DERIVATION OF BASIC TRANSPORT EQUATION

Definitions

- **Basic dimensions**
- [M] → Mass
- $[L] \rightarrow Length$
- $[T] \rightarrow Time$
- Mass Flow Rate Mass per unit time [M·T⁻¹]

Concentration

Mass per unit volume [**M·L**⁻³]

Flux Mass flow rate through unit area [M·L⁻²·T⁻¹]

Mass balance for a control volume where the transport occurs only in one direction (say x-direction)

The mass balance for this case can be written in the following form

A closer look to Equation 1

Change of mass in unit volume (divide all sides of Equation 1 by the volume)

$$\frac{\partial \mathbf{C}}{\partial t} = \frac{\mathbf{A}}{\mathbf{V}} \cdot \mathbf{J}_1 - \frac{\mathbf{A}}{\mathbf{V}} \cdot \mathbf{J}_2$$

Rearrangements

$$\frac{\partial C}{\partial t} = \frac{A}{V} \cdot \left(J_1 - J_2 \right)$$

Equation 3

Therefore

$$J_2 = J_1 + \frac{\partial J}{\partial x} \cdot \Delta x$$

Equation 4

Rearrangements

Rearrangements

$$\frac{\partial \mathbf{C}}{\partial t} = \frac{1}{\Delta \mathbf{x}} \cdot \left(\mathbf{J}_{1}^{\prime} - \mathbf{J}_{1}^{\prime} - \frac{\partial \mathbf{J}}{\partial \mathbf{x}} \cdot \mathbf{A} \mathbf{x} \right)$$

Equation 7

Finally, the most general transport equation in x direction is:

$$\frac{\partial \mathbf{C}}{\partial t} = -\frac{\partial \mathbf{J}}{\partial \mathbf{x}}$$

Equation 8

We are living in a 3 dimensional space, where the same rules for the general mass balance and transport are valid in all dimensions. Therefore

- The transport equation is derived for a conservative tracer (material)
- The control volume is constant as the time progresses
- The flux (J) can be anything (flows, dispersion, etc.)

The Advective Flux

The advective flux can be analyzed with the simple conceptual model, which includes two control volumes. Advection occurs only towards one direction in a time interval.

 Δx is defined as the distance, which a particle can pass in a time interval of Δt . The assumption is that the particles move on the direction of positive x only.

The number of particles (analogous to mass) moving from control volume I to control volume II in the time interval Δt can be calculated using the Equation below, where

$\mathbf{Q} = \mathbf{C} \cdot \Delta \mathbf{X} \cdot \mathbf{A}$ Equation 11

where Q is the number of particles (analogous to mass) passing from volume I to control volume II in the time interval Δt [M], C is the concentration of any material dissolved in water in control volume I [M·L⁻³], Δx is the distance [L] and A is the cross section area between the control volumes [L²].

The Advective Flux

$J_{ADV} = \frac{\partial X}{\partial t} \cdot C$ Equation 12

The Dispersive Flux

The dispersive flux can be analyzed with the simple conceptual model too. This conceptual model also includes two control volumes. **Dispersion occurs towards both directions in a time interval.**

• Particle

 Δx is defined as the distance, which a particle can pass in a time interval of Δt . The assumption is that the particles move on positive and negative x directions. In this case there are two directions, which particles can move in the time interval of Δt .

• Particle

Another assumption is that a particle does not change its direction during the time interval of Δt and that the probability to move to positive and negative x directions are equal (50%) for all particles.

Therefore, there are two components of the dispersive mass transfer, one from the control volume I to control volume II and the second from the control volume II to control volume I

Dispersion

Ranges of the Dispersion Coefficient (D)

The Dispersive Flux

$J_{\text{DISP}} = -D \cdot \frac{\partial C}{\partial X} \quad \text{Equation 25}$

THE ADVECTION-DISPERSION EQUATION FOR A CONSERVATIVE MATERIAL

Dimensional Analysis of the Advection-Dispersion Equation

We are living in a 3 dimensional space, where the same rules for the general mass balance and transport are valid in all dimensions. Therefore

$$\frac{\partial C}{\partial t} = \sum_{i=1}^{3} \left(-u_i \cdot \frac{\partial C}{\partial x_i} + D_i \cdot \frac{\partial^2 C}{\partial x_i^2} \right) \qquad \begin{aligned} \mathbf{x}_1 &= \mathbf{x}, \ \mathbf{u}_1 &= \mathbf{u}, \ \mathbf{D}_1 &= \mathbf{D}_{\mathbf{x}} \\ \mathbf{x}_2 &= \mathbf{y}, \ \mathbf{u}_2 &= \mathbf{v}, \ \mathbf{D}_2 &= \mathbf{D}_{\mathbf{y}} \\ \mathbf{x}_3 &= \mathbf{z}, \ \mathbf{u}_3 &= \mathbf{w}, \ \mathbf{D}_3 &= \mathbf{D}_{\mathbf{z}} \end{aligned}$$

 $\frac{\partial C}{\partial t} = -\mathbf{u} \cdot \frac{\partial C}{\partial x} + \mathbf{D}_{x} \cdot \frac{\partial^{2} C}{\partial x^{2}} - \mathbf{v} \cdot \frac{\partial C}{\partial y} + \mathbf{D}_{y} \cdot \frac{\partial^{2} C}{\partial y^{2}} - \mathbf{w} \cdot \frac{\partial C}{\partial z} + \mathbf{D}_{z} \cdot \frac{\partial^{2} C}{\partial z^{2}}$ Equation 32

THE ADVECTION-DISPERSION EQUATION FOR A NON CONSERVATIVE MATERIAL

The Advection-Dispersion Equation for non conservative materials

$$\frac{\partial C}{\partial t} = -\mathbf{u} \cdot \frac{\partial C}{\partial x} + \mathbf{D}_{x} \cdot \frac{\partial^{2} C}{\partial x^{2}} - \mathbf{v} \cdot \frac{\partial C}{\partial y} + \mathbf{D}_{y} \cdot \frac{\partial^{2} C}{\partial y^{2}} - \mathbf{w} \cdot \frac{\partial C}{\partial z} + \mathbf{D}_{z} \cdot \frac{\partial^{2} C}{\partial z^{2}}$$

Equation 32

Equation 33

The Transport Equation for non conservative materials with sedimentation

Transport Equation with all Components

- External loads
- Interaction with bottom
- Other sources and sinks

Dimensional Analysis of Components

Must be given in [M·L⁻³·T⁻¹]

Advection-Dispersion Equation with all components

