DERIVATION OF BASIC TRANSPORT EQUATION

Definitions

Basic dimensions
[M] \rightarrow Mass
[L] \rightarrow Length
[T] \rightarrow Time

Mass Flow Rate
Mass per unit time
[$\mathbf{M} \cdot \mathbf{T}^{-1}$]

Concentration
Mass per unit
volume
[M-L-3]

Flux
Mass flow rate through unit area [$M \cdot L^{-2} \cdot \mathbf{T}^{-1}$]

The Transport Equation

Mass balance for a control volume where the transport occurs only in one direction (say x-direction)

Positive x direction

The Transport Equation

The mass balance for this case can be written in the following form

The Transport Equation

A closer look to Equation 1

$$
\left[L^{3}\right] \cdot\left[M \cdot L^{-3} \cdot T^{-1}\right]=\left[M \cdot T^{-1}\right]
$$

Mass over time

$\left[L^{2}\right] \cdot\left[M \cdot L^{-2} \cdot T^{-1}\right]=\left[M \cdot T^{-1}\right]$
Mass over time

The Transport Equation

Change of mass in unit volume (divide all sides of Equation 1 by the volume)

$$
\frac{\partial C}{\partial t}=\frac{A}{V} \cdot J_{1}-\frac{A}{V} \cdot J_{2}
$$

Equation 2

Rearrangements

$$
\frac{\partial C}{\partial t}=\frac{A}{V} \cdot\left(\mathrm{~J}_{1}-\mathrm{J}_{2}\right)
$$

Equation 3

The Transport Equation

$\Delta X \quad$ Positive x direction
The flux is changing in x direction with gradient of
Therefore

$$
\mathrm{J}_{2}=\mathrm{J}_{1}+\frac{\partial \mathrm{J}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}
$$

Equation 4

The Transport Equation

Equation 3
Equation 4

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=\frac{\mathrm{A}}{\mathrm{~V}} \cdot\left(\mathrm{~J}_{1}-\left(\mathrm{J}_{1}+\frac{\partial \mathrm{J}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}\right)\right)
$$

Equation 5

The Transport Equation

Rearrangements

$$
\left[\begin{array}{rl}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}= & \frac{\mathrm{A}}{\mathrm{~V}} \cdot\left(\mathrm{~J}_{1}-\left(\mathrm{J}_{1}+\frac{\partial \mathrm{J}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}\right)\right) \quad \text { Equation } 5 \\
& \left(\frac{\mathrm{~V}}{\mathrm{~A}}=\Delta \mathrm{x} \Rightarrow \frac{\mathrm{~A}}{\mathrm{~V}}=\frac{1}{\Delta \mathrm{x}}\right. \\
\square \frac{\partial \mathrm{C}}{\partial \mathrm{t}}= & \text { Equation } 6 \\
\Delta \mathrm{x} & \left(\mathrm{~J}_{1}-J_{1}-\frac{\partial \mathrm{J}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}\right) \quad \text { Equation } 7
\end{array}\right.
$$

The Transport Equation

Rearrangements
$\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=\frac{1}{\Delta x} \cdot\left(y_{1}-y_{1}-\frac{\partial \mathrm{J}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}\right)$

Equation 7

Finally, the most general transport equation in x direction is:
$\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{J}}{\partial \mathrm{x}}$
Equation 8

The Transport Equation

We are living in a 3 dimensional space, where the same rules for the general mass balance and transport are valid in all dimensions. Therefore

$$
\begin{array}{ll}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} J_{i} \quad \begin{array}{ll}
\mathbf{x}_{1}=\mathbf{x} \\
\mathbf{x}_{2}=\mathbf{y} \\
\mathbf{x}_{3}=\mathbf{z}
\end{array} & \text { Equation } 9 \\
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{~J}_{\mathrm{x}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{~J}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{z}} \mathrm{~J}_{\mathrm{z}}\right) & \text { Equation } 10
\end{array}
$$

The Transport Equation

- The transport equation is derived for a conservative tracer (material)
- The control volume is constant as the time progresses
- The flux (J) can be anything (flows, dispersion, etc.)

The Advective Flux

The advective flux can be analyzed with the simple conceptual model, which includes two control volumes. Advection occurs only towards one direction in a time interval.

$\Delta \mathbf{x}$ is defined as the distance, which a particle can pass in a time interval of Δt. The assumption is that the particles move on the direction of positive x only.

The number of particles (analogous to mass) moving from control volume I to control volume II in the time interval $\Delta \mathrm{t}$ can be calculated using the Equation below, where

$$
Q=C \cdot \Delta x \cdot A
$$

Equation 11
where Q is the number of particles (analogous to mass) passing from volume I to control volume II in the time interval $\boldsymbol{\Delta t}[\mathrm{M}], \mathrm{C}$ is the concentration of any material dissolved in water in control volume I $\left[\mathrm{M} \cdot \mathrm{L}^{-3}\right], \Delta \mathbf{x}$ is the distance $[\mathrm{L}]$ and A is the cross section area between the control volumes [$\left.L^{2}\right]$.

$\frac{Q}{\Delta t}=\frac{C \cdot \Delta x \cdot A}{\Delta t} \quad$| Division by time: |
| :--- |
| Number of
 particles
 passing from I
 to in unit time |

Division by cross-section area:
$\frac{\mathrm{Q}}{\mathrm{A} \cdot \Delta \mathrm{t}}=\mathrm{J}_{\mathrm{ADV}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}} \cdot \mathrm{C}$
Number of particles passing from I to II in unit time per unit area = FLUX
$\left.\mathrm{J}_{\mathrm{ADV}}=\lim _{\Delta \mathrm{t} \rightarrow 0}\left(\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}} \cdot \mathrm{C}\right)=\frac{\partial \mathrm{x}}{\partial \mathrm{t}} \cdot \mathrm{C}\right\}$
Advective flux

Equation 12

The Advective Flux

$J_{\mathrm{ADV}}=\frac{\partial \mathrm{x}}{\partial \mathrm{t}} \cdot \mathrm{C} \quad$ Equation 12

The Dispersive Flux

The dispersive flux can be analyzed with the simple conceptual model too. This conceptual model also includes two control volumes. Dispersion occurs towards both directions in a time interval.

$\Delta \mathbf{x}$ is defined as the distance, which a particle can pass in a time interval of Δt. The assumption is that the particles move on positive and negative x directions. In this case there are two directions, which particles can move in the time interval of Δt.

Another assumption is that a particle does not change its direction during the time interval of Δt and that the probability to move to positive and negative x directions are equal (50\%) for all particles.
Therefore, there are two components of the dispersive mass transfer, one from the control volume I to control volume II and the second from the control volume II to control volume I

$$
\mathrm{q}_{1}=\stackrel{\rightharpoonup}{0.5} \cdot \mathrm{C}_{1} \cdot \Delta \mathrm{x} \cdot \mathrm{~A}
$$

Equation 13
$\mathrm{q}_{2}=0.5 \cdot \mathrm{C}_{2} \cdot \Delta \mathrm{x} \cdot \mathrm{A}$
$\mathrm{Q}=\mathrm{q}_{1}-\mathrm{q}_{2}$
Equation 15
$\mathrm{Q}=0.5 \cdot \Delta \mathrm{x} \cdot \mathrm{A}\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$
Equation 14

Equation 16

Number of particles passing from I to II in Δt

 $\mathrm{Q}=0.5 \cdot \Delta \mathrm{x} \cdot \mathrm{A} \cdot\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$Equation 16
Divide
by time

Number of particles passing from I to
$\frac{\mathrm{Q}}{\Delta \mathrm{t}}=\frac{0.5 \cdot \Delta \mathrm{x} \cdot \mathrm{A} \cdot\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)}{\Delta \mathrm{t}}$ Equation 17
$\mathrm{C}_{2}=\mathrm{C}_{1}+\frac{\partial \mathrm{C}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}$
Q $\quad-0.5 \cdot \Delta x \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x} \quad \frac{\mathrm{Q}}{\Delta \mathrm{t}}=\frac{\partial \mathrm{x}}{\Delta \mathrm{t}}$ I in unit time

Equation 19

$$
\frac{\mathrm{Q}}{\Delta \mathrm{t}}=\frac{0.5 \cdot \Delta \mathrm{x} \cdot \mathrm{~A} \cdot\left(\mathrm{C}_{1}-\mathrm{C}_{1}-\frac{\partial \mathrm{C}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}\right)}{\Delta \mathrm{t}}
$$

$$
\frac{Q}{\mathrm{~A} \cdot \Delta \mathrm{t}}=\mathrm{J}_{\mathrm{DISP}}=\frac{\partial \mathrm{x}}{\Delta \mathrm{t}}
$$

Equation 22

Number of particles passing from I to II in unit time per unit area = FLUX

Divide Equation 20

$$
\stackrel{\text { Area }}{\text { Ay }}\left\{\frac{\mathrm{Q}}{\Delta \mathrm{t}}=\frac{-0.5 \cdot \Delta \mathrm{x} \cdot \mathrm{~A} \frac{\partial \mathrm{C}}{\partial \mathrm{x}} \cdot \Delta \mathrm{x}}{\Delta \mathrm{t}}\right.
$$

Equation 21

$\frac{Q}{A \cdot \Delta t}=J_{D I S P}=\frac{-0.5 \cdot \Delta x \cdot \frac{\partial C}{\partial x} \cdot \Delta x}{\Delta t}$

Equation 22

$\underset{\text { Equation 23 }}{\mathrm{J}_{\text {DISP }}=-\frac{0.5 \cdot(\Delta \mathrm{x})^{2}}{\Delta \mathrm{t}} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}},{ }^{0} \mathrm{n}}$

$$
\mathrm{D}=\frac{0.5 \cdot(\Delta \mathrm{x})^{2}}{\mathrm{Equation} 24 \Delta \mathrm{t}}
$$

$J_{\text {DISP }}=-D \cdot \frac{\partial C}{\partial x}$

Equation 25
$\left.\begin{array}{l}0.5 \rightarrow[] \\ \begin{array}{l}\Delta \mathrm{x}\end{array} \rightarrow[\mathrm{L}] \Rightarrow(\Delta \mathrm{x})^{2} \rightarrow\left[\mathrm{~L}^{2}\right] \\ \Delta \mathrm{t} \rightarrow[\mathrm{T}]\end{array}\right\} \Rightarrow \mathrm{D}=\frac{0.5 \cdot(\Delta \mathrm{x})^{2}}{\Delta \mathrm{t}} \rightarrow\left[\frac{[] \cdot\left[\mathrm{L}^{2}\right]}{[\mathrm{T}]}\right]=\left[\mathrm{L}^{2} \cdot \mathrm{~T}^{-1}\right]$

Dispersion

GENERALLY

Molecular diffusion << Turbulent diffusion << Longitudinal dispersion

Ranges of the Dispersion Coefficient (D)

The Dispersive Flux

Equation 25

THE ADVECTION-DISPERSION EQUATION FOR A CONSERVATIVE MATERIAL

The Advection-Dispersion Equation

$\mathrm{J}=\mathrm{J}_{\text {advection }}+\mathrm{J}_{\text {dispersion }} \quad$ Equation 26
$\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{J}_{\text {advection }}+\mathrm{J}_{\text {dispersion }}\right)$
Equation 27

The Advection-Dispersion Equation

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{~J}_{\text {advection }}+\mathrm{J}_{\text {dispersion }}\right)
$$

Equation 27

Equation 28

$\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\frac{\partial}{\partial \mathrm{x}}\left(\frac{\partial \mathrm{x}}{\partial \mathrm{t}} \cdot \mathrm{C}\right)-\frac{\partial}{\partial \mathrm{x}}\left(-\mathrm{D} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}\right) \quad$ Equation 29

The Advection-Dispersion Equation

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\underbrace{}_{\begin{array}{c}
\begin{array}{c}
\text { Velocity u in } \\
\text { x direction }
\end{array} \\
\frac{\partial}{\partial \mathrm{x}} \underbrace{\frac{\partial \mathrm{x}}{\partial \mathrm{t}}}_{\mathrm{u} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}} \cdot \mathrm{C})
\end{array} \underbrace{\frac{\partial}{\partial \mathrm{x}}\left(-\mathrm{D} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}\right.}_{-\mathrm{D} \cdot \frac{\partial}{\partial^{2} \mathrm{C}}})} \text { Equation } 29
$$

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\mathrm{u} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}
$$

Equation 30

Dimensional Analysis of the Advection-Dispersion Equation

Equation 30

Concentration Velocity times over time $\left[M \cdot L^{-3} \cdot T^{-1}\right]$
$\left[L^{2} \cdot T^{-1}\right] \cdot\left[M \cdot L^{-3} \cdot L^{-2}\right]$
$=\left[\mathrm{M} \cdot \mathrm{L}^{-3} \cdot \mathrm{~T}^{-1}\right]$
$\left[L \cdot T^{-1}\right] \cdot\left[M \cdot L^{-3} \cdot L^{-1}\right]$
$=\left[\mathrm{M} \cdot \mathrm{L}^{-3} \cdot \mathrm{~T}^{-1}\right]$

The Advection-Dispersion Equation

We are living in a 3 dimensional space, where the same rules for the general mass balance and transport are valid in all dimensions. Therefore
$\frac{\partial C}{\partial t}=\sum_{i=1}^{3}\left(-u_{i} \cdot \frac{\partial C}{\partial x_{i}}+D_{i} \cdot \frac{\partial^{2} C}{\partial x_{i}^{2}}\right)$
Equation 31 $\quad \begin{aligned} & \mathbf{x}_{1}=\mathbf{x}, u_{1}=u, D_{1}=D_{x} \\ & \mathbf{x}_{2}=\mathbf{y}, u_{2}=v, D_{2}=D_{y} \\ & \mathbf{x}_{3}=\mathbf{z}, u_{3}=w, D_{3}=D_{z}\end{aligned}$
$\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\mathrm{u} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D}_{\mathrm{x}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}-\mathrm{v} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{y}}+\mathrm{D}_{\mathrm{y}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}}-\mathrm{w} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{z}}+\mathrm{D}_{\mathrm{z}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathbf{z}^{2}}$
Equation 32

THE ADVECTION-DISPERSION EQUATION FOR A NON CONSERVATIVE MATERIAL

The Advection-Dispersion Equation for non conservative materials

$\frac{\partial C}{\partial t}=-u \cdot \frac{\partial C}{\partial x}+D_{x} \cdot \frac{\partial^{2} C}{\partial x^{2}}-v \cdot \frac{\partial C}{\partial y}+D_{y} \cdot \frac{\partial^{2} C}{\partial y^{2}}-w \cdot \frac{\partial C}{\partial z}+D_{z} \cdot \frac{\partial^{2} C}{\partial z^{2}}$
Equation 32

$$
\begin{aligned}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}= & -\mathrm{u} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D}_{\mathrm{x}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}-\mathrm{v} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{y}}+\mathrm{D}_{\mathrm{y}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}} \\
& -\mathrm{w} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{z}}+\mathrm{D}_{\mathrm{z}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathbf{z}^{2}}+\sum \mathrm{k} \cdot \mathrm{C}
\end{aligned}
$$

Equation 33

The Transport Equation for non conservative materials with sedimentation

$$
\begin{aligned}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}= & -u \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D}_{\mathrm{x}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}-\mathrm{v} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{y}}+\mathrm{D}_{\mathrm{y}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}} \\
& -\mathrm{w} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{z}}+\mathrm{D}_{\mathrm{z}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{z}^{2}}+\sum \mathrm{k} \cdot \mathrm{C} \\
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}= & -u \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D}_{\mathrm{x}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}-\mathrm{v} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{y}}+\mathrm{D}_{\mathrm{y}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}} \\
& -\mathrm{w} \cdot \frac{\partial \mathrm{C}}{\partial z}+\mathrm{D}_{z} \cdot \frac{\partial^{2} \mathrm{C}}{\partial z^{2}}+\sum k \cdot C-v_{\text {sedimentation }} \cdot \frac{\partial \mathrm{C}}{\partial z}
\end{aligned}
$$

Transport Equation with all Components

$$
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}=-\mathrm{u} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D}_{\mathrm{x}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}-\mathrm{v} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{y}}+\mathrm{D}_{\mathrm{y}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}}
$$

- External loads
- Interaction with bottom
- Other sources and sinks

Dimensional Analysis of Components

$\left[\mathrm{M} \cdot \mathrm{L}^{-3}\right] \cdot\left[\mathrm{T}^{-1}\right]=\left[\mathrm{M} \cdot \mathrm{L}^{-3} \cdot \mathrm{~T}^{-1}\right]$

$\left[\mathrm{L} \cdot \mathrm{T}^{-1}\right] \cdot\left[\mathrm{M} \cdot \mathrm{L}^{-3} \cdot \mathrm{~L}^{-1}\right]=\left[\mathrm{M} \cdot \mathrm{L}^{-3} \cdot \mathrm{~T}^{-1}\right]$

Must be given in $\left[\mathrm{M} \cdot \mathrm{L}^{-3} \cdot \mathrm{~T}^{-1}\right]$

Advection-Dispersion Equation with all components

$$
\begin{aligned}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}}= & -\mathrm{u} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{x}}+\mathrm{D}_{\mathrm{x}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{x}^{2}}-\mathrm{v} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{y}}+\mathrm{D}_{\mathrm{y}} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}} \\
& -\mathrm{w} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{z}}+\mathrm{D}_{z} \cdot \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{z}^{2}} \\
& +\sum \mathrm{k} \cdot \mathrm{C}-v_{\text {sedimentation }} \cdot \frac{\partial \mathrm{C}}{\partial \mathrm{z}} \\
& \pm \text { external sources and sinks }
\end{aligned}
$$

Equation 35

