cover, C, the solar noon altitude, ß, and the albedo, a. This piece of code has been taken
the MOM-I (Modular Ocean Model) version at the INGV (Istituto Nazionale di Geofisica e
Vulcanologia, see http://www.bo . ingv. i t/.

DESCRIPTION:

INTERFACE:

.. jul,secs

.. jul,secs

integer, intent(in)

Original author(s): Karsten Bolding
See log for airsea module

integer, intent(in)

IMPLICIT NONE

178

5.2.7 Read meteo data, interpolate in time

subroutine read_heat_flux(jul,secs,I_O,heat)

INPUT PARAMETERS:

subroutine flux_from_meteo(jul,secs)

IMPLICIT NONE

USES:

USES:

OUTPUT PARAMETERS:

For calc_fluxes=. true., this routine reads meteo data from meteo_file and calculates
the fluxes of heat and momentum, and the short-wave radiation by calling the routines
exchange_coefficients, do_calc_fluxes and short_wave_radiation, see section 5.2.4,
section 5.2.5, and section 5.2.6. Then, the results are interpolated in time to the actual time
step.

REVISION HISTORY:

INPUT PARAMETERS:

INTERFACE:

5.2.8 Read heat flux data, interpolate in time

DESCRIPTION:

For calc_fluxes=. false., this routine reads solar radiation and the surface heat flux in
Wm-2 from heatflux_file and interpolates them in time.

5.2.9 Read momentum fiux data, interpolate in time

subroutine read_momentum_flux(jul,secs,tx,ty)

.. jul,secs

.. tx,ty

integer ·. yy,mm,dd,hh,min,ss
REALTYPE ·. t,alpha
REALTYPE, save ·. dt
integer, save · . mom_ju11,mom_secs1
integer, save ·. mom_ju12=O,mom_secs2=O
REALTYPE, save ·. obs1(2),obs2(2)=O.
integer · . rc

~ Original author(s): Karsten Bolding
See log for airsea module

179

Original author(s): Karsten Bolding
See log for airsea module

REALTYPE, intent(out)

integer, intent (in)

IMPLICIT NONE

REALTYPE,intent(out)

USES:

REVISION HISTORY:

OUTPUT PARAMETERS:

INPUT PARAMETERS:

DESCRIPTION:

INTERFACE:

REVISION HISTORY:

For calc_fluxes=. false., this routine reads momentum fluxes in Nm-2 from
momentumflux_file and interpolates them in time.

LOCAL VARIABLES:

This routine reads the surface freshwater flux (in ms-1) from p_e_flux_file and interpolates
in time.

.. jul,secs

.. jul,secs

integer, intent(in)

REALTYPE,intent(out)

Original author(s): Karsten Bolding
See log for airsea module

subroutine read_sst(jul,secs,sst)

integer, intent(in)

IMPLICIT NONE

IMPLICIT NONE

INTERFACE:

DESCRIPTION:

180

5.2.10 Read P-E, interpolate in time

USES:

OUTPUT PARAMETERS:

INPUT PARAMETERS:

REVISION HISTORY:

5.2.11 Read SST, interpolate in time

USES:

INTERFACE:

DESCRIPTION:

For calc_fluxes=. false., this routine reads sea surface temperature (SST) from sst_file
and interpolates in time.

INPUT PARAMETERS:

5.2.13 Integrate short-wave and sea surface fluxes

181

For calc_fluxes=. false. , this routine reads sea surface salinity (SSS) from sss_file and
interpolates in time.

.. sss

.. jul,secs

.. sst

integer, intent(in)

Original author(s): Karsten Bolding
See log for airsea module

subroutine read_sss(jul,secs,sss)

REALTYPE,intent(out)

REALTYPE,intent(out)

Original author(s): Karsten Bolding
See log for airsea module

IMPLICIT NONE

subroutine integrated_fluxes(dt)

OUTPUT PARAMETERS:

OUTPUT PARAMETERS:

USES:

INPUT PARAMETERS:

INTERFACE:

REVISION HISTORY:

DESCRIPTION:

5.2.12 Read SSS, interpolate in time

REVISION HISTORY:

INTERFACE:

5.2.14 Set the SST to be used from model.

This utility routine integrates the short-wave radiation and heat-fluxes over time.

This routine sets the simulated sea surface temperature (SST) to be used for the surface flux
calculations.

.. dt

.. temp

REALTYPE, intent(in)

Original author(s): Karsten Bolding
See log for airsea module

REALTYPE, intent(in)

Original author(s): Karsten Bolding
See log for airsea module

182

DESCRIPTION:

IMPLICIT NONE

subroutine set_sst(temp)

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

INTERFACE:

DESCRIPTION:

USES:

REVISION HISTORY:

",INPUT PARAMETERS:

183

6 Working with observed data in GOTM

In the context of GOTM, the term 'observations' should be understood in a broad sense: it
may refer to data either measured in nature or generated artificially. The inclusion of such
data into GOTM can serve different purposes. Examples are time-series of external pressure­
gradients, which can be used to drive the model, or observed profiles of the temperature to
which model results can be relaxed.
Two different types of 'observations' are considered so far in GOTM: time series of scalar
data and time series of profile data. The first type is used to introduce, for example, sea
surface elevations into the model. The latter is used to include, for example, temperature or
velocity fields.
All specifications concerning the 'observations' are done via the namelist file obs. inp. Each of
type of variable has its own namelist in obs . inp. Common for all namelists is a member with
the suffix _method, used to specify the action performed to generate or acquire the variable,
respectively. Observations can be, for example, read-in from files or computed according to
an analytical expression. Some types of observations (e.g. turbulent dissipation rates) are not
used directly during the calculations in GOTM. but can be conveniently interpolated to the
numerical grid to allow for an easy comparison of measured data and model results.
For all types of observations, one _method is always 'from file'. All input-files are in ASCII
with a very straight-forward format. The necessary interpolation in space is performed as an
integral part of the general reading routines. Temporal interpolation is performed as part of
the specific reading routines, e.g. get_s_profile. F90.

184

6.1 Module observations - the 'real' world

INTERFACE:

module observations

DESCRIPTION:

This module provides the necessary subroutines for communicating 'observations' to GOTM.
The module operates according to the general philosophy used in GOTM, Le. it provides
init_observationsO to be called in the overall initialisation routine and get_all_obsO
to be called in the time loop to actually obtain the 'observations'. In addition to these
subroutines the module also provides two routines for reading scalar-type observations and
profile-type observations. Each observation has a date stamp with the format yyyy-mm-dd
hh:dd:mm. The module uses the time module (see section 8.10) to convert the time string
to the internal time representation of GOTM. Profiles are interpolated to the actual GOTM
model grid. Free format is used for reading-in the actual data.

USES:

IMPLICIT NONE

default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

PUBLIC DATA MEMBERS:

'observed' salinity profile
REALTYPE, public, dimension(:), allocatable .. sprof

'observed' temperature profile
REALTYPE, public, dimension(:), allocatable .. tprof

'observed' horizontal salinity gradients
REALTYPE, public, dimension(:), allocatable .. dsdx,dsdy

'observed' horizontal temperarure gradients
REALTYPE, public, dimension(:), allocatable .. dtdx,dtdy

internal horizontal pressure gradients
REALTYPE, public, dimension(:), allocatable .. idpdx,idpdy

sea surface elevation, sea surface gradients and height of velocity obs.
REALTYPE, public .. zeta=O.,dpdx=O.,dpdy=O.,h_press=O

vertical advection velocity
REALTYPE, public .. w_adv=O.,w_height

observed profile of turbulent dissipation rates
REALTYPE, public, dimension(:), allocatable epsprof

185

.. uprof, vprof
horizontal velocity profiles
REALTYPE, public, dimension(:), allocatable

ralaxation times for salinity and temperature
REALTYPE, public, dimension(:), allocatable :: SRelaxTau,TRelaxTau

Parameters for water classification - default Jerlov type I
REALTYPE, public :: A=O.58,g1=O.35,g2=23.0

the following data are not all public,
but have been included for clarity here

Salinity profile(s)
integer, public ·. s_prof_method=O
integer, public ·. s_analyt_method=1
character(LEN=PATH_MAX) · . s_prof_file='sprof.dat'
REALTYPE · . z_s1,s_1,z_s2,s_2
REALTYPE · . s_obs_NN
REALTYPE · . SRelaxTauM=O.
REALTYPE ·. SRelaxTauS=O.

". REALTYPE SRelaxTauB=O.·.
REALTYPE ·. SRelaxSurf=O.
REALTYPE · . SRelaxBott=O.

Temperature profile(s)
integer, public · . t_prof_method=O
integer, public ·. t_analyt_method=1
character(LEN=PATH_MAX) ·. t_prof_file='tprof.dat'
REALTYPE · . z_t1,t_1,z_t2,t_2
REALTYPE ·. t_obs_NN
REALTYPE · . TRelaxTauM=O.
REALTYPE ·. TRelaxTauS=O.
REALTYPE · . TRelaxTauB=O.

Sea surface elevations - 'zetaspec' namelist
integer,public .. zeta_method=O
character(LEN=PATH_MAX) :: zeta_file='zeta.dat'

Light extinction - the 'extinct' namelist
integer .. extinct_method=l
character(LEN=PATH_MAX) :: extinct_file='extinction.dat'

.. TRelaxSurf=O.

.. TRelaxBott=O.

'press' namelist
.. ext_press_method=O,PressMethod=O
.. ext_press_file="

PressConstU=O.
.. PressConstV=O.
.. PressHeight=O.

PeriodM=44714.
.. AmpMu=O.
.. AmpMv=O.
.. PhaseMu=O.
.. PhaseMv=O.
.. PeriodS=43200.
.. AmpSu=O.
.. AmpSv=O.
.. PhaseSu=O.
.. PhaseSv=O.

'internal_pressure' namelist
.. int_press_method=O
.. int_press_file="
.. const_dsdx=O.
.. const_dsdy=O.
.. const_dtdx=O.
.. const_dtdy=O.
.. s_adv=.false.
.. t_adv=.false.

public
public
public
public
public
public
public
public
public
public
public
public
public

REALTYPE
REALTYPE

External pressure ­
integer, public
character(LEN=PATH_MAX)
REALTYPE,
REALTYPE,
REALTYPE ,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE ,
REALTYPE,
REALTYPE,
REALTYPE ,
REALTYPE,

Internal pressure ­
integer, public
character(LEN=PATH_MAX)
REALTYPE, public
REALTYPE , public
REALTYPE, public
REALTYPE, public
logical, public
logical, public

Vertical advection velocity - 'w_advspec' namelist
integer, public .. w_adv_method=O
REALTYPE, public .. w_advO=O.
REALTYPE, public .. w_adv_heightO=O.
character(LEN=PATH_MAX) .. w_adv_file='w_adv.dat'
integer, public .. w_adv_discr=l

186

DEFINED PARAMETERS:

REALTYPE,public, parameter:: pi=3.141592654

Observed dissipation profiles
integer .. e_prof_method=O
REALTYPE .. e_obs_const=1.e-12
CHARACTER(LEN=PATH_MAX) .. e_prof_file='eprof.dat'

187

.. READ_SUCCESS=1

.. END_OF_FILE=-1

.. READ_ERROR=-2

.. NOTHING=O

.. ANALYTICAL=1

profiles - typically from ADCP
.. vel_prof_method=O
.. vel_prof_file='velprof.dat'
.. vel_relax_tau=3600.
.. vel_relax_ramp=86400.

.. zeta_O=O .

.. period_1=44714.

.. amp_1=O.

.. phase_1=O.

.. period_2=43200 .

.. amp_2=O.

.. phase_2=O.

namelist
.. b_obs_surf=O.,b_obs_NN=O.
.. b_obs_sbf=O.

pre-defined parameters
integer, parameter
integer, parameter
integer, parameter
integer, parameter
integer, parameter

Buoyancy - 'bprofile'
REALTYPE, public
REALTYPE, public

Observed velocity profile
integer
CHARACTER(LEN=PATH_MAX)
REALTYPE , public
REALTYPE , public

REALTYPE, public
REALTYPE , public
REALTYPE, public
REALTYPE, public
REALTYPE, public
REALTYPE , public
REALTYPE , public

Unit numbers for reading observations/data.
integer, parameter .. s_prof_unit=30
integer, parameter .. t_prof_unit=31
integer, parameter .. ext_press_unit=32

~ integer, parameter .. int_press_unit=33
integer, parameter .. extinct_unit=34
integer, parameter .. w~adv_unit=35

integer, parameter .. zeta_unit=36
integer, parameter .. vel_prof_unit=37
integer, parameter .. e_prof_unit=38

The init_observations 0 subroutine basically reads the obs. inp file with a number of
different namelists and takes actions according to the specifications in the different namelists.

6.1.1 Initialise the observation module

&

.. CONSTANT=l
" FROMFILE=2
.. CONST_PROF=l
.. TWO_LAYERS=2
.. CONST~NN=3

integer, parameter
integer, parameter
integer, parameter
integer, parameter
integer, parameter

subroutine init_observations(namlst,fn,julday,secs,
depth,nlev,z,h,gravity,rho_O)

Original author(s): Karsten Bolding &Hans Burchard
$Log: observations.F90,v $
Revision 1.11 2005/11/15 11:02:32 lars
documentation finish for print
Revision 1.10 2005/08/15 11:54:01 hb
sequence of reading w_adv and w_height changed,
w_adv_heightO introduced, documentation extended
Revision 1.9 2005/07/06 16:20:14 kbk
updated documentation - added const_NNT and const_NNS
Revision 1.8 2004/07/30 09:26:01 hb
Simple exponential light absorption added --> Wilfried Kuehn
Revision 1.7 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.6 2003/03/28 08:08:21 kbk
removed tabs
Revision 1.5 2003/03/10 13:51:08 lars
changed intent(out) to intent(inout) for lines in read_profiles()
Revision 1.4 2003/03/10 08:51:58 gotm
Improved documentation and cleaned up code
Revision 1.3 2001/11/27 15:35:55 gotm
zeta_method now public - used by updategrid()
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

REVISION HISTORY:

188

INTERFACE:

DESCRIPTION:

INTERFACE:

6.1.2 geLalLobs

189

.. namlst

.. in

.. julday, sees

.. depth

.. nlev

.. z(O:nlev),h(O:nlev)

.. gravity,rho_O

.. julday, sees

.. nlev

.. z(:)

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in)
charaeter(len=*), intent(in)
integer, intent(in)
REALTYPE, intent(in)
integer, intent(in)
REALTYPE, intent(in)
REALTYPE, intent(in)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burehard
See observation module

subroutine get_all_obs(julday,secs,nlev,z)

DESCRIPTION:

In this routine also memory is allocated to hold the 'observations'. Finally, all variables are
initialised to sane values, either by reading from files, by prescribing constant values, or by
using analytical expressions.

Original author(s): Karsten Bolding &Hans Burehard

integer, intent(in)
integer, intent(in)
REALTYPE, intent(in)

REVISION HISTORY:

During the time integration this subroutine is called each time step to update all 'observation'.
The routine is basically a wrapper routine which calls the variable specific routines. The only
input to this routine is the time (in internal GOTM representation) and the vertical grid.
It is up to each of the individual routines to use this information and to provide updated
'ob~ervations'.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

IMPLICIT NONE

INTERFACE:

.. yy,mm,dd,hh,min,ss

.. obs(:)

.. ierr

.. unit

.. N

integer, intent(out)
REALTYPE,intent(out)
integer, intent(out)

integer, intent(in)
integer, intent(in)

OUTPUT PARAMETERS:

subroutine read_profiles(unit,nlev,cols,yy,mm,dd,hh,min,ss,z, &
profiles,lines,ierr)

Original author(s): Karsten Bolding &Hans Burchard
See observation module

INPUT PARAMETERS:

USES:

190

6.1.3 read_obs

DESCRIPTION:

subroutine read_obs(unit,yy,mm,dd,hh,min,ss,N,obs,ierr)

This routine will read all non-profile observations. The routine allows for reading more than
one scalar variable at a time. The number of data to be read is specified by N. Data read-in
are returned in the 'obs' array. It is up to the calling routine to assign meaning full variables
to the individual elements in obs.

REVISION HISTORY:

USES:

DESCRIPTION:

INTERFACE:

Similar to read_obs 0 but used for reading profiles instead of scalar data. The data will be
interpolated on the grid specified by nlev and z. The data can be read 'from the top' or 'from
the bottom' depending on a Rag in the actual file.

06.1.4 rea<:Lprofiles

DESCRIPTION:

INTERFACE:

IMPLICIT NONE

" unit
" nlev,cols
" z(:)

" lines

" yy,mm,dd,hh,min,ss
" profiles(:,:)
" ierr

.. unit
" jul,secs
.. nlev
.. z(O :nlev)

integer, intent(inout)

integer, intent(in)
integer, intent(in)
REALTYPE, intent(in)

integer, intent(out)
REALTYPE, intent(out)
integer, intent(out)

integer, intent(in)
integer, intent(in)
integer, intent(in)
REALTYPE, intent(in)

subroutine get_s_profile(unit,jul,secs,nlev,z)

Original author(s): Karsten Bolding &Hans Burchard
See observation module

use time
use observations, only: read_profiles,sprof
IMPLICIT NONE

191

OUTPUT PARAMETERS:

INPUT PARAMETERS:

INPUT/OUTPUT PARAMETERS:

6.1.5 geLs_profile

USES:

REVISION HISTORY:

INPUT PARAMETERS:

This routine is responsible for providing sane values to an 'observed' salinity profile. The
subroutine is called in the get_all_obs 0 subroutine as part of the main integration loop.
In"case of observations from file the temporal interpolation is done in this routine.

INTERFACE:

REVISION HISTORY:

DESCRIPTION:

., unit

., jul,secs

.. nlev

., z(O:nlev)

integer, intent(in)
integer, intent(in)
integer, intent(in)
REALTYPE, intent(in)

Original author(s): Karsten Bolding
$Log: get_t_profile.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk

subroutine get_t_profile(unit,jul,secs,nlev,z)

use time
use observations, only: read_profiles,tprof
IMPLICIT NONE

Original author(s): Karsten Bolding
$Log: get_s_profile.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

USES:

6.1.6 geLLprofile

192

REVISION HISTORY:

This routine is responsible for providing sane values to an 'observed' temperature profile.
The subroutine is called in the get_all_obs 0 subroutine as part of the main integration
loop. In case of observations from file the temporal interpolation is done in this routine.

,. INPUT PARAMETERS:

INTERFACE:

DESCRIPTION:

6.1.7 geLexLpressure

.. method,unit,jul,secs

time_diff,julian_day,fsecs
read_obs
pi,h_press,dpdx,dpdy
AmpMu,AmpMv,PhaseMu,PhaseMv,PeriodM
AmpSu,AmpSv,PhaseSu,PhaseSv,PeriodS
PressConstU,PressConstV

only:
only:
only:
only:
only:
only:

193

subroutine get_ext_pressure(method,unit,jul,secs)

added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

use time,
use observations,
use observations,
use observations,
use observations,
use observations,
IMPLICIT NONE

Original author(s): Karsten Bolding
$Log: get_ext_pressure.F90,v $
Revision 1.7 2005/11/15 11:02:32 lars
documentation finish for print
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 09:02:09 kbk
removed tabs

~integer, intent(in)

USES:

INPUT PARAMETERS:

REVISION HISTORY:

This routine will provide the external pressure-gradient, either from analytical expressions or
read-in from a file. The subroutine is called in get_alLobs 0 as part of the main integration
loop. In case of observations from file the temporal interpolation is done in this routine.

194

INTERFACE:

REVISION HISTORY:

· . method

·. unit
· . jul,secs

·. nlev

·. z(O:nlev)

integer, intent(in)
integer, intent(in)
integer, intent (in)
integer, intent(in)
REALTYPE, intent(in)

Revision 1.3 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation
- now according to Burchard 1995 (Ph.n. thesis).
Also some cosmetics and cleaning of Makefiles.
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

use time, only: time_diff,julian~day

use observations, only: read_profiles
use observations, only: dsdx,dsdy,dtdx,dtdy
IMPLICIT NONE

subroutine get_int_pressure(method,unit,jul,secs,nlev,z)

Original author(s): Karsten Bolding
$Log: get_int_pressure.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk

USES:

DESCRIPTION:

INPUT PARAMETERS:

6.1.8 get_inLpressure

This routine will provide the internal pressure-gradients, either analytically prescribed or read
from a file. The subroutine is called in the get_all_obs 0 subroutine as part of the main
integration loop. The spatial interpolation is done via the reading routine and the temporal
interpolation is done in this routine.

INTERFACE:

DESCRIPTION:

6.1.9 reacLextinction

.. unit,jul,secs

read_obs
A,gl,g2

integer, intent(in)

195

use time
use observations, only
use observations, only
IMPLICIT NONE

subroutine read_extinction(unit,jul,secs)

added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

Original author(s): Karsten Bolding
$Log: read_extinction.F90,v $
Revision 1.5 2005/07/06 16:20:14 kbk
updated documentation - added const_NNT and const_NNS
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.2 2003/03/10 08:51:58 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

USES:

INPUT PARAMETERS:

REVISION HISTORY:

This routine will provide the light extinction coefficients. It is only called if no Jerlov dass
has been specified in obs. inp.

INTERFACE:

DESCRIPTION:

.. method,unit,jul,secs

time_diff,julian_day
read_obs
w_adv,w_advO,w_adv_heightO,w_height

only:
only:
only:

integer, intent(in)

Original author(s): Karsten Bolding
$Log: get_w_adv.F90,v $
Revision 1.7 2005/11/15 11:02:32 lars
documentation finish for print
Revision 1.6 2005/08/15 11:54:01 hb
sequence of reading w_adv and w_height changed,
w_adv_heightO introduced, documentation extended
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

USES:

use time,
use observations,
use observations,
IMPLICIT NONE

INPUT PARAMETERS:

subroutine get_w_adv(method,unit,jul,secs)

196

REVISION HISTORY:

This routine is responsible for providing sane values to 'observed' vertical velocity which
will then be applied for vertical advection of mean flow properties. A height and a vertical
velocity value are either set to constant values or read from a file. The height will be assigned
to be the position of maximum vertical velocity, and the vertical profiles of vertical velocity
will be then constructed in such a way that the velocity is linearly decreasing away from
this height, with zero values at the surface and the bottom. The subroutine is called in the
get_all_obs 0 subroutine as part of the main integration loop. In case of observations from
file the temporal interpolation is done in this routine.

INTERFACE:

DESCRIPTION:

INTERFACE:

.. method,unit,jul,secs

only: time_diff,julian_day,fsecs
only: pi,read_obs
only: period_1,amp_1,phase_1,period_2,amp_2,phase_2
only: zeta,zeta_O

integer, intent(in)

use time,
use observations,
use observations,
use observations,
IMPLICIT NONE

subroutine get_zeta(method,unit,jul,secs)

Original author(s): Karsten Bolding
$Log: get_zeta.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 09:02:09 kbk

"" removed tabs
Revision 1.3 2003/03/10 08:51:58 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 16:06:31 gotm
Avoid namelist member clashes by changing names in zetaspec
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

197

6.1.11 get_zeta

USES:

INPUT PARAMETERS:

REVISION HISTORY:

This routine will provide sea surface elevation - either by an analytical expression or read
from file. The subroutine is called in the get_all_obs 0 subroutine as part of the main
integration loop. The spatial interpolation is done via the reading routine and the temporal
interpolation is done in this routine.

6.1.12 get_veLprofile

198

subroutine get_vel_profile(unit,jul,secs,nlev,z)

DESCRIPTION:

This routine is responsible for providing sane values to 'observed' velocity profiles. The
subroutine is called in the get_all_obs subroutine as part of the main integration loop. In
case of observations from file the temporal interpolation is done in this routine.

USES:

use time
use observations, only: read_profiles,uprof,vprof
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in):: unit
integer, intent (in) :: jul, secs
integer, intent(in):: nlev
REALTYPE, intent(in):: z(O:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_vel_profile.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.13 geLeps_profile

INTERFACE:

subroutine get_eps_profile(unit,jul,secs,nlev,z)

DESCRIPTION:

This routine will get the observed dissipation profiles. The subroutine is called in the
get_all_obs subroutine as part of the main integration loop. The spatial interpolation
is done via the reading routine and the temporal interpolation is done in this routine.

USES:

DESCRIPTION:

INTERFACE:

IMPLICIT NONE

.. unit

.. jul,secs

.. nlev

.. z(O :nlev)

integer, intent(in)
integer, intent(in)
integer, intent(in)
REALTYPE, intent(in)

use time
use observations, only: read_profiles,epsprof
IMPLICIT NONE

199

Original author(s): Karsten Bolding
$Log: get_eps_profile.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

~ subroutine analytical_profile(nlev,z,z1,v1,z2,v2,prof)

USES:

INPUT PARAMETERS:

INPUT PARAMETERS:

6.1.14 analyticaLprofile

REVISION HISTORY:

This routine creates a vertical profile prof with value vi in a surface layer down to depth z1
and a bottom layer of value v2 reaching from depth z2 down to the bottom. Both layers are
connected by an intermediate layer reaching from z1 to z2 with values linearly varying from
vi to v2.

6.1.15 consLNNT

INTERFACE:

DESCRIPTION:

., nlev

., z(O:nlev)

., z1,v1,z2,v2

., prof(O:nlev)

.. nlev

., z(O:nlev)

., T_top,S_const,NN

.. gravity,rho_O

., T(O:nlev)

intent(in)
intentCin)
intent(in)
intent (in)

integer, intent(in)
REALTYPE, intent(in)
REALTYPE, intent(in)

REALTYPE, intent(out)

integer,
REALTYPE,
REALTYPE,
REALTYPE,

REALTYPE, intent(out)

OUTPUT PARAMETERS:

Original author(s): Karsten Bolding
$Log: analytical_profile.F90,v $
Revision 1.5 2005/07/06 15:50:46 kbk
added description - umlauf

Original author(s): Lars Umlauf
$Log: const_NNT.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

subroutine const_NNT(nlev,z,T_top,S_const,NN,gravity,rho_O,T)

REVISION HISTORY:

200

USES:

OUTPUT PARAMETERS:

use eqstate
IMPLICIT NONE

INPUT PARAMETERS:

This routine creates a vertical profile prof with value vi

REVISION HISTORY:

INTERFACE:

DESCRIPTION:

6.1.16 consLNNS

201

.. 8(0 :nlev)

.. nlev

.. z(O:nlev)

.. 8_top,T_const,NN

.. gravity,rho_O

intent(in)
intent(in)
intent(in)
intent(in)

REALTYPE, intent(out)

Original author(s): Lars Umlauf
$Log: const_NN8.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

integer,
REALTYPE,
REALTYPE,
REALTYPE,

subroutine const_NN8(nlev,z,8_top,T_const,NN,gravity,rho_O,S)

use eqstate
IMPLICIT NONE

OUTPUT PARAMETERS:

USES:

INPUT PARAMETERS:

REVISION HISTORY:

This routine creates a vertical profile prof with value v1

202

203

7 Saving the results

GOTM provides an easily extendible interface for storing calculated results. The main spec­
ifications are given via the output namelist in gotmrun. inp. The most important member
in this namelist is the integer out_fmt. Changing this variable will select the output format
- presently ASCII and NetCDF are supported.
In GOTM output is triggered by do_output 0 called inside the main integration loop (see
section 2.3). Completely separated from the core of GOTM, a format specific subroutine
is called to do the actual output. We strongly recommend to use the NetCDF format ­
mainly because it is weIl established andsave - but also because a large number of graphical
programmes can read NetCDF. Another reason is the powerful package 'nco' which provides
some nice programs for manipulating NetCDF files. Information about how to install and
use NetCDF and nco can be found at

• http://www.unidata.ucar.edu/packages/netcdf and

• http://nco.sourceforge.net.

INTERFACE:

DESCRIPTION:

204

.. write_results

.. ts

.. out_fmt=ASCII
" out_dir='.'
.. out_fn=' gotm'
.. nsave=l
.. diagnostics=.false.
.. mld_method=l
.. difCk=1.e-5
.. Ri crit=0.5
.. rad_corr=.true.

logical
character(len=19)
integer
character(len=PATH_MAX)
character(len=PATH_MAX)
integer
logical
integer
REALTYPE
REALTYPE
logical

IMPLICIT NONE

Original author(s): Karsten Bolding, Hans Burchard
$Log: output.F90,v $
Revision 1.8 2005/07/19 17:09:37 hb
removed code commented out
Revision 1.7 2005/07/06 14:22:40 kbk
updated documentation - saves KPP related variables
Revision 1.6 2003/10/14 08:04:32 kbk

module output

use time, ONLY: write_time_string,julianday,secondsofday,timestep
use asciiout

ifdef NETCDF_FMT
use ncdfout, ONLY: init_ncdf,do_ncdf_out,close_ncdf

endif

7.1 Module output - saving the results

USES:

This module acts as an interface between GOTM and modules/routines doing the actual
output. In order to add a new output format it is only necessary to add hooks in this module
and write the actual output routines. It is not necessary to change anything in GOTM itself.

PUBLIC DATA MEMBERS:

REVISION HISTORY:

INTERFACE:

DESCRIPTION:

INTERFACE:

205

.. title

.. nlev

.. latitude,longitude

character(len=*), intent(in)
integer, intent(in)

~ REALTYPE, intent(in)

subroutine prepare_output(n)

Original author(s): Karsten Bolding &Hans Burchard
See output module

IMPLICIT NONE

subroutine init_output(title,nlev,latitude,longitude)

time is now stored as real
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:24:19 kbk
removed tabs
Revision 1.3 2003/03/10 08:53:05 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:51:52 gotm
Fixed a typo
Revision 1.1.1.1 2001/02/12 15:55:59 gotm
initial import into CVS

7.1.1 Initialize the output module

USES:

CaUs the initialization routine based on output format selected by the user.

INPUT/OUTPUT PARAMETERS:

7.1.2 Set some variables related to output

REVISION HISTORY:

Original author(s): Karsten Bolding &Hans Burchard

Calls the routine, which will do the actual storing of results, depending on the output format.

., n

., n,nlev

.. seesREALTYPE

subroutine do_output(n,nlev)

Original author(s): Karsten Bolding &Hans Burchard
See output module

integer, intent(in)

206

IMPLICIT NONE

DESCRIPTION:

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

This routine check whether output should be written at the current time step. If this is the
case, the model time is written to astring for display on the screen.

7.1.3 Save the model results in file

USES:

INTERFACE:

integer, intent(in)

DESCRIPTION:

INPUT PARAMETERS:

REVISION HISTORY:

LOCAL VARIABLES:

7.1.4 Close files used for saving model results

7.1.5 Compute various diagnostic/integrated variables

207

.. n,nlev,BuoyMeth

.. dt

.. u_taus, u_taub

.. CO,heat

integer, intent(in)
REALTYPE, intent(in)
REALTYPE, intent(in)
REALTYPE, intent(in)

use airsea, only: sst
""use meanflow, only: gravity,rho_O,cp

use meanflow, only: h,u,v,s,t,NN,SS,buoy,rad
use turbulence, only: kappa
use turbulence, only: tke
use observations, only: tprof,b_obs_sbf
use eqstate, only: eqstate1
IMPLICIT NONE

Original author(s): Karstan Bolding &Hans Burchard
See output module

subroutine close_output()

subroutine do_diagnostics (n,nlev,BuoyMeth,dt ,u_taus,u_taub,I_O,heat)

IMPLICIT NONE

USES:

USES:

INPUT PARAMETERS:

REVISION HISTORY:

INTERFACE:

DESCRIPTION:

CaU routines for closing any open output files.

DESCRIPTION:

INTERFACE:

This subroutine calculates the foUowing diagnosticjintegrated variables.

208

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See output module

209

7.2 Module asciiout - saving the results in ASCII

INTERFACE:

MODULE asciiout

DESCRIPTION:

This module contains three subroutines for writing model output in ASCII format. The
authors do not encourage using ASCII for output - instead we recommend NetCDF.

USES:

IMPLICIT NONE
Default all is private.
private

PUBLIC MEMBER FUNCTIONS:

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: asciiout.F90,v $
Revision 1.5 2005/07/06 14:19:50 kbk
added writing of obs. velocities
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 08:53:05 gotm
Improved documentation and cleaned up code

~Revision 1.2 2001/11/18 11:51:16 gotm
Now format statements
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

7.2.1 Open the file unit für writing

INTERFACE:

subroutine init_ascii(fn,title,unit)
IMPLICIT NONE

210

INTERFACE:

7.2.2 Save the model results to file

.. unit

.. fn,title

.. nlev

.. timestr

.. unit

only: depthO,h,u,v,z,S,T,NN,buoy
only: num,nuh,tke,eps,L
only: kb,epsb
only: tprof,sprof,uprof,vprof,epsprof

character(len=*), intent(in)

integer, intent(in)

integer, intent(in)
CHARACTER(len=*), intent(in)
integer, intent (in)

INPUT PARAMETERS:

INPUT/OUTPUT PARAMETERS:

DESCRIPTION:

IMPLICIT NONE

Original author(s): Karsten Bolding &Hans Burchard
See asciiout module

#endif
#ifdef SEDIMENT

use seagrass, only: ascii_seagrass
#endif

subroutine do_ascii_out(nlev,timestr,unit)

Opens a file giving in the output namelist and connects it with a unit number.

REVISION HISTORY:

USES:

Writes all calculated data to an ASCII file.

DESCRIPTION:

INPUT PARAMETERS:

use meanflow,
use turbulence,
use turbulence,
use observations,

"'" #ifdef SEDIMENT
use sediment, only: ascii_sediment

7.2.3 elose files used for saving model results

Original author(s): Karsten Bolding & Hans Burchard
See asciiout module

Original author(s): Karsten Bolding &Hans Burchard
See asciiout module

211

.. unit

subroutine close_ascii(unit)
IMPLICIT NONE

REVISION HISTORY:

INPUT PARAMETERS:

integer, intent(in)

DESCRIPTION:

INTERFACE:

Close the open ASCII file.

REVISION HISTORY:

inelude 'netedf.ine'

module nedfout

IMPLICIT NONE

.. neid

.. lon_dim,lat_dim,z_dim,z1_dim

.. time dim

.. dim1=1,dim4=4
" dims (dim4)

netCDF file id
integer, publie

dimension ids
integer
integer
integer, parameter
integer

USES:

publie init_nedf, do_nedf_out, elose_nedf
publie define_mode, new_ne_variable, set_attributes, store_data

This module provides routines for saving the GOTM results using NetCDF format. A hack
has been provided for saving in a way that can be used by the GrADS graphics software.
The sdfopenO interface to GrADS does not allow for smaller time units than 1 hour, so if
GrADS output is selected the units for time are set to hours and not sees.
In both cases, the type and number of variables appearing in the output file depends on
the turbulence model and the output fiags set by the user. If you use, for example, the
KPP turbulence module no information for the TKE, the dissipation rate, the turbulence
production terms are saved, because the KPP model does not provide information about
these quantities.
Note that if you #define EXTRA_OUTPUT in eppdef. h, then you will find the a number of
dummy fields called mean1, mean2, .. , and turbi, turb2, .,. in the netCDF output
file after re-compiling and runnign GOTM. These extra variables arepublic members of the
meanflow and turbulenee modules and are convenient for testing and debuging.

7.3 Module ncdfout - saving the results in NetCDF

DESCRIPTION:

INTERFACE:

use turbulenee, only: turb_method

212

PUBLIC MEMBER FUNCTIONS:

PUBLIC DATA MEMBERS:

REVISION HISTORY:

INTERFACE:

7.3.1 Create the NetCDF file

.. fn,title,start_time

.. lat,lon

.. nlev,time_unit

213

Original author(s): Karsten Bolding & Hans Burchard
$Log: ncdfout.F90,v $
Revision 1.11 2005/09/14 11:53:06 kbk
fixed position of counter for time dimension - fixes bio storing
Revision 1.10 2005/08/11 14:15:33 kbk
when storing time changed variable time to temp_time - Portland compiler
Revision 1.9 2005/07/06 14:22:40 kbk
updated documentation - saves KPP related variables
Revision 1.8 2004/01/09 10:14:01 kbk
consistency between stored surface stress and units (now N/m-2)
Revision 1.7 2003/12/11 09:58:22 kbk
now compiles with FORTRAN_COMPILER=IFORT - removed TABS
Revision 1.6 2003/10/14 08:04:32 kbk
time is now stored as real
Revision 1.5 2003/06/13 09:27:16 hb
Implemented freshwater fluxes
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 08:53:05 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

Opens and creates the NetCDF file, and initialises all dimensions and variables for the core
GOTM model.

subroutine init_ncdf(fn,title,lat,lon,nlev,start_time,time_unit)
IMPLICIT NONE

DESCRIPTION:

character(len=*), intent(in)
REALTYPE, intent(in)
integer, intent(in)

REVISION HISTORY:

.INPUT PARAMETERS:

Write the GOTM core variables to the NetCDF file.

7.3.3 elose files used for saving model results

., nlev

., sees
integer, intent(in)
REALTYPE, intent(in)

use airsea, only: tx,ty,I_O,heat,p_e,sst,sss
use airsea, only: int_swr,int_heat,int_total
use meanflow, only: depthO,u_taub,u_taus,rho_O,gravity
use meanflow, only: h,u,v,z,S,T,buoy,SS,NN
use turbulenee, only: P,B,Pb
use turbulenee, only: num,nuh,nus
use turbulenee, only: gamu,gamv ,gamh,gams
use turbulenee, only: tke,kb,eps,epsb,L,uu,vv,ww
use kpp, only: zsbl,zbbl
use observations, only: zeta,uprof,vprof,tprof,sprof,epsprof
use eqstate, only: eqstate1

ifdef EXTRA_OUTPUT
use meanflow, only: mean1,mean2,mean3,mean4,mean5
use turbulenee, only: turb1,turb2,turb3,turb4,turb5

endif
IMPLICIT NONE

Original author(s): Karsten Bolding &Hans Burehard
See nedfout module

subroutine do_nedf_out(nlev,sees)

7.3.2 Save model results to file

214

USES:

INTERFACE:

DESCRIPTION:

INPUT PARAMETERS:

REVISION HISTORY:

INTERFACE:

REVISION HISTORY:

INTERFACE:

.. neid

.. action
integer, intent(in)

,. logical, intent (in)

integer function define_mode(ncid,action)

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

integer function new_nc_variable(ncid,name,data_type,n,dims,id)

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

subroutine close_ncdf()
IMPLICIT NONE

IMPLICIT NONE

215

USES:

DESCRIPTION:

7.3.4 Begin or end define mode

Closes the NetCDF file.

DESCRIPTION:

INPUT PARAMETERS:

7.3.5 Define a new NetCDF variable

REVISION HISTORY:

INTERFACE:

Depending on the value of the argument action, this routine put NetCDF in the 'define'
mode or not.

INTERFACE:

DESCRIPTION:

DESCRIPTION:

.. neid

.. name

.. data_type,n

.. dims (:)

.. id

integer, intent(in)
character(len=*), intent(in)
integer, intent(in)
integer, intent(in)

integer, intent(out)

IMPLICIT NONE

IMPLICIT NONE

integer function set_attributes(ncid,id, &
units,long_name, &
valid_min ,valid_max ,valid_range , &
scale_factor,add_offset, &
FillValue,missing_value, &
C_format,FORTRAN_format)

USES:

Original author(s): Karsten Bolding &Hans Burchard
See ncdfout module

216

INPUT PARAMETERS:

OUTPUT PARAMETER&

This routine is used to define a new variable to store in a NetCDF file.

REVISION HISTORY:

7.3.6 Set attributes für a NetCDF variable.

USES:

INPUT PARAMETERS:

This routine is used to set a number of attributes for variables. The routine makes heavy use
of the optional keyword. The list of recognized keywords is very easy to extend. We have
included a sub-set of the COARDS conventions.

This routine is used to store a variable in the NetCDF file. The subroutine uses optional
parameters to find out which data type to save.

7.3.7 Store values in a NetCDF file

217

.. ncid,id
units,long_name

.. valid_min,valid_max

.. valid_range(2)

.. scale_factor,add_offset
FillValue,missing_value
C_format,FORTRAN_format

.. ncid,id,var_shape,nlev

.. iscalar

.. iarray(O:nlev)

.. scalar

.. array(O:nlev)

.. len, iret

.. vals(2)

integer, intent(in)
character(len=*),optional
REALTYPE, optional
REALTYPE, optional
REALTYPE, optional
REALTYPE , optional
character(len=*), optional

Original author(s): Karsten Bolding &Hans Burchard
See ncdfout module

integer function store_data(ncid,id,var_shape,nlev, &
iscalar,iarray,scalar,array)

integer
REAL_4B

integer, intent(in)
integer, optional
integer, optional
REALTYPE, optional
REALTYPE , optional

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

,. IMPLICIT NONE

REVISION HISTORY:

USES:

LOCAL VARIABLES:

INPUT PARAMETERS:

INTERFACE:

DESCRIPTION:

REVISION HISTORY:

218

219

8 Utilities

8.1 Introduction

In this section, different utility modules and routines are assembled, such as the time module
(see time. F90), keeping track of all time calculations, the mtridiagonal module with a
Gaussian solver for systems of equations with tri-diagonal matrices (see tridiagonal.F90),
and the eqstate module (see eqstate. F90) with different versions of the equation of state.
Also discussed are advection and diffusion routines, such as difLcenterO and adv_centerO
for variables located at the centers of the grid cells, Le. in general mean fiow variables.

8.2 Module util - parameters and interfaces for utilities

in a subroutine for advection methods teIls you more than reading only

This module is an encapsulation of a number of parameters used by different routines found
in the util directory. It should make it easier to read the code, since finding a line like

o
1

· . UPSTREAM 1

·. Pi 2
·. P2 3

·. Superbee = 4

· . MUSCL = 5

· . P2_PDM 6

.. Dirichlet

.. Neumann

.. flux = 1

.. value 2

.. oneSided 3

.. zeroDivergence = 4

type of advection scheme
integer,parameter
integer, parameter
integer,parameter
integer, parameter
integer, parameter
integer,parameter

boundary condition type
for diffusion scheme
integer,parameter
integer,parameter

boundary condition type
for advection schemes
integer,parameter
integer, parameter
integer,parameter
integer, parameter

IMPLICIT NONE

MODULE util

220

INTERFACE:

DESCRIPTION:

USES:

if (method.eq.UPSTREAM) then ...

if (method.eq.i) then ...

DEFINED PARAMETERS:

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: util.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

221

222

8.3 Diffusion schemes - grid centers

for al variables defined at the centers of the grid cells, and a diffusion coefficient lIy defined
at the faces. Relaxation with time scale TR towards observed values Yobs is possible. L sour
specifies a linear source term, and Qsour a constant source term. Central differences are
used to discretize the problem as discussed in section 3.1.2. The diffusion term, the linear
source term, and the linear part arising from the relaxation term are treated with an implicit
method, whereas the constant source term is treated fully explicit.
The input parameters Bcup and Bcdw specify the type of the upper and lower boundary
conditions, which can be either Dirichlet or Neumann-type. Bcup and Bcdw must have integer
values corresponding to the parameters Dirichlet and Neumann defined in the module util,
see section 8.2. Yup and Ydw are the values of the boundary conditions at the surface and the
bottom. Depending on the values ofBcup and Bcdw, they represent either fluxes or prescribed
values.

Note that fluxes entering a boundary cell are countedpositive by convention. The lower and
upper position for prescribing these fluxes are located at the lowest und uppermost grid faces
with index "0" and index "N", respectively. If values are prescribed, they are located at the
centers with index "1" and index "N", respectivly.

(231)

&

.. dt

.. N

Dirichlet, Neumannonly

8Y 8 (8Y) 1
8t = 8z Vy 8z - TR (Y - ~bs) +YLsour + Qsour ,

subroutine diff_center(N,dt,cnpar,h,Bcup,Bcdw,
Yup,Ydw,nuY,Lsour,Qsour,Taur,Yobs,Y)

IMPLICIT NONE

use util,
use mtridiagonal

number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

INTERFACE:

DESCRIPTION:

This subroutine solves the one-dimensional diffusion equation including source terms,

USES:

INPUT PARAMETERS:

Original author(s): Lars Umlauf
$Log: diff_center.F90,v $
Revision 1.3 2005/11/03 20:56:55 hb
Source term linearisation now fully explicit again, reversion to old method

"implicitness" parameter
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

type of upper BC
integer, intent(in)

type of lower BC
integer, intent(in)

value of upper BC
REALTYPE, intent(in)

value of lower BC
REALTYPE, intent(in)

diffusivity of Y
REALTYPE, intent(in)

linear source term
(treated implicitly)
REALTYPE, intent(in)

constant source term
(treated explicitly)
REALTYPE, intent(in)

relaxation time (s)
REALTYPE, intent(in)

observed value of Y
REALTYPE, intent(in)

INPUT/OUTPUT PARAMETERS:

REALTYPE

REVISION HISTORY:

.. cnpar

.. h(O:N)

.. Bcup

.. Bcdw

.. Yup

.. Ydw

.. nuY(O:N)

.. Lsour(O:N)

.. Qsour(O:N)

.. Taur(O:N)

.. Yobs(O:N)

.. Y(O:N)

223

224

Revision 1.2 2005/09/16 13:54:02 lars
added missing IMPLICIT NONE
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

DESCRIPTION:

INTERFACE:

225

.. Ydw

.. nuY(O:N)

.. Bcdw

.. Bcup

.. Yup

.. h(O:N)

.. dt

.. cnpar

.. N

Dirichlet, Neumann

value of lower BC
REALTYPE, intent(in)

value of upper BC
REALTYPE, intent(in)

linear source term

diffusivity of Y
REALTYPE, intent(in)

type of upper BC
integer, intent(in)

"implicitness" parameter
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

IMPLICIT NONE

time step (s)
REALTYPE, intent(in)

number of vertical layers
integer, intent(in)

use util, only
use mtridiagonal

subroutine diff_face(N,dt,cnpar,h,Bcup,Bcdw,Yup,Ydw,nuY,Lsour,Qsour,Y)

"'type of lower BC
integer, intent(in)

USES:

INPUT PARAMETERS:

8.4 Diffusion schemes - grid faces

Original author(s): Lars Umlauf
$Log: diff_face.F90,v $
Revision 1.3 2005/11/03 20:56:55 hb
Source term linearisation now fully explicit again, reversion to old method
Revision 1.2 2005/09/16 13:54:02 lars
added missing IMPLICIT NONE
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

226

(treated implicitly)
REALTYPE, intent(in)

constant source term
(treated explicitly)
REALTYPE, intent(in)

INPUT/OUTPUT PARAMETERS:

REALTYPE

REVISION HISTORY:

.. Lsour(O:N)

.. Qsour(O:N)

.. Y(O :N)

where

...

(232)

(234)

(233)

(235)

(236)

(237)

(238)

for Wi > 0,

for Wi < 0,

1 l
zFace

• I I
Fr = "A Y (z)dz .

I...l.t zface-wtl.t•

DESCRIPTION:

This subroutine solves a one-dimensional advection equation of the form

oY = _woY = _ (OF _ yOw) ,
ot OZ OZ oz

where F = wY is the flux caused by the advective velocity, w.
The discretized form of (232) is

n+l n I::i.t (pn pn "trn ())y = y; - - 0 - 01 - .I" Wh - Wh 1
~ ~ hi ~ ~- ~ -,

where the integers n and i correspond to the present time and space level, respectively. Fluxes
are defined at the grid faces, the variable Yi is defined at the grid centers. The fluxes are
computed in an upstream-biased way,

For a third-order polynomial approximation of Y (see Pietrzak (1998)), these fluxes can be
written the in so-called Lax-Wendroff form as

Fi Wi (Yi + ~~t (1 - ICil) (Yi+l - Yi))

Ei = Wi (Yi+l + ~~i (1 - ICil) (Yi - Yi+l))

where Ci = 2wi l::i.t/(hi + hi+l) is the Courant number. The factors appearing in (235) are
defined as

8.5 Advection schernes - grid centers

227

subroutine adv_center(N,dt,h,ho,ww,Bcup,Bcdw,Yup,Ydw,method,Y)

INTERFACE:

1 1 1 1
(Yi = 2" + "6 (1- 21 cil) , ßi = 2" - "6 (1 - 21cil)

The upstream and downstream slope parameters are

+ Yi - Yi-l - Yi+2 - Yi+l
r 0 = r 0 = -::-::-----::-:-

~ Yi+l - Yi' ~ Yi+l - Yi
To obtain monotonie and positive schemes also in the presence of strong gradients, so-called
slope limiters are aplied for the factors ~t and ~i. The two most obvious cases are the
first-order upstream discretisation with ~t = ~i = 0 and the Lax-Wendroff scheme with
~t = ~i = 1. The subroutine adv_center. F90 provides six different slope-limiters, all
discussed in detail by Pietrzak (1998):

228

USES:

.. h(O:N)

.. dt

.. N
number of vertical layers
integer, intent(in)

time step (s)
REALTYPE, intent(in)

layer thickness (m)
REALTYPE, intent(in)

• first-order upstream (method=UPSTREAM)

INPUT PARAMETERS:

• second-order upstream-biased polynomial scheme (method=Pl, not yet implemented)

• third-order upstream-biased polynomial scheme (method=P2)

• third-order scheme (TVD) with Superbee limiter (method=Superbee)

• third-order scheme (TVD) with MUSCL limiter (method=MUSCL)

• third-order scheme (TVD) with ULTIMATE QUICKEST limiter (method=P2_PDM)

use util
IMPLICIT NONE

If during a certain time step the maximum Courant number is larger than one, a split iteration
will be carried out which guarantees that the split step Courant numbers are just smaller
than 1.
Several kinds of boundary conditions are implemented for the upper and lower boundaries.
They are set by the integer values Bcup and Bcdw, that have to correspond to the parameters
defined in the module util, see section 8.2. The following choices exist at the moment:
For the value flux, the boundary values Yup and Ydw are interpreted as specified fluxes at
the uppermost and lowest interface. Fluxes into the boundary cells are counted positive by
convention. For the value value, Yup and Ydw specify the value of Y at the interfaces, and
the flux is computed by multiplying with the (known) speed at the interface. For the value
oneSided, Yup and Ydw are ignored and the flux is computed from a one-sided first-order
upstream discretisation using the speed at the interface and the value of Y at the center of
the boundary cello For the value zeroDivergence, the fluxes into and out of the respective
boundary cell are set equal. This corresponds to a zero-gradient formulation, or to zero flux
divergence in the boundary cells.
Be careful that your boundary conditions are mathematically weIl defined. For example,
specifying an inflow into the boundary cell with the speed at the boundary being directed
outward does not make sense.

Original author(s): Lars Umlauf
'" $Log: adv_center.F90,v $

Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

REALTYPE

229

.. Y(O :N)

.. one6th=1.0dO/6.0dO

.. itmax=100

.. method

.. Ydw

.. Yup

.. Bcdw

.. Bcup

.. ww(O:N)

.. ho(O:N)

parameter
parameter

REALTYPE,
integer,

type of advection scheme
integer, intent(in)

value of lower BC
REALTYPE, intent(in)

value of upper BC
REALTYPE, intent(in)

type of lower BC
integer, intent(in)

type of upper BC
integer, intent(in)

old layer thickness (m)
REALTYPE, intent(in)

vertical advection speed
REALTYPE, intent(in)

REVISION HISTORY:

INPUT/OUTPUT PARAMETERS:

DEFINED PARAMETERS:

INTERFACE:

DESCRIPTION:

.. au,bu,cu,du

MODULE mtridiagonal

Original author(s): Hans Burchard &Karsten Bolding
$Log: tridiagonal.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/17 15:33:47 lars
removed tabs
Revision 1.4 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:06:33 kbk
removed tabs
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

public init_tridiagonal,tridiagonal

subroutine init_tridiagonal(N)

230

8.6 Module mtridiagonal - solving the system

REALTYPE, dimension(:), allocatable

Solves a linear system of equations with a tridiagonal matrix using Gaussian elimination.

PUBLIC MEMBER FUNCTIONS:

PUBLIC DATA MEMBERS:

REVISION HISTORY:

8.6.1 Allocate memory

INTERFACE:

USES:

DESCRIPTION:

This routines allocates memory necessary to perform the Gaussian elimination.

DESCRIPTION:

INTERFACE:

USES:

.. N

.. N,fi,lt

.. value(O:N)

integer, intent(in)

'" REALTYPE

integer, intent(in)

Original author(s): Hans Burchard & Karsten Bolding
$Log: tridiagonal.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/17 15:33:47 lars
removed tabs
Revision 1.4 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:06:33 kbk
removed tabs

subroutine tridiagonal(N,fi,lt,value)

Original author(s): Hans Burchard &Karsten Bolding

231

IMPLICIT NONE

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

OUTPUT PARAMETERS:

INPUT PARAMETERS:

8.6.2 Simplified Gaussian elimination

REVISION HISTORY:

A linear equation with tridiagonal matrix structure is solved here. The main diagonal is
stored on bu, the upper diagonal on au, and the lower diagonal on cu, the right hand side is
stored on du. The method used here is the simplified Gauss elimination, also called Thomas
algorithm.

232

Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

233

Computes in-situ density, Pis, and buoyancy from the salinity, s, the potential temperature,
e, and thermodynamic pressure, p, according to a specified equation of state,

(239)

IMPLICIT NONE

public init_eqstate , eqstate1 ,eos_alpha, eos_beta,unesco ,rho_feistel

Original author(s): Hans Burchard &Karsten Bolding
$Log: eqstate.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:06:33 kbk

Pis = ß(s, e,p)

4. a general linear form of the equation of state

3. the linearised equation of state

1. the fuH equation of state - including pressure effects

2. the fuH equation of state - without pressure effects

default: all is private.
"" private

MODULE eqstate

USES:

PUBLIC MEMBER FUNCTIONS:

REVISION HISTORY:

1. The UNESCO equation of state according to Fofonoff and Millard (1983)

2. The Jackett et al. (2005) equation of state

Methods:

At present, two different modes and four different methods are implemented. Modes:

DESCRIPTION:

INTERFACE:

8.7 Module eqstate - the equation of state

234

INTERFACE:

DESCRIPTION:

., namlstinteger, optional, intent(in)

USES:

IMPLICIT NONE

INPUT PARAMETERS:

Here, the namelist eqstate in the namelist file gotmrun. inp is read.

Original author(s): Hans Burchard & Karsten Bolding

REVISION HISTORY:

8.7.1 Read the namelist eqstate

subroutine init_eqstate(namlst)

removed tabs
Revision 1.3 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/27 19:44:32 gotm
Fixed an initialisation bug
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

8.7.2 Select an equation of state

REALTYPE function eqstate1(S,T,p,g,rho_0)

DESCRIPTION:

Calculates the in-situ buoyancy according to the selected method. S is salinity S in psu, T
is potential temperature () in °C (ITS-90), p is gauge pressure (absolute pressure - 10.1325
bar), gis the gravitational acceleration inms-2 and rho_O the reference density in kgm-3•

eqstate1 is the in-situ-density in kgm-3. For eq_state_method=l, the UNESCO equation
of state is used, for eq_state_method=2, the Jackett et al. (2005) equation of state is used.
Here, some care is needed, since the UNESCO equation used bar for pressure and the Jackett
et al. (2005) uses dbar for pressure. For values of eq_state_method ranging from 1 to 4, one
of the following methods will be used.

"'" INTERFACE:

IMPLICIT NONE

USES:

(240)

(241)

.. S, T,p

.. g,rho_O
REALTYPE,intent(in)
REALTYPE,optional,intent(in)

IMPLICIT NONE

a =_~ (OPiS) =! (OBiS)
Po oT s 9 oT s'

P = Po + dtrO(T - To) + dsrO(S - So)

REALTYPE function eos_alpha(S,T,p,g,rho_O)

Original author(s): Hans Burchard & Karsten Bolding

4. a linear equation of state with prescribed rhoO, TO, SO, dtrO, dsrO according to

1. the full equation of state for sea water inc1uding pressure dependence.

2. the equation of state for sea water with the pressure evaluated at the sea surface as
reference level. This is the choice for computations based on potential temperature and
density.

3. a linearised equation of state. The parameters TO, SO and pO have to be specified in the
namelist.

235

USES:

INPUT PARAMETERS:

REVISION HISTORY:

Computes the thermal expansion coefficient defined by

DI::SCRIPTION:

8.7.3 Compute thermal expansion coefficient

INTERFACE:

where Bis denotes the in-situ buoyancy. The computation is carried out by a finite differ­
ence approximation of (241), requiring two evaluations of the equation of state. Note, that
comparing (241) with (240) it follows that a = -dtrOjPo.

where Bis denotes the in-situ buoyancy. The computation is carried out by a finite differ­
ence approximation of (242), requiring two evaluations of the equation of state. Note, that
comparing (242) with (240) it follows that ß = dsrO/PO,

(242)

.. S,T,p

.. g,rho_O

.. S,T,p

.. g,rho_O

REALTYPE,intent(in)
REALTYPE,optional,intent(in)

Original author(s): Lars Umlauf

Original author(s): Lars Umlauf

REALTYPE,intent(in)
REALTYPE,optional,intent(in)

INPUT PARAMETERS:

REVISION HISTORY:

IMPLICIT NONE

REALTYPE function eos_beta(S,T,p,g,rho_O)

REALTYPE function unesco(S,T,p,UNPress)

236

8.7.4 Compute saline contraction coefficient

INTERFACE:

DESCRIPTION:

Computes the saline contractioncoefficient defined by

USES:

INPUT PARAMETERS:

REVISION HISTORY:

8.7.5 The UNESCO equation of state

INTERFACE:

INTERFACE:

.. S,T,p

.. UNPress

.. s,th,p

.. UNPress

IMPLICIT NONE

INPUT PARAMETERS:

237

DESCRIPTION:

USES:

Original author(s): Hans Burchard &Karsten Bolding

USES:

Original author(s): Hans Burchard & Karsten Bolding

REALTYPE, intent(in)
LOGICAL, intent(in)

REVISION HISTORY:

Computes the in-situ density in (239) according to the UNESCO equation of state for sea
water (see Fofonoff and Millard (1983)). The pressure dependence can be switched on
(UNPress=. true.) or off (UNPress=. false.). S is salinity S in psu, T is potential tem­
perature e in °C (ITS-90), pis gauge pressure (absolute pressure - 10.1325 bar) and unesco
is the in-situ density in kg m-3. The check value is unesco (35,25,1000) = 1062.53817 .

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE function rho_feistel(s,th,p,UNPress)

DESCRIPTION:

8.7.6 The Jackett et al. (2005) equation of state

REALTYPE, intent(in)
LOGICAL, intent(in)

REVISION HISTORY:

Computes the in-situ density in (239) according to the Jackett et al. (2005) equation of
state for sea water, which is based on the Gibbs potential developed by Feistel (2003). The
pressure dependence can be switched on (UNPress=. true.) or off (UNPress=. false.). s is
salinity S in psu, th is potential temperature e in °C (ITS-90), p is gauge pressure (absolute
pr~ssure - 10.1325 dbar) and rho_feistel is the in-situ density in kgm-3 . The check value
~rho_feistel(20,20,1000) = 1017.728868019642.

INTERFACE:

DESCRIPTION:

.. N,cols

.. obs_z(O:N),obs_prof(O:N,cols)

.. nlev

.. model~z(O:nlev)

.. model_prof(O:nlev,cols)

intent(in)
intent(in)
intentCin)
intent(in)

integer,
REALTYPE ,
integer,
REALTYPE,

REALTYPE, intent(out)

subroutine gridinterpol(N, cols ,obs_z, obs_prof ,nlev,model_z,model_prof)

IMPLICIT NONE

Original author(s): Karsten Bolding & Hans Burchard
$Log: gridinterpol.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

238

8.8 Interpolate from observation space to model grid

USES:

This is a utility subroutine in which observational data, which might be given on an arbitrary,
but structured grid, are linearly interpolated and extrapolated to the actual (moving) model
grid.

INPUT PARAMETERS:

OUTPUT PARAMETERS:

REVISION HISTORY:

239

&

·. nlev

·. g,cp,rho_O
heat,p_e

· . rad(O:nlev)

· . T(O:nlev)

·. S(O:nlev)

tFlux,sFlux
.. btFlux, bsFlux
.. tRad(O:nlev)
.. bRad(O:nlev)

intent(in)
intent(in)
intent(in)
intent(in)
intent(in)
intent(in)

2. the surface salinity fiux caused by the value of P-E (precipitation-evaporation),

3. and the short wave radiative fiux.

1. the surface heat fiux,

REALTYPE, intent(out)
REALTYPE, intent(out)
REALTYPE, intent(out)
REALTYPE, intent(out)

subroutine convert_fluxes(nlev,g,cp,rho_O,heat,p_e,rad,T,S,
tFlux,sFlux,btFlux,bsFlux,tRad,bRad)

integer,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,
REALTYPE,

OUTPUT PARAMETERS:

REVISION HISTORY:

use eqstate
IMPLICIT NONE

INPUT PARAMETERS:

USES:

DESCRIPTION:

Additionally, it outputs the temperature fiux: (tFlux) corresponding to the surface heat fiux,
the salinity fiux (sFlux) corresponding to the value P-E, and the profile of the temperature
fiux (tRad) corresponding to the profile of the radiative heat fiux.
This function is only called when the KPP turbulence model is used. When you call the KPP
routines from another model outside GOTM, you are on your own in computing the fiuxes
required by the KPP model, because they have to be consistent with the equation of state
used in your model.

This subroutine computes the buoyancy fiuxes that are due to

INTERFACE:

8.9 Convert between buoyancy f1.uxes and others

240

Original author(s): Lars Umlauf
$Log: convert_fluxes.F90,v $
Revision 1.2 2005/08/11 12:34:32 lars
corrected indentation for Protex
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

INTERFACE:

USES:

.. timestr

.. start='2000-01-01 00:00:00'

.. stop

.. timestep

.. fsecs,simtime

.. julianday,secondsofday

.. timefmt

.. MinN,MaxN

.. init_time, calendar_date

.. julian_day, update_time

.. write_time_string

.. time_diff

public
public
public
public
public
public
public
public

public
public
public
public

character(len=19),
character(len=19),
character(len=19),
REALTYPE,
REALTYPE,

"'" integer,
integer,
integer,

MODULE time

Original author(s): Karsten Bolding & Hans Burchard
$Log: time.F90,v $
Revision 1.8 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.7 2004/08/17 15:45:16 lars
corrected typos in docu
Revision 1.6 2003/03/28 09:38:54 kbk
removed tabs

IMPLICIT NONE
default: all is private.
private

241

REVISION HISTORY:

PUBLIC DATA MEMBERS:

PUBLIC MEMBER FUNCTIONS:

DESCRIPTION:

This module provides a number of routines/functions and variables related to the mode time
in GOTM. The basic concept used in this module is that time is expressed as two integers
- one is the true Julian day and the other is seconds since midnight. All calculations with
time then become very simple operations on integers.

8.10 Module time - keep control of time

242

INTERFACE:

.. MinN,MaxNinteger, intent(inout)

subroutine init_time(MinN,MaxN)

Revision 1.5 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.4 2003/03/28 07:56:05 kbk
removed tabs
Revision 1.3 2003/03/10 13:48:15 lars
changed intent(out) to intent(inout) for MaxN in init_time
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

subroutine calendar_date(julian,yyyy,mm,dd)

Original author(s): Karsten Bolding & Hans Burchard

IMPLICIT NONE

8.10.1 Initialise the time system

DESCRIPTION:

USES:

The subroutine init_timeO initialises the time module by reading a namelist and take
actions according to the specifications. On exit from this subroutine the two variables MinN
and MaxN have weH defined values and can be used in the time loop.

INPUT/OUTPUT PARAMETERS:

REVISION HISTORY:

8.10.2 Convert true Julian day to calendar date

INTERFACE:

DESCRIPTION:

.. julian

.. yyyy,mm,dd

.. yyyy,mm,dd

.. julian

integer

integer

integer

integer

OUTPUT PARAMETERS:

REVISION HISTORY:

INPUT PARAMETERS:

IMPLICIT NONE

subroutine julian_day(yyyy,mm,dd,julian)

Original author(s): Karsten Bolding & Hans Burchard

243

Original author(s): Karsten Bolding & Hans Burchard

IMPLICIT NONE

USES:

Converts a calendar date to a Julian day. Based on a similar routine in Numerical Recipes.

OUTPUT PARAMETERS:

DESCRIPTION:

INTERFACE:

USES:

8.10.3 Convert a calendar date to true Julian day

REVISION HISTORY:

INPUT PARAMETERS:

Converts a Julian day to a calendar date - year, month and day. Based on a similar routine
in Numerical Recipes.

244

INTERFACE:

timestr

.. n

.. jul,secs

Original author(s): Karsten Bolding &Hans Burchard

subroutine update_time(n)

8.10.4 Keep track of time (Julian days and seconds)

Based on a starting time this routine calculates the actual time in a model integration using
the number of time steps, n, and the size of the time step, timestep. More public variables
can be updated here if necessary.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

subroutine read_time_string(timestr,jul,secs)

integer, intent(in)

Original author(s): Karsten Bolding & Hans Burchard

DESCRIPTION:

REVISION HISTORY:

8.10.5 Convert a time string to Julian day andseconds

INTERFACE:

DESCRIPTION:

character(len=19)

integer, intent(out)

Converts a time string to the true Julian day and seconds of that day. The format of the
time string must be: yyyy-mm-dd hh: hh: ss

OUTPUT PARAMETERS:

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

"'"USES:

INTERFACE:

DESCRIPTION:

.. jUl1,secs1,jul2,secs2

:: timestr

:: jul,secs

character(len=19)

integer, intent(in)

integer, intent(in)

INPUT PARAMETERS:

REVISION HISTORY:

USES:

245

Original author(s): Karsten Bolding & Hans Burchard

IMPLICIT NONE

Original author(s): Karsten Bolding & Hans Burchard

subroutine write_time_string(jul,secs,timestr)

integer FUNCTION time_diff(jul1,secs1,jul2,secs2)

IMPLICIT NONE

OUTPUT PARAMETERS:

'"This functions returns the time difference between two dates in seconds. The dates are given
as Julian day and seconds of that day.

USES:

8.10.7 Return the time difference in seconds

REVISION HISTORY:

INPUT PARAMETERS:

Formats Julian day and seconds of that day to a nice looking character string.

DESCRIPTION:

INTERFACE:

8.10.6 Convert Julian day and seconds into a time string

246

247

9 Extra features

Here, some extra features are stored which are up to now

• the seagrass module.

The seagrass scenario in section 9.1 investigates the Verduin and Backhaus (2000) seagrass­
current simulations.

DESCRIPTION:

INTERFACE:

u,v,h,drag,xP
out_fmt,write_results,ts

use meanflow, only:
use output, only:

default: all is private.
private

public init_seagrass, calc_seagrass, end_seagrass

9.1 Module seagrass - sea grass dynamics

248

module seagrass

USES:

Original author(s): Hans Burchard & Karsten Bolding
"" $Log: seagrass. F90, v $

Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:28:36 kbk
removed tabs
Revision 1.2 2003/03/10 09:13:09 gotm
Improved documentation
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

In this module, seagrass canopies are treated as Lagrangian tracers, which either advect
passively with the horizontal current speed or rest at their excursion limits and thus exert
friction on the mean fiow, see Verduin and Backhaus (2000). Turbulence generation due to
seagrass friction is possible, see namelist file seagrass. inp. The extra production term in
the balance of TKE, (150), is included as described in section 4.8.

PUBLIC MEMBER FUNCTIONS:

REVISION HISTORY:

249

(243)

.. namlst

.. fname

.. unit

., nlev

.. h(O :nlev)

intent(in)
intent(in)
intent(in)
intent(in)
intent(in)

integer,
character(len=*),
integer,
integer,
REALTYPE,

subroutine calc_seagrass(nlev,dt)

IMPLICIT NONE

Original author(s): Karsten Bolding &Hans Burchard

Here the time depending seagrass equation suggested by Verduin and Backhaus (2000) is
calculated. In order to explain the basic principle, an idealised example is examined here
with a simplified momentum equation,

subroutine init_seagrass(namlst,fname,unit,nlev,h)

DESCRIPTION:

INTERFACE:

9,.1.2 Update the sea grass model

REVISION HISTORY:

USES:

INPUT PARAMETERS:

Here, the seagrass namelist seagrass. inp is read and memory is allocated for some relevant
vectors. Afterwards, excursion limits and friction coefficients are read from a file. The
uppermost grid related index for the seagrass canopy is then calculated.

DESCRIPTION:

9.1.1 Initialise the sea grass module

INTERFACE:

IMPLICIT NONE

(244)

(245)

(246)

for lXI = Xmax ,

else .

for lXI< X max or X . u < 0,
else,

.. nlev

.. dt
integer, intent(in)
REALTYPE, intent(in)

integer ·. i
REALTYPE ·. dist
REALTYPE ·. grassfric(O:nlev)
REALTYPE · . excur(O:nlev)
REALTYPE · . z(O:nlev)
REALTYPE ·. xxP(O:nlev)

and the Lagrangian tracer equation for seagrass,

250

Original author(s): Karsten Bolding &Hans Burchard
BOC

where X is the Langrangian horizontal excursion of the seagrass. The seagrass friction coef­
ficient, Gf' is only non-zero at heights where seagrass tracers are at their excursion limits:

The maximum excursion limits X max and the friction coefficients Gjax are read from a file.
The production of turbulence is ca1culated here as the sum of shear production and friction
loss at the seagrass leaves,

USES:

which is added to the usual shear-production term as illustrated in (146). The efficiency
coefficient of turbulence production by sea-grass friction, 0'.8g, is denoted as xP_rat in the
code. It has to be read-in from the canopy namelist. For details and example calculations,
see Burchard and Bolding (2000).

INPUT PARAMETERS:

REVISION HISTORY:

LOCAL VARIABLES:

251

9.1.3 Finish the sea grass calculations

INTERFACE:

subroutine end_seagrass

DESCRIPTION:

Nothing done yet - supplied for completeness.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding &Hans Burehard

9.1.4 Storing the results

INTERFACE:

subroutine save_seagrass

DESCRIPTION:

Here, storing of the sediment profiles to an ascii or a netCDF file is managed.

USES:

use output, only: out_fmt
ifdef NETCDF_FMT

use nedfout, only: neid
~use nedfout, only: lon_dim,lat_dim,z_dim,time_dim,dims
use nedfout, only: define_mode,new_ne_variable,set_attributes,store_data

endif

IMPLICIT NONE

ifdef NETCDF_FMT
inelude "netedf.ine"
endif

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burehard

252

253

Table 10: List of GOTM scenarios described in this section

I Scenario name I
10.1.1 Couette-fiow couette
10.1.2 Pressure-gradient driven channel fiow channel
10.1.3 Breaking surface-waves wave_breaking
10.1.4 Some entrainment scenarios entrainment
10.1.5 Estarine dynamics estuary
10.2.1 Fladenground Experiment flex
10.2.2 Annual North Sea simulation nns_annual
10.2.3 Seasonal North Sea simulation nns_seasonal
10.2.4 Liverpool Bay liverpool_bay
10.2.5 Gotland Deep in Baltic Sea gotland_deep
10.2.6 Middelbank in Baltic Sea reynolds
10.3.1 Ocean Weather Ship Papa ows_papa
10.4.1 Lago Maggiore lago_maggiore

ISection ITitle

In this section, all scenarios included in the GOTM homepage for download are briefiy dis­
cussed here. An overview is given in table 10. Information about how to install and run the
scenarios can be found on the GOTM homepage, www.gotm.net.

10 GOTM scenarios

10.1 Idealised scenarios

In this subsection, the performance of GOTM in some idealised turbulent fiows is discussed. In
these fiows there are regions, where certain analytical solutions, like the law of the wall or the
Rouse profile, apply. These solutions can be used to test the correctness of the implementation
and the accuracy of the numerical schemes. The theoretical background is discussed in section
4 and in the review article of Umlauf and Burchard (2005).
The first few of these idealised fiows serve also as a short tutorial for new GOTM users.
We supplied several input files for these scenarios to illustrate the performance of different
turbulence models for the same fiow. It is recommended to start with the Couette-fiow
described next.

This is the simplest example designed for new users. It will tell you about how to run a simple
unstratified fiow withthe most frequently used turbulence models. The term Couette-fiow
fiow traditionally denotes an uni-directional, unstratified, non-rotating fiow confined between
two plates, of which one is moving with constant velocity. No pressure-gradient is applied.

10.1.1 Couette-flow

254

It is clear that this fiow can also serve as a very simple model of the steady-state fiow in a
horizontally infinite ocean of finite depth, driven solely by a shear-stress at the surface.
A set of GOTM input files (containing all specifications needed for the runs) has been provided
for 3 different turbulence models in the sub-directories kepsilon_inp/, komega_inp/ and
MellorYamada_inp/. Copy all files from the subdirectory kepsilon_inp/ to the directory
with the GOTM executable. We will call this directory the current directory in the following.
How to install GOTM and create the executable is described on the GOTM web page at
www.gotm.net . Take some time to have a look at the contents of these files.
In our example, the prescribed surface stress is T x = 1.027 Pa, a quantity that can be set
in the input file airsea. inp. This file contains many other variables that are related to the
air-sea fiuxes driving the model.
Parameters concerning the run are set in the input file gotmrun. inp. There, you will find for
example the specification of the water depth (10 m in this case) and the date and time of this
run (24 hours until a steady-state is reached). The input file gotmrun. inp contains mainly
parameters concerning the model run, the time step, the model time, the output format, etc.
All information about the turbulence models is read-in from the file gotmturb. inp. Having
a look in this file, you see that we selectedtke_method = 2 and length_scale_method = 8,
which corresponds exactly to the k-f. model described in section 4.15. The model parameters
are given in the keps namelist. In this simple example, no Explicit Algebraic Stress Model
(see section4.2) is solved in addition to the transport equations for k and E. If you compare
this gotmturb. inp with those found in the other sub-directories(e.g. for the Mellor-Yamada
model) it is easy to see how different turbulence models can be activated by changing e.g.
the value for length_scale_method.
If you run this scenario, GOTM will write information about the run and the turbulence
model to your screen: What are the parameters of the run, like time step, date, layers, etc?
What are the model parameters of the turbulence model? What value has the von Karman
constant, "'? What value has the decay rate in homogeneous turbulence, d? And so on. All
other output is written to files called couette. out or couette. nc, depending on whether
you selected ASCII or NetCDF output in gotmrun. inp.
If you analyse the results, you will find that the turbulent kinetic energy is constant over
the whole depth, whereas the profiles of the turbulent diffusivity and the length scale are
4tpproximately parabolic. The length scale approaches the constant slope '" ;::;:j 0.433 near
the boundaries. If you want to change this value, you can set compute_kappa = .false.
in gotmturb. inp. Then, GOTM will automatically change the model constants of the k-f.
model to compute the value of", prescribed in gotmturb. inp (see section 4.7.4).
There are other models you can use to calculate the Couette-fiow. Ifyou copy all files from the
directory MellorYamada_inp/ to the current directory, GOTM will use the Mellor-Yamada
model described in section 4.14 with parameters set in gotmturb. inp. A special role plays
the so-called 'generic model' described in section 4.16. Other modellike the .k-f. model or the
k-w model by Umlauf et al. (2003) can be considered as special cases of the generic model.
If you copy e.g. the files from komega_inp/ to the current directory, the k-w model is run
for the couette case. For this simple fiow, however, model results will be quite similiar in all
cases.

255

10.1.2 Pressure-gradient driven channel flow

A pressure-gradient driven open channel f1.ow is investigated here with a prescribed surface
slope ßx (= -10-5 at a fixed water depth of 10 m. No surface stress is applied, and rotation
and stratification are neglected. The simulation is run for 24 h until a steady-state is reached.
The specification of all these parameters and those related to the turbulence models by use
of the inp-files is analogous to section 10.1.1.
The surface slope is set in the namelist ext_pressure in the input file obs. inp. How the
parameters given in this file are interpreted by GOTM is described in section 3.7 and briefl.y
also in obs. inp. This file typically contains information about "observed" quantities that are
used to either force the model (like internal and external pressure gradients) or for comparision
with computed results. In the latter case, "observed" quantities are displayed in the output
file next to the computed quantities.
If you want to try out the different turbulence models mentioned in the couette-case (see
section 10.1.1), simply copy the corresponding files from the respective subdirectories to
the current directory with the GOTM executable. Note that in gotmturb. inp we now set
turb_method = 3. This implies that the turbulent f1.uxes are computed from a second-order
turbulence model. A new thing in GOTM 3.2 is that parameters for the second-order model
can now be directly specified via the "send" namelist in gotmturb. inp. For the theoretical
background of this, please see section 4.2
In the following publications some of the results in comparison to laboratory dataare shown:
Burchard et al. (1998), Burchard .et al. (1999), Burchard (2002b). The simulation has been
motivated by the work of Baumert and Radach (1992).

10.1.3 Turbulence under breaking surface waves

In this scenario, it is demonstrated how the effect of breaking surface waves is parameterised
in one- and two-equation models. This is usua11y done by injecting turbulent kinetic energy
(TKE) at the surface, see Craig and Banner (1994) and Craig (1996). The rate of TKE
injected is proportional to the surface friction velocity cubed, as defined in (209). Injection
of TKE at the surface leads to a thin surface boundary layer, in which the vertical transport
of TKE and its dissipation approximately balance. This layer is sometimes called the trans­
port layer. Even though there can be considerable shear in this layer, shear-production of
turbulence is negligible by definition (also see section 4.7.4).
Different types of models. are available in GOTM for the wave-breaking scenario. The key
change in gotmturb. inp for runs with TKE injection is to set ubc_type = 2, telling GOTM
to set the type of the upper boundary to TKE injection. The decay rates of the TKE and the
dissipation rate in the wave-affected layer are then an natural outcome of the model. Note
that with the KPP model, this scenario cannot be run.

• For theone-equation models, as discussed in Craig and Banner (1994), a linearly in­
creasing macro length scale, l, is postulated with a slope of K, = 0.4. This is analogous to
the law of the wall, even though there is no physical evidence for the assumption that the
length-scale underbreaking waves behaves identically as in wall-bounded shear-f1.ows.
As shown by Craig and Banner (1994), an analytical solution for the one-equation

256

model can be derived, but only inside the transport layer, according to which the TKE
(and all other turbulence quantities) follows a power-Iaw (see discussion in section 4.7.3
and section 4.7.4).

If you want to simulate wave breaking with a model of this type, simply copy all files
from prescribed_inp/ to the current directoy, and run GOTM. A dynamic equation
for k is used, but the length scale is fixed, and prescribed by a triangular shape with
slope K. (length_scale_method = 2 in gotmturb. inp, see section 4.19).

• For two-equation models, the slope of the length scale in the transport layer is not simply
prescribed and generally not equal to K.. Umlauf et al. (2003) generalized the solution
of Craig and Banner (1994) and derived analytical solutions for the non-linear system
of equations describing the behaviour of two-equation models for injection of TKE at
the surface. They showed that the TKE follows a power-Iaw and that the length scale
increases linearly, however, with a slope L =1= K.. They also compared the spatial decay
of turbulence in grid stirring experiments (thought as an analogy to wave-breaking) to
the results of several two-equation models.

A numerical solution of the k-E model can be obtained by copying the files in
kepspilon_inp to the current directory, and insuring that compute_kappa = . true.
and sig_peps = .false. in gotmturb. inp. Because the spatial decay rate of the
TKE isvery large for thismodel, the wave-affected layer is very small, and of the or­
der ofonlya few tens ofcentimeters for this scenario. As discussed by Umlauf et al.
(2003), this disadvantage can be overcome by using the k-w model with parameters
given in gotmturb. inp in the directory komega_inp/. The decay rates of this model
nicely correspond to those measured in the laboratory grid strirring experiments. The
Mellor-Yamada model has also been investigated by Umlauf et al. (2003), but for this
model, again, decay was shown to be too strong. In addition, the decay rate depends
in an unphysical way on the wall-function required in this model.

• As an alternative to the standard k-E model, Burchard (2001a) suggested to make the
turbulent Schmidt number for the E-equation, (163), a function of the production-to­
dissipation ratio, PIE. As shown in detail in this paper, the variable Schmidt number
can be used to "force" the k-E model to compute K. for the slope of the length Bcale,
even under breaking waves. Then, obviously, the solution of the k-E model corresponds
to the solution of the simpler one-equation model investigated by Craig and Banner
(1994). Note again, however, that there is no physical evidence for 1= K.(z + zo) in the
wave-affected boundary layer.

If you want to simulate wave breaking with this model, simply copy the files from
kepspilon_inp/ to the current directory, and make sure that you set compute_kappa
= .false. and sig_peps = .true. in gotmturb. inp. Results are quite similar to
those with the prescribed length scale.

• Umlauf and Burchard (2003) analysed the properties of a whole dass of two-equation
models for the case of TKE injection at the surface. They suggested a 'generic'

257

model which could satisfy the power-Iaws under breaking waves for any desired de­
cay rate, a, and length scale slope, L. This model is activated with the input files
from generic_inp/. Users can select any reasonable values for a and L (and many
others parameters like K and d), and GOTM will automatically generate a two-equation
model with exactly the desired properties. Parameters are computed according to the
formulae described in section 4.7.3.

In all cases a surface-stress of Tx = 1.027 N m".-2 was applied. After a runtime of 2 days, a
steady-state with a constant stress over the whole water column of 20 m depth is reached.
The wave affected layer can be found in the uppermost meter or so, and because of the strong
gradients in this region we used a refined grid close to the surface. The parameters for such a
'zoomed grid' can be set in the input file gotmmean. inp according to the decription in section
3.3. If you want to compare the computed profiles with the analytical solutions in (108),
you'll need a specification of the parameter K. This parameter is computed in k_bc 0 to be
foundain turbulence.F90, where you can add a few FORTRAN lines to write it out.

10.1.4 Some entrainment scenarios

Thistest case describes three idealised entrainment scenarios as discussed in the review paper
of Umlauf and Burchard (2005). These are: wind-driven entrainment into a linearly stratified
fluid, wind-driven entrainment into a two-Iayer fluid, and entrainment in free convection. As
in the cases before, the input files for different turbulence closure models are contained in a
number of sub-directories. The entrainment test cases is also thefirst test for the GOTM
implementation of the KPP turbulence model described in section 4.35.
For all input files, the default is a linear density stratification due to a not necessarly lin­
ear temperature stratification (because the equation of stateis not necessarily linear). The
stratification corresponds to N 2 = 1 .10-4 8-2. Salinity is constant. Have look into obs. inp
to understand how different types of initial stratifcations can be specified in GOTM. The
water depth is H = 50 m, deep enough for the surface induced mixing not to reach the bed
within the 24h of simulation. Rotation is neglected. By default, a constantwind stress of
Tx = 0.1027 Pa isset in airsea. inp.
Nöte, that for all turbulence models, except the Mellor-Yamada model, we set compute_c3
= .true. in gotmturb. inp, which means that the model constant CES in (163) (or its coun­
terpart in all other models) is computed from a prescribed steady-state Richardson-number,
Rist (see discussion in the context of (114)). Some more discussion is given in Burchard and
Bolding (2001) and Umlauf and Burchard (2005). As pointed out in these papers, it is the
valueof the steady-state Richardson number (and thus the value of CES) that determines the
mixed layer depth in almost all shear-driven entrainment scenarios.
To run the Mellor-Yamada model, use the input files in MellorYamada_inp/. Looking at the
results you will realize that this model is not at all in accordance with the experimental results
of Price (1979) for the entrainment in a linearly stratified fluid. The reason can be traced back
to the behaviour of the turbulent length scale in the strongly stratified thermocline. Galperin
et al. (1988) suggested to clip the length scale at a certain value to circumvent this problem.
Their solution can be activated by setting length_lim = .true. in gotmturb. inp. A second

•

258

solution has been suggested by Burchard (2001b), who computed the model constant E3 in
(160) from the steady-state Richardson-number as described above. To activate this method,
select compute_c3 = . true. (and length_lim = . false. because clipping is not needed
any more).
This scenario has been used by us in several publications as a test for vertical mixing schemes,
see Burchard et al. (1998), Burchard et al. (1999), Burchard and Petersen (1999), Burchard
and Bolding (2001) Burchard and Deleersnijder (2001), Deleersnijder and Burchard (2003),
and Umlauf et al. (2003).
The second entrainment scenario discussed in Umlauf and Burchard (2005) is essentially
identical to the one just described, however, it starts from a two layer stratification. To use
this kind of initial condition, first set analyt_method=2 in obs. inp, and specify the desired
temperatures, t_1 and t_2 for the upper and lower layer, respectively. The thickness of the
upper layer is z_ti. For a pure two-layer stratification, set z_t2=z_t1, otherwise you will
get a linear transition between the upper and the lower layer.
For convective entrainment, you simply need to set the momentum flux, const_tx, to zero
and specify an appropriate negative heat flux, const_heat, in airsea. inp, see Umlauf and
Burchard (2005).
If you run the KPP-model, some model parameters can be set in the extra input file kpp. inp
found in kpp-inpj. With this model,thedepth ofthe mixing layer depends mostlyon the
value of the. critical bulk Richardson number that canalso be set in this file. When you
workwith the KPP-model in free convection, don't forget to check if the·pre-processor macro
NONLOCAL is defined cppdef s .h (after changes in this file, don't forget to re-compile the whole
code!). If NONLOCAL is defined, the KPP model also computesthe non-Iocal fluxes of heat
(and salinity, if the salinity equation is active). In any case, the z-coordinate of the edges of
the upper and lower mixing layers are given as zsbl and zbbl, respectively, in the netCDF
output file.

10.1.5 Estuarine dynamics

In this idealised experiment, an estuarine circulation is simulated, mainly in order to demon­
strate how to use tracer advection and internal pressure gradients in GOTM.
,l'he average water depth is H = 15 m, the model is run for 10 days. Theforcing is a M2 tide (of
period 44714 s) which prescribes sinusoidal time series for the vertically averaged momentum
in west-east direction with an amplitude of 1.5 ms-1 and an offset of 0.05 ms-1 directed to
the west in order to simulate river run-off. The surface elevation is sinusoidal as well with an
amplitude of 1 m and aphase shift of 1.5 hours compared to the velocity. A constant in time
and space horizontal west-east salinity gradient of -0.0005 ppt rn-I is prescribed, advection
of salinity is turned on. In order not to obtain negative salinities, relaxation to the initial
salinity profile of 15 ppt is made. In order to avoid strong stratification near the surface, a
small wind stress of 0.01027 Njm2 is applied.
It is recommended to go through the description in the routines computing the external and
internal pressure gradients, see section 3.7 and section 3.8, to understand the corresponding
settings in the input file obs. inp. The relaxation scheme for salinity is described in section
3.11. Essential for this case is also the parametrisation of horizontal advection, which is set

259

10.2 Shelf sea scenarios

surface stress components, Tx and Ty in N m-2

solar radiation and outgoing heat flux, Qin and Qout in Wm-2

observed SST in °C
time series of surface slopes fitted to the local spring-neap cycle
profiles of measured potential temperature for initial conditions and
validation, data are reanalysed and low pass filtered
profiles of idealised salinity for initial conditions and relaxation
CTD-profiles of potential temperature, with some gaps
CTD-profiles of salinity, with some gaps
extinction coefficients fitted to measurements

sprof.dat
tprof_ctd
sproCctd
extinction.dat

Data files:
momentumflux.dat
heatflux.dat
sst.dat
pressure.dat
tprof .dat

10.2.1 Fladenground Experiment

A data set which has been used throughout the last 20 years as a calibration for mixing
parameterisations has been collected during the measurements of the Fladenground Experi­
ment 1976 (FLEX'76) campaign. These measurements of meteorological forcing and potential
temperature profiles were carried out in spring 1976 in the northern North Sea at a water
depth of about 145 m and a geographicalposition at 58°55'N and 0032'E. The simulation is
run from April 6 to June 7, 1976. The Kondo (1975) bulk formulae have been used for cal­
culating the surface fluxes. For further details concerning the measurements, see Soetje and
Huber (1980) and Brockmann et al. (1984). This FLEX'76 data set has been used by several
authors in order to test different mixing schemes (see e.g. Friedrich (1983), Frey (1991), Bur­
chard and Baumert (1995), Pohlmann (1997), Burchard and Petersen (1999), Mellor (2001)).

All shelf sea scenarios briefly discussed here are from the lrish Sea and the North Sea. A
Baltic Sea mixed layer scenario is in preparation.

10.2.2 Annual North Sea simulation

Here the annual simulation of the Northern Sea at 59°20" N and 1°17' E during the year 1998
as discussed by Bolding et al. (2002) is performed.
For this simulation, time series of surface slopes 8x (and 8y (were extrapolated from ob­
servations during autumn 1998 based on four partial tides by means of harmonie analysis

in obs. inp and described in section 3.11. Note that horizontal advection is calculated from
the same horizontal salinity gradient that causes the internal pressure gradient.
The result is that estuarine circulation is set on and near bed residual velocity is directed
upstream. It is interesting to have a look into the resulting buoyancy production or Brunt-

.Väisälä frequency. The effect of lateral advection on stratification leads to either production or
supression of turbulence, and thus to an unsymmetric time series of the turbulent diffusivity.
For two-dimensional simulations of estuarine circulation, see e.g. Burchard and Baumert
(1998) and Burchard et al. (2003).

Other data files:

260

salinity in ppt from three-dimensional model of Pohlmann (1996)
potential temperature in °0 from the three-dimensional
model of Pohlmann (1996)
sea surface slopes from tidal analysis of observations
meteorological data from UK Met Office model
sea surface temperature in °0 from analysis by Bundesamt für
Seeschifffahrt und Hydrographie, Hamburg, Germany

pressure.dat
meteonns.dat
sst.dat

Data files:
sprof.dat
tprof.dat

10.2.3 Seasonal North Sea simulation

(the program for doing this was kindly provided by Frank J anssen, now at the Baltic Sea
Research Institute Warnemünde). All necessary meteorological data are from the UK Mete­
orological Office Model. For calculating the resulting surface fluxes, the bulk formulae from
Kondo (1975) are used here. Since no observations for the sea surface temperature (SST) are
available for the whole year 1998 at station NNS, the simulated SST is used as input into
the bulk formulae. For the evolution of the vertical salinity profile, which is known to sta­
bilise stratification during summer months, a relaxation to results obtained with a prognostic
three-dimensional model of the North Sea by Pohlmann (1996). By doing so, the horizontal
advection, which is the dominant process for salinity dynamics in the Northern North Sea, is
parameterised.

This Northern North Sea Experiment has been carried out in the framework ofthe PROVESS
(PROcesses of VErtical mixing in Shealf Seas) project (MAS3-0T97-0025, 1998-2001) which
has been funded by the European Oommunities MAST-lU program.
The observations in the Northern North Sea were carried out in September and October 1998.
Here, aperiod of 20 days from October 7 - 27, 1998 is simulated. All forcing and validation
data have been carefully processes from observations during this PROVESS-NNS experiment.
Two different dissipation rate data sets are included:
eps_fly.dat data from a FLY profiler, processed by School of Ocean Sciences,

University of Bangor, Wales
eps_mst. dat data from an MST profiler, processed by JRO, Ispra, Italy.

These files can be read in into GOTM through the eobs namelist in obs. inp. It is the file
specified at last, which is actually read in. The dissipation rate has only been observed at
short intervals, periods without observations are set to minimum values in the files.
The data files are prepared such that the maximum simulation interval can be extended to
September 7 at 10.00 h - November 2 at 13.00 h, 1998.
For details on dissipation rate data processing, see Prandke et al. (2000).
For discussions of various model simulations, see Burchard et al. (2002) and also the annual
simulation in section 10.2.2 and Bolding et al. (2002).

Data files:

•

261

salinity in ppt from CTDs and microstructure
shear probes from several ships
potential temperature in °C from CTDs and microstructure
shear probes from several ships
sea surface elevation gradients analysed from
a triangle of pressure gauges
vertical velocities analysed from vertical displacement
of pycnocline
horizontal velocities from bottom mounted ADCP
meteorological observations from RjV Dana, only used
for calc_fluxes=. true.

sprof.dat

tprof.dat

pressure.dat

velprof.dat
meteo_dana.dat

10.2.4 Liverpool Bay

The observations for this scenario have been carried out by Rippeth et al. (2001) in the
Liverpool Bay ROFI on July 5 and 6, 1999 at a position of 53°28.4'N, 3°39.2'W. This period
is about three days after spring tide, with calm weather and clear sky. The dissipation rate
measurements were carried out with a FLY shear probe mounted on a free-falling profiler.
Sensors for temperature and conductivity attached to the profiler give detailed information
on the vertical density distribution during each cast. Nearby, an ADCP was mounted on
the bottom, giving information on the vertical velocity structure. Some accompanying CTD
casts were made in order to achieve estimates for the horizontal gradients of temperature and
salinity. For further details concerning the observations, see Rippeth et al. (2001).
The surface fluxes are based on ship observations and from a nearby meteorological station
at Hawarden. From the ship, wind speed and direction at 10 m above the sea surface and
air pressure have been taken. From Hawarden station, observ~tions of dry air, wet bulb
and dew point temperature are used. Since the surface fluxes are calculated externally by
means of bulk formulae of Kondo (1975), the sea surface temperature from measurements
(FLY profiler) has been used. The bed roughness has been estimated from near-bed ADCP
measurements as zg ~ 0.0025 m by means of fits to the law of the wall. The external pressure
gradient due to surface slopes is estimated according to a method suggested by Burchard
(1999) by means of adjustment to near bed velocity observations. The CTD casts carried out
during the campaign did only allow for rough estimates of the horizontal density gradient.
The horizontal salinity and temperature gradients for a typical summer situation have been
estimated by Sharples (1992) to äsS = 0.0425 pptkm-1 and äsT = -0.0575 Kkm-\ respec­
tively. Here, s is the gradient into the direction 0:: = 78° rotated anti-clockwise from North.

tprof_271.dat
tprof~271_all.dat

tproLGB.dat

262

sprof .dat salinity in ppt from free-falling shear-probe
tprof. dat potential temperature in ° from free-falling shear-probe
pressure . dat near-bed velocity from ADCP for external pressure forcing
zeta. dat sea surface elevation from pressure gauge
velprof .dat horizontal velocities from bottom mounted ADCP
eprof . dat observed dissipation rates in W kg-1

heatflux. dat surface heat fluxes calculated accroding to Kondo (1975)
momentumflux.dat surface momentum fluxes calculated according to Kondo (1975)

The numerical simulations of this scenario has been described in Simpson et al. (2002).

10.2.5 Gotland Deep

These simulations are made for the location of station 271 Central Eastern Gotland Sea of
the Baltic Sea at 20 E and 57.3 N with a water depth of about 250 m. Initial conditions for
temperature and salinity are derived from measurements. Meteorological forcing was available
from the ERA15 reanalysis data set (http://wms.ecmwf.int/research/era/Era-15.html). For
the penetration of solar radiation into the water column, fairly turbid water (Jerlov type IB)
is assumed. Salinity concentrations are nudged to observations with a time scale of TR = 2
days.
For the comparison of simulated temperature and salinity and observations we have used
mainly data from the COMBINE program. All environmental monitoring within HELCOM
and the Baltic marine environment is carried out under the COMBINE program. The COM­
BINE program runs under the umbrella of HELCOM. HELCOM is the governing body of
the Convention on the Protection of the Marine Environment of the Baltic Sea Area - more
usually known as the Helsinki Commission (www.helcom.f i). In a regular schedule data from
stations in the Baltic Sea are collected. Parts of these data are maintained inter alia at the
Baltic Sea Research Institute Warnemünde and can be used for scientific work.
Model results and observations are compared for the years 1994-1996. For the discretisation,
the water column has been divided into 100 verticallayers, with a strong zooming towards
the surface, resulting in a mean near-surface resolution of less than 0.5 m. The time step for
these simulations is set to flt = 1 hour.

meteorological data extracted from the ERA15 reanalysis data set
deep salinity profiles at station 271
all salinity profiles at station 271
all salinity profiles in Gotland basin,
within 5T8.3'N - 57°28.3'N and 19°54.6'E - 200 14.6'E
deep temperature profiles at station 271
all temperature profiles at station 271
all temperature profiles in Gotland basin,
within 57°8.3'N - 57°28.3'N and 19°54.6'E - 200 14.6'E

The meteorological data have been compiled by Frank Janssen (IOW, Baltic Sea Research In­
stitute Warnemünde, Germany), and the temperature and salinity profiles have been collected

""Data files:
meteo.dat
sprof_271.dat
sprof_271_all.dat
sprof_GB.dat

263

from the IOW data bank by Iris Theil (University of Hamburg, Germany).
These data have been used for simulating the Gotland Deep ecosystem dynamics for the years
1983-1991, see Burchard et al. (2005).

10.2.6 Middelbank

Here a campaign (REYNOLDS, funded by the German Federal Ministry for Education and
Research, chief-scientist Hans Ulrich Lass, IOW) in the Eastern Bornholm Basin (55° 35' N,
16° 39' E, mean water depth: 55 m) is simulated. The simulation period is August 30, 2001
at 17 h to September 9, 2001 at 14 h. The water column is characterised by a thermocline at
about 25 m depth and a halocline at about 50 m depth. The simulation period is charaterised
by storms up to 0.2 Nm-2. As forcing, surface stress, heat fluxes and solar radiation has
been calculated on the basis of meteorological observations according to Kondo (1975). The
barotropic pressure gradient has been recalculated from vertically averaged observed velocity
profiles, see section 3.1.1. As initial conditions, observed temperature, salinity and velocity
profiles are used. Additionally the vertical velocity at the thermocline has been diagnosed
from temperature observations and is used for vertical advection, see section 3.1.1. The tur­
bulent dissipation rate c: has been observed during two sub-periods, such that turbulence
model results may be compared with observations.

Data files:
eprof . dat profiles of observed dissipation rate in W kg-1

heatflux. dat surface heat flux and solar radiation in W m-2

momentumflux.dat surface momentum flux in Nm-2

pressure.dat vertically averaged velocity components in ms-1

sprof .dat profiles of observed salinity in psu
sss . dat time series of sea surface salinity in psu
sst. dat time series of sea surface temperature in oe
tprof . dat profiles of observed temperature in oe
velprof. dat profiles of observed velocity components in ms-1

vertvel.dat profiles of diagnosed vertical velocity at thermocline depth in ms-1

SQ far, these data have not yet been published.

10.3 Open ocean scenarios

The two open ocean scenarios introducedhere are two classical test cases from the Northern
Pacific Ocean. For an overview, see Martin (1985).

10.3.1 Ocean Weather Ship Papa

This scenario is a classical scenario for the Northern Pacific, for which long term observations
of meteorological parameters and temperature profiles are available. The station Papa at
145°W, 500 N has the advantage that it is situated in a region where the horizontal advection
of heat and salt is assumed to be small. Various authors used these data for validating
turbulence closure schemes (Denman (1973), Martin (1985), Gaspar et al. (1990), Large

tprof.dat

Data files:
sprof.dat salinity profiles in ppt of monthly climatology from Levitus data set.

First profile interpolated to January, 1st
profiles of measured potential temperature for initial conditions and
relaxation

heatflux. dat surface heat fluxes calculated according to Kondo (1975)
momentumflux. dat surface momentum fluxes calculated according to Kondo (1975)

This scenario has been discussed in detail by Burchard et al. (1999). We are grateful to Paul
Martin for providing the meteorological data and the temperature profiles, see also Martin
(1985).

et al. (1994), Kantha and Clayson (1994), d'Alessio et al. (1998), Burchard et al. (1999),
Villarreal (2000), Axell and Liungman (2001), Burchard and Bolding (2001)).
The way how bulk formulae for the surface momentum and heat fluxes have been used here
is discussed in detail in Burchard et al. (1999).
For mixing below the thermocline, an internal wave and shear instability parameterisation as
suggested by Large et al. (1994) has been used. The maximum simulation time allowed by
the included surface forcing file and the temperature profile file is January 1 (17.00 h), 1960
- December 31 (12.00 h), 1968. In this scenario, the simulation time is run from March 25,
1961 (0.00 h) to March 25, 1962 (0.00 h).

So far, the Lago Maggiore scenario discussed in section 10.4.1 is the only lake scenario.

10.4 Lake scenarios

10.4.1 Lago Maggiore

264

The measurements for this Lago Maggiore scenario were made during three days in winter
1995 (December 18-21) at the shore of Ispra (45 0 49,244'N, 80 36,377'E). The measurements
were carried out with an uprising profiler located 150 m from the shore at a water depth of 42
m. Such the sampled depth interval ranged from 30 m up to the surface. On the profiler, an

",MST shear probe, a fast temperature sensor and temperature and conductivity probes were
mounted such that profiles of turbulent dissipation rate E, temperature variance E(}, mean
temperature () and mean salinity S could be derived. For a detailed description of the data
analysis, see Stips et al. (2002).

Wind speed was measured from a small buoy about 30 m away from the probe location with
an anemometer at a height of 95 cm above the water surface. The accuracy is ±0.1 m s -1. Air
temperature and relative humidity were recorded at the measurement location on shore at a
height of 10 m above lake surface. The cloud cover has been estimated every hour. Tncident
solar radiation was measured at the meteorological station in Pallanza, in a distance of about
10 km from the measuring site. An analysis of heat fluxes obtained by various bulk formulae
showed however a significant deviation between the heat content of the water column and
accumulation of these heat fluxes. This could be due to the fact that these bulk formulae
are designed for oceanic conditions such that they are not valid for a lake with weak wind

Data files:
salz_lmd95.dat
temp_lmd95.dat

profiles of measured salinity in ppt for initial conditions and relaxation
profiles of measured potential temperature for initial conditions and
relaxation

eps_lmd95. dat profiles of measured dissipation rate for validation
hflu2_05lt. dat surface heat fluxes calculated according to Kondo (1975)
momentumflux. dat surface momentum fluxes calculated according to Kondo (1975)

For a discussion of the simulation, see Stips et al. (2002).

265

conditions. Thus, instead of using the calculated surface heat fluxes from bulk formulae,
they were calculated from the heat gain of the water column under consideration of the solar
radiation.

266

267

References

AxeIl, L., and O. Liungman, A one-equation turbulence model for geophysical applications:
Comparison with data and the k-epsilon model, Environmental Fluid Mechanics, 1,71-106,
2001.

Baumert, H., and H. Peters, Second-moment c10sures and length scales for weakly stratified
turbulent shear flows, J. Geophys. Res., 105,6453-6468, 2000.

Baumert, H., and G. Radach, Hysteresis of turbulent kinetic energy in nonrotational tidal
flows, J. Geophys. Res., 97, 3669-3677, 1992.

Beckers, J.-M., La mediterranee occidentale: de la modelisation matMmatique ala simulation
numerique, Ph.D. thesis, Universite de Liege, Belgium, 1995, coIlection des publications de
la Faculte des Sciences Appliquees No. 136.

Blackadar, A. K., The vertical distribution of wind and turbulent exchange in a neutral
atmosphere, J. Geophys. Res., 67, 3095-3102, 1962.

Bolding, K, H. Burchard, T. Pohlmann, and A. Stips, Turbulent mixing in the Northern
North Sea: a numerical model study, Cont. Shelf Res., 22, 2707-2724, 2002.

Bradshaw, P., An Introduction to Turbulence and its Measurement, Pergamon, 1975.

Briggs, D. A., J. H. Ferziger, J. R. Koseff, and S. G. Monismith, Entrainment in a shear-free
turbulent mixing layer, J. Fluid Mech., 310, 215-241, 1996.

Brockmann, U. H., K Eberlein, K Huber, H.-J. Neubert, G. Radach, and K Schulze (Eds.),
JONSDAP '76: FLEX/INOUT Atlas, Vol. 1, no. 63 in ICES Oceanographic Data Lists
and Inventories, Conseil International pour l'Exploration de la Mer, Copenhagen, Denmark,
1984.

Burchard, H., Reca1culation of surface slopes as forcing for numerical water column models
of tidal flow, App. Math. Modellin9, 23, 737-755, 1999.

Burchard, H., Simulating the wave-enhanced layer under breaking surface waves with two­
equation turbulence models, J. Phys. Oceanogr., 31, 3133-3145, 2001a.

Burchard, H., Note on the q2l equation by MeIlor and Yamada [1982], J. Phys. Oceanogr.,
31, 1377-1387,2001b.

Burchard, H., Energy-conserving discretisation of turbulent shear and buoyancy production,
Ocean Modelling, 4, 347-361, 2002a.

Burchard, H., Applied Turbulence Modelling in Marine Waters, no. 100 in Lecture Notes in
Earth Sciences, Springer, 2002b.

Burchard, H., and H. Baumert, On the performace of a mixed-layer model based on the k-E
turbulence c1osure, J. Geophys. Res. (C5) , 100, 8523-8540, 1995.

268

Burchard, H., and H. Baumert, The formation of estuarine turbidity maxima due to density
effects in the salt wedge. A hydrodynamic process study, J. Phys. Oeeanogr., 28, 309-321,
1998.

Burchard, H., and K. Bolding, Implementation ofthe Verduin and Backhaus seagrass-current
interaction into the General Ocean Turbulence Model (GOTM). A short feasability study,
2000, unpublished manuscript.

Burchard, H., and K. Bolding, Comparative analysis of four second-moment turbulence cla­
sure models for the oceanic mixed layer, J. Phys. Oeeanogr., 31, 1943-1968, 2001.

Burchard, H., and E. Deleersnijder, Stability of algebraic non-equilibrium second-order clo­
sure models, Ocean Modelling, 3, 33-50, 2001.

Burchard, H., and O. Petersen, Hybridisation between (J and z coordinates for improving the
internal pressure gradient calculation in marine models with steep bottom slopes, Int. J.
Numer. Meth. Fluids, 25, 1003-1023, 1997.

Burchard, H., and O. Petersen, Models of turbulence in the marine enviroment - a comparative
study of twa-equation turbulence models, J. Mar. Syst., 21, 29-53, 1999.

Burchard, H., O. Petersen, and T. P. Rippeth, Comparing the performance of the Mellor­
Yamada and the k-E two-equation turbulence models, J. Geophys. Res. (e5) , 103, 10,543­
10,554, 1998.

Burchard, H., K. Bolding, and M. R. Villarreal, GOTM - a general ocean turbulence model.
Theory, applications and test cases, Teeh. Rep. EUR 18745 EN, European Commission,
1999.

Burchard, H., K. Bolding, T. P. Rippeth, A. Stips, J. H. Simpson, and J. Sündermann, Mi­
crostructure of turbulence in the Northern North Sea: A comparative study of observations
and model simulations, Journal of Sea Research, 47, 223-238, 2002.

Burchard, H., K. Bolding, and M. R. Villarreal, Three-dimensional modelling of estuarine
'" turbidity maxima in a tidal estuary, Oeean Dynamics, 2003, submitted.

Burchard, H., K. Bolding, W. Kühn, A. Meister, T. Neumann, and L. Umlauf, Description
of a flexible and extendable physical-biogeochemical model system for the water column,
2005, accepted for publication.

Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov,Ocean turbulence. Part I: One­
point closure model-momentum and heat vertical diffusivities, J. Phys. Oeeanogr., 31,
1413-1426, 2001.

Charnok, H., Wind stress on a water surface, Q. J. R. Meteorol. Soc., 81, 639-640, 1955.

Cheng, Y., V. M. Canuto, and A. M. Howard, An improved model for the turbulent PBL, J.
Atmos. Sei., 59, 1550-1565, 2002.

269

Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner, and J. F. T. Saur, Heat exchange between
ocean and atmoshere in the Eastern North Pacific for 1961-1971, Teeh. Rep. NMFS SSRF­
682, NOAA, D.S. Dept. of Commerce, Washington, D.C., 1974.

Craft, T. J., N. Z. Ince, and B. E. Launder, Recent developments in second-moment closure
for buoyancy-affected flows, Dynamies of Atmospheres and Oeeans, 23, 99-114, 1996.

Craig, P. D., Velocity profiles and surface roughness under breaking waves, J. Geophys. Res.,
101, 1265-1277, 1996.

Craig, P. D., and M. L. Banner, Modeling wave-enhanced turbulence in the ocean surface
layer, J. Phys. Oeeanogr., 24,2546-2559, 1994.

Crank, J., and P. Nicolson, A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type, Proe. Cambridge Philos. Soe., 43, 50­
67, 1947, re-published in: John Crank 80th birthday special issue Adv. Comput. Math. 6
(1997) 207-226.

d'Alessio, S. J. D., K. Abdella, and N. A. McFarlane, A new second-order turbulence closure
scheme for modeling the oceanic mixed layer, J. Phys. Oeeanogr., 28, 1624-1641, 1998.

Deleersnijder, E., and H. Burchard, Reply to Mellor's comments on stability of algebraie
non-equilibrium seeond-order closure models, Oeean Modelling, 5, 291-293, 2003.

Demirov, E., W. Eifler, M. Ouberdous, and N. Hibma, Ispramix - a three-dimensional
free surface model for coastal ocean simulations and satellite data assimilation on parallel
computers, Teeh. Rep. EUR 18129 EN, European CommissionJoint Reseach Center, Ispra,
Italy, 1998.

Denman, K. L., A time-dependent model ofthe upper ocean, J. Phys. Oeeanogr., 3, 173-184,
1973.

Qomaradzki, J. A., and G. L. Mellor, A simple turbulence closure hypothesis for the tripie
velocity correlation functions in homogeneous isotropie turbulence, J. Fluid Meeh., 140,
45-61, 1984.

Durksi, S. M., S. M. Glenn, and D. Haidvogel, Vertical mixing schemes in the coastal ocean:
Comparision of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K
profile parameterization, J. Geophys. Res., 109,2004, doi:10.1029/2002JC001702.

Eifler, W., and W. Schrimpf, Ispramix, a hydrodynamic program for computing regional
sea circulation patterns and transfer processes, Teeh. Rep. EUR 14856 EN, European
Commission Joint Reseach Center, Ispra, Italy, 1992.

Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, Bulk parameteri­
zation of air-sea fluxes for TOGA-COARE, J. Geophys. Res., 101,3747-3764, 1996.

270

FeisteI, R, A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr.,
58,43-115, 2003, http://authors.elsevier.com/sd/artic1e/S0079661103000880 corrigendum
61 (2004) 99.

FofonofI, N. P., and R C. Millard, Algorithms for the computation of fundamental properties
of seawater, Unesco technical papers in marine sciences , 44, 1-53, 1983.

Frey, H., A three-dimensional, baroclinic shelf sea circulation model - 1. The turbulence
c10sure scheme and the one-dimensional test model, Cont. Shelf Res., 11, 365-395, 1991.

Friedrich, H., Simulation of the thermal stratification at the FLEX central station with a
one-dimensional integral model, in North Sea Dynamies, edited by J. Sündermann and
W. Lenz, pp. 396-411, Springer, 1983.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, A quasi-equilibrium turbulent energy
model for geophysical flows, J. Atmos. Sei., 45, 55-62, 1988.

Gaspar, P., Y. Gregoris, and J. Lefevre, A simple eddy kinetic energy model for simulations
of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study
site, J. Geophys. Res., 95, 16,179-16,193, 1990.

Gerz, T., U. Schumann, and S. E. Elghobashi, Direct numerical simulation of stratified ho­
mögeneous turbulent shear flows, J. Fluid Mech., 200, 563-594, 1989.

Gibson, M. M., and B. E. Launder, On the calculation of horizontal, turbulent, free shear
flows under gravitational influence, J. Heat Transfer, 98C, 81-87, 1976.

Gibson, M. M., and B. E. Launder, Ground efIects on pressure fluctuations in the atmospheric
boundary layer, J. Fluid Mech., 86, 491-511, 1978.

Hastenrath, S., and P. J. Lamb, Heat budget atlas ofthe tropical Atlantic and Eastern Pacific
Oceans, Tech. rep., University of Wisconsin, Madison, 1978.

Holt, S. E., J. R KosefI, and J. H. Ferziger, A numerical study of the evolution and structure
,.()f homogeneous stably stratified sheared turbulence, J. Fluid Mech., 237, 499-539, 1991.

Jackett, D. R, T. J. McDougall, R FeisteI, D. G. Wright, and S. M. Griffies, Updated
algorithms for density, potential temperature, conservative temperature and freezing tem­
perature of seawater, Journal of Atmospheric and Oceanic Technology, 2005, submitted.

Jacobitz, F. C., S. Sarkar, and C. W. van Atta, Direct numerical simulations ofthe turbulence
evolution in a uniformly sheared and stably stratifed flow, J. Fluid Mech., 342, 231-261,
1997.

Jerlov, N. G., Optical oceanography, Elsevier, 1968.

Jin, L. H., R. M. C. So, and T. B. Gatski, Equilibrium states of turbulent homogeneous
buoyant flöws, J. Fluid Mech., 482, 207-233, 2003.

271

Kaltenbach, H.-J., T. Gerz, and U. Schumann, Large-Eddy simulation of homogeneous tur­
bulence and diffusion in stably stratified shear flow, J. Fluid Meeh., 280, 1-40, 1994.

Kantha, L. H., On an improved model for the turbulent pbl, J. Atmos. Sei., 60, 2239-2246,
2003.

Kantha, L. H., and C. A. Clayson, An improved mixed layer model for geophysical applica­
tions, J. Geophys. Res., 99, 25,235-25,266, 1994.

Kato, H., and O. M. Phillips, On the penetration of a turbulent layer into stratified fluid, J.
Fluid Mech., 37, 643-655, 1969.

Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions, Bound. Layer Meteor., 9,
91-112, 1975.

Large, W. G., J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing: a review and a
model with nonlocal boundary layer parameterisation, Rev. Geophys., 32, 363-403, 1994.

Launder, B. E., G. J. Reece, and W. Rodi, Progress in the development of Reynolds stress
turbulent closure, J. Fluid Meeh., 68, 537-566, 1975.

Luyten, P. J., E. Deleersnijder, J. Ozer, and K. G. Ruddik, Presentation of a family of
turbulence closure models for stratified shallow water flows and preliminary application to
the Rhine outflow region, Cont. Shelf Res., 16, '1996.

Martin, P. J., Simulation ofthe mixed layer at OWS November and Papa with several models,
J. Geophys. Res., 90, 903-916, 1985.

MeIlor, G. L., Retrospect on oceanic boundary layer modeling and second moment closure,
in Parameterization of Small-Seale Proeesses; Proe. of the Aha Hulikoa Hawaiian Winter
Workshop, edited by P. Mueller and D. Henderson, pp. 251-271, University of Hawaii at
Manoa, Honolulu, 1989.

MeIlor, G. L., One-dimensional ocean surface layer modeling, a problem and a solution, J.
",Phys. Oeeanogr., 31, 790-809, 2001.

MeIlor, G. L., and T. Yamada, A hierarchy of turbulence closure models for planetary bound­
ary layers, J. Atmos. Sei., 31, 1791-1806, 1974.

MeIlor, G. L., and T. Yamada, Development of a tubulence closure model for geophysical
fluid problems, Reviews of Geophysics and Spaee Physies, 20, 851-875, 1982.

Mohamed, M. S., and J. C. Larue, The decay power law in grid-generated turbulence, J.
Fluid Meeh., 219, 195-214, 1990.

Munk, W. H., and E. R. Anderson, Notes on the theory of the thermocline, J. Mar. Res., 3,
276-295, 1948.

Patankar, S. V., Numerieal Heat Transfer and Fluid Flow, Taylor & Francis, 1980.

272

Paulson, C. A., and J. J. Simpson, Irradiance measurements in the upper ocean, J. Phys.
Oeeanogr., 7, 952-956, 1977.

Payne, R. E., Albedo of the sea surface, J. Atmos. Sei., g, 959-970, 1972.

Pietrzak, J., The use ofTVD limiters for forward-in-time upstream-biased advection schemes
in ocean modeling, Monthly Weather Review, 126, 812-830, 1998.

Pohlmann, T., Predicting the thermocline in a circulation model of the North Sea - Part I:
Model description, calibration and verification, Cont. Shelf Res., 16, 131-146, 1996.

Pohlmann, T., Estimating the influence of advection during FLEX'76 by means of a three­
dimensional shelf sea circulation model, Dtseh. Hydrogr. Z., 4g, 215-226, 1997.

Prandke, H., K. Holtsch, and A. Stips, MITEC technology development: The microstruc­
ture/turbulence measuring system mss, Teeh. Rep. EUR 19733 EN, European Commis­
sion, Joint Research Centre, Ispra, Italy, 2000.

Price, J. F., On the scaling of stress driven entrainment experiments, J. Fluid Meeh., 90,
509-529, 1979.

Reed, R. K., On estimating insolation over the ocean, J. Phys. Oeean09r., 7,482-485, 1977.

Rippeth, T. P., E. W. Williams, and J. H. Simpson, Reynolds stress and turbulent energy
production in a tidal channel, J. Phys. Oeeanogr., 2001, accepted for publication.

Robert, J. L., and Y. OuelIet, A three-dimensional finite element model for the study of
steady and non-steady natural flows, in Three-dimensional models of marine and estuarine
dynamies, edited by J. C. Nihoul and B. M.Jamart, no. 45 in Elsevier Oceanography Series,
Elsevier, 1987.

Rodi, W., A new algebraic relation for calculating the Reynolds stresses, Z. angew. Math.
Meeh., 56, T 219-T 221, 1976.

llodi, W., Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys.
Res. (C5) , 92, 5305-5328, 1987.

Rohr, J. J., E. C. Itsweire, K. N. HelIand, and C. W. van Atta, Growth and decay ofturbulence
in a stably stratified shear flow, J. Fluid Meeh., 195, 77-111, 1988.

Rosati, A., and K. Miyakoda, A general circulation model for upper ocean simulation, J.
Phys. Oeeanogr., 18, 1601-1626, 1988.

Rotta, J., Statistische Theorie nichthomogener Turbulenz. 1. Mitteilung, Z. Phys., 129, 547­
572, 1951.

Sander, J., Dynamical equations and turbulent closures in geophysics, Continuum Meeh.
Thermodyn., 10, 1-28, 1998.

273

Schumann, U., and T. Gerz, Turbulent mixing in stably stratified shear flows, J. Appl. Me­
teorol., 34, 33-48, 1995.

Sharples, J., Time-dependent stratification in regions of large horizontal density gradient,
Ph.D. thesis, School of Ocean Sciences, University of Wales, Bangor, 1992.

Shih, L. H., J. R. Koseff, J. H. Ferziger, and C. R. Rehmann, Scaling and parameterization
of stratified homogeneous turbulent shear flow, J. Fluid Mech., 412, 1-20, 2000.

Simpson, J. H., H. Burchard, N. R. Fisher, and T. P. Rippeth, The semi-diurnal cycle of
dissipation in a ROFI: model-measurement comparisons, Cont. Shelf Res., 22, 1615-1628,
2002.

Simpson, J. J., and C. A. Paulson, Mid-ocean observations of atmosphere radiation, Quart.
J. Roy. Meteor. Soc., 105, 487-502, 1999.

Smith, J. D., and S. R. McLean, Spatially averaged flow over a wavy surface, J. Geophys.
Res., 82, 1735-1746, 1977.

So, R. M. C., P. Vimala, L. H. Jin, and C. Y. Zhao, Accounting for buoyancy effects in
the explicit algebraic stress model: homogeneous turbulent shear flows, Theoret. Comput.
Fluid Dynamics, 15, 283-302, 2002.

So, R. M. C., L. H. Jin, and T. B. Gatski, An explicit algebraic model for turbulent buoy­
ant flows, in Proceedings of the FEDSM '03: 4th ASME-JSME Joint Fluids Engineering
Conference, Honolulu, Hawaii, USA, 2003.

Soetje, K. C., and K. Huber, A compilation of data on the thermal stratification at the central
station in the northern North Sea during FLEX'76, "Meteor"-Forsch.-Ergebnisse, Reihe A,
22, 69-77, 1980.

Speziale, C. G., S. Sarkar, and T. B. Gatski, Modeling the pressure-strain correlation of
turbulence: an invariant dynamical systems approach, J. Fluid Mech., 227, 245-272, 1991.

Stips, A., H. Burchard, K. Bolding, and W. Eifler, Modelling of convective turbulence with
"" a two-equation k-E: turbulence closure scheme, Ocean Dynamies, 52, 153-168, 2002.

Tavoularis, S., and S. Corrsin, Experiments in a nearly homogenous turbulent shear flow with
a uniform mean temperature gradient. Part 1, J. Fluid Mech., 104,311-348, 1981a.

Tavoularis, S., and S. Corrsin, Experiments in a nearly homogenous turbulent shear flow
with a uniform mean temperature gradient. Part 2. The fine structure, J. Fluid Mech.,
104, 349-367, 1981b.

Tavoularis, S., and U. Karnik, Further experiments on the evolution of turbulent stresses and
scales in uniformly sheared turbulence, J. Fluid Mech., 204, 457-478, 1989.

Tennekes, H., The decay of turbulence in plane homogeneous shear flow, in Lecture Noteson
Turbulence, edited by J. R. Herring and J. C. McWilliams, pp. 32-35, World Scientific,
1989.

274

Tennekes, H., and J. L. Lumley, A First Course in Turbulence, MIT Press, 1972.

Townsend, A. A., The Structure of Turbulent Shear flow, Cambridge University Press, 1976.

Umlauf, L., and H. Burchard, A generic length-scale equation for geophysical turbulence
models, J. Mar. Res., 61, 235-265, 2003.

Umlauf, L., and H. Burchard, Second-order turbulence closure models for geophysical bound­
ary layers. a review of recent work, Cont. Shelf. Res., 25, 795-827, 2005.

Umlauf, L., H. Burchard, and K. Hutter, Extending the k-w turbulence model towards oceanic
applications, Ocean Modelling, 5, 195-218, 2003.

Verduin, J. J., and J. O. Backhaus, Dynamics of plant-f1.ow interactions for the seagrass
amphibolis antarctica: Field observations and model simulations, Estuarine, Coastal and
Shelf Science, 50, 185-204, 2000.

Villarreal, M. R., Parameterisation of turbulence in the ocean and application of a 3D baro­
dinic model to the Ria de Pontevedra, Ph.D. thesis, Departamento de Fisica da Materia
Condensada, Grupo de Fisica Non-Lineal, Universidade de Santiago de Compostela, 2000.

Wilcox, D. C., Reassessment (jf the scale-determining equation for advanced turbulence mod­
els, AIAA Journal, 26, 1299-1310, 1988.

Wilcox, H.C., Turbulence Modeling for CFD, 2nd ed., DCWIndustries, Inc., 1998.

Xing, J., and A. N. Davies, Application of three dimensional turbulence energy models to the
determination of tidal mixing and currents in a shallow sea, Prog. Oceanogr., 35, 153-205,
1995.

Zeierman, S., and M. Wolfshtein, Turbulent time scale for turbulent-f1.ow ca1culations, AIAA
J., 24, 1606-1610, 1986.

Zhao, C. Y., R. M. C. So, and T. B. Gatski, Turbulence modeling effects on the prediction of
equilibrium states of buoyant shear f1.ows, Theoret. Comput. Fluid Dynamies, 14,399-422,

"'2001.

1 (1990)

2 (1990)

3 (1990)

4 (1992)

5 (1993)

6 (1993)

7 (1994)

8 (1995)

9 (1995)

10 (1995)

11 (1995)

Meereswissenschaftliche Berichte
MARINE SCIENCE REPORTS

Postel , Lutz:
Die Reaktion des Mesozooplanktons, speziell der Biomasse, auf
küstennahen Auftrieb vor Westafrika (The mesozooplankton respon­
se to coastal upwelling off West Africa with particular regard to
biomass)

Nehring, Dietwart:
Die hydrographisch-chemischen Bedingungen in der westlichen und
zentralen Ostsee von 1979 bis 1988 - ein Vergleich (Hydrographie
and chemical conditions in the western and central Baltic Sea from
1979 to 1988 - a comparison)

Nehring, Dietwart; Matthäus, Wolfgang:
Aktuelle Trends hydrographischer und chemischer Parameter in der
Ostsee, 1958 - 1989 (Topical trends of hydrographie and chemical
parameters in the Baltic Sea, 1958 - 1989)

Zahn, Wolfgang:
Zur numerischen Vorticityanalyse mesoskaler Strom- und Massen­
feider im Ozean (On numerical vorticity analysis of mesoscale cur­
rent and mass fields in the ocean)

Lemke, Wolfram; Lange, Dieter; Endler, Rudolf (Eds.):
Proceedings of the Second Marine Geological Conference - The
Baltic, held in Rostock from October 21 to October 26, 1991

Endler, Rudolf; Lackschewitz, Klas (Eds.):
Cruise Report RV "Sonne" Cruise S082, 1992

Kulik, Dmitri A.; Harff, Jan:
Physicochemical modeling of the Baltic Sea water-sediment co­
lumn: I. Reference ion association models of normative seawater
and of Baltic brackish waters at salinities 1-40 %0, 1 bar total
pressure and 0 to 30 C temperature
(system Na-Mg-Ca-K-Sr-Li-Rb-CI-S-C-Br-F-B-N-Si- P-H-O)

Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans Ulrich; Nausch,
Günther:

Hydrographisch-chemische Zustandseinschätzung der Ostsee
1993

Hagen, Eberhard; John, Hans-Christian:
Hydrographische Schnitte im Ostrandstromsystem vor Portugal und
Marokko 1991 - 1992

Nehring, Dietwart; Matthäus,Wolfgang; Lass, Hans Ulrich; Nausch,
Günther; Nagel, Klaus:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1994
Seifert, Torsten; Kayser, Bernd:

A high resolution spherical grid topography of the Baltic Sea
Schmidt, Martin:

Analytical theory and numerical experiments to the forcing of flow at
isolated topographie features

Kaiser, Wolfgang; Nehring, Dietwart; Breuel, Günter; Wasmund, Norbert;
Siegel, Herbert; Witt, Gesine; Kerstan, Eberhard; Sadkowiak, Birgit:

Zeitreihen hydrographischer, chemischer und biologischer Variablen
an der Küstenstation Warnemünde (westliche Ostsee)

Schneider, Bernd; Pohl, Christa:

12 (1996)

13 (1996)

14 (1996)

15 (1996)

16 (1996)

17 (1996)

18 (1996)

19 (1996)

20 (1996)

21 (1997)

22 (1997)

23 (1997)

24 (1997)

25 (1997)
""

26 (1997)

27 (1997)

28 (1998)

Spurenmetallkonzentrationen vor der Küste Mecklenburg-
Vorpommerns

Schinke, Holger:
Zu den Ursachen von Salzwassereinbrüchen in die Ostsee

Meyer-Harms, Bettina:
Ernährungsstrategie calanoider Copepoden in zwei unterschiedlich
trophierten Seegebieten der Ostsee (Pommernbucht, Gotlandsee)

Reckermann, Marcus:
Ultraphytoplankton and protozoan communities and their
interactions in different marine pelagic ecosystems (Arabian Sea
and Baltic Sea)

Kerstan, Eberhard:
Untersuchung der Verteilungsmuster von Kohlenhydraten in der
Ostsee unter Berücksichtigung produktionsbiologischer Meßgrößen

Nehring, Dietwart; Matthäus, Wolfgang; Lass, Hans Ulrich; Nausch,
Günther; Nagel, Klaus:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1995
Brosin, Hans-Jürgen:

Zur Geschichte der Meeresforschung in der DDR
Kube, Jan:

The ecology of macrozoobenthos and sea ducks in the Pomeranian
Bay

Hagen, Eberhard (Editor):
GOBEX - Summary Report

Harms, Andreas:
Die bodennahe Trübezone der Mecklenburger Bucht unter
besonderer Betrachtung der Stoffdynamik bei Schwermetallen

Zülicke, Christoph; Hagen, Eberhard:
GOBEX Report - Hydrographie Data at IOW

Lindow, Helma:
Experimentelle Simulationen windangeregter dynamischer Muster in
hochauflösenden numerischen Modellen

Thomas, Helmuth:
Anorganischer Kohlenstoff im Oberflächenwasser der Ostsee

Matthäus, Wolfgang; Nehring, Dietwart; Lass, Hans Ulrich; Nausch,
Günther; Nagel, Klaus; Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1996
v. Bodungen, Bodo; Hentzsch, Barbara (Herausgeber):

Neue Forschungslandschaften und Perspektiven der Meeres­
forschung - Reden und Vorträge zum Festakt und Symposium am
3. März 1997.

Lakaschus, Sönke:
Konzentrationen und Depositionen atmosphärischer Spurenmetalle
an der Küstenstation Arkona

Löffler, Annekatrin:
Die Bedeutung von Partikeln für die Spurenmetallverteilung in der
Ostsee, insbesondere unter dem Einfluß sich ändernder
Redoxbedingungen in den zentralen Tiefenbecken

Leipe, Thomas; Eidam, Jürgen; Lampe, Reinhard; Meyer, Hinrich;
Neumann, Thomas; Osadczuk, Andrzej; Janke, Wolfgang; Puff,
Thomas; Blanz, Thomas; Gingeie, Franz Xaver; Dannenberger, Dirk;
Witt, Gesine:

29 (1998)

30 (1998)

31 (1998)

32 (1998)

33 (1998)

34 (1998)

35 (1999)

36 (1999)

37 (1999)

38 (2000)

39 (2000)

40 (2000)

41 (2000)

Das Oderhaff. Beiträge zur Rekonstruktion der holozänen
geologischen Entwicklung und anthropogenen Beeinflussung des
Oder-Ästuars.

Matthäus, Wolfgang; Nausch, Günther; Lass, Hans Ulrich; Nagel,
Klaus; Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1997
Fennei, Katja:

Ein gekoppeltes, dreidimensionales Modell der Nährstoff- und
Planktondynamik für die westliche Ostsee

Lemke, Wolfram:
Sedimentation und paläogeographische Entwicklung im westlichen
Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende
der Weichselvereisung bis zur Litorinatransgression

Wasmund, Norbert; Alheit, Jürgen; Pollehne, Falk; Siegel, Herbert;
Zettler, Michael L.:

Ergebnisse des Biologischen Monitorings der Ostsee im Jahre 1997
im Vergleich mit bisherigen Untersuchungen

Mohrholz, Volker:
Transport- und Vermischungsprozesse in der Pommerschen. Bucht

Emeis, Kay-Christian; Struck, Ulrich (Editors):
Gotland Basin Experiment (GOBEX) - Status Report on
Investigations concerning Benthic Processes, Sediment Formation
and Accumulation

Matthäus, Wolfgang; Nausch, Günther; Lass, Hans Ulrich; Nagel, Klaus;
Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1998
Schernewski, Gerald:

Der Stoffhaushalt von Seen: Bedeutung zeitlicher Variabilität und
räumlicher Heterogenität von Prozessen sowie des
Betrachtungsmaßstabs - eine Analyse am Beispiel eines eutrophen,
geschichteten Sees im Einzugsgebiet der Ostsee (Belauer See,
Schieswig-Hoistein)

Wasmund, Norbert; Alheit, Jürgen; Pollehne, Falk; Siegel, Herbert,
Zettler, Michael L.:

Der biologische Zustand der Ostsee im Jahre 1998 auf der Basis
von Phytoplankton-, Zooplankton- und Zoobenthosuntersuchungen

Wasmund, Norbert; Nausch, Günther; Postei, Lutz; Witek, Zbigniew;
Zalewski,Mariusz; Gromisz, Stawomira; tysiak-Pastuszak, Elzbieta;
Olenina, Irina; Kavolyte, Rima; Jasinskaite, Aldona; Müller-Karulis,
Bärbel; Ikauniece, Anda; Andrushaitis, Andris; Ojaveer, Henn; Kallaste,
Kalle; Jaanus, Andres:

Trophic status of coastal and open areas of the south-eastern Baltic
Sea based on nutrient and phytoplankton data from 1993 - 1997

Matthäus, Wolfgang; Nausch, Günther; Lass, Hans Ulrich; Nagel, Klaus;
Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 1999
Schmidt, Martin; Mohrholz, Volker; Schmidt, Thomas; John, H.-Christian;
Weinreben, Stefan; Diesterheft, Henry; lita, Aina; Filipe, Vianda;
Sangolay, Bomba-Bazik; Kreiner, Anja; Hashoongo, Victor; da Silva
Neto, Domingos:

Data report of RN "Poseidon" cruise 250 ANDEX'1999
v. Bodungen, Bodo; Dannowski, Ralf; Erbguth, Wilfried; Humborg,
Christoph;Mahlburg, Stefan; Müller, Chris; Quast, Joachim; Rudolph,
K.-U.; Schernewski, Gerald; Steidl, Jörg; Wallbaum, Volker:

Oder Basin-Baltic Sea Interactions (OBBSI): Endbericht

42 (2000)

43 (2000)

44 (2001)

45 (2001)

46 (2001)

47 (2001)

48 (2001)

49 (2002)

50 (2002)

51 (2002)

52 (2002)

53 (2002)

54 (2003)

55 (2003)

56 (2003)

57 (2004)

58 (2004)

Zettler, Michael L.; Bönsch, Regine; Gosselck, Fritz:
Verbreitung des Makrozoobenthos in der Mecklenburger Bucht
(südliche Ostsee) - rezent und im historischen Vergleich

Wasmund, Norbert; Alheit, Jürgen; Pollehne, Falk; Siegel, Herbert:
Der biologische Zustand der Ostsee im Jahre 1999 auf der Basis
von Phytoplankton- und Zooplanktonuntersuchungen

Eichner, Christiane:
Mikrobielle Modifikation der Isotopensignatur des Stickstoffs in
marinem partikulären Material

Matthäus, Wolfgang; Nausch, Günther (Editors):
The hydrographic-hydrochemical state of the western and central
Baltic Sea in 1999/2000 and during the 1990s

Wasmund, Norbert; Pollehne, Falk; Postei, Lutz; Siegel, Herbert; Zettler,
Michael L.:

Biologische Zustandseinschätzung der Ostsee im Jahre 2000
Lass, Hans Ulrich; Mohrholz, Volker; Nausch, Günther; Pohl, Christa;
PosteI, Lutz; Rüß, Dietmar; Schmidt, Martin; da Silva, Antonio;
Wasmund, Norbert:

Data report of RN "Meteor" cruise 48/3 ANBEN'2000
Schöner, Anne Charlotte:

Alkenone in Ostseesedimenten, -schwebstoffen und -algen:
Indikatoren für das Paläomilieu?

Nausch, Günther; Feistei, Rainer; Lass, Hans Ulrich; Nagel, Klaus;
Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 2001
Pohl, Christa; Hennings, Ursula:

Ostsee-Monitoring - Die Schwermetall-Situation in der Ostsee im
Jahre 2001

Manasreh, Riyad:
The general circulation and water masses characteristics in the Gulf
of Aqaba and northern Red Sea

Wasmund, Norbert; Pollehne, Falk; Postei, Lutz; Siegel, Herbert; Zettler,
Michael L.:

Biologische Zustandseinschätzung der Ostsee im Jahre 2001
Reißmann, Jan Hinrich:

Integrale Eigenschaften von mesoskaligen Wirbelstrukturen in den
tiefen Becken der Ostsee

Badewien, Thomas H.:
.Horizontaler und vertikaler Sauerstoffaustausch in der Ostsee

Fennei, Wolfgang; Hentzsch, Barbara (Herausgeber):
Festschrift zum 65. Geburtstag von Wolfgang Matthäus

Nausch, Günther; Feistei, Rainer; Lass, Hans Ulrich; Nagel, Klaus;
Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 2002
Pohl, Christa; Hennings, Ursula:

Die Schwermetall-Situation in der Ostsee im Jahre 2002
Wasmund, Norbert; Pollehne, Falk; Postei, Lutz; Siegel, Herbert; Zettler,
Michael L.:

Biologische Zustandseinschätzung der Ostsee im Jahre 2002
Schernewski, Gerald; Dolch, Tobias (Editors):

The Oder estuary against the background of the European Water
Framework Directive

Feistei, Rainer; Nausch, Günther; Matthäus, Wolfgang; tysiak­
Pastuszak, Elzbieta; Seifert, Torsten; Sehested Hansen, lan; Mohrholz,
Volker; Krüger, Siegfried; Buch, Erik; Hagen, Eberhard:

59 (2004)

60 (2004)

61 (2004)

62 (2005)

63 (2005)

Background Data to the Exceptionally Warm Inflow into the Baltic
Sea in late Summer of 2002

Nausch, Günther; Feistei, Rainer; Lass, Hans Ulrich; Nagel, Klaus;
Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 2003
Pohl, Christa; Hennings, Ursula:

Die Schwermetall-Situation in der Ostsee im Jahre 2003
Wasmund, Norbert; Pollehne, Falk; Postei, Lutz; Siegel, Herbert; Zettler,
Michael L.:

Biologische Zustandseinschätzung der Ostsee im Jahre 2003
Petry, Carolin:

Mikrobieller Abbau von partikulärem organischen Material in der
tiefen Wassersäule

Nausch, Günther; Feistei, Rainer; Lass, Hans Ulrich; Nagel, Klaus;
Siegel, Herbert:

Hydrographisch-chemische Zustandseinschätzung der Ostsee 2004
Pohl, Christa; Hennings, Ursula:

Die Schwermetall-Situation in der Ostsee im Jahre 2004
Umlauf, Lars; Burchard, Hans; Bolding, Karsten:

GOTM - Scientific Documentation. Version 3.2

I

	01
	02
	03
	04
	05
	06

