ELISABETH MANN BORGESE - Berichte

Baltic Sea Long-term Observation Programme

Cruise No. EMB230

29. January – 09. February 2020, Rostock-Marienehe to Rostock-Marienehe (Germany) HELCOM /long-term obs

Dr. Michael Naumann

Chief Scientist Leibniz Institute for Baltic Sea Research Warnemünde

2022

Table of Contents

1	Cruis	e Summary	3
	1.1	Summary in English	3
	1.2	Zusammenfassung	3
2	Parti	cipants	4
	2.1	Principal Investigators	4
	2.2	Scientific Party	5
	2.3	Participating Institutions	5
3	Resea	rch Program	5
	3.1	Description of the Work Area	5
	3.2	Aims of the Cruise	6
	3.3	Agenda of the Cruise	7
4	Narra	ative of the Cruise	9
5	Prelii	ninary Results	12
	5.1	Surface Temperatures	12
	5.2	Deep Water Layer Temperatures	13
	5.3	Salinity in the Bottom Layer	13
	5.4	Oxygen Situation in the Deep Water	14
	5.5	Nutrient Situation	14
	5.6	Biological Sampling	15
6	Ship'	s Meteorological Station	21
7	Static	on List EMB230	21
	7.1	Overall Station List	21
	7.2	Station List – CTD Measurements, 89 Stations, 113 Casts	25
	7.3	Water Sampling – Parameters and Number of Samples	28
	7.4	Profile List – Organic Pollutants	30
	7.5	Station List – Sediment Sampling	30
	7.6	List – Scanfish Profiles	30
	7.7	List – Mooring Work	31
8	Data	and Sample Storage and Availability	31
9	Ackn	owledgements	31
10	Refer	ences	31
11	Abbr	eviations	31
10	Appe	ndices	32

3

1 Cruise Summary

1.1 Summary in English

This campaign of measurements is the first one in a series of five annual cruises to study the spatial and temporal variations of the Baltic Sea ecosystem by numerous hydrographic, hydrochemical and hydrobiological parameters. It is conducted in the frame of the COMBINE Programme of the Helsinki Commission (HELCOM) as well as measurements ouside the German territorial waters for the IOW's long term data programme, performed since 1969. In key areas moorings and autonomous platforms are used to gain higher temporal resolution of data, which are maintained by these cruises. The data acquired are used for the regular national and international assessments of the state of the Baltic Sea, and provide the scientific basis for measures to be taken for the protection of the ecosystem Baltic Sea.

During this expedition 89 stations (113 CTD casts) were measured from the western to the central Baltic Sea. Water sampling in discrete depths were done for measuring numourus paremters of nutrients and pollutants, as well as extraction of zooplankton samples. Transects of 300 l surface water were filtered for analysing organic pollutants at nine subareas. In addition, in situ pumps filtered water in two discrete depths at the Gotland Deep. Sediment sampling of the uppermost 3-5 cm were done at the Gotland Deep and 6 stations in the German EEZ for analysis of organic contaminants. In addition, three scanfish profiles were measured in the eastern Gotland Basin and Arkona Basin. The basical equipment (winch and bottom sensors) of the profiling moring at the Gotland Deep, called GODESS, was recovered at February 3rd and brought back to Warnemünde for maintanance. The rope of the profiling sensor unit was broken and the unit was driftet away, but luckily found at the Estonian coast close too Keibu /Gulf of Finland at January 8th. A new permanent mooring of physical oceanographic sensors was deployed for the first time in southwestern part of the Gotland Deep as well at February 3rd.

The cruise was performed mainly in windy weather conditions, 9 out of 12 days with more than 4 Bft (one day waiting on weather in bay near to Östergarn at the eastern coastline of Gotland – February 2^{nd}). The last day (February 10^{th}) had to be cancelled because of severe gale warning in western Baltic Sea and the expedition ended at February 9^{th} , shortly before the gale arrived. Nearly all of the planned work programme were realised, but the scanfish profile in the western Gotland Basin could not be done because of bad weather /lack of time.

1.2 Zusammenfassung

Die Messkampagne ist eine von fünf jährlichen Expeditionen zur Erfassung der räumlichzeitlichen Variabilität des Ökosystems Ostsee mit einer Vielzahl hydrographischer, chemischer und biologischer Parameter. Die Arbeiten sind eingebettet in das COMBINE Programme der Helsinki Kommission (HELCOM) zur Überwachung der Meeresumwelt sowie Messungen außerhalb der deutschen Territorialgewässer für das IOW Langzeitdatenprogramm, das seit 1969 fortlaufend vom Institut durchgeführt wird. An Schlüsselstationen werden Verankerungen und autonome Messplattformen eingesetzt und mit Hilfe dieser Expeditionen gewartet, um die zeitliche Datenauflösung zu verbessern. Die gewonnenen Daten werden für regelmäßige nationale und internationale Bewertungen des Umweltzustandes der Ostsee verwendet und bilden die wissenschaftliche Basis für zu ergreifende Maßnahmen zum Schutz der Meeresumwelt.

Im Gebiet der westlichen bis zentralen Ostsee wurden an 89 Stationen 113 CTD Einsätze gefahren zur Erkundung der aktuellen hydrographischen Situation. Wasserproben wurden für die Messung einer Vielzahl an Nährstoff- und Schadstoffparametern entnommen, sowie Zooplanktonproben

daraus extrahiert. Netze wurden für die Beprobung von Zoo- und Phytoplankton gefahren. In neun Seegebieten wurden 300 Liter Oberflächenwasser für die Analyse organischer Schadstoffe entnommen und zusätzlich im Gotland Tief in zwei Wassertiefen in situ Pumpen zu diesem Zweck eingesetzt. Die Sedimente der Meeresbodenoberfläche (die oberen 3-5 cm) wurden am Gotland Tief und 6 Stationen in deutschen Hoheitsgewässern für die Analyse von organischen Schadstoffen beprobt. Zusätzlich wurden drei Scanfish-Profile im östlichen Gotland Becken und Arkona Becken gemessen. Am 3. Februar wurden die an Ort und Stelle verbliebenen Hauptteile der GODESS Verankerung (Winde und Bodensensoren) im Gotland Tief geborgen und zur Wartung nach Warnemünde gebracht. Die profilierende Sensoreinheit war zuvor abgerissen und wurde bis an die estnische Küste im Golf von Finnland verdriftet. Am 8. Januar wurde die Sensoreinheit in der Nähe von Keibu gefunden und das IOW für einen Rücktransport informiert. Eine neue Dauerverankerung mit physikalisch-ozeanographischer Sensorik wurde im südwestlichen Teil des Gotland Tiefs ebenfalls am 3. Februar ausgelegt.

Die Expedition war hauptsächlich von windigen bis starkwindigen Witterungsverhältnissen geprägt (9 von 12 Schiffstagen mit mehr als 4 Bft). Am 2. Februar mussten die Arbeiten eingestellt und in einer schützenden Bucht nahe Östergarn an der Ostküste der Insel Gotland abgewettert werden. Der letzte geplante Schiffstag (10.2.) wurde aufgrund von einer schweren Orkanvorhersage für die westliche Ostsee nicht genutzt und die Expedition endete vorzeitig am 9. Februar, kurz bevor der Orkan das Gebiet erreichte. Ein Großteil der geplanten Arbeiten konnten durchgeführt werden, jedoch fiel das beantragte Scanfish Transekt im westlichen Gotland Becken der schlechten Witterung /Zeitmangel zum Opfer.

2 Participants

4

2.1 Principal Investigators

Name		Institution
Naumann, Michael, Dr.	(Physical Oceanography)	IOW
Mohrholz, Volker, Dr.	(Physical Oceanography)	IOW
Kuss, Joachim, Dr.	(Marine Chemistry – nutrients)	IOW
Kanwischer, Marion, Dr.	(Marine Chemistry – contaminants)	IOW
Kremp, Anke, Dr.	(Marine Biology – phytoplankton)	IOW
Dutz, Jörg, Dr.	(Marine Biology – zooplankton)	IOW

Name	Discipline	Institution
Naumann, Michael, Dr.	Physical Oceanography/chief scientist	IOW
Kolbe, Martin	Physical Oceanography	IOW
Donath, Jan	Physical Oceanography	IOW
Kaiser, Jan	Physical Oceanography	IOW
Sadkowiak, Birgit	Marine Chemistry	IOW
Hand, Ines	Marine Chemistry	IOW
Jeschek, Jenny	Marine Chemistry	IOW
Exner, Carolin	Marine Chemistry	IOW
Pötzsch, Michael	Biological Oceanography	IOW

2.2 Scientific Party

2.3 Participating Institutions

IOW Leibniz Institute for Baltic Sea Research Warnemünde, Germany

3 Research Program

3.1 Description of the Work Area

The area under investigation of the cruise EMB230 covered the western and central Baltic from the Kiel Bight to the northern Gotland Basin. An overview of the locations of CTD stations, mooring positions, and the cruise track is given in Figure 3.1. A station list is given in Table 7.1. The majority of stations is located along the thalweg transect of the Baltic Sea, describing the hydrographic, hydrochemical and biological conditions in all basins on the pathway of saltwater inflows from the North Atlantic (Fig. 5.2; 5.4). These inflows are the solely source for ventilation of the deep basins (MATTHÄUS et al. 2008). The possible western pathway of saline water from the Bornholm Basin to the western Gotland Basin was not sampled, since there were no indications of a spreading of saline waters through this trench. In the center of the eastern Gotland Basin an east-west transect of an undulating Scanfish CTD was measured (Fig. 3.1 - orange line, Tab. 7.6 - SF1, SF2), in order to gather information about the cross basin distribution of hydrographic parameters in the main basin of the Baltic proper. The counterpart in the western Gotland Basin had to be cancelled due to lack of time. These perpendicular transects of high-resolution measurements contributes to the understanding of small-scale processes on the basin wide dynamics. A third Scanfish CTD transect was measured from Bornholm Gat to Darss Sill on the tour back, to get a detailed hydrographic information of the Arkona Basin during this wind phase (Tab. 7.6 – SF3). Yellow transects mark surface water pumps and filtering system for organic pollutants (Fig. 3.1).

5

3.2 Aims of the Cruise

6

The performed meteorological, hydrographic, hydrochemical and hydrobiological sampling and measurements lead to an assessment of the actual winter situation of the Baltic Sea ecosystem from Kiel Bight to the northern Gotland Basin in the central part. EMB230 ist the first cruise in the year 2020 of five annually expeditions.

In the frame of the COMBINE Programme of the Helsinki Commission (HELCOM), national monitoring demands are conducted as contract work for the Federal Maritime and Hydrographic Agency (BSH) in German territorial waters and the Exclusive Economic Zone as well as bordering sea areas of Denmark and Sweden in the western Baltic Sea. Due to scientific interests, analysing variations and trends of the Baltic ecosystem as a whole, the IOW extends the investigated sites by its long-term observation programme. Stations in Danish, Swedish, Polish, and Latvian

7

territorial waters and their respective Exclusive Economic Zones are continuously sampled within this programme since the year 1969. The acquired data are used for regular national and international assessments of the state of the Baltic Sea (e.g. HELCOM 2018, NAUMANN et al. 2019), are analysed in numerous publications and provide the scientific basis for measures to be taken for the protection of the ecosystem Baltic Sea.

The recent scientific interest is the interplay of latest very warm summers in a role and the so far very warm wintertime 2019/20.

Additional program:

A new long-term mooring was deployed at the southwestern part of the Gotland Deep to measure hydrographic parameters in the deep-water layer (temperature, salinity, dissolved oxygen and currents) for more details of basin-wide circulation processes. The mooring protocol is attached as appendix (responsible scientist: Dr. V. Mohrholz).

Recovery of the mooring GODESS – Gotland Deep Environmental Sampling Station was done at February 3rd and brought back to Warnemünde. The rope of the profiling sensor unit was broken and the unit was driftet away, but luckily found at the Estonian coast close too Keibu /Gulf of Finland at January 8th. Only the basical equipment (winch and bottom sensors) had to be recovered. (responsible scientist: Dr. R. Prien)

Maintenance of MARNET station Arkona Basin was done by mounting a new windpower generator on top of the platform and the accu was exchanged in the electronic container. Power supply problems caused a shutdown of the live data transmission to our servers on land since December 2019. A storm damaged both wind generators and in wintertime the solar cells deliver not enough power to keep the stations alive due to limited sunlight hours. All sensor packages are equipped by autonomous data storage, that no data loss was created. Live data for operational tasks of BSH was missing during the last weeks (responsible engineer: R. Mars).

3.3 Agenda of the Cruise

The standard measurements

The work on the stations usually started with a CTD cast and programmed sampling during the down cast on standard depth levels for chemical and biological parameters. Manual releases in near-bottom waters and close to the sea surface completed the sampling. At key stations for example the Bornholm Deep, Gotland Deep and so on multiple CTD casts followed on demand to meet the additional water sample requirements. A detailed list of all CTD measurements are given in table 7.2. At these key stations, water sampling was carried out for dissolved oxygen, basic dissolved inorganic nutrients, total nutrient concentrations, as well as net sampling for phytoplankton and zooplankton species were carried out. Moreover, determinations of chlorophyll and the depth of visibility by means of a Secci disk were also done. For the detailed list of sampling see table 7.3.

Organic pollutants

Organic pollutants were sampled at transects of surface water (Tab. 7.4, Fig. 3.1 – yellow transects), by in situ pumps in deepwater layer and seafloor sediments of the upper 3-5 cm at six stations (Tab. 7.5). The nine transects are characterizing all main regions of the cruise. At key station Gotland Deep (TF0271) two depths at 80 m and 220 m were sampled by in situ pump systems and filtered water of about 300 liters in 5 hours deployment time. Surface sediments were

sampled at five positions of long-term data series in the western Baltic (BSH programme) and as well at the Gotland Deep (Responsible scientist: Dr. Marion Kanwischer).

Long-term observation of the microbiological habitat of the redoxcline

Insights into the changes of the microbial food web of the redoxcline is obtained by well resolved sampling of the range of the redoxcline at Gotland Deep (TF0271) and Landsort Deep (TF0284) stations on each monitoring cruise. Therefore, in the redoxcline as well as 6 depths above and below, respectively, in depth intervals of 2 m, samples were taken by CTD/water sampling bottles and prepared for microbiological analysis (FISH and DNA) and determination of pigments (Responsible scientist: Prof. Klaus Jürgens).

Long-term investigations of CH₄, N₂O and the marine carbonate system

Sampling for simultaneous CH₄ and N₂O observation is carried out on 4 stations (TF0113, TF0213, TF0271, TF0286) in the frame of the accompanying project for long term data collection. All samples were taken in septum-sealed 250 mL water bottles and fixed with 200 μ L or in case of hydrogen sulphide presence with 500 μ L saturated HgCl₂-solution to prevent microbiological activity and stored dark. On the same stations and depths also CT, AT, and pH were sampled for their long-term observation. These samples were fixed by the same method and were also stored dark (Responsible scientist: Prof. Gregor Rehder).

Equipment

8

Data acquisition was carried out using the following devices and measuring platforms.

At stations and transects:

- CTD SBE 911+ with rosette water sampler
- Scanfish MKIII
- Oceanographic moorings (Gotland southwest, GODESS)
- Surface water pumps and filtering system for organic pollutants
- In situ pumps and filtering system for organic pollutants in discrete depths
- Phytoplankton nets (Apstein)
- Zooplankton net (WP2)
- Secci desk
- Multicorer

Continuous measurements:

• Underway measurements of surface water properties

9

• Ship weather station

This ship based data set consists of one minute averages of: time (UTC), latitude and longitude, ships heading, depth, air pressure, air temperature, humidity, global radiation, infrared radiation, surface conductivity, surface salinity, surface water temperature, surface chlorophyll-a fluorescence, surface turbidity, wind direction, wind speed.

4 Narrative of the Cruise

This paragraph is aimed to give an impression of the work on board during the campaign. It is a day by day report that includes the weather conditions and sea state. All times are given in UTC.

Tuesday, 28th January 2020: Loading and transport of equipment started at 07:00. Depacking was finished around 11:30 and all devices and laboratories were prepared at 15:30.

Day 1, Wednesday, 29th January 2020: Embarking of the scientific crew was done between 06:00 to 06.30 followed by safety instructions. Departure of the peer Rostock-Marienehe and start of the cruise was in time at 07:00. At 09:00 started the station work at TF005 two nautical miles northerly of Warnemünde. The weather situation in the Mecklenburg Bay was 5-6 °C air temperature, cloudy and strong westerly wind around 6 Bft, gusts up to 7 Bft. Due to windy weather and sea state close to our working limits of the vessel in the western Baltic, we decided not to sample routinely the numerus stations in this region (Kiel Bight, Mecklenburg Bight, Arkona Basin) like we do it normally. We went eastwards with a limited number of sampling. We started with key stations we normally measure twice at our tour back to the harbor. The plan is to start the chain of stations along the thalweg transect from the north (Landsort Deep, western Gotland Basin).

10:30 we measured station TF0041 in the Kadet Trench with CTD and chemical sampling. A surface water sampling profile for organic contaminants (transect T2) was started from there up to Darss Sill – MARNET autonomous station (TF001). 13:40 we reached the Darss Sill station and one CTD cast with chemical sampling was done for data validation of the MARNET autonomous station. At 17:10 we measured key station Arkona Deep (TF0113) with two CTD casts and chemical as well as biological water sampling. Net sampling with a WP2 net was done and transect T3 for organic contaminants started from this position.

MARNET station AB Boje was reached in the darkness at 19:30. A CTD cast was done for validation issues of the sensor packages in eight depth levels of this station. In addition, a foto documentation of MARNET station platform above the water was done under spotlight from the bridge. Both wind turbines were damaged and without rotor blades during the last storms. Afterwards we drove northeastwards through the Bornholms Gat.

Day 2, Thursday, 30th January 2020: At 04:40 we reached key station Bornholm Deep (TF0213) and sampling was done up to 07:45 (2 CTD casts, chemical & biological sampling, WP2 net). The weather situation in the Bornholm Basin was: air temperature 5.3 °C, cloudy, rainy, strong winds around 6 Bft and 2.5 m swell. Sampling was pretty close to the working limit. Our tour was continued in northern direction, next stops were planned at the western Gotland Basin. During the afternoon hours wind and swell decreased slowly. In the evening we reached key station Karlsö Deep (TF0245) in the southern part of the western Gotland Basin. Sampling of one CTD cast and chemical water samples was done from 19:20 to 20:00. Transect T9 for organic contaminants was afterwards started from this position.

Day 3, Friday, 31st January 2020: Station TF0240 in the centre of the western Gotland Basin was sampled from 1:30 to 02:00 1in the night (end of transect T9, 1 CTD cast with chemical sampling). The weather situation in the western Gotland Basin was calm, 4.5 °C air temperature, 990.7 hPa

air pressure, cloudy, moderate winds of 4 Bft and swell around 1 m. During the morning hours up to lunch we sampled the key station Landsort Deep (TF0284) of 440 m water depth. Five CTD casts were done to get all needed chemical and biological water samples. From 16:15 to 16:45 station TF0283 at the border from western to northern Gotland Basin was measured by a CTD cast. Continuous station work was done from 19:50 onwards to midnight at stations TF0288, TF0282 and TF0289. The "thalweg transect" has started. We found nice working conditions in the northern Gotland Basin. The wind blew moderate to calm of up to 4 Bft with a sea state of around 1 m swell.

Day 4, Saturday, 1st February 2020: In the time frame 00:30 to 05:45 the stations TF0279, TF0285, TF0278 and TF0277 in the northern Gotland Basin were measured by CTD. Additional sampling for detection of hydrogen sulphide were done in the deep water layer.

The key station Farö Deep was reached at 07:00 and measured by two CTD casts for detailed chemical sampling. From this location another transect for filtration of organic contaminants has started in southern direction (T8). The weather conditions in this region were cloudy, slight rainy, later sometimes sunny, air pressure of 987 hPa, air temperature of 6.7 °C and moderate winds around 5 Bft with a sea state of 1 m swell. In the time span 09:30 to 13:00 the stations TF0290, TF0287 and TF0270 at the northern part eastern Gotland Basin

were measured by CTD casts. At Station TF0270 the filtration of transect T8 was finished. During the afternoon the wind increased to 6-7 Bft and swell up to 1.5 m. A trial of the scanfish system as preparation was done on the transit track between stations TF0270 to TF0276 from 13:00 up to 14:10. Then stations TF0276 and Gotland NE were measured by CTD up to 16:30. At 17:50 we arrived at key station Gotland Deep (TF0271) and up to 22:30 five CTD casts were done for sampling of numerous chemical and biological parameters (cf. Tab. 7.3). Two net samples for phytoplankton were done as well. The weather situation at the Gotland Deep was challenging, close to the working limit. It was cloudy, 985 hPA of air pressure, 6 °C air temperature and strong winds of 7 Bft with 2 m swell.

Increasing westerly winds and sea state was forecasted, so station work was quitted and course was set to the eastcoast of Gotland to stay in the cover. At 22:45 we left the Gotland Deep and started scanfish measurements (SF1) on our track to Gotland as western part of the planned transect perpendicular to the "thalweg" transect.

Day 5, Sunday, 2nd February 2020: A transect length of 39 NM was measured up to 06:45 and after 41 NM the anchor position was reached in bay close to Östergarn, located some nautical miles in the south of Slite harbour at 07:30. The weather was sunny, 984 hPa air pressure, 3 °C air pressure and 7-8 Bft in the shadow of Gotlands coastline. Samples were measured in the laboratories and equipment prepared for the next days.

Day 6, Monday, 3rd February 2020: Up to 5 we stayed anchored "waiting on weather". At 09:15 we arrived again at the Gotland Deep. The weather situation calmed down to 4 Bft with swell of 1-1.5 m, cloudy to sunny sky, 999 hPa air pressure and 3.7 °C air temperature. A next CTD cast was done for decision of two discrete depth levels for in situ pump measurements of organic contaminants in the deep water layer, which is intended for the upcoming night hours. Daytime was used for mooring work. From 10:00 to 11:30 the bottom part with winch system and bottom sensors of mooring GODESS was recovered. The profiling unit of physical and chemical parameters was lost. Luckily it was found in Estonia some weeks ago and is send back to Warnemünde. Afterwards we deployed a new permanent mooring of physical parameters named Gotland Southwest in 18 NM distance at the southwestern rim of the deeper part of the eastern Gotland Basin between 13:00 to 13:45. At 15:30 we arrived for a third time at the Gotland Deep (TF0271) and a multicorer sampling for organic contaminants in surface sediments was done,

followed by 5 hours in situ pump filtering in 220 m and 80 m depth. At the end a CTD cast for sensor calibration was done. The station was left at 23:50.

Day 7, Tuesday, 4th February 2020: At midnight scanfish measurements restarted to complete the W-E scanfish transect to the eastern part of the basin. After 43 NM with 5 kn speed of the vessel we finished the transect at 07:30 close to the Latvian coast. After 45 NM transit to station TF0275, located in centre of the basin, the "thalweg" transect of CTD measurements was continued in southwestern direction. The weather in the eastern Gotland Basin was sunny to cloudy, air pressure of 1003 hPa, air temperature of 2.5 °C and moderate to strong winds 5-6 Bft with swell of 1-1.5 m. From 11:50 onwards to 22:30 the stations TF0275, TF0272, TF0273, TF0274, TF0260, TF0261, TF0263 and TF0262 were measured by CTD casts (cf. Tab. 7.2). Chemical water sampling for nutrients was done at station TF0260. Hydrogen sulphide was sampled in the deep water layer at TF0275, TF0272, TF0273, TF0274, TF0260 and TF0262. A surface water transect for organic contaminants (T7) was filtered between TF0272 and TF0260.

Day 8, Wednesday, 5th February 2020: Seven stations in the southern part of the eastern Gotland Basin were measured by CTD casts between 01:00 and 08:40 (TF0265, TF0253, TF0258, TF0255, TF0259, TF0257, TF0256). At key station TF0259 chemical and biological water sampling was done and a surface water transect for organic contaminants (T6) was filtered between TF0259 and TF0267. The weather situation was appropriate with sunny to cloudy sky, an air temperature of 3 °C and moderate to strong wind 5-6 Bft with 2m swell. From 09:45 to 16:30 six stations in the Slupsk Channel were measured by CTD under increasing wind and sea state (TF0268, TF0267, TF0266, TF0222, TF0229, TF0228). At key station Slupsk Channel (TF0222) water sampling for chemical parameters was done. Station work was stopped at 16:30 and we had to skip the next stations. The wind had increased to 8-9 Bft with 2.5 m significant wave height, max wave heights up to 4 m. The transit speed was 3 kn and we had to tack multiple times to find a more "smooth" angle to cross the waves (cf. Fig. 3.1 – ship track). From 21:46 to 02:25 surface water transect for organic contaminants (T5 – Bornholm Basin) was filtered at these tacking course.

Day 9, Thursday, 6th February 2020: Due to bad weather the following stations had to be skipped (TF0227, TF0226, TF0225, TF0221, TF0213, TF0214). At 03:15 station work restarted at station TF0212 in the central Bornholm Basin. Up to 11:15 stations TF0211, TF0209, TF0200, TF0208, TF0207, TF0206 were measured by CTD casts. Chemical sampling for nutrient parameters was done at station TF0200. The stations in the Bornholm Gat followed from 12:00 to 15:00 (TF0140, TF0142, TF0144) with chemical sampling at TF0140 and TF0142. We reached the entrance to the Arkona Basin (station TF0145) at 16:00. The weather was sunny to cloudy, air pressure of 1023 hPa, air temperature of 6.4 °C and moderate to strong winds (5-6 Bft). The sea state was 1-1.5 m swell. Stations TF0145, TF0103, TF0109 were measured up to 19:00 by CTD casts. At key station TF0109 water sampling for chemical and biological parameters was done. We headed southwards to the Oder Bank. At 21:40 we measured station TF0152 by CTD and a next transect for filtering organic contaminants in surface waters started there (T4).

Day 10, Friday, 7th February 2020: The autonomous MARNET station "OB Boje" was reached at 01:15 and the transect of was finished. The station work was done up to 02:00 conducting one CTD cast with chemical and biological sampling. Afterwards followed transit back to Arkona Basin. Between 05:45 to 06:00 station TF0112 at the southern rim of the basin was measured by CTD. At 06:45 we reached MARNET station "AB Boje" and emergency maintenance of the power system was planned, but we had to postpone this work due to dense fog. The transport of colleagues via dinghy to the station was not possible, due to navigation issues of dinghies in foggy conditions. Other weather parameters at that time were air pressure of 1030 hPa, air temperature of 3.2 °C, light breeze of 0-1 Bft and slight swell of 0.25 m. At 08:10 we measured station TF0104 and later

TF0105, both with chemical and biological sampling, and headed back to the MARNET station. In the time frame 11.30 to 16:00 the maintenance of the autonomous station was done by mounting a new windpower generator and charging changing the accu. We left northeastwards to the entrance of the Bornholm Gat and started an additional scanfish track (SF3 Bornholm Gat – Arkona Basin) at 22:00.

Day 11, Saturday, 8th February 2020: The scanfish profile ended at position TF0115 at 09:45. On the route we stopped two times and interrupted the measurements for CTD casts at stations TF0113, TF0114 for chemical and biological sampling. Mid of the day we visited the Darss Sill and measured stations TF0001, TF0002, the last one with chemical water sampling.

From 13:30 to 18:00 we moved on southwestwards and measured stations at the Kadet Trench (TF0033, TF0083, TF0046, TF0041). Key station TF0046 was as well sampled for chemical and biological parameters. The weather at the Mecklenburg Bight was sunny, air pressure of 1017 hPa, air temperature of 6.3 °C, wind between 4-5 Bft and swell of 0.5 - 1 m.

In the time frame 18:20 to 22:00 stations TF0017, TF0012 (+ chemical & biological sampling) and TF0013 were measured by CTD casts. At 22:35 we measured station TF0010 in the Fehmarn Belt by CTD and took samples for nutrient parameters. From this position transect T1 for filtering of organic contaminants started at 23:15.

Day 12, Sunday, 9th February 2020: A next station in the Fehmarn Belt (TF0014) was measured by CTD between 00:20 to 00:45. The last stations of the cruise were located in the Kiel Bight (TF0361, TF0360) and visited in the time frame 01:30 to 03:30. At key station TF0360 only biological samples were taken and the transect of filtering surface waters ended there. Chemical sampling was quitted and laboratory equipment had to be reinstalled and packed early because of the fourthcoming gale. At the transit tour back to port of Rostock we already had 8 Bft abaft, continuously increasing. Gale warning up to 12 Bft was given by the weather service (winter gale "Sabine"). At 10:15 we savely arrived at port Rostock-Marienehe and the cruise ended one day earlier than scheduled. In total, 89 CTD stations, 3 scanfish transects, 8 transects for organic contaminants, 6 sediment samples, 1 sediment core and MARNET maintenance was done.

Day 13, Monday, 10th February 2020: In the time frame 07:00 to 11:00 deinstallation, unloading of scientific equipment and disembarking of scientific crew was done. End of cruise EMB230 at 11:00.

5 Preliminary Results

The results presented in the following section are preliminary and not comprehensive. CTD data is quality checked and validated. The aim of this section is to give a first impression on the collected data set. An advanced data analysis will be integrated follow after all validated data sets are available.

5.1 Surface Temperatures

Surface temperatures showed generally very warm values above 5 °C in all regions and varied only slightly along the cruise track between 4.9 °C (Karlsö Deep, western Gotland Basin) and 5.59 °C at the Bornholm Deep (cf. Tab. 5.1). The ferry box system measured up to 6.1 °C (February 6th) in the Arkona Basin on the tour back home. February 2020 sea surface temperatures were even warmer than the year before, which showed as well temperatures above average. A comparison of the cruise data compared to longterm measurements are given at key stations in Figure 5.5. At all stations new temperature records are observed in the surface water layer. These warm water temperatures are the result of very warm winter weather with continuous positive terrestrial

temperature anomalies since October 2019. For example, station Warnemünde showed air temperature anomalies of +1.3 K in October, +1.1 K in November, +3.0 K in December, +4.2 K in January 2020 and 4.2 K in February 2020 (data DWD). It results in a cold sum of 0 Kd for wintertime 2019/20, indicating a new warmth record in the long- term data since 1948. The water column is mixed down to the halocline (cf. Fig. 5.2) showing homogenous temperatures between 4-5 °C.

5.2 Deep Water Layer Temperatures

(bottom near depths) showed at all key stations from the western to the central Baltic Sea increased values at the upper edge of the long-term data series like in 2019. The temperatures at the key stations Bornholm Deep (-0.5 K) and Gotland Deep (-0.4 K) slightly decreased, but increased at Farö Deep (+0.3 K), Landsort Deep (+0.3 K) compared to previous year. The warming began in the central Baltic Proper since 2014, the start of an intensive inflow period of several events up to beginning of 2017. In between short stagnation phases and a cold winter inflow of January-February 2016 lead to slightly decrease in the Bornholm Basin and eastern Gotland Basin during 2017-2018. Beside this barotropic driven inflow events, a next warming phase has started due to several baroclinic inflow events of warm summer water in late 2018. A consequence of nearly windless, long-lasting high-pressure periods across Northern Europe. These warm saline water bodies are on their pathway to the central Baltic Sea and had actually arrived at the Gotland Deep in winter 2018-2019. Since that time some smaller water volumes have passed the sill between eastern Gotland Basin and Faro Deep (-120 m sill depth) and influenced more distant basins in the Baltic Proper.

Location	Feb '13	Feb '14	Feb '15	Feb '16	Feb '17	Feb '18	Feb '19	Feb '20
Bornholm D.	5.82 °C	8.65 °C	7.15 °C	8.39 °C	6.96 °C	6.85 °C	8.96 °C	8.43 °C
Gotland Deep	6.41 °C	6.36 °C	6.71 °C	7.86 °C	7.19 °C	6.91 °C	7.65 °C	7.26 °C
Farö Deep	5.98 °C	5.76 °C	6.17 °C	not sampled	6.73 °C	6.80 °C	6.81 °C	7.18 °C
Landsort D.	5.58 °C	5.34 °C	not sampled	5.84 °C	5.98 °C	6.24 °C	6.19 °C	6.43 °C
Karlsö Deep	5.29 °C	5.08 °C	5.03 °C	5.22 °C	5.53 °C	5.58 °C	5.62 °C	5.83 °C

Table 5.1 Deep water layer temperatures at key station of recent years (bottom near depths)

Figure 5.3 (left part) shows a temperature-salinity plot of all gathered data. The slightly warming of bottom water temperatures and slight salinity increase at these key areas F and G is visible.

5.3 Salinity in the Bottom Layer

The major Baltic inflow from December 2014 and the following barotropic inflow events up to 2017 increased the salinity in the bottom layer in the central Baltic Proper rapidly to a maximum of 13.84 at the Gotland Deep in February 2016. Afterwards the values slowly decrease in the eastern Gotland Basin and Bornholm Basin with a short slight increase in 2019 caused by the baroclinic events of summer 2018. Since that short interruption in the last year the bottom layer salinity decreased further to February 2020 in the area from the Bornholm Basin to Farö Deep. The salinity at Landsort Deep stayed more or less constant during the last three years 2018-2020 at 11.3 g/kg. The Karlsö Deep in the south of the western Gotland Basin showed a slight increase of 0.3 g/kg compared to stagnant value of 10.3 g/kg of the previous three years.

Location	Feb '13	Feb '14	Feb '15	Feb '16	Feb '17	Feb '18	Feb '19	Feb '20
Bornholm D.	15.62	15.99	19.81	19.19	17.93	17.14	17.79	17.16
Gotland Deep	12.07	12.23	12.31	13.84	13.50	13.3	13.37	13.20
Farö Deep	11.43	11.60	11.81	not sampled	12.68	12.79	12.62	12.52
Landsort D.	10.43	10.45	not sampled	11.03	11.18	11.38	11.30	11.30
Karlsö Deep	10.10	9.75	9.78	9.97	10.34	10.32	10.33	10.62

 Table 5.2 Deep water layer Salinity at key station of recent years (bottom near depths)

5.4 Oxygen Situation in the Deep Water

Thus, the oxygen situation in the deep water of central basins (>100 m water depth) documents recently a stagnation period, which has started after the phase of several ventilations due to the inflow events 2014-2017. This inflow activity is mirrored in measurements of former years. Hydrogen sulphide concentrations (expressed as negative oxygen equivalents) in the near-bottom layer were high in November 2013 as maximum stage of the stagnation period 2004-2013 and decreased in the eastern Gotland Basin and Farö Deep completely and oxic periods occurred in these areas during 2015-2017. Since that time a shift back to euxinic conditions occurred and hydrogen sulphide concentrations increased again in the eastern Gotland Basin to Farö Deep. Recently, high concentrations of -6.55 ml/l was found at the Gotland Deep. At the Landsort Deep and Karlsö Deep in the western Gotland Basin hydrogen sulphide varied only slightly during 2013-2018, but increased during the last two years up to -2.78 ml/l at the Karlsö Deep. These more distant basins show no major changes induced by the last saltwater intrusions. The oxygen situation at the bottom of the Bornholm Basin is much more dynamic, showing short term changes even by weak inflows. Actually, dissolved oxygen concentrations of 3.75 ml/l occurred in February 2020. In addition, figure 5.2 visualize the situation along the "Talweg". In the western basins up to the Slupsk Sill oxic deep water conditions were detected. The Slupsk Channel was slightly hypoxic (1.98 ml/l) and euxinic conditions occurred in more distant areas of the Baltic Proper (c.f. table 5.5). An areal overview of measured bottom near values at key stations is shown in figure 5.1. The comparison to longterm measurements at these key stations is shown in figure 5.5. At all of these stations the oxygen parameter is on a low level, except at the Bornholm Deep.

			(**************************************					
Location	Feb '13	Feb '14	Feb '15	Feb '16	Feb '17	Feb '18	Feb '19	Feb '20
Bornholm D.	3.4 ml/l	0.84 ml/l	5.38 ml/l	1.47 ml/l	2.24 ml/l	0.05 ml/l	1.87 ml/l	3.75 ml/l
Gotland Deep	-8.75 ml/l	-1.71 ml/l	-0.92 ml/l	1.7 ml/l	-1.09 ml/l	-0.87 ml/l	-3.02 ml/l	-6.55 ml/l
Farö Deep	-7.74 ml/l	-2.41 ml/l	-1.07 ml/l	not sampled	0.20 ml/l	-0.71 ml/l	-2.49 ml/l	-3.06 ml/l
Landsort D.	-1,32 ml/l	-0.95 ml/l	not sampled	-1.28 ml/l	-0.89 ml/l	-1.13 ml/l	-1.82 ml/l	-2.15 ml/l
Karlsö Deep	-1,20 ml/l	-1.25 ml/l	-0.86 ml/l	-0.90 ml/l	-1.12 ml/l	-1,64 ml/l	-2.25 ml/l	-2.78 ml/l

 Table 5.3 Deep water layer concentrations of dissolved oxygen and hydrogen sulphide (negative oxygen equivalent) at key station of recent years (bottom near depths)

5.5 Nutrient Situation

The nutrient situation in the surface layer is typical for the winter season. In all key areas phosphate and nitrate values are on a higher winter level, because the biological production like the diatom bloom has not been started (table 5.4). In the deep waters of the central basins (>100 m water depth), the hydrographic situation is mirrored. The ventilation of the eastern Gotland Basin since summer 2014 caused decreasing phosphate, ammonium and silicate concentrations and rising nitrate concentrations during the inflow years. The values were halved or even more decreased since November 2013. Also silicate concentrations have decreased from 126.8 μ mol/l to 43.7 μ mol/l in February 2016. During the last years the situation at the bottom water of the Gotland

Deep has changed back into stagnation. Nitrate concentration are reduced and bound in the sediment, phosphate is released. Phosphate values were more or less stable during the last two years at the station Gotland Deep, 4.97 µmol/l (Feb. 2017), 4.32 µmol/l (Feb. 2018), 4.55 µmol/l (Feb. 2019) and 5.18 µmol/l February 2020. Silicate shows the same stable concentrations from 64 µmol/l (Feb. 2017), 65.4 µmol/l (Feb. 2018), 64 µmol/l (Feb. 2019) and 64.5 µmol/l in February 2020 (c.f. table 5.5). After a nitrate release at the Farö Deep in February 2017 (7.46 µmol/l) induced by oxic water, it is bound again in the sediment and phosphate increased to 4.10 µmol/l.

5.6 **Biological Sampling**

Samples for phyto- and zooplankton were collected for later analysis in the laboratory.

Table 5.4 Surface water layer (about 3 m depth) - hydrographic and hydrochem							es	
Area /Date	Station	Temp.	Sal.	O2 (sensor)	O ₂ (titration)	PO4	NO3	SiO4
	Name /No.*	°C	psu	ml/l	ml/l	μM	μM	μM
Kiel Bight /2020-02-09	TF0360/89	5,54	21,73	6,93	7,65	0,23	0,54	2,30
Meckl.Bight /2020-02-08	TF0012/84	5,03	15,65	7,18	8,04	0,59	3,81	13,80
Darss Sill /2020-01-29	TF0001/03	5,42	8,66	7,53	8,22	0,30	2,58	15,10
Arkona Basin /2020-01-29	TF0113/04	5,35	8,20	7,34	8,21	0,32	2,53	15,80
Bornholm Deep /2020-01-30	TF0213/06	5,59	7,47	7,32	8,19	0,38	2,92	17,50
Slupsk Channel /2020-02-05	TF0222/48	5,51	7,49	7,30	8,20	0,58	3,20	16,30
SE Gotland Basin /2020-02- 05	TF0259/42	4,99	7,22	7,36	8,28	0,66	3,15	18,40
Gotland Deep /2020-02-01	TF0271/24	5,04	7,34	7,32	8,22	0,62	3,35	16,70
Farö Deep /2020-02-01	TF0286/18	5,44	7,39	7,29	8,16	0,52	3,96	14,60
Landsort Deep /2020-01-31	TF0284/09	5,18	7,23	7,36	8,16	0,59	3,83	16,50
Karlsö Deep /2020-01-30	TF0245/07	4.90	7.10	8.48	8,23	0.43	3,76	18,10

Tables and figures:

Area /Date	Station	Temp.	Sal.	O ₂ (sensor)	O ₂ (titration)	PO4	NO3	SiO4
	Name /No.*	°C	psu	ml/l	ml/l	μΜ	μM	μM
Kiel Bight /2020-02-09	TF0360/89	5,53	21,40	6,91	7,77	0,26	1,50	3,30
Meckl.Bight /2020-02-08	TF0012/84	5,24	18,67	6,68	7,49	0,66	4,04	13,90
Darss Sill /2020-01-29	TF0001/03	5,42	14,37	7,23	7,69	0,46	4,11	15,70
Arkona Basin /2020-01-29	TF0113/04	6,13	19,14	5,85	6,62	0,48	6,53	17,00
Bornholm Deep /2020-01-30	TF0213/06	8,43	17,16	3,35	3,75	1,99	8,01	36,60
Slupsk Channel /2020-02-05	TF0222/48	9,56	13,77	1,76	1,98	2,17	7,23	44,10
SE Gotland Basin /2020-02-05	TF0259/42	7,05	11,66	0,04	-0,15	2,82	0,00	51,60
Gotland Deep /2020-02-01	TF0271/24	7,26	13,20	0,03	-6,55	5,18	0,00	64,50
Farö Deep /2020-02-01	TF0286/18	7,18	12,52	0,03	-3,06	4,10	0,00	63,50
Landsort Deep /2020-01-31	TF0284/09	6,43	11,30	-0,04	-2,15	3,55	0,00	60,90
Karlsö Deep /2020-01-30	TF0245/07	5,83	10,62	0,02	-2,78	3,65	0,00	59,80

Table 5.5 Deep water layer (bottom near depths) - hydrographic and hydrochemical properties

* hydrogen sulphide was converted into negative oxygen equivalents

Fig. 5.1 Oxygen/hydrogen sulphide conditions in the bottom near layer for selected key stations (hydrogen sulphide was converted into negative oxygen equivalents).

Fig. 5.2 Cross section from Kiel Bight to eastern Gotland Basin showing the hydrographic parameters temperature, salinity and oxygen on the "Talweg" of Major Baltic Inflows (for location see map Fig. 5.4).

Fig. 5.3 Temperature-Salinity diagram (left) of all stations, A – Kiel Bight – Mecklenburg Bight (yellow); B – Arkona Basin (yellow); C – Bornholm Basin (orange); D – Slupsk Channel (red); E – Eastern Gotland Basin (green); F – Northern Central Basin (blue); G – Western Gotland Basin (black). Diagram on right side shows all temperature – salinity values and dissolved oxygen classified in color.

Fig. 5.4 Location of selected key stations (tables in sections 5.2 – 5.4, table 5.4, 5.5, figure 5.5) and the "Talweg"-transect crossing all deep basins on the pathway of saltwater inflows (figure 5.2).

Fig. 5.5 Comparison of cruise data (February 2020) to longterm measurements of temperature, salinity, oxygen and hydrogen sulphide at key stations (locations cf. figure 5.4).

6 Ship's Meteorological Station

The weather situation during the cruise was generally strong windy under influence of the large low pressure cells crossing northern Europe. A mean windspeed of 18.1 kn (max. 41.9 kn, 9 Bft) was measured during the cruise and most of the time the ship moved against the swell. One day staying anchored waiting on weather on February 2th (low pressure "Naima"), 10 hours of cruising with 2 kn speed against storm of low pressure "Quendresa" (February 5th) and cancellation of the last day of the cruise (low pressure "Sabine") hampered the work.

Air pressure varied from 982 hPa (February 2nd) to 1030 hPa (February 7th). Some notes of the daily weather situation are given in section 4. The air temperature showed a minimum of 0.4 °C (February 4th) in the eastern Gotland Basin to a maximum of 8.3 °C (January 30th) in the Bornholm Basin. A mean temperature of 4.6 °C was measured during the cruise.

7 Station List EMB230

7.1 Overall Station List

Station	Station	Date	Gear	Time	Latitude	Longitude	Water	Remarks / Recovery
No.	ID			[UTC]	[decimal]	[decimal]	Depth	
					°N	°E	[m]	
1	TFO5	2020-01-29	CTD, Secchi disk	9:01	54,2311	12,0748	13,4	1 cast, chemical sampling
2	TF0041	2020-01-29	CTD	10:30	54,4061	12,0628	20,2	1 cast, chemical sampling
3	TF0001	2020-01-29	CTD	13:38	54,6962	12,6987	22,0	1 cast, chemical sampling
4	TF0113	2020-01-29	CTD, plankton net	17:10	54,9252	13,5009	47,4	2 casts, chemical, biological sampling
5	ABBOJE	2020-01-29	CTD	19:49	54,8802	13,8603	45,6	1 cast, chemical sampling
6	TF0213	2020-01-30	CTD, plankton net, Secchi disk	4:37	55,2502	15,9853	89,7	2 casts, chemical, biological sampling
7	TF0245	2020-01-30	CTD	19:23	57,1154	17,6672	110,7	1 cast, chemical sampling
8	TF0240	2020-01-31	CTD	0:51	58,0000	17,9994	166,4	3 casts, chemical sampling, CTD calibration

9	TF0284	2020-01-31	CTD, Secchi disk	6:41	58,5834	18,2330	438,9	5 casts, chemical, biological sampling
10	TF0283	2020-01-31	CTD	16:17	58,7833	19,0993	126,6	1 cast, chemical sampling
11	TF0288	2020-01-31	CTD	19:56	58,9981	20,1578	141,2	1 cast, chemical sampling
12	TF0282	2020-01-31	CTD	21:22	58,8831	20,3170	170,1	1 cast, chemical sampling
13	TF0289	2020-01-31	CTD	22:56	58,7661	20,3302	190,7	1 cast, chemical sampling
14	TF0279	2020-02-01	CTD	0:30	58,6415	20,3454	163,3	1 cast, chemical sampling
15	TF0285	2020-02-01	CTD	2:11	58,4419	20,3347	123,1	3 casts, chemical sampling, CTD calibration
16	TF0278	2020-02-01	CTD	3:58	58,3502	20,1474	120,4	1 cast, no water sampling
17	TF0277	2020-02-01	CTD	5:24	58,1842	20,0518	161,0	1 cast, no water sampling
18	TF0286	2020-02-01	CTD, Secchi disk	7:03	58,0007	19,9002	192,9	2 casts, chemical sampling
19	TF0290	2020-02-01	CTD	9:38	57,8505	19,8175	169,1	1 cast, chemical sampling
20	TF0287	2020-02-01	CTD	11:03	57,7154	19,8534	130,3	1 cast, chemical sampling
21	TF0270	2020-02-01	CTD, start scanfish test	12:42	57,6168	20,1667	143,2	1 cast, chemical sampling
22	TF0276	2020-02-01	CTD, end scanfish test	15:04	57,4704	20,2606	206,5	1 cast, chemical sampling
23	Gotland_NE	2020-02-01	CTD	16:14	57,3672	20,3341	217,0	1 cast, chemical sampling
24	TF0271	2020-02-01	CTD, Secchi disk, plankton net, start scanfish transect	18:02	57,3203	20,0509	236,9	7 casts, chemical, biological sampling, CTD calibration, start SF1
25	no	2020-02-02	End of scanfish transect	21:50	57,5521	18,9035	28,0	end SF1
X 25-2	no	2020-02-02	no	7:30	57,5630	18,8508	12,0	anchored, waiting on weather
26	TF0271	2020-02-03	CTD	9:19	57,3190	20,0506	237,9	1 cast, no water sampling
X 26-2	TF0271	2020-02-03	Mooring work	10:00	57,3066	20,0812	241,0	"GODESS" recovery
X 26-3	Gotland_SE	2020-02-03	Mooring work	13:00	57,0754	19,7520	189,0	"Gotland Southwest" deployment
27	TF0271	2020-02-03	Multicorer, in situ pumps, CTD, start scanfish transect	15:30	57,3201	20,0481	237,0	1 sample surface sediments, 220 m and 80 m filtering of organic coantaminants, 2 casts of CTD calibration, start SF2
X 27-2	no	2020-02-02	End of scanfish transect	7:30	57,0448	21,2821	19,4	end SF2
28	TF0275	2020-02-04	CTD	11:56	57,2102	19,9299	227,2	1 cast, chemical sampling
29	TF0272	2020-02-04	CTD	13:27	57,0716	19,8295	206,5	1 cast, chemical sampling
31	TF0273	2020-02-04	CTD	14:53	56,9517	19,7698	181,6	1 cast, chemical sampling
32	TF0274	2020-02-04	CTD	16:28	56,7675	19,7511	153,3	1 cast, chemical sampling

33	TF0260	2020-02-04	CTD	17:57	56,6332	19,5828	144,2	1 cast, sampling	chemical
34	TF0261	2020-02-04	CTD	19:20	56,4915	19,4795	142,5	1 cast, sampling	chemical
35	TF0263	2020-02-04	CTD	20:47	56,3462	19,3774	138,0	1 cast, sampling	chemical
36	TF0262	2020-02-04	CTD	22:05	56,2344	19,3004	131,4	1 cast, sampling	chemical
37	TF0250	2020-02-04	CTD	23:43	56,0835	19,1661	129,0	2 cast, sampling, calibration	chemical CTD
38	TF0265	2020-02-05	CTD	0:58	55,9584	19,0468	115,7	2 cast, sampling, calibration	chemical CTD
39	TF0253	2020-02-05	CTD	2:24	55,8398	18,8655	105,8	1 cast, sampling	chemical
40	TF0258	2020-02-05	CTD	3:30	55,7264	18,7652	91,7	1 cast, sampling	chemical
41	TF0255	2020-02-05	CTD	4:41	55,6332	18,5999	95,0	1 cast, sampling	chemical
42	TF0259	2020-02-05	CTD, plankton net	6:01	55,5494	18,4000	90,7	1 cast, biological sa	chemical, ampling
43	TF0257	2020-02-05	CTD	7:06	55,4402	18,3195	90,4	1 cast, sampling	chemical
44	TF0256	2020-02-05	CTD	8:23	55,3260	18,2357	77,7	1 cast, sampling	chemical
45	TF0268	2020-02-05	CTD	9:50	55,3068	17,9315	76,0	1 cast, sampling	chemical
46	TF0267	2020-02-05	CTD	11:27	55,2859	17,5933	84,0	1 cast, sampling	chemical
47	TF0266	2020-02-05	CTD	12:44	55,2519	17,3601	88,8	1 cast, sampling	chemical
48	TF0222	2020-02-05	CTD	14:04	55,2161	17,0680	90,9	2 casts, sampling	chemical
48	TF0222	2020-02-05	CTD	14:16	55,2160	17,0668	91,8	1 cast, sampling	chemical
49	TF0229	2020-02-05	CTD	15:15	55,2285	16,9145	85,8	1 cast, sampling	chemical
50	TF0228	2020-02-05	CTD	16:09	55,2373	16,7750	77,9	1 cast, sampling	chemical
51	TF0212	2020-02-06	CTD	3:02	55,3023	15,7999	95,8	3 casts, sampling, calibration	chemical CTD
52	TF0211	2020-02-06	CTD	5:04	55,3300	15,6154	95,4	1 cast, sampling	chemical
53	TF0209	2020-02-06	CTD	6:21	55,3470	15,4661	93,7	1 cast, sampling	chemical
54	TF0200	2020-02-06	CTD	7:54	55,3840	15,3267	92,9	1 cast, sampling	chemical
55	TF0208	2020-02-06	CTD	8:49	55,4522	15,2292	94,6	1 cast, sampling	chemical
56	TF0207	2020-02-06	CTD	9:44	55,4960	15,0946	87,0	1 cast, sampling	chemical
57	TF0206	2020-02-06	CTD	10:54	55,5345	14,9124	77,0	1 cast, sampling	chemical
58	TF0140	2020-02-06	CTD	12:04	55,4663	14,7155	70,2	1 cast, sampling	chemical
59	TF0142	2020-02-06	CTD	13:09	55,4043	14,5371	61,0	1 cast, sampling	chemical
60	TF0144	2020-02-06	CTD	14:45	55,2587	14,4896	44,4	1 cast, sampling	chemical
61	TF0145	2020-02-06	CTD	16:12	55,1668	14,2503	47,2	1 cast, sampling	chemical
62	TF0103	2020-02-06	CTD	17:38	55,0633	13,9890	47,4	1 cast, sampling	chemical

63	TF0109	2020-02-06	CTD, Secchi disk, plankton net, multicorer	18:30	54,9998	14,0837	48,6	1 cast, chemical, biological sampling, 1 sample surface sediments
64	TF0152	2020-02-06	CTD	21:44	54,6332	14,2857	31,9	1 cast, chemical sampling
65	OBBoje	2020-02-07	CTD, multicorer	1:15	54,0795	14,1510	16,5	3 casts, chemical, 1 sample surface sediments, CTD calibration
66	TF0112	2020-02-07	CTD	5:51	54,8037	13,9594	40,8	1 cast, chemical sampling
67	TF0104	2020-02-07	CTD	8:16	55,0693	13,8195	46,7	1 cast, chemical sampling
68	TF0105	2020-02-07	CTD	9:17	55,0247	13,6046	46,6	1 cast, chemical sampling
69	ABBoje	2020-02-07	CTD, dinghy	15:08	54,8828	13,8554	46,1	1 cast, chemical sampling, maintenance MARNET station
70	TF0142	2020-02-07	CTD, start scanfish transect	19:23	55,4070	14,5368	60,1	3 casts, chemical sampling, CTD calibration, Start SF3 - part 1
71	TF0113	2020-02-08	interruption of scanfish transect	4:35	54,9255	13,5002	47,4	SF3 - part 1 end
72	TF0113	2020-02-08	CTD, plankton net, multicorer, restart scanfish transect	4:44	54,9255	13,5002	47,4	1 cast, chemical, biological sampling, 1 sample surface sediments, Start SF3 - part 2
73	TF0114	2020-02-08	interruption of scanfish transect	7:45	54,8589	13,2779	45,3	SF3 - part 2 end
74	TF0114	2020-02-08	CTD, restart scanfish transect	7:52	54,8589	13,2779	45,3	1 cast, chemical sampling, Start SF3 - part 3
75	TF0115	2020-02-08	end of scanfish transect	9:50	54,7957	13,0587	30,5	SF3 - part 3 end
76	TF0115	2020-02-08	CTD	9:59	54,7957	13,0587	30,5	1 cast, chemical sampling
77	TF0001	2020-02-08	CTD	11:39	54,6955	12,6977	21,8	1 cast, chemical sampling
78	TF0002	2020-02-08	CTD	12:44	54,6501	12,4500	18,2	1 cast, chemical sampling
79	TF0033	2020-02-08	CTD	13:30	54,6044	12,3315	20,7	1 cast, no water sampling
80	TF0083	2020-02-08	CTD	14:12	54,5511	12,2738	26,1	1 cast, chemical sampling
81	TF0046	2020-02-08	CTD, Secchi disk, plankton net	15:08	54,4699	12,2408	29,0	1 cast, chemical, biological sampling
82	TF0041	2020-02-08	CTD	17:13	54,4070	12,0592	19,5	1 cast, chemical sampling
83	TF0017	2020-02-08	CTD	18:21	54,3920	11,8221	22,8	1 cast, chemical sampling
84	TF0012	2020-02-08	CTD, plankton net, multicorer	19:38	54,3162	11,5510	25,0	1 cast, chemical, biological sampling, 1 sample surface sediments
85	TF0013	2020-02-08	CTD	21:47	54,4761	11,4862	26,8	1 cast, chemical sampling

86	TF0010	2020-02-08	CTD, multicorer	22:41	54,5514	11,3235	28,4	1 cast, chemical sampling, 1 sample surface sediments
87	TF0014	2020-02-09	CTD	0:22	54,5958	11,0104	27,9	3 casts, chemical sampling, CTD calibration
88	TF0361	2020-02-09	CTD	1:37	54,6666	10,7836	23,4	1 cast, no water sampling
89	TF0360	2020-02-09	CTD, Secchi disk, plankton net	3:03	54,6006	10,4507	18,3	1 cast, biological sampling

7.2 Station List – CTD Measurements, 89 Stations, 113 Casts

Date	Latitude [decimal] °N	Longitude [decimal] °E	Station	No.	Cast	Begin [UTC]	End [UTC]	Water Depth [m]	Max Depth [m]	Dataset [file name]
2020-01-29	54,2311	12,0748	TFO5	1	1	9:01	9:07	13,42	12,3	V0001F01.hex
2020-01-29	54,4061	12,0628	TF0041	2	1	10:30	10:35	20,19	18,6	V0002F01.hex
2020-01-29	54,6962	12,6987	TF0001	3	1	13:38	13:42	22,02	20,5	V0003F01.hex
2020-01-29	54,9252	13,5009	TF0113	4	1	17:10	17:18	47,38	45,9	V0004F01.hex
2020-01-29	54,9251	13,5000	TF0113	4	2	18:04	18:11	47,03	45,9	V0004F02.hex
2020-01-29	54,8802	13,8603	ABBOJE	5	1	19:49	19:54	45,59	44,3	V0005F01.hex
2020-01-30	55,2502	15,9853	TF0213	6	1	4:37	4:46	89,66	87,6	V0006F01.hex
2020-01-30	55,2506	15,9829	TF0213	6	2	5:26	5:37	89,78	87,6	V0006F02.hex
2020-01-30	57,1154	17,6672	TF0245	7	1	19:23	19:35	110,65	107	V0007F01.hex
2020-01-31	58,0000	17,9994	TF0240	8	2	0:51	0:53	166,4	0,1	V0008K02.hex
2020-01-31	58,0003	18,0010	TF0240	8	3	1:03	1:06	164,09	11,6	V0008K03.hex
2020-01-31	58,0004	18,0010	TF0240	8	1	1:29	1:43	164,09	161,5	V0008F01.hex
2020-01-31	58,5834	18,2330	TF0284	9	1	6:41	7:21	438,87	434,2	V0009F01.hex
2020-01-31	58,5840	18,2314	TF0284	9	2	8:05	8:20	443,51	134,7	V0009F02.hex
2020-01-31	58,5837	18,2335	TF0284	9	3	8:55	9:00	440,8	42,1	V0009F03.hex
2020-01-31	58,5833	18,2336	TF0284	9	4	11:46	12:10	440,8	432,9	V0009F04.hex
2020-01-31	58,5835	18,2345	TF0284	9	5	12:31	12:38	440,8	114,4	V0009F05.hex
2020-01-31	58,7833	19,0993	TF0283	10	1	16:17	16:28	126,59	120,9	V0010F01.hex
2020-01-31	58,9981	20,1578	TF0288	11	1	19:56	20:11	141,23	140,5	V0011F01.hex
2020-01-31	58,8831	20,3170	TF0282	12	1	21:22	21:40	170,1	158,9	V0012F01.hex
2020-01-31	58,7661	20,3302	TF0289	13	1	22:56	23:13	190,68	188	V0013F01.hex
2020-02-01	58,6415	20,3454	TF0279	14	1	0:30	0:41	163,25	158,8	V0014F01.hex
2020-02-01	58,4419	20,3347	TF0285	15	2	2:11	2:12	123,14	0	V0015K02.hex
2020-02-01	58,4415	20,3339	TF0285	15	3	2:23	2:25	122,37	9,9	V0015K03.hex
2020-02-01	58,4413	20,3341	TF0285	15	1	2:45	2:54	121,99	119	V0015F01.hex
2020-02-01	58,3502	20,1474	TF0278	16	1	3:58	4:06	120,41	117,5	V0016F01.hex
2020-02-01	58,1842	20,0518	TF0277	17	1	5:24	5:39	160,99	157	V0017F01.hex
2020-02-01	58,0007	19,9002	TF0286	18	1	7:03	7:21	192,94	188,6	V0018F01.hex
2020-02-01	58,0006	19,9000	TF0286	18	2	8:05	8:11	193,07	33,3	V0018F02.hex
2020-02-01	57,8505	19,8175	TF0290	19	1	9:38	9:55	169,06	163,9	V0019F01.hex

2020-02-01	57,7154	19,8534	TF0287	20	1	11:03	11:14	130,31	126,8	V0020F01.hex
2020-02-01	57,6168	20,1667	TF0270	21	1	12:42	12:53	143,24	139,5	V0021F01.hex
2020-02-01	57,4704	20,2606	TF0276	22	1	15:04	15:16	206,45	200,5	V0022F01.hex
2020-02-01	57,3672	20,3341	Gotland NE	23	1	16:14	16:29	216,95	212,5	V0023F01.hex
2020-02-01	57,3203	20,0509	TF0271	24	1	18:02	18:22	236,94	232,4	V0024F01.hex
2020-02-01	57,3203	20,0501	TF0271	24	2	18:57	19:10	238,02	120	V0024F02.hex
2020-02-01	57,3204	20,0507	TF0271	24	3	19:50	19:59	237,15	28,1	V0024F03.hex
2020-02-01	57,3204	20,0514	TF0271	24	4	20:29	20:34	238,02	31,3	V0024F04.hex
2020-02-01	57,3203	20,0508	TF0271	24	5	21:10	21:13	237,15	0	V0024K05.hex
2020-02-01	57,3205	20,0508	TF0271	24	6	21:23	21:26	237,15	10	V0024K06.hex
2020-02-01	57,3201	20,0515	TF0271	24	7	21:50	22:13	237,54	232,5	V0024F07.hex
2020-02-03	57,3190	20,0506	TF0271	26	1	9:19	9:43	237,92	232,9	V0026F01.hex
2020-02-03	57,3201	20,0481	TF0271	27	1	22:38	22:43	237,04	11,5	V0027K01.hex
2020-02-03	57,3197	20,0488	TF0271	27	2	22:46	22:48	237,52	0,2	V0027K02.hex
2020-02-04	57,2102	19,9299	TF0275	28	1	11:56	12:15	227,19	222,4	V0028F01.hex
2020-02-04	57,0716	19,8295	TF0272	29	1	13:27	13:45	206,46	202	V0029F01.hex
2020-02-04	56,9517	19,7698	TF0273	31	1	14:53	15:04	181,59	177,8	V0031F01.hex
2020-02-04	56,7675	19,7511	TF0274_	32	1	16:28	16:37	153,34	149,4	V0032F01.hex
2020-02-04	56,6332	19,5828	TF0260	33	1	17:57	18:12	144,23	140	V0033F01.hex
2020-02-04	56,4915	19,4795	TF0261	34	1	19:20	19:35	142,51	138,7	V0034F01.hex
2020-02-04	56,3462	19,3774	TF0263	35	1	20:47	21:01	138	129,8	V0035F01.hex
2020-02-04	56,2344	19,3004	TF0262	36	1	22:05	22:22	131,4	127,9	V0036F01.hex
2020-02-04	56,0835	19,1661	TF0250	37	1	23:43	23:46	129	11,6	V0037K01.hex
2020-02-04	56,0834	19,1660	TF0250	37	2	23:48	23:55	128,7	121,1	V0037F02.hex
2020-02-05	55,9584	19,0468	TF0265	38	1	0:58	1:00	115,7	0,2	V0038K01.hex
2020-02-05	55,9586	19,0469	TF0265	38	2	1:01	1:13	115,5	108,3	V0038F02.hex
2020-02-05	55,8398	18,8655	TF0253	39	1	2:24	2:31	105,8	98,9	V0039F01.hex
2020-02-05	55,7264	18,7652	TF0258	40	1	3:30	3:36	91,65	88,5	V0040F01.hex
2020-02-05	55,6332	18,5999	TF0255	41	1	4:41	4:47	94,99	92,8	V0041F01.hex
2020-02-05	55,5494	18,4000	TF0259	42	1	6:01	6:12	90,66	87,6	V0042F01.hex
2020-02-05	55,4402	18,3195	TF0257	43	1	7:06	7:17	90,4	85	V0043F01.hex
2020-02-05	55,3260	18,2357	TF0256	44	1	8:23	8:38	77,68	75,1	V0044F01.hex
2020-02-05	55,3068	17,9315	TF0268	45	1	9:50	10:03	75,95	73,5	V0045F01.hex
2020-02-05	55,2859	17,5933	TF0267	46	1	11:27	11:33	84	81,8	V0046F01.hex
2020-02-05	55,2519	17,3601	TF0266	47	1	12:44	12:50	88,79	87	V0047F01.hex
2020-02-05	55,2161	17,0680	TF0222	48	1	14:04	14:15	90,91	59,3	V0048F01.hex
2020-02-05	55,2160	17,0668	TF0222	48	1	14:16	14:23	91,78	89,2	V0048F01.hex
2020-02-05	55,2285	16,9145	TF0229	49	1	15:15	15:21	85,79	83,7	V0049F01.hex
2020-02-05	55,2373	16,7750	TF0228	50	1	16:09	16:18	77,91	75,4	V0050F01.hex
2020-02-06	55,3023	15,7999	TF0212	51	2	3:02	3:04	95,8	0,4	V0051K02.hex
2020-02-06	55,3024	15,7993	TF0212	51	3	3:10	3:16	94,93	11,9	V0051K03.hex
2020-02-06	55,3022	15,7990	TF0212	51	1	3:18	3:24	95,22	93	V0051F01.hex

1		l	1	1	1	1	1	I	I	1
2020-02-06	55,3300	15,6154	TF0211	52	1	5:04	5:21	95,35	93,4	V0052F01.hex
2020-02-06	55,3470	15,4661	TF0209	53	1	6:21	6:30	93,72	91,9	V0053F01.hex
2020-02-06	55,3840	15,3267	TF0200	54	1	7:54	8:03	92,85	89,7	V0054F01.hex
2020-02-06	55,4522	15,2292	TF0208	55	1	8:49	9:12	94,6	92,7	V0055F01.hex
2020-02-06	55,4960	15,0946	TF0207	56	1	9:44	9:54	87,04	84,2	V0056F01.hex
2020-02-06	55,5345	14,9124	TF0206	57	1	10:54	10:59	77,02	74,7	V0057F01.hex
2020-02-06	55,4663	14,7155	TF0140	58	1	12:04	12:10	70,24	68	V0058F01.hex
2020-02-06	55,4043	14,5371	TF0142	59	1	13:09	13:15	60,95	59,1	V0059F01.hex
2020-02-06	55,2587	14,4896	TF0144	60	1	14:45	14:49	44,37	43,2	V0060F01.hex
2020-02-06	55,1668	14,2503	TF0145	61	1	16:12	16:18	47,22	45,7	V0061F01.hex
2020-02-06	55,0633	13,9890	TF0103	62	1	17:38	17:44	47,4	45,9	V0062F01.hex
2020-02-06	54,9998	14,0837	TF0109	63	1	18:30	18:36	48,55	47,1	V0063F01.hex
2020-02-06	54,6332	14,2857	TF0152	64	1	21:44	21:50	31,9	30,7	V0064F01.hex
2020-02-07	54,0795	14,1510	OBBoje	65	2	1:15	1:19	16,5	9,7	V0065K02.hex
2020-02-07	54,0796	14,1511	OBBoje	65	1	1:21	1:24	16,3	14,9	V0065F01.hex
2020-02-07	54,0794	14,1510	OBBoje	65	3	1:25	1:27	15,74	0,4	V0065K03.hex
2020-02-07	54,8037	13,9594	TF0112	66	1	5:51	5:58	40,78	39,9	V0066F01.hex
2020-02-07	55,0693	13,8195	TF0104	67	1	8:16	8:22	46,65	45,4	V0067F01.hex
2020-02-07	55,0247	13,6046	TF0105	68	1	9:17	9:23	46,58	45,5	V0068F01.hex
2020-02-07	54,8828	13,8554	ABBoje	69	1	15:08	15:12	46,13	44,8	V0069F01.hex
2020-02-07	55,4070	14,5368	TF0142	70	2	19:23	19:25	60,1	11,6	V0070K02.hex
2020-02-07	55,4076	14,5353	TF0142	70	1	19:27	19:32	59,9	58,2	V0070F01.hex
2020-02-07	55,4088	14,5339	TF0142	70	3	19:34	19:36	59,77	0,4	V0070K03.hex
2020-02-08	54,9255	13,5002	TF0113	72	1	4:44	4:50	47,44	46,1	V0072F01.hex
2020-02-08	54,8589	13,2779	TF0114	74	1	7:52	7:59	45,29	43,8	V0074F01.hex
2020-02-08	54,7957	13,0587	TF0115	76	1	9:59	10:04	30,53	29,3	V0076F01.hex
2020-02-08	54,6955	12,6977	TF0001	77	1	11:39	11:41	21,75	20,5	V0077F01.hex
2020-02-08	54,6501	12,4500	TF0002	78	1	12:44	12:47	18,19	17,6	V0078F01.hex
2020-02-08	54,6044	12,3315	TF0033	79	1	13:30	13:33	20,71	19,7	V0079F01.hex
2020-02-08	54,5511	12,2738	TF0083	80	1	14:12	14:18	26,11	25,2	V0080F01.hex
2020-02-08	54,4699	12,2408	TF0046	81	1	15:08	15:17	29,01	27,9	V0081F01.hex
2020-02-08	54,4070	12,0592	TF0041	82	1	17:13	17:16	19,5	18,7	V0082F01.hex
2020-02-08	54,3920	11,8221	TF0017	83	1	18:21	18:25	22,78	21,8	V0083F01.hex
2020-02-08	54,3162	11,5510	TF0012	84	1	19:38	19:42	24,99	24,1	V0084F01.hex
2020-02-08	54,4761	11,4862	TF0013	85	1	21:47	21:54	26,79	26	V0085F01.hex
2020-02-08	54,5514	11,3235	TF0010	86	1	22:41	22:45	28,39	27,6	V0086F01.hex
2020-02-09	54,5958	11,0104	TF0014	87	2	0:22	0:24	27,91	11,6	V0087K02.hex
2020-02-09	54,5955	11,0107	TF0014	87	1	0:26	0:28	27,72	26,5	V0087F01.hex
2020-02-09	54,5954	11,0109	TF0014	87	3	0:29	0:31	27,79	0,2	V0087K03.hex
2020-02-09	54,6666	10,7836	TF0361	88	1	1:37	1:39	23,44	22,6	V0088F01.hex
2020-02-09	54,6006	10,4507	TF0360	89	1	3:03	3:07	18,29	17,5	V0089F01.hex

7.3	Water	Sampling -	 Parameters 	and Number	of Samples
		1 0			1

No.	tation	02	H2S	P04	NO3	N02	SIO4	NH4	-Total	-Total	I + DOM	CH4	C02	W/PAK	/phosat	rmone	A-Filter	h-Filter	, Betain	yto-Net	orophyll	plankton	plankton
	Š						•1		Ŀ	Ż	PON	-		CK	G	Ηo	DN	Fisl	P+G	Ph	Chle	Phyto	Zool
1	TFO5	1		3	3	3	3	3	2	2	2				1	1							
2	TF0041	1		3	3	3	3	-		-	-			1									
3	TF0001	3		2	2	2	2	-		-	-												
4	TF0113	7		7	7	7	7	7	4	4	4	7	7	1						2	6	2	1
5	ABBOJE	2			-	-	-	-		-	-												
6	TF0213	10		10	10	10	10	10	6	6	6	10	10		1					1	6	11	7
7	TF0245	4	4	8	8	8	8	8		-	-			1									
8	TF0240	14	5	10	10	10	10	10		-	-												
9	TF0284	13	19	29	29	29	29	29	10	10	10						52	26	52				
10	TF0283		3		-	-	-	-		-	-												
11	TF0288	2			-	-	-	-		-	-												
12	TF0282	1	3		-	-	-	-		-	-												
13	TF0289	1	3		-	-	-	-		-	-												
14	TF0279	1			-	-	-	-		-	-												
15	TF0285	9	3		-	-	-	-		-	-												
16	TF0278				-	-	-	-		-	-												
17	TF0277				-	-	-	-		-	-												
18	TF0286	8	8	16	16	16	16	16	6	6	6	16	16	1									
19	TF0290	2			-	-	-	-		-	-												
20	TF0287		3		-	-	-	-		-	-												
21	TF0270	1	3		-	-	-	-		-	-												
22	TF0276	1	3		-	-	-	-		-	-												
23	Gotland_NE	1	3		-	-	-	-		-	-												
24	TF0271	32	19	34	34	34	34	34	12	12	12	24	20	3			52	26	52	2	5	2	
25	TF0271				-	-	-	-		-	-												
26	TF0271				-	-	-	-		-	-												
27	TF0271	9			-	-	-	-		-	-												
28	TF0271				-	-	-	-		-	-												
29	TF0275		3		-	-	-	-		-	-												
30	TF0272	1	3		-	-	-	-		-	-			1									
31	TF0273	1	3		-	-	-	-		-	-												
32	TF0274_	1	3		-	-	-	-		-	-												
33	TF0260	7	2	9	9	9	9	9		-	-												
34	TF0261	1			-	-	-	-		-	-												
35	TF0263	1			-	-	-	-		-	-												
36	TF0262	1	3		-	-	-	-		-	-												
37	TF0250	9			-	-	-	-		-	-												
38	TF0265	1			-	-	-	-		-	-												
39	TF0253	2			-	-	-	-		-	-												
40	TF0258	1			-	-	-	-		-	-												
41	TF0255	1			-	-	-	-		-	-												
42	TF0259	6	2	7	7	7	7	7		-	-			1	1					1	6	3	
43	TF0257	1			-	-	-	-		-	-												
44	TF0256	1			-	-	-	-		-	-												
45	TF0268	1			-	-	-	-		-	-												
46	TF0267	1			- 1	-	-	-		-	-												1

47	TE0266	1	ĺ	ĺ	l	1		ĺ		I								l	l				
47	TE0222	2		7	-	-	-	-		-	-												
40	TE0220	1		/	/	/	/	/		-	-												
49 50	TE0229	1			-	-	-	-		-	-												
51	TE0212	0			-	-	-	-		-	-												
52	TE0211	9			-	-	-	-		-	-												
52	TE0200	1			-	-	-	-		-	-												
55	TE0209	1		7	-	-	-	-		-	-												
54	TF0200	2		/	/	/	/	-		-	-												
<u> </u>	TF0208	2			-	-	-	-		-	-												
56	TF0207	2			-	-	-	-		-	-												
57	TF0206	1		5	-	-	-	-		-	-												
58	TF0140	2		5 5	5 2	5 5	5 5	-		-	-												
59	TF0142	2		5	5	5	5	-		-	-												
60	TF0144	2		_	-	-	-	-		-	-												
61	TF0145	2		5	5	5	5	-		-	-				1	2							
62	TF0103	2		5	5	5	5	-		-	-												
63	TF0109	2		5	5	5	5	5	4	4	4									1	5	2	2
64	TF0152	2			-	-	-	-		-	-					_							
65	OBBoje	11		2	2	2	2	-		-	-					2							
66	TF0112	2		4	4	4	4	-		-	-												
67	TF0104	2		5	5	5	5	-		-	-												
68	TF0105	2		5	5	5	5	-		-	-												
69	ABBoje	2			-	-	-	-		-	-												
70	TF0142	9			-	-	-	-		-	-												
71	TF0142				-	-	-	-		-	-												
72	TF0113	1			-	-	-	-		-	-									1	6	2	2
73	TF0113				-	-	-	-		-	-												
74	TF0114	2		5	5	5	5	-		-	-												
75	TF0114				-	-	-	-		-	-												
76	TF0115	4		4	4	4	4	-		-	-												
77	TF0001	2			-	-	-	-		-	-												
78	TF0002	3		3	3	3	3	-		-	-												
79	TF0033				-	-	-	-		-	-												
80	TF0083	1			-	-	-	-		-	-												
81	TF0046	1		4	4	4	4	-		-	-				1	1				2	5	2	2
82	TF0041	1			-	-	-	-		-	-												
83	TF0017	1			-	-	-	-		-	-												
84	TF0012	2		4	4	4	4	4	3	3	3				1	1				2	6	2	1
85	TF0013	1			-	-	-	-		-	-												
86	TF0010	1		4	4	4	4	-		-	-												
87	TF0014				-	-	-	-		-	-												
88	TF0361				-	-	-	-		-	-												
89	TF0360				-	-	-	-		-	-									2	6	3	1
	Samples	245	98	217	217	217	217	149	47	47	47	57	53	9	6	7	104	52	104	14	51	29	16
	Stations sampled	74	20	29	29	29	29	13	8	8	8	4	4	7	6	5	2	2	2	9	9	9	7

Transect	Region	Date	Begin [UTC]	Latitude [decimal]	Longitude [decimal]	End [UTC]	Latitude [decimal]	Longitude [decimal]	Length [NM]
T1	Kiel Bight - Fehmarn Belt	08.02.20	23:15	54,5522	11,3216	1:30	54,6008	10,4516	33
T2	Mecklenburg Bight - Darss Sill	29.01.20	10:30	54,4069	12,0637	13:40	54,6946	12,7017	29
Т3	Arkona Sea	29.01.20	18:15	54,9251	13,4999	22:20	55,1635	14,2517	36
T4	Pommeranian Bight	06.02.20	22:00	54,6333	14,2832	1:10	54,0795	14,1510	35
Т5	Bornholm Sea	05.02.20	21:45	55,2850	16,2440	2:25	55,2940	15,8488	15
Т6	central Baltic Sea	05.02.20	06:15	55,5494	18,4000	11:25	55,2859	17,5933	37
Т7	eastern Gotland Sea, South	04.02.20	13:45	57,0716	19,8295	17:55	56,6332	19,5828	29
Т8	eastern Gotland Sea, North	01.02.20	08:15	58,0006	19,9000	12:40	57,6168	20,1667	29
Т9	western Gotland Sea	30.01.20	19:45	57,1154	17,6672	0:50	58,0000	17,9994	57

7.4 **Profile List – Organic Pollutants**

7.5 Station List – Sediment Sampling

Date	Latitude [decimal] °N	Longitude [decimal] °E	Station	No.	UTC	Water Depth [m]	Sediment sampling
2020-02-03	57.3203	20.0509	TF0271	24	08:00	237.5	Multicorer, 12 samples
2020-02-06	54.9998	14.0837	TF0109	63	18:45	48.5	Multicorer, 1 sample
2020-02-07	54.0795	14.1510	OBBoje	65	01:30	16.3	Multicorer, 1 sample
2020-02-08	54.9255	13.5002	TF0113	72	04:55	47.4	Multicorer, 1 sample
2020-02-08	54.3162	11.5510	TF0012	84	19:45	24.9	Multicorer, 1 sample
2020-02-08	54.5514	11.3235	TF0010	86	22:50	28.4	Multicorer, 1 sample

7.6 List – Scanfish Profiles

Profile	Region	Begin [UTC]	Latitude [decimal] °N	Longitude [decimal] °E	End [UTC]	Latitude [decimal]	Longitude [decimal]	Length [NM]
SF1	Eastern Gotland Basin, TF0271 to Gotland	2020-02-01; 22:56	57.3229	20.0390	2020-02-02; 06:45	57.5521	18.9035	39
SF2	Eastern Gotland Basin, TF0271 to Latvia	2020-02-03; 23:15	57.3176	20.0609	2020-02-04; 07:30	57.0448	21.2821	43
SF3	Bornholm Gat to Arkona Basin	2020-02-07; 19:43	55.4096	14.5370	2020-02-08; 09:45	54.7976	13.0643	64

Date	Latitude [decimal] °N	Longitude [decimal] °E	Begin [UTC]	End [UTC]	Water Depth [m]	Action
2020-02-03	57,3066	20,0812	10:00	11:30	241	Mooring GODESS, recovery
2020-02-03	57.0754	19.7520	13:00	13:45	189	Mooring Gotland Southwest, deployment
						MARNET station Arkona Basin,
2020-02-07	54.8828	13.8554	11:30	16:00	46	maintenance

7.7 List – Mooring Work

8 Data and Sample Storage and Availability

Data is intensively validated and will be freely available in the IOW DB by the online search and data download tool ODIN2 (<u>https://odin2.io-warnemuende.de/#/</u>). Afterwards the data will be imported into national and international databases (MUDAB, HELCOM, ICES).

 Table 8.1
 Data availability and responsible scientists

Data set	Responsible Scientist	Availability	Date
CTD data	Naumann, Michael, Dr.	IOW DB, MUDAB,	May 2020
		HELCOM, ICES	-
Mooring data, Scanfish profiles	Mohrholz, Volker, Dr.	personal contact	March 2020
Nutrient measurements	Kuss, Joachim, Dr.	IOW DB, MUDAB,	May 2020
		HELCOM, ICES	-
Organic pollutants measurements	Kanwischer, Marion, Dr.	personal contact	August 2020
Phytoplankton measurements	Kremp, Anke, Dr.	personal contact	November 2020
Zooplankton measurements	Dutz, Jörg, Dr.	personal contact	November 2020

9 Acknowledgements

We thank the crew of RV Elisabeth Mann Borgese as well as our engineers and technicians for their support and a successful cruise. This longterm data programme is funded and conducted by the Leibniz-Institute for Baltic Sea Research Warnemünde.

10 References

HELCOM, 2018. State of the Baltic Sea - Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155. <u>https://www.helcom.fi/Lists/Publications/BSEP155.pdf</u>

Naumann, M., Gräwe, U., Mohrholz, V., Kuss, J., Kanwischer, M., Feistel, F., Hand, I., Waniek, J., Schulz-Bull, D., 2020. Hydrographic-hydrochemical assessment of the Baltic Sea 2019. – Meereswissenschaftliche Berichte (Marine Science Reports) 114, 91 pages. https://www.io-warnemuende.de/tl_files/forschung/meereswissenschaftliche-berichte/msr-2020-0114.pdf

Seifert, T., Tauber, F. & Kayser, B., 2008. http://www.io-warnemuende.de/topografie-derostsee.html, (Date of access: 08/03/2015)

11 Abbreviations

- defined in the text

12 Appendices

Briese Schiffahrts Gmb & Co. KG Abtlg. Forschungsschifffahrt FS "Elisabeth Mann Borgese"	1-1-1

VERANKERUNGSPROTOKOLL

Datum:	03.02.2020	Beginn: 13:25	Ende: 13:40	UTC
Gerät:	Go	tland SW	Reise EMB	230
Code Name:	GOSW-01 Feb 2020			
Lottiefe:				
Wetter: Wind	: 330°	6 m/s		
Strömung	: 180°	0,3 kn		
Absetzposition: Breite Gerät Länge KrK	57° 04,527'N 019° 45,120'E 330	WGS 84, D	GPS)	
Grundleine: Breite	: nil			
(Ende) Länge KrK	: nil : nil			
Richtung Länge Oberfläche:	: nil : nil keine	(vom Gerät)		
Bemerkungen:	Releaser			
Kapitān		ExpLeiter	la_	
Verteiler: Reederei EMB IOW				

