Burchard, H., and R. Hofmeister (2008). A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas, Estuarine Coast. Shelf Sci., 77, 679-687.

A detail derivation of equation (14) in Burchard and Hofmeister (2008).

by Youwen Lan (youwenlanouc@sina.com)

$$
\begin{align*}
& \phi=\frac{1}{\mathrm{D}} \int_{-H}^{\eta} g z(\bar{\rho}-\rho) d z \tag{1}\\
& \frac{\partial \phi}{\partial t}=\frac{g}{D} \frac{\partial}{\partial t} \int_{-H}^{\eta} z(\bar{\rho}-\rho) d z+g \frac{\partial}{\partial t}\left(\frac{1}{D}\right) \int_{-H}^{\eta} z(\bar{\rho}-\rho) d z \\
& =\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial}{\partial t}(\bar{\rho}-\rho) d z+\frac{g}{D} \eta\left(\bar{\rho}-\rho_{\eta}\right) \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{D} \int_{-H}^{\eta} z\left(\frac{\partial \bar{\rho}}{\partial t}-\frac{\partial \rho}{\partial t}\right) d z-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{D} \frac{\partial \bar{\rho}}{\partial t} \int_{-H}^{\eta} z d z-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{2} \frac{\partial \bar{\rho}}{\partial t}(\eta-H)-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{2}(\eta-H)\left[\frac{1}{D} \frac{\partial}{\partial t} \int_{-H}^{\eta} \rho d z+\frac{\partial}{\partial t}\left(\frac{1}{D}\right) \int_{-H}^{\eta} \rho d z\right]-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t} \\
& +\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{2 D}(\eta-H)\left(\int_{-H}^{\eta} \frac{\partial \rho}{\partial t} d z+\rho_{\eta} \frac{\partial \eta}{\partial t}\right)-\frac{g}{2 D^{2}}(\eta-H) \frac{\partial D}{\partial t} \int_{-H}^{\eta} \rho d z-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z \\
& -\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} \frac{\partial \rho}{\partial t} d z-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z-\frac{g}{2 D}(\eta-H) \frac{\partial \eta}{\partial t} \bar{\rho} \\
& +\frac{g}{2 D}(\eta-H) \rho_{\eta} \frac{\partial \eta}{\partial t}-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& =\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} \frac{\partial \rho}{\partial t} d z-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z-\frac{g}{2 D}(\eta-H) \frac{\partial \eta}{\partial t} \bar{\rho} \\
& +\frac{g}{2 D}(\eta-H)\left(\tilde{\rho}_{\eta}+\bar{\rho}\right) \frac{\partial \eta}{\partial t}-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& \text { I.E. } \frac{\partial \phi}{\partial t}=\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} \frac{\partial \rho}{\partial t} d z-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial \rho}{\partial t} d z+\frac{g}{2 D}(\eta-H) \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t} \\
& +\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z \\
& \frac{\partial \rho}{\partial t}=-u \nabla_{h} \rho-w \frac{\partial \rho}{\partial z}+\frac{\partial}{\partial z} k_{v} \frac{\partial \rho}{\partial z}+\nabla_{h} k_{h} \nabla_{h} \rho+Q \tag{3}
\end{align*}
$$

Substitute the first and second terms of $\frac{\partial \rho}{\partial t}$ in RHS of eq. (2) with eq. (3).
$>$ First, we consider the source term for density, i.e.,

$$
\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} Q d z-\frac{g}{D} \int_{-H}^{\eta} z Q d z
$$

$\eta-H$ is irrelevant with z , we have:

$$
\begin{equation*}
\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} Q d z-\frac{g}{D} \int_{-H}^{\eta} z Q d z=\frac{g}{D} \int_{-H}^{\eta}\left(\frac{\eta-H}{2}-z\right) Q d z=\frac{g}{D} \int_{-H}^{\eta}\left(\eta-\frac{D}{2}-z\right) Q d z \tag{4}
\end{equation*}
$$

Now we have got the term (G) in equation (14) of Burchard and Hofmeister (2008), hereinafter B \& H (2008). Similarly, we can also have the term (H) for the horizontal diffusion term $\nabla_{h} k_{h} \nabla_{h} \rho$.
> For the vertical diffusion term, we have:

$$
\begin{align*}
\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} & \frac{\partial}{\partial z} k_{v} \frac{\partial \rho}{\partial z} d z-\frac{g}{D} \int_{-H}^{\eta} z \frac{\partial}{\partial z} k_{v} \frac{\partial \rho}{\partial z} d z \\
& =\left.\frac{g}{2 D}(\eta-H) k_{v} \frac{\partial \rho}{\partial z}\right|_{-H} ^{\eta}-\left.\frac{g}{D} z k_{v} \frac{\partial \rho}{\partial z}\right|_{-H} ^{\eta}+\frac{g}{D} \int_{-H}^{\eta} k_{v} \frac{\partial \rho}{\partial z} d z \\
& =\frac{g}{2 D} k_{v}\left(\eta \frac{\partial \rho_{\eta}}{\partial z}-\eta \frac{\partial \rho_{-H}}{\partial z}-H \frac{\partial \rho_{\eta}}{\partial z}+H \frac{\partial \rho_{-H}}{\partial z}\right)-\frac{g}{D} k_{v}\left(\eta \frac{\partial \rho_{\eta}}{\partial z}+H \frac{\partial \rho_{-H}}{\partial z}\right) \\
& +\frac{g}{D} \int_{-H}^{\eta} k_{v} \frac{\partial \rho}{\partial z} d z \\
& =-\frac{g}{2 D} k_{v}\left(\eta \frac{\partial \rho_{\eta}}{\partial z}+\eta \frac{\partial \rho_{-H}}{\partial z}+H \frac{\partial \rho_{\eta}}{\partial z}+H \frac{\partial \rho_{-H}}{\partial z}\right)+\frac{\rho_{0}}{D} \int_{-H}^{\eta} P_{b} d z \\
& =-\frac{g}{2 D} k_{v}\left(D \frac{\partial \rho_{\eta}}{\partial z}+D \frac{\partial \rho_{-H}}{\partial z}\right)+\frac{\rho_{0}}{D} \int_{-H}^{\eta} P_{b} d z \\
& =-\frac{\rho_{0}}{2}\left(P_{b}^{s}+P_{b}^{b}\right)+\frac{\rho_{0}}{D} \int_{-H}^{\eta} P_{b} d z \tag{5}
\end{align*}
$$

Now we have got the terms (E) and (F) in equation (14) of B \& H (2008).
Before further derivation, note that we have following equations:

$$
\begin{align*}
\rho=\tilde{\rho}+\bar{\rho}, \quad u & =\tilde{u}+\bar{u}, \quad w=\widetilde{w}+\bar{w}, \quad \int_{-H}^{\eta} \tilde{\rho} d z=0, \int_{-H}^{\eta} \tilde{u} d z=0 \\
w \frac{\partial \rho}{\partial z} & =(\widetilde{w}+\bar{w}) \frac{\partial(\tilde{\rho}+\bar{\rho})}{\partial z}=\widetilde{w} \frac{\partial \tilde{\rho}}{\partial z}+\bar{w} \frac{\partial \tilde{\rho}}{\partial z} \tag{6}\\
u \nabla_{h} \rho & =\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}+\tilde{u} \nabla_{h} \tilde{\rho} \tag{7}
\end{align*}
$$

The rest of the first and second terms in RHS of eq. (2) after combining eq. (3) are:

$$
\begin{equation*}
-\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta}\left(u \nabla_{h} \rho+w \frac{\partial \rho}{\partial z}\right) d z+\frac{g}{D} \int_{-H}^{\eta} z\left(u \nabla_{h} \rho+w \frac{\partial \rho}{\partial z}\right) d z \tag{8}
\end{equation*}
$$

$>$ Substitute $u \nabla_{h} \rho$ and $w \frac{\partial \rho}{\partial z}$ in eq. (8) with eqs. (6) and (7), we can have the terms (C) and (D) in equation (14) of B \& H (2008), then the rest of eq. (8) would be:

$$
\begin{equation*}
-\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta}\left(\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}+\bar{w} \frac{\partial \tilde{\rho}}{\partial z}\right) d z+\frac{g}{D} \int_{-H}^{\eta} z\left(\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}+\bar{w} \frac{\partial \tilde{\rho}}{\partial z}\right) d z \tag{9}
\end{equation*}
$$

First for the horizontal advection term in eq. (9):

$$
\begin{align*}
& -\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta}\left(\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}\right) d z+\frac{g}{D} \int_{-H}^{\eta} z\left(\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}\right) d z \\
& =-\frac{g}{2 D}(\eta-H)\left(\bar{u} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} 1 d z+\bar{u} \int_{-H}^{\eta} \nabla_{h} \tilde{\rho} d z+\nabla_{h} \bar{\rho} \int_{-H}^{\eta} \tilde{u} d z\right) \\
& +\frac{g}{D}\left(\bar{u} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z d z+\bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z+\nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z\right) \\
& =-\frac{g}{2 D}(\eta-H) \bar{u} \int_{-H}^{\eta} \nabla_{h} \tilde{\rho} d z+\frac{g}{D}\left(\bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z+\nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z\right) \\
& =-\frac{g}{2 D}(\eta-H) \bar{u}\left(\nabla_{h} \int_{-H}^{\eta} \tilde{\rho} d z-\tilde{\rho}_{\eta} \nabla_{h} \eta-\tilde{\rho}_{-H} \nabla_{h} H\right) \\
& +\frac{g}{D}\left(\bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z+\nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z\right) \\
& \text { I.E., }-\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta}\left(\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}\right) d z+\frac{g}{D} \int_{-H}^{\eta} z\left(\bar{u} \nabla_{h} \bar{\rho}+\bar{u} \nabla_{h} \tilde{\rho}+\tilde{u} \nabla_{h} \bar{\rho}\right) d z \\
& =\frac{g}{2 D}(\eta-H) \bar{u}\left(\tilde{\rho}_{\eta} \nabla_{h} \eta+\tilde{\rho}_{-H} \nabla_{h} H\right) \\
& +\frac{g}{D} \underbrace{\bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{\text {(A1) }} \operatorname{term}_{(\mathrm{B}) \text { in eq.(14) of B \&H (2008) }}^{+\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z} \tag{8}
\end{align*}
$$

> Second, for the vertical advection term in eq. (9):

$$
\begin{align*}
-\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} & \bar{w} \frac{\partial \tilde{\rho}}{\partial z} d z+\frac{g}{D} \int_{-H}^{\eta} z \bar{w} \frac{\partial \tilde{\rho}}{\partial z} d z \\
& =-\frac{g}{2 D}(\eta-H)\left(\int_{-H}^{\eta} \frac{\partial \bar{w} \tilde{\rho}}{\partial z} d z-\int_{-H}^{\eta} \tilde{\rho} \frac{\partial \bar{w}}{\partial z} d z\right)+\frac{g}{D} \int_{-H}^{\eta} z\left(\frac{\partial \bar{w} \tilde{\rho}}{\partial z}-\tilde{\rho} \frac{\partial \bar{w}}{\partial z}\right) d z \\
& =-\left.\frac{g}{2 D}(\eta-H)(\bar{w} \tilde{\rho})\right|_{-H} ^{\eta}+\left.\frac{g}{D}(z \bar{w} \tilde{\rho})\right|_{-H} ^{\eta}-\frac{g}{D} \int_{-H}^{\eta} \bar{w} \tilde{\rho} d z-\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} \frac{\partial \bar{w}}{\partial z} d z \tag{9}
\end{align*}
$$

Note that in deriving eq. (9) $\int_{-H}^{\eta} \tilde{\rho} \frac{\partial \bar{w}}{\partial z} d z=0$.
Combining $\bar{w}=-\bar{u} \nabla_{h} H \frac{\eta-z}{D}+\left(\frac{\partial \eta}{\partial t}+\bar{u} \nabla_{h} \eta\right) \frac{z+H}{D}$ with eq. (9), we have:

$$
\begin{align*}
&-\frac{g}{2 D}(\eta-H) \int_{-H}^{\eta} \bar{w} \frac{\partial \tilde{\rho}}{\partial z} d z+\frac{g}{D} \int_{-H}^{\eta} z \bar{w} \frac{\partial \tilde{\rho}}{\partial z} d z \\
&=-\frac{g}{2 D}(\eta-H)\left[\left(\frac{\partial \eta}{\partial t}+\bar{u} \nabla_{h} \eta\right) \tilde{\rho}_{\eta}+\bar{u} \nabla_{h} H \tilde{\rho}_{-H}\right]+\frac{g}{D} \eta \frac{\partial \eta}{\partial t} \tilde{\rho}_{\eta}+\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)} \\
&-\underbrace{\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H}_{(A 3)}-\frac{g}{D} \int_{-H}^{\eta} \bar{w} \tilde{\rho} d z+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A 4)} \tag{10}
\end{align*}
$$

Finally, combining the horizontal and vertical advection terms (eq.(8) and eq. (10)) and $\frac{g}{2 D}(\eta-H) \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z$ in eq. (2), we have the following equation:

$$
\begin{align*}
& \frac{g}{2 D}(\eta-H) \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}-\frac{g}{D} \eta \tilde{\rho}_{\eta} \frac{\partial \eta}{\partial t}+\frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z+\frac{g}{2 D}(\eta-H) \bar{u}\left(\tilde{\rho}_{\eta} \nabla_{h} \eta+\tilde{\rho}_{-H} \nabla_{h} H\right) \\
&+\frac{g}{D} \bar{u} \underbrace{\int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{\text {(A1) }} \\
&+\underbrace{\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z}_{\text {term (B) in eq.(14) of B \&H (2008) }} \\
&-\frac{g}{2 D}(\eta-H)\left[\left(\frac{\partial \eta}{\partial t}+\bar{u} \nabla_{h} \eta\right) \tilde{\rho}_{\eta}+\bar{u} \nabla_{h} H \tilde{\rho}_{-H}\right]+\frac{g}{D} \eta \frac{\partial \eta}{\partial t} \tilde{\rho}_{\eta}+\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)} \tag{11}\\
&-\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H \\
&(A 3)
\end{align*}-\frac{g}{D} \int_{-H}^{\eta} \bar{w} \tilde{\rho} d z+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A 4)} \quad \text { (11) }
$$

And note that:

$$
-\frac{g}{D} \int_{-H}^{\eta} \bar{w} \tilde{\rho} d z=\frac{g}{D} \nabla_{h} \bar{u} \int_{-H}^{\eta} z \tilde{\rho} d z(* *)
$$

In order to derive the above equation, substitute \bar{w} with $\bar{w}=-\bar{u} \nabla_{h} H \frac{\eta-z}{D}+\left(\frac{\partial \eta}{\partial t}+\right.$ $u \nabla h \eta z+H D$,
$-\frac{g}{D} \int_{-H}^{\eta} \bar{w} \tilde{\rho} d z=-\frac{g}{D} \int_{-H}^{\eta}\left(\bar{u} \cdot \nabla_{h} H+\frac{\partial \eta}{\partial t}+\bar{u} \cdot \nabla_{h} \eta\right) \frac{z}{D} \tilde{\rho} d z=-\frac{g}{D} \int_{-H}^{\eta}\left(\bar{u} \cdot \nabla_{h} D-\nabla_{h}\right.$.
$(D u)) z D \rho d z=g D \nabla h u-H \eta z \rho d z\left(^{* *}\right)$, note that $\partial \eta \partial t=-\nabla h \cdot(D u)$.
Then eq. (11) could rewrite as following:

$$
\begin{aligned}
& \frac{g}{D^{2}} \frac{\partial \eta}{\partial t} \int_{-H}^{\eta} z \tilde{\rho} d z+\frac{g}{D} \overline{\bar{u}} \underbrace{\int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{(A 1)} \operatorname{term~(B)~in~eq.(14)~of~B~\& H~(2008)~}_{+\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z}+\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)}-\underbrace{\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H}_{(A 3)} \\
& +\frac{g}{D} \nabla_{h} \bar{u} \int_{-H}^{\eta} z \tilde{\rho} d z+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A 4)} \\
& =-\frac{g}{D^{2}} \nabla_{h} \cdot(D \bar{u}) \int_{-H}^{\eta} z \tilde{\rho} d z+\underbrace{\frac{g}{D} \bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{(A 1)}+\underbrace{\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z}_{\text {term (B) in eq.(14) of } \mathrm{B} \& H \text { (2008) }} \\
& +\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)}-\underbrace{\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H}_{(A 3)}+\frac{g}{D} \nabla_{h} \bar{u} \int_{-H}^{\eta} z \tilde{\rho} d z+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A 4)} \\
& =-\frac{g}{D^{2}}\left(\bar{u} \cdot \nabla_{h} D+D \nabla_{h} \cdot \bar{u}\right) \int_{-H}^{\eta} z \tilde{\rho} d z+\underbrace{\frac{g}{D} \bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{(A 1)} \\
& +\underbrace{\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z}_{\text {term (B) in eq.(14) of B \& H (2008) }}+\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)}-\underbrace{\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H}_{(A 3)} \\
& +\frac{g}{D} \nabla_{h} \bar{u} \int_{-H}^{\eta} z \tilde{\rho} d z+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A A)} \\
& =\underbrace{\frac{g}{D} \bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{(A 1)}+\underbrace{\frac{g}{D} \nabla_{h} \bar{\rho} \int_{\text {eq.(14) of B \& } H(2008)}^{\eta} z \tilde{u} d z}_{\operatorname{term}(\mathrm{B})}+\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)} \\
& -\underbrace{\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H}_{(A 3)}+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A 4)} \underbrace{-\frac{g}{D^{2}} \bar{u} \cdot \nabla_{h} D \int_{-H}^{\eta} z \tilde{\rho} d z}_{(A 5)}
\end{aligned}
$$

Combining (A1) to (A5), equal to term (A) in equation (14) of B \& H (2008), i.e.,
$\underbrace{\frac{g}{D} \bar{u} \int_{-H}^{\eta} z \nabla_{h} \tilde{\rho} d z}_{(A 1)}+\underbrace{\frac{g}{D} \eta \tilde{\rho}_{\eta} \bar{u} \nabla_{h} \eta}_{(A 2)}-\underbrace{-\frac{g}{D} H \tilde{\rho}_{-H} \bar{u} \nabla_{h} H}_{(A B)}+\underbrace{\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}}_{(A 4)} \underbrace{-\frac{g}{D^{2}} \bar{u} \cdot \nabla_{h} D \int_{-H}^{\eta} z \tilde{\rho} d z}_{(A 5)}+$ $\frac{\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z}{\operatorname{term}(\mathrm{~B}) \text { ineq.(14) of B \& } H(2008)}$
$=\frac{g}{D} \bar{u} \nabla_{h}\left(\int_{-H}^{\eta} z \tilde{\rho} d z\right)+\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}-\frac{g}{D^{2}} \bar{u} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} D+\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z$
$=\frac{g}{D} \bar{u} \nabla_{h}\left(\int_{-H}^{\eta} z \tilde{\rho} d z\right)+\frac{g}{D} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} \bar{u}-\frac{g}{D^{2}} \bar{u} \int_{-H}^{\eta} z \tilde{\rho} d z \nabla_{h} D+\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z$
$=\nabla_{h}\left(\bar{u} \frac{1}{D} \int_{-H}^{\eta} g z \tilde{\rho} d z\right)+\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z$
$=-\nabla_{h}(\bar{u} \phi)+\frac{g}{D} \nabla_{h} \bar{\rho} \int_{-H}^{\eta} z \tilde{u} d z$
So far, we have all the terms in equation (14) of B \& H (2008).
Note that we have not used kinematic boundary conditions given by equation (16) in deriving equation (14).

