The influence of dissolved organic matter on the acid-base system of the Baltic Sea: A pilot study

Karol Kuliński ${ }^{(\mathbf{a)}}$, Bernd Schneider ${ }^{(\mathbf{b})}$, Karoline Hammer ${ }^{(\mathbf{b})}$, Detlef Schulz Bull ${ }^{(\mathbf{b})}$
${ }^{\text {a) }}$ Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
${ }^{\text {b) }}$ Leibniz Institute for Baltic Sea Research, Warnemünde, Germany

IOW Science Symposium 2015 Little Salt and Many Protons: Acid-Base System Studies in the Baltic Sea

Ministry of Science
and Higher Education

Seawater acid-base system

The measurable parameters:

- C_{T} - total CO_{2} concentration (DIC)
- A_{T} - total alkalinity
- pCO_{2} - partial pressure of CO_{2}
- pH

It is possible to calculate 2 parameters when the following is known:

- other 2 parameters
- temperature \& salinity
- equilibrium constants for each of the acid dissociation reactions
- total concentrations for each non- CO_{2} substances

The pairs used in the calculations:

- $\underline{C}_{T} \& A_{T}-$ recommended, used in biogeochemical modelling
- $\mathrm{A}_{\mathrm{T}}^{-} \& \mathrm{p} \overline{\mathrm{H}}-$ measured within the monitoring programs

The total alkalinity of seawater is defined as the excess of proton acceptors (bases formed from weak acids with a dissociation constant $\mathrm{K} \leq 10^{-4.5}$ at $25^{\circ} \mathrm{C}$) over proton donors (acids with $\mathrm{K}>10^{-4.5}$) and expressed as a hydrogen ion equivalent in one kilogram of sample (Dickson, 1981):

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{T}}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{-}\right]+\ldots+[\text { minor bases }] \\
& \mathrm{A}_{\mathrm{T}}=\mathrm{A}_{\text {inorganic }}+\mathrm{A}_{\zeta}{ }^{-\mathrm{g}}
\end{aligned}
$$

Organic term is not included in the thermodynamic model of a seawater
Group

Functional groups in DOM

hypothetical structure of humic like substances

The total alkalinity of seawater is defined as the excess of proton acceptors (bases formed from weak acids with a dissociation constant $\mathrm{K} \leq 10^{-4.5}$ at $25^{\circ} \mathrm{C}$) over proton donors (acids with $\mathrm{K}>10^{-4.5}$) and expressed as a hydrogen ion equivalent in one kilogram of sample (Dickson, 1981):

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{T}}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{-}\right]+\ldots+\mathrm{A}^{2} \\
& \mathrm{~A}_{\mathrm{T}}=\mathrm{A}_{\text {inorganic }}+\mathrm{A}_{\mathrm{T}}=\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{CO}_{2}\right] \\
& \mathrm{C}_{\mathrm{o}}
\end{aligned}
$$

Influence of $\mathrm{A}_{\text {org }}$ on the calculations of pCO_{2} and pH

r/v Meteor cruise, November 2011

Database

- $\mathrm{C}_{\mathrm{T}}, \mathrm{A}_{\mathrm{T}}, \mathrm{pH}, \mathrm{pCO}_{2}$

Influence of $\mathrm{A}_{\mathrm{org}}$ on the calculations of pCO_{2} and pH

$\begin{array}{ll}\ldots & \mathrm{A}_{\mathrm{T}} \text { measured }-\mathrm{A}_{\mathrm{T}} \text { calculated from } \mathrm{C}_{\mathrm{T}} \text { and } \mathrm{pH} \\ \ldots \ldots \ldots . . & \mathrm{A}_{\mathrm{T}} \text { measured }-\mathrm{A}_{\mathrm{T}} \text { calculated from } \mathrm{C}_{\mathrm{T}} \text { and } \mathrm{pCO}_{2}\end{array}$

$$
\begin{aligned}
& A_{T}=A_{\text {inorganic }}+A_{\text {org }} \\
& A_{\text {org }}=A_{T}-A_{\text {inorganic }}
\end{aligned}
$$

$\mathrm{A}_{\text {inorganic }}-\mathrm{A}_{\mathrm{T}}$ calculated from C_{T} and pH or C_{T} and pCO_{2}

Influence of $\mathrm{A}_{\text {org }}$ on the calculations of pCO_{2} and pH

$\begin{array}{ll}\ldots & \mathrm{A}_{\mathrm{T}} \text { measured }-\mathrm{A}_{\mathrm{T}} \text { calculated from } \mathrm{C}_{\mathrm{T}} \text { and } \mathrm{pH} \\ \ldots \ldots \ldots . & \mathrm{A}_{\mathrm{T}} \text { measured }-\mathrm{A}_{\mathrm{T}} \text { calculated from } \mathrm{C}_{\mathrm{T}} \text { and } \mathrm{pCO}_{2}\end{array}$

Influence of $\mathrm{A}_{\mathrm{org}}$ on the calculations of pCO_{2} and pH

Influence of $\mathrm{A}_{\mathrm{org}}$ on the calculations of pCO_{2} and pH

(In)consistency of the acid-base system parameters

Monoprotic acid dissociation

$\mathrm{HOrg} \leftrightarrow \mathrm{H}^{+}+\mathrm{Org}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \cdot\left[\mathrm{Org}^{-}\right]}{[\mathrm{HOrg}]}
$$

The bulk DOM dissociation constant - $\mathbf{K}_{\text {DOM }}$

$\mathrm{K}_{\mathrm{DOM}}=\frac{\left[\mathrm{H}^{+}\right] \cdot \mathrm{A}_{\mathrm{org}}}{(\mathrm{f} \cdot \mathrm{DOC})-\mathrm{A}_{\mathrm{org}}}$

[H^{+}] - calculated from pH
$\mathrm{A}_{\text {org }}$ - organic alkalinity
DOC - well described method
f - share of DOC providing functional groups

$$
\begin{aligned}
& \mathbf{f}=0.12 \\
& \mathbf{p K}_{\text {DOM }}=7.34
\end{aligned}
$$

Conclusions

- $\mathrm{A}_{\text {org }}$ term is missing in the A_{T} model
- $\mathrm{A}_{\text {org }}$ is the difference between measured and calculated A_{T}.
- Aorg was found in the range $25-35 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$ in the Baltic Sea water.
- Ignoring the DOM component in A_{T} model causes significant uncertainty of pH and pCO_{2} in numerical studies, especially for the input data of A_{T} and C_{T}.
- Some 12% of DOC carry the functional groups dissociating in seawater. The $\mathrm{pK}_{\text {DOM }}$ in the Baltic Sea water amounts to 7.34
- Tests of „ $\mathrm{K}_{\mathrm{DOM}}$ " approach in numerical studies are required
- Further studies on DOM acid-base properties are required. Thank you (Thank yOu

en er en
coles)

(Thank your
cosersess) (Thank yOu (Thank yOu (Thank your (Thank your (Thank your
rinalus Pul
Thank you
(Thank your
 (Thank yOu (Thank yOu (Thank yOu (Thank yOu (Thank yOu Thank you Thank you (Thank yOu
rinank you
rinank your (Thank yOu (Thank yOu (Thank yOu
rinalus Pul (Thank your (Thank your
 (Thank your

rinalulu
rinank your
0 (Thank your (Thank your (Thank your (Thank your Thank you (Thank your

rinalulu
rinank your Thank you (Thank y

 (Thank your Thank you
rinalulu

Abstract

 rinank

[^0]\square
\square
\square

\qquad

Thank you
Thank you
Thank you
ruausulu
ruausulu
\qquad

\qquad
\qquad

號
.

.
(Thank yOu

(Thank yOu

-

都

[^0]: -

