

Monthly nutrient emissions and loads to the Odra River Basin

Jens Hürdler and Markus Venohr

Method

Site description

(www.risym.de/moneris)

discharges into the Szczecin lagoon 60% of the area is in agricultural use

scenarios (Venohr et al., 2010 submitted)

Assumptions for scenarios (Table 1):

- establishing of buffer strips (BS)

increased storage volume

mplementa of Waste W

WWTP

EI

ы

• one of the most important nutrient emitter to Baltic Sea

• Odra River Basin is located in the south of the Baltic Sea and distributed

to the area of Poland (89%), Czech Republic (6%) and Germany (5%) Odra Catchment (118.000km²) covers 6.8% of Baltic catchment and

 application of MONERIS to model nutrient emissions and loads from the Odra catchment to the Szczecin lagoon on annual and monthly basis

· estimation of effectiveness for nutrient reduction measures in two different

→PI: Partly Implementation of more extensive measures, only to analytical

units with an above average share on the loads (Impact ratio >1,1)

- decreasing soil loss by sustainable land cultivation (SL) for different slopes (MS)

SL: -90 %

BS: 10 %

SL: -90 %

MS: >2 %

BS: 50 %

20 MS: >4 %

ha/km²

ha/km

→EI: Entire Implementation of measures to all analytical units

- Improvement of sewer systems by additional soil filters (RBF) and

Max. 40

Max. 20

kg/ha

kg/ha

- implementation of Waste Water Ordinance in WWTP - reduction of atmospheric deposition after EMEP forecast

limit nitrogen surplus without atmospheric deposition

RBF: + 20 %

MKS: + 20 %

RBF + 50 %

MKS: ± 50 %

Table 1: Assumptions

Deposition

NOx -33 %

NHv ±0 %

for Scenarios

Conclusion

- · temporal variation of nutrient emissions is mainly driven by hydrology and temperature
- · detailed information about seasonal effects
- · identification of relevant emission pathways
- identification of nutrient emission hotspots
- use for direct allocation of measures
- · basis for cost-effectiveness analysis of measures to reduce emissions and loads

Spatial distribution

emissions in the Warta sub-basin and mountainous areas

- In remaining areas moderate changes of emissions
- •For TP evenly distributed increase of emissions with few exposed hotspots

Results

- considerable differences between spatial distribution (Figure 2 & 3) and total amount of nutrient emissions between dry and wet months (Figure 1)
- most intense dynamic for TN & TP emissions is given by drainage (Figure 1) (220 t/October to 7400 t/December) caused by higher precipitation
- but for TP are emissions via drainage of minor importance
- inter annual variability of emissions from urban systems, erosion and surface runoff determine the total dynamic of TP emissions
- caused by additional water internal retention processes the fluctuation of loads is more intense

14000 TN emission in t/month cther diffuse 12000 10000 drainage 8000 aroundwater 6000 4000 point source 2000 - load 0 3 4 5 6 7 8 9 10 11 12 2 month

Figure 1: Monthly Nitrogen emissions at Odra River Basin in the year 2005

- as reduction goal for the Odra is defined as in the early 1960s, according to EU Water Framework Directive
- compared to the 1960s reduction of nutrient emissions and loads in the Odra River Basin by 20-25% (TP) and 40-50% (TN) can be derived
- in reference to P-loads the scenarios reach the reduction goal, for N-loads reduction goal will be missed
- scenario PI and EI show a similar potential for the reduction of emissions (Table 2), but the result suggest a higher potential of the reduction of loads when implementing scenario PI Table 2: Reduction potentials for scenarios

A

- areas with an Impact ratio > 1,1 cover 35% (TN) and 48% (TP) of total River Basin (areas for PI Scenario)
- · application of more extensive measures to selected analytical units have a similar potential to emissions and loads than the uniform application of moderate measures to al analytical units

Scenario	WWTP	Urbane	Nitrogen	Erosion	Retention	Atmo.	Total	Load
		System	Surplus		Pond	Deposition		
EI		N: -0.2	N: -0.9	N: -0.4	N: -3.6		N: -14.2	N: -15.9
	N: -4.4	P: -0.8	P: -0.0	P: -4.7	P: -1.0	N: -5.6	P: -16.7	P: -21.6
PI	P: -9.5	N: -0.1	N: -2.2	N: -0.4	N: -2.3	P: -0.8	N: -13.6	N: -16.0
		P: -0.6	P: -0.1	P: -4.0	P: -0.6		P: -16.1	P: -22.8

References

Behrendt, H. & Opitz, D (2000a): Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia. No.410: 111-122.

Behrendt, H. & Dannowski, R. (2005): Nutrients and heavy metals in the Odra River system. Weißensee Verlag, Berlin, p. 353.

Mörth, C.-M., Humborg, C., Eriksson, E., Danielsson, A., Medina, R., Löfgren, S., Swaney, D. P., and Rahm, L.: Modeling riverine nutrient transport of the Baltic Sea-A large scale approach, Ambio 36: 124–133. Schernewski, G., T. Neumann, D. Opitz & M. Venohr (2010): Long-term eutrophication history and functional changes in a large Baltic river basin - estuarine system. Estuaries and Coasts. submitted. Venohr, M. et al. (2009): The Modelsystem MONERIS. Manual. p. 122. www.risym.de/mone

Venohr, M., Hürdler, J., Opitz, D. (2010): Potential von Maßnahmen zur Reduktion der Nährstoffflüsse im Einzugsgebiet der Oder. Coastline Reports. submitted.

Leibniz-Institute of Freshwater Ecology and Inland Fisheries