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Chapter 1

Introduction

1.1 Motivation

The application of three-dimensional numerical hydrodynamic models for simulating lakes
or coastal oceans is widespread and computationally affordable on modern high-perfor-
mance computing systems. These models can account for many effects important for the
dynamics of the examined systems including more subtle effects. But often enough it is
sufficient to apply more confining assumptions and simplifications, than for these very
complex models, in order to, e.g. simplify the model setup, fasten up the computation
times, or simplify the model analysis. The simplification of the fully three-dimensional
hydrodynamics to a one-dimensional water column model may seem quite rigorous, but
the success of many applied one-dimensional water column models proves this wrong. Fur-
thermore the computation time is typically 103 to 104 times shorter for a one-dimensional
model compared to a three-dimensional one (Jöhnk and Umlauf , 2001). Thus, vertical
one-dimensional models are still an important tool for understanding hydrodynamic pro-
cesses. There are two cases in which these model types are still quite common. These
are, first, sensitivity analyses and model calibrations where a great number of parameters
has to be adjusted, which makes it necessary to run a simulation very often with slightly
varied parameters. This large number of simulation runs is needed to obtain a sufficiently
large parameter space. And second, long time-scale simulations where a simulation time
over several decades is wished. Such time-scales are often still not computationally af-
fordable with a three-dimensional hydrodynamic model. In addition, it is very difficult,
if not impossible in most situations, to gather fully three-dimensional hydrodynamic data
for the initial conditions of such a model and to calibrate and verify it with this data.
Vertical water column models have one crucial disadvantage when simulating inflows from,
e.g. rivers flowing into lakes or major Baltic inflows flowing into the sub-basins of the Baltic
Sea (Jöhnk , 2000). In order to derive the governing equations for a water column model,
it is assumed that all variables are homogeneous in the horizontal and that the system is
horizontally infinite. This implies that there is no information about the volume of water
contained in a modelled basin. But without this knowledge it is impossible to account
for the processes triggered by inflows, like the uplift of the residing water masses getting
replaced by the newly arriving, inflowing water. One possibility to overcome this cutback
is to apply an integration in the horizontal plane of the basin to all the variables. This
yields horizontally averaged variables, information about the volume of the basin, and
the inclusion of some additional physical effects due to the shape of the basin. Such a
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horizontally averaged model will be derived, examined, and implemented into an already
existing one-dimensional water column model. This model will then be used to simulate
the Gotland Basin in the Baltic Sea including dense bottom currents flowing into this
basin which are very important for the dynamics of this basin.

1.2 Outline

In the first chapter, the Baltic Sea will be introduced, as the overall goal of this thesis is to
model the Gotland Basin which is a sub-basin of the central Baltic Sea. Not only will the
Baltic Sea in general be introduced, but also the Gotland Basin and some of the overall
dynamics playing an important role for the hydrodynamic system and also for the ecology
of the Baltic Sea. A review of the different applications of one-dimensional modelling of
the Baltic Sea closes this chapter.
Some mathematical and physical tools and theories, needed to understand later chap-
ters, will shortly be introduced in chapter 2. Furthermore, the already existing numerical
model, which was extended for this thesis, will be summarised.
With the foundation of chapter 2, new, horizontally averaged transport equations are
derived and an analytical solution is found in chapter 3. These horizontally averaged
equations give the opportunity to include inflows. In order to include inflows, being pre-
scribed far upstream, an entrainment model is introduced. Next, some criteria are listed
to objectively determine if the assumption of one-dimensionality is justified for a certain
basin. Finally, the discretisation and implementation of the horizontally averaged trans-
port equations is presented.
In chapter 4 the results of this work are presented and analysed. The model derived in
the previous chapter is tested against an analytical solution. The results of an idealised
model setup to test the computation of inflows is discussed, the results from an alterna-
tive discretisation are summarised, and finally the simulation of the Gotland Basin with
realistic forcing is described and discussed.
A summery of the previous chapters is given in chapter 5 together with the conclusions of
this work.
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1.3 The Baltic Sea

The Baltic Sea is a brackish inland sea. The only connection to the open ocean is through
the Kattegat and Skagerrak. The water exchange between the Baltic Sea and the open
ocean is constrained by shallow and narrow straits south of the Kattegat. From these
straits on, the Baltic Sea stretches out to the east in form of several sub-basins linearly
aligned as shown in figure 1.1b as a transect along the red line shown in figure 1.1a.
The surface salinity decreases from about 25 psu (practical salinity unit, sea IOC et al.
(2010) for an explanation) at the transition area between the Baltic Sea and the North
Sea at the Kattegat to values as low as 5 psu in the far east of the Baltic Sea in the
Gulf of Bothnia (Reissmann et al., 2009). This horizontal salinity gradient is mainly due
to the humid climate and the large drainage area of the Baltic. The river discharge is
so large that more brackish water flows out of the Baltic Sea into the North Sea than
saline water flows in from the North Sea. Namely, about 436 km3 of river water discharges
into the Baltic per year. Additionally, 224 km3 of water coming from precipitation add
to the total water budget. Coming from the North Sea, nearly 500 km3 of highly saline
water flows into the Baltic. These three constituents adding to a positive water budget
get balanced by 184 km3 evaporating water and a surface water outflow into the North
Sea of 947 km3 (HELCOM , 1993). However, the saline inflows coming from the North
Sea usually do not reach any further than the belts and the Øresund, because the free
exchange of water gets hindered by these very narrow and shallow topographical features
(Matthäus and Franck , 1992). Significant inflows of saline water from the North Sea only
occur sporadically and under special meteorological conditions. These inflow events will
be further examined later in this section. The surface water is separated from the deeper
water by a permanent halocline, which is the part of the water column where the salinity
gradient is the steepest. Its depth varies throughout the Baltic Sea. In the Arcona Basin it
is situated at about 35 m to 40 m and in the Eastern Gotland Basin it reaches depths of up
to 70 m to 90 m depth (Stigebrandt , 1987). Thus, processes driven by the atmosphere (e.g.
cooling and mixing) do not affect water below this interface which also means that oxygen
from the oxygen-rich surface water cannot reach the deeper parts of the Baltic. This
implies that deep water can only be renewed by strong inflows of dense water spreading
out from the North Sea along the sea bed. The renewal of the deeper water masses plays
an important role for the ecology of the Baltic Sea, as during stagnation periods, when
no strong inflows occur, the salinity and in particular the oxygen concentrations decrease
below the halocline. Furthermore, the concentrations of phosphate and nitrate increase,
which can cause high concentrations of hydrogen sulphide (Matthäus and Franck , 1992).
Under these conditions no higher forms of life can exist.

1.3.1 The Gotland Basin

The Gotland Basin is divided into several sub-basins. This thesis concentrates on the
Eastern Gotland Basin, which is the largest basin of the Baltic Sea with respect to the
total volume. The bathymetry of the Gotland Basin can be seen in figure 1.2. It is
located to the east of the island of Gotland and belongs to the Baltic Proper situated
at 57.3 N, 20.08 E in the geographic coordinate system. The basin has a total depth of
about 250 m and is enclosed up until a water depth of approximately 140 m (Seifert et al.,
2001). At this depth, it is connected to the Bornholm Basin to the west and to the Åland
Sea in the north (Reissmann et al., 2009). Only the strongest inflows reach the Gotland
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(a) The bathymetry of the Baltic Sea. The red line indicates the transect shown in figure 1.1b
(Seifert et al., 2001).

(b) The bathymetry of the Baltic Sea showing the different sub-basins at a transect following one
of several pathways of the inflows.

Figure 1.1: A map of the Baltic Sea.
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Figure 1.2: The bathymetry of the Gotland Basin.
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Figure 1.3: The salinity in the Gotland Basin in 200 m depth. The dynamics are mainly influenced
by strong, sporadic inflow events, which increase the salinity significantly, followed by stagnation
periods of up to ten years where the salinity slowly decreases.
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Basin and also end here. Figure 1.3 shows the gradual decline of salinity over stagnation
periods and the sporadic inflow events in a depth of 200 m in the Gotland Basin. It can
be seen that the inflow events raise the salinity significantly.
The Baltic Sea Tracer Release Experiment (BATRE) (Holtermann et al., 2012; Holtermann
and Umlauf , 2012), which started in 2007, investigated deep water mixing rates and mixing
processes in the Eastern Gotland Basin. The cruises to the basin started in September
2007, when an inert tracer gas, namely CF3SF5, was injected at about 200 m depth. The
following spreading of the tracer was investigated during several cruises until February
2009. It was found that basin-scale vertical mixing rates were of the order of 10−5 m2s−1,
however the interior vertical diffusivities were one order of magnitude smaller. From this
finding, the conclusion was derived that the vertical transport works in a way that after
spreading isopycnically and reaching the lateral boundaries the tracer gets mixed very
rapidly vertically by boundary mixing and spreads in different depths isopycnically back
again towards the basin interior. These complex processes often get parameterised as an
immediate effective vertical mixing, completely neglecting that beneath the halocline the
main contributor to vertical mixing is by far the boundary mixing.

1.3.2 Major Baltic inflows

The Baltic Sea is only connected to the oceans through the Kattegat. Here, the surface
water typically has a salinity of 15 psu to 25 psu. The bottom water in the Kattegat
can reach salinity values as high as 30 psu. In contrast to these high values, the central
Baltic Sea has surface salinities of about 8 psu (Stigebrandt , 2001). Despite this strong
horizontal salinity gradient only small amounts of saline North Sea water reach the inner
Baltic Sea under normal meteorological conditions due to the topographical constraints
in the transition area between the North Sea and the Baltic Sea (Matthäus and Franck ,
1992). But two very different meteorological conditions can cause inflows which carry
significant amounts of North Sea water into the inner Baltic Sea. These so-called major
Baltic inflows occur irregularly. They have been observed from several times a year to
only once a decade. During the years from 1897 to 1976 about one major inflow event per
year was observed (Matthäus and Franck , 1992). From this time on the frequency of the
events has decreased to about once every decade (Matthäus et al., 2008).
In order to estimate the relative intensity of inflows, Matthäus and Franck (1992) found
an empirical equation which takes the duration of an inflow k and the mean salinity Sp of
the inflow into account:

Q = 50

(
k/ s− 5

25
+

103Sp − 17

7

)
. (1.1)

The formula was slightly modified to take the units of measurement correctly into account.
Based upon this definition, an inflow lasting for five days with a salinity of 17 psu has the
intensity index of Q = 0, which is the least intense inflow being categorised as a major
Baltic inflow. Whereas the strongest ever observed inflows lasting as long as 30 days with
a salinity of up to 24 psu are classified as Q = 100.
Up until recent years it was believed that the pathways of these inflowing dense bottom
currents are determined by a balance between the Coriolis force and pressure gradient
forces. Thus, they where assumed to be geostrophic flows, with other forces like friction
forces acting at the bottom or at the interface of the different water masses only playing a
minor role (Liljebladh and Stigebrandt , 1996). This behaviour would mean that after the
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water masses have passed the Darss and Drogden Sills they cyclonically move along the
rims of the Arcona Basin (Lass and Mohrholz , 2003). By permanent leakage through the
Bornholm Channel north of Bornholm the water moves onwards into the Bornholm Basin.
But recent studies, like numerical modelling studies performed by Burchard et al. (2005);
Lass et al. (2005); Burchard et al. (2009) and observations performed by Sellschopp et al.
(2006); Umlauf et al. (2007) seem to contradict the cyclonical spiralling of water masses in
the Arcona Basin. If frictional forces would only play a minor role in the dynamics of the
dense bottom currents, then the pathway of the flow should go along the west of Kriegers
Flak, but instead, only a small fraction of the plume follows this pathway and most of it
flows along the northern slope of Kriegers Flak. The two separated currents rejoin again
south-east of Kriegers Flak and move further along into the eastern part of the Arcona
Sea.
Looking at the inflows further in the east, Meier et al. (2006) found out that outflows
from the Bornholm Sea over the S lupsk Sill, resulting from major Baltic inflows, are
highly variable, whereby these variabilities can be separated into three different regimes:
“(1) a simple eastward downstream flow when the level of the dense water west of the sill
was higher than the level east of the sill, (2) an eastward overflow with a large southward
off-set of the dense water core, and (3) bilateral (eddy like) motion above the sill when
the salinity gradients north and south the sill were directed oppositely.”

outflows

inflows
vertical advection

interleaving

Figure 1.4: The basic dynamic processes causing the ventilation of the deeper parts of the Gotland
Basin.

If an inflow reaches the Gotland Basin, it interleaves at the appropriate depth which means
at the depth where the residing water has the same density as the inflowing water. The
whole water mass sitting on top of the water being renewed gets pushed upwards where it
finally ends as a brackish outflow into the North Sea. Figure 1.4 visualises these processes.
This estuarine circulation is known as the Baltic Sea counterpart to the oceanic deep con-
vection processes (Reissmann et al., 2009) and is called the Baltic haline conveyor belt.
Lass and Mohrholz (2003) have identified three main mixing mechanisms of bottom cur-
rents in the Baltic Sea. The plume can be mixed with the ambient water by wind induced
entrainment, but only in the proximity of shallow sills. It can also be mixed by differential
advection, which contributes most to mixing and the third mechanism is shear induced
entrainment. Differential advection means that two water masses at different depths ad-
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vect in different directions or at different velocities.
The causes of the major Baltic inflows can be divided into two fundamentally different
ones, namely, into barotropic and baroclinic inflows, which will both be introduced briefly
in the following.

Barotropic inflows

A so-called barotropic inflow can occur if strong easterly winds last for typically at least
20 days and after this period turn to the opposite direction and last for at least another
five days. These conditions can occur between end of August and end of April (Matthäus
and Franck , 1992). On the one hand, the strong easterly winds cause a very well-mixed
water column in the transition area between the North Sea and the Baltic Sea. And on
the other, they lower the sea level in the Baltic Proper by a few 10 cm (Reissmann et al.,
2009). If the following westerly winds can push the North Sea water through the belts
and the Øresund and across the Darss and Drogden Sills, it interleaves and mixes with
the Baltic Sea water in the Arcona Basin. If the density of the North Sea water is higher
than the water in the subsequent basins, it can reach as far as the Gotland Basin and
replace deep water there. It takes at least three month for an inflow to reach the Gotland
Basin (Hagen and Feistel , 2001; Feistel et al., 2003; Hagen and Feistel , 2004). Typically
such an inflow event transports 200 km3 of water and 2 Gt of salt into the Baltic Sea. In
winter and spring this water is oxygen-saturated and contains typically 1 Mt of oxygen
reventilating the Baltic Sea (Reissmann et al., 2009).

Baroclinic inflows

So-called baroclinic inflows are driven by baroclinic pressure gradients, especially by hor-
izontal salinity gradients. These gradients appear during prolonged calm wind conditions
which usually occur during late summer. Without winds, which induce mixing through-
out the water column, a strong stratification develops at the transition area between the
North Sea and the Baltic Sea with salinities of over 30 psu in the deeper layers. These
high concentrations cause the deeper water layers to flow into the Baltic Proper forced by
horizontal salinity gradients. Because of the strong stratification and the absence of winds
in the transition area no oxygen can be transported from the surface to the deeper parts of
the water column (Feistel et al., 2004a). This means that the water, which can potentially
be transported into the Baltic Proper, is oxygen-deficient. These inflows import salt into
the Baltic Sea together with a net water volume export. Although the imported water is
oxygen-deficient it ventilates the deep Baltic basins by entrainment (Feistel et al., 2004b).

1.4 A review of one-dimensional Baltic Sea modelling

Five different papers will be summerised in this section ordered chronologically. The model
used, the investigated topics, and the conclusions drawn will be presented.
Omstedt (1987) used four one-dimensional models of the Kattegat, the Belt Sea, the Øre-
sund, and the Arkona Basin coupled by parameterised in- and outflows between connected
regions. For the turbulence modelling a k-ε-model was used. The forcing was done with
actual meteorological and hydrological observations. Together with these observations,
the water cooling at the entrance of the Baltic Sea was investigated. From these obser-
vations it was concluded that outflows from the Baltic have an important effect on the
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autumn cooling in a way that the cooling is associated with outflowing brackish water
from the Arcona Basin. Whereas, periods of interrupted cooling are associated with in-
flowing saline water from the Kattegat. Furthermore, the applied model reproduced the
trends of cooling, derived from the observations, in a satisfying way. From this success,
the conclusion was drawn that a one-dimensional model can be used as a good starting
point for modelling surface water cooling. This conclusion holds even in such complex
topographical areas as the entrance area of the Baltic Sea. The main factor for the suc-
cessful reproduction of observations seems to be how well the turbulent processes and the
energy exchange at the air-sea interface are modelled. In addition, the subdivision of the
simulated areas and the parameterisation of the water exchange between these basins are
important, too.
Stigebrandt (1987) used a one-dimensional model to simulate the Baltic Proper with a
focus on the deep water dynamics. The presented model is horizontally integrated which
takes hypsographic effects into account. For calculating the properties of the mixed layer,
a seasonal pycnocline model derived by Stigebrandt (1985) was utilised. In order to cal-
culate the turbulence, it was assumed that the horizontally averaged eddy-diffusivity is
proportional to the inverse Brunt-Väisälä frequency κ ∝ N−1. Inflows, including major
Baltic inflows, moving along the Baltic Sea as dense bottom currents were prescribed up-
stream in the Arcona Basin and were modelled by a simple entrainment model also being
derived by Stigebrandt (1987). The forcing was done by partially prescribing observed
atmospheric data and partially by prescribing synthetic values of, e.g., the daily wind
speed or the salinity and the temperature of the inflowing water in the Arcona Basin. The
synthetic data was generated according to statistical properties of observed data. This
had to be done, because no observations were available with sufficient time resolution.
The use of synthetically generated data means that a direct month-to-month comparison
of model results with observed data is not possible, but nevertheless statistical properties
like mean values can be compared. The model reproduced the vertical stratification of
the Baltic Proper in a realistic way, with the halocline being at about 60 m depth and
a strongly stratified water column beneath it. It was concluded that the inflows have a
major influence on the stratification. But for predicting hydrological changes in the Baltic,
caused, for example, by a change in the freshwater balance, the presented model is not
sufficient, because it relies on prescribed values for the characteristics of the inflows.
Stigebrandt and Wulff (1987) presented a model for the dynamics of nutrients and oxygen
in the Baltic Proper. The model, computing the hydrological dynamics, was the same
as in Stigebrandt (1987) which also includes the use of synthetic data forcing the simu-
lation. The biogeochemical cycle was modelled by only considering nitrogen. With this
approach, not all processes could be modelled, like nitrogen fixation which is controlled by
the nitrogen-phosphorous ratio. In order to overcome this shortcoming, these processes
were included through external sources. The biogeochemical model, together with the
hydrodynamical model, could generate the characteristics of oxygen and nitrogen distri-
butions in a rough but satisfying way.
A few years later Omstedt (1990) greatly enhanced his model from 1987 and used this new
model to simulate the whole Baltic Sea. In total, 13 one-dimensional models were used for
the simulation. The subdivision of the Baltic was done according to natural restrictions,
such as geometrical or dynamic restrictions. The model was forced by meteorological data
and by sea level data at the Skagerrak. The flows from one basin to the next where first
categorised into either river inflows, barotropic flows, or baroclinic flows and then they
were parameterised. The winter of 1986/87, being especially severe, was chosen to be sim-
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ulated to test the model against observations. The model did not incorporate an ice model
and the water temperature was only kept at the freezing point, when the water was cooled
strong enough. This simplification neglects two important effects on the heat budget of
the water. First, ice covering water protects it from further heat loss and second, energy
is needed to melt it again. Thus deeper parts of the water column should be too cold in
the simulation and the spring warming should be too fast. However, the simulation results
were surprisingly good as they could reproduce the cooling and warming quite well.
Axell (2002) used a one-dimensional model to find suitable parameterisations of unresolved
turbulence which sources could be the breaking of internal waves or Langmuir circulations,
respectively. The Eastern Gotland Basin was simulated. The vertical transport equations
were not horizontally averaged, but the hypsographic function was used to calculate the
effects of inflows which were calculated based on the entrainment model derived by Stige-
brandt (1987). For the turbulence calculations, a k-ε-model was used, with Langmuir
circulations being taken into account for by additional source terms for the turbulent ki-
netic energy in the surface mixed layer. The model results were satisfying although the
modelling of the deep inflows is notoriously difficult, not only because of the relatively
poor temporal and spatial resolution of observations of these inflows. Finally, it was con-
cluded that Langmuir circulations and the breaking of internal waves are important when
modelling the Baltic Sea.
A coupled physical-biogeochemical modelling system was presented by Burchard et al.
(2006). The General Ocean Turbulence Model (GOTM) was used for the computations
of the hydrodynamics. It includes state-of-the-art turbulence closures. The two-way cou-
pling to biogeochemical models is flexible, but a few restrictions were made. They have
to be Eulerian-type of models, where all state variables are concentrations. Because of
the numerous different turbulence closure models and the various biogeochemical models
which can be combined together and the fast computation times in comparison with fully
three-dimensional models this modelling system is predestined for the use as a work bench
for comparing different physical or biogeochemical parameters or for sensitivity analyses.
Applications of this modelling system were presented for the North Sea and for the Baltic
Sea. For the Baltic Sea simulation, the salinity was nudged to observational data with a
time scale of two days, because the inflows could not be modelled without the inclusion of
the hypsography. The observations from both seas could be reproduced qualitatively. But
the results of the biogeochemical model strongly depend on the chosen turbulence closure.
Another problem is the uncertainty about several ecosystem parameters. The conclusion
was drawn that one-dimensional water column models can typically not be used for quan-
titatively predicting ecosystem dynamics. But for simple studies or for model development
in a broad sense the flexibility and the fast computation times make this model appealing.
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Chapter 2

Methods

2.1 Mathematical tools

In this section the tools and theories needed to understand the later chapters will be in-
troduced. The information presented here is based on Kundu and Cohen (2008) and Pope
(2000).
First, Reynolds’ transport theorem will be introduced briefly, as this theorem is not only
crucial for the derivation of the Navier-Stokes equations, but it is also important for the
derivation of the horizontally averaged transport equations being derived later. Next,
the Navier-Stokes equations, as the governing equations of fluid dynamics, will be re-
peated as a foundation for the following section, which introduces the Reynolds-averaged
Navier-Stokes equations (RANS). These RANS equations are the starting point for many
turbulence models, of which one class of turbulence models will finally be summarised.

2.1.1 Reynolds’ transport theorem

The well-known Gauss’ theorem generalises the fundamental theorem of calculus and states
that, for a vector ~F , ∫

V

∇ · ~F dV =

∮
∂V

~F ·~n dA , (2.1)

where V is an arbitrary, but simply connected volume, bounded by the surface ∂V . Ge-
ometrically, this formula states that the outward flux through the surface ∂V is equal
to the volume integral of the divergence of a vector. But this theorem is only valid for
volumes which are constant and do not change, e.g. with time. For only one dimension
the solution to this problem is called Leibniz’ Rule:

d

dt

b(t)∫
a(t)

F (x, t) dx =

b(t)∫
a(t)

∂F (x, t)

∂t
dx+

db

dt
F (b, t)− da

dt
F (a, t) . (2.2)

This rule can be generalised to three dimensions by means of continuum mechanics:

d

dt

∫
V (t)

~F (~x, t) dV =

∫
V (t)

∂ ~F (~x, t)

∂t
dV +

∮
∂V (t)

~F ~uA ·~n dA , (2.3)
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where V (t) is a volume which can move over time and which is bounded by the moving
surface ∂V (t). The velocity of the boundary is denoted with ~uA. If a volume always
contains the same fluid particles, it is a material volume which is exactly the case, when
the velocity of the fluid ~u and the velocity of the bounding surface are equal: ~u = ~uA. If
V (t) is a material volume, equation (2.3) becomes

d

dt

∫
V (t)

~F (~x, t) dV =

∫
V (t)

∂ ~F (~x, t)

∂t
dV +

∮
∂V (t)

~F~u ·~n dA (2.4)

and is called Reynolds’ transport theorem.

2.1.2 Navier-Stokes equations

The governing equations for all known fluid dynamics are the Navier-Stokes equations.
These equations are very general, but no analytical solution is known and, because most
often the ocean dynamics are important on length and time scales of several orders of mag-
nitude, direct numerical simulations are only applicable in special cases. Thus, physically
motivated, simplifying assumptions have to be made. For geophysical ocean mechanics
the Boussinesq assumption is widely applied. It assumes that the density differences are
so small that they can be neglected in every term, except for the buoyancy term. With
the Boussinesq assumption made and set in a rotating frame the Navier-Stokes equations
can be written as

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+ 2~Ω× ~u = − 1

ρ0
∇p+

ρ

ρ0
~g . (2.5)

Here, ~u is the velocity, ~Ω is earth’s rotation, with 2~Ω× ~u being the Coriolis term, ρ is the
density with a constant reference density ρ0 and ν is the kinematic viscosity, also known
as the diffusivity of momentum. With the Boussinesq assumption applied, the continuity
equation simplifies to

∇ · ~u = 0 . (2.6)

2.1.3 Reynolds-averaged Navier-Stokes equations

Due to the deterministically chaotic nature of turbulent flows, it is not only impossible
to predict the evolution of a dynamic turbulent system, but most often this is not even
wished, because even the slightest change in the initial conditions could lead to totally
different result. Instead, mean characteristics of the fluid can be more interesting, like the
distribution of the mean velocity or the temperature. If a system is stationary, the time
mean

〈u〉t0 =
1

t− t0

t∫
t0

u(t′) dt′ (2.7)

could be used to extract the averaged information of interest. The index t0 in 〈u〉t0 in-
dicates that the time mean depends on the initial conditions of a system, which means
that without knowing the exact and complete initial conditions 〈u〉t0 cannot be calculated.
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Thus, we postulate that

〈u〉 = lim
t→∞
〈u〉t0 (2.8)

exists and is independent of the initial conditions. This postulate is a special form of the
ergodic hypothesis. But even with this postulate, in principle, the system would have
to be measured for an infinitely long time to calculate the time mean. Accordingly, the
concept of the ensemble average has to be introduced. An ensemble is a collection of
imaginary systems, all macroscopically identical copies of the actual, real system being
examined. Each member of this collection implements a possible microscopic state which
has the same macroscopic physical properties as the real system. The ensemble average is
then

〈u〉(t) =
1

N

N∑
i=1

ui(t) , (2.9)

with N being the number of microscopic realisations of the macroscopic state.
In laboratory experiments or in numerical simulations a relatively small number of rep-
etitions of the same experiment under the same initial conditions can be used to apply
the true ensemble average (2.9). But when observing geophysical flows, the experiments
cannot be repeated under the same conditions again. Thus, different kinds of filtering
procedures have to be applied. These filters could be time filters or spatial filters, but,
except for very special cases, they are not equivalent to the ensemble average.
Osborn Reynolds used this ensemble average to decompose observables of a turbulent
field into a mean part and a fluctuating part to simplify the Navier-Stokes-Equations.
The so-called Reynolds decomposition is

u = 〈u〉+ u′ , (2.10)

with 〈u〉 being the ensemble average and u′ being the fluctuations which is defined as

u′ := u− 〈u〉 , (2.11)

and which vanishes under the ensemble average:

〈u′〉 = 0 . (2.12)

Following so-called Reynolds rules apply for the averaging which are important for deriving
the later following equations:

1. Linearity: 〈u+ λv〉 = 〈u〉+ λ〈v〉

2. Commutation of derivatives and the averaging: 〈∂u∂x〉 = ∂
∂x〈u〉

3. Idempotence: 〈〈u〉〉 = 〈u〉

4. Product average: 〈u〈v〉〉 = 〈u〉〈v〉
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The Reynolds decomposition can now be applied to the continuity equation. For simplicity
the Einstein notation will be used from now on.

∂

∂xi
(〈ui〉+ u′i) = 0 (2.13)

Averaging this equation results in

∂〈ui〉
∂xi

= 0 (2.14)

and subtracting equation (2.14) from equation (2.13) yields

∂u′i
∂xi

= 0 . (2.15)

Equations (2.14) and (2.15) show that not only the mean flow, but also the fluctuations
are non-divergent.
If the Reynolds decomposition is inserted into the Navier-Stokes equations (2.5), the equa-
tions get averaged, and the continuity equations (2.14) and (2.15) are applied, then the
so-called Reynolds-averaged Navier-Stokes equations (RANS) are obtained:

∂〈ui〉
∂t

+
∂

∂xj

(
〈ui〉〈uj〉+ 〈u′iu′j〉 − ν

∂〈ui〉
∂xj

)
+ 2εijkΩj〈uk〉 = − 1

ρ0

∂〈p〉
∂xi

+
gi
ρ0
〈ρ〉 (2.16)

Comparing this equation to the original Navier-Stokes equations in index notation:

∂ui
∂t

+
∂

∂xj

(
uiuj − ν

∂ui
∂xj

)
+ 2εijkΩjuk = − 1

ρ0

∂p

∂xi
+
gi
ρ0
ρ , (2.17)

we can see that there are only two differences between these equations. The RANS equa-
tions, describing the dynamics of a mean velocity field, only contain averaged variables,
instead of the instantaneous observables in the original Navier-Stokes equations. And the
correlation between different fluctuating velocities 〈u′iu′j〉 has appeared as an additional
transport term in the RANS equations. This term is also known as the Reynolds stress
tensor. Dynamic equations for 〈u′iu′j〉 can be derived which are known as the second
moment equations, but they include third moment terms, like 〈u′iu′ju′k〉. For these third
moments too, dynamic equations can be found, but they include terms of fourth order
and so on. This dilemma is known as the turbulence closure problem.

2.1.4 Turbulence closure

By introducing empirical parameterisations, the RANS equations can be closed and, de-
pending on which statistical moments are used to close the system, the closure models are
called first-moment, second-moment or higher-moment closure models. A few prerequisites
are introduced in order to understand the closure models.

Eddy viscosity

The eddy viscosity assumption is based on an analogy between the mean flow and the
fluctuating flow first described by Boussinesq. For a one-dimensional unidirectional flow
〈u〉 = 〈u〉(z) the total shear stress is
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τ = τm + τt = ρ0

(
ν
∂〈u〉
∂x
− 〈u′w′〉

)
. (2.18)

In analogy to the first term inside of the parenthesis, the turbulent stress is now formulated
as

−〈u′w′〉 = νt
∂〈u〉
∂z

, (2.19)

where νt is the so-called eddy viscosity. The molecular viscosity ν is a known material
property, whereas the eddy viscosity νt highly depends on the properties of the flow.
It can be many orders of magnitude greater than the molecular viscosity. This eddy
viscosity principle can be generalised to three-dimensional flows and can also be made for
scalar quantities like the salinity. The introduction of the eddy viscosity cannot close the
RANS equations, instead it shifts the problem to finding assumptions with which the eddy
viscosity νt can be calculated.

The mixing length

With the mixing length approach, Prandtl suggested a parameterisation of the eddy vis-
cosity based on another analogy to molecular diffusion. The kinetic theory of gases shows
that the viscosity of a gas is proportional to ν ∝ aλ, with a being the root mean square
velocity of the particles and λ being the mean free path of a particle. For a turbulent fluid
this translates to

νt = lq , (2.20)

where q is a typical velocity scale of turbulence and l is a typical length scale. The task
of turbulence modelling is now to find appropriate values for q and l. There are different
possibilities to compute these quantities. The turbulent kinetic energy (TKE)

k =
1

2
〈u′iu′i〉 , (2.21)

describing the mean kinetic energy contained in the turbulent field can be related to the
velocity scale k = q2/2. A dynamic equation for the turbulent kinetic energy can be
derived from the Navier-Stokes equations (2.5):

∂k

∂t
−D = P +G− ε . (2.22)

This form of the equation hides a lot of details and only shows which physical processes
contribute to the change of k over time, but for this broad overview of turbulence modelling
this is sufficient and it will not be described how exactly the terms look like. D contains all
transport terms, whereas on the right hand side of the equation all terms describe either
sources or sinks of k. P denotes the shear production, which describes the conversion of
mean kinetic energy to turbulent kinetic energy and the other way round. The buoyant
production G either describes the kinetic energy loss if the turbulence works against a
stable stratification of the water column or it describes the gain of turbulent kinetic energy
due to unstable stratification. The last term ε is the rate of dissipation of turbulent
kinetic energy into internal energy. Equation (2.22) plays an important role in modelling
turbulence.
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Turbulence modelling

There are many different approaches to finding values for the velocity scale q and for the
length scale l. Describing even just some of them would go beyond the scope of this thesis.
Instead, some of the different approaches will be listed very briefly in order of increasing
complexity.

• The most simple models use algebraic relations to compute both q (or k) and l.
These models are often too simple to be within a valid assumption for more than
only very special cases of flows.

• The so-called one-equation models are more complex than the algebraic models, as
k is calculated from the partial differential equation (2.22). The length scale l is
again computed from an algebraic relation.

• In the class of the two-equation models not only k is computed from differential
transport equations, but also l. There are different variables which can be related
to the length scale, for example the rate of dissipation εij , which results in the well-
known k-ε-model. These two-equation models are more general than the other two
classes of models and may be applied to a broader range of flow situations.

For more information on this topic see e.g. Speziale (1991), Umlauf et al. (2003), Umlauf
and Burchard (2005), Canuto et al. (2001) or Pope (2000).

2.2 The General Ocean Turbulence Model

The General Ocean Turbulence Model (GOTM) is a one-dimensional water column model
which can either be used as a stand-alone water column model or as a vertical turbulence
closure model, e.g. for a three-dimensional circulation model. It computes the vertical
one-dimensional transport equations for salt, heat and momentum. For these calculations,
the turbulent fluxes of these quantities have to be calculated. GOTM provides a number of
different state-of-the-art turbulence closure models for this (Burchard and Bolding , 2001;
Umlauf et al., 2005). The physical assumptions made for and the equations solved by
GOTM will be shortly introduced here.
The Reynolds decomposition, introduced in section 2.1.3, separates a variable into an
ensemble average and into a fluctuating part. This can be expressed as

ϕ = 〈ϕ〉+ ϕ′ .

The variable ϕ can, e.g. describe a turbulent field. Then the decomposition separates this
field into a mean part and into a turbulent part. Only the mean flow equations of GOTM
were altered in order to create the lake model, thus only this part will be introduced here.
In principle the governing transport equation solved by GOTM is

∂〈ϕ〉
∂t

=
∂

∂z

(
(κm + κt)

∂〈ϕ〉
∂z

)
(2.23)

which is a one-dimensional diffusion equation with the eddy viscosity assumption made.
Some terms were left out here, for example, in order to compute the heat, a source term
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describing the solar radiation would have to be included. In order to derive this equation
from the primitive equations, it has to be assumed that all variables are horizontally
homogeneous and that the simulation domain has a horizontally infinite size.
It should always be kept in mind that, although one-dimensional water column models use
vertical eddy diffusivities for a transport in the vertical and often enough this produces
good results, this is not the way vertical transport works in nature. Instead, the vertical
transport in a basin is drastically increased by boundary mixing (Holtermann et al., 2012)
which means that a tracer in the interior of a basin spreads isopycnically until it reaches
the basin boundary where it experiences mixing rates several orders of magnitude greater
than in the interior. From the boundary, where the tracer gets mixed into different depth
layers, it spreads out again into the interior of the basin at these different depths. These
complex processes are parameterised by rather simple vertical diffusivities.

Figure 2.1: The spatial discretisation used by GOTM (from Umlauf et al. (2005)).

For the numerical discretisation, the vertical axis is divided into N layers with indices i =
1, . . . , N . These layers have a thickness of hi, see figure 2.1. The spatial grid is staggered
for ease of discretisation of most of the fluxes. The diffusive transport is calculated by a
semi-implicit numerical scheme and the advective transport, if it is wished to be calculated
too, can be calculated by a choice of different high order numerical schemes. The linear
system of equations, resulting from the semi-implicit diffusion scheme, is solved by a
simplified Gaussian elimination algorithm. The time stepping is equidistant.
GOTM can be forced by meteorological data like wind, temperature, humidity, and so on.
It also incorporates the implications of evaporation and precipitation for the water level
change. It can be coupled to biogeochemical models, but introducing this coupling would
go beyond the scope of this thesis.
In the following chapter new equations and models will be derived which will be included
into GOTM in order to extend the application range of this numerical model.
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Chapter 3

The model

In order to realistically model a basin with inflows by using a one-dimensional model,
depth-dependent information about the volume of the basin is needed. If an inflow occurs
at a certain depth, then the water masses above this depth are pushed upwards. These
processes can only be modelled with information about the basin volume. Therefore, new
dynamic equations for horizontally averaged variables are derived. They also consider
information about the volume of the basin. Following this derivation, an analytical solu-
tion is found which can be used to test numerical implementations of the new dynamic
equations. Because the flow paths of North Sea water, flowing into the Baltic Sea, are
constrained by the Darss Sill and by the Drogden Sill leading to the Arcona Basin, a lot of
the measurements about major Baltic inflows have been done here. Moreover, it would be
very difficult to estimate the volume flow into the Gotland Basin from measurements done
in the vicinity of it as the inflowing water is not constrained to one particular flow path
into the basin. Thus, the inflows have to be prescribed at the sills or in the Arcona Basin
and the effects of entrainment diluting the dense bottom current need to be modelled with
an entrainment model which is also introduced in this chapter.

3.1 Deriving the vertical transport equations

The one-dimensional horizontally integrated vertical transport equation for an arbitrary
tracer ϕ, e.g. salinity will now be derived. The three-dimensional transport equations for
a tracer ϕ, from which this derivation will start, is given by

∂ϕ

∂t
+ ~u · ∇ϕ = ∇ · (κ∇ϕ) . (3.1)

The first term describes the change of concentration over time, the second term describes
the advective transport, and the third term describes the diffusive transport with κ =
κm + κt being the sum of the molecular and the eddy diffusivity of ϕ. ~u denotes the
advection velocity.
By integrating the transport equation (3.1) in the horizontal, the x and y dependencies
of the variables get eliminated and an equation for mean values, only depending on the
vertical z axis, is obtained. One thing has to be thought of here. The integration has to
be done over a volume and not a plane in order to obtain meaningful expressions as, e.g.
density has the unit kg/m3. Therefore, the integration will be applied in following way:
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lim
∆z→0

1

∆z

∫
V (z)

dV , (3.2)

where V (z) is the volume enclosed by the basin, a horizontal plane at the depth z, and a
horizontal plane at the depth z + ∆z. If the limit is applied and the integral is computed
without an argument, then it yields the total area of a horizontal slice of the basin at the
depth z. The area of the horizontal slices at given depths is described by the function
A(z) which is the so-called hypsographic function, or shorter the hypsography. See figure
3.1 for a visualisation.

Figure 3.1: A visualisation of the most important geometrical variables for the horizontal integra-
tion of the transport equations. A(z) denotes the hypsographical function, V denotes the volume
bounded by the basin, the plane of the area A(z), and the plane of A(z + ∆z).

By applying integration (3.2) to the transport equations (3.1) following expression is found:

lim
∆z→0

1

∆z

∫
V (z)

∂

∂t
ϕ(~x, t) dV =

lim
∆z→0

1

∆z

∫
V (z)

{∇ · (κ(~x, t)∇ϕ(~x, t))− ~u(~x, t) · ∇ϕ(~x, t)} dV . (3.3)

The order of the integral and the time derivative can be swaped on the left hand side of
the equation (3.3) according to the simplified Leibniz rule (see chapter 2.1.1). This rule
can be applied, because the integration limits are independent of time. Performing this
step results in

∂

∂t
lim

∆z→0

1

∆z

∫
V (z)

ϕdV =

lim
∆z→0

1

∆z

∫
V (z)

∇ · (κ∇ϕ) dV − lim
∆z→0

1

∆z

∫
V (z)

~u · ∇ϕdV . (3.4)

The variable ϕ on the left hand side of equation (3.4) can be substituted by
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ϕ̄(z, t) = lim
∆z→0

1

∆zA(z)

∫
V (z)

ϕ(~x, t) dV , (3.5)

which is a horizontally averaged variable for ϕ using the hypsographic function A(z). It is
the goal of this whole derivation to express every variable in this way, as these averaged
variables only have a z-dependence and are thus one-dimensional.
The advective term on the right hand side of equation (3.4) can be transformed to a
conservative form by means of the incompressibility condition ∇ · ~u = 0:

∂Aϕ̄

∂t
= lim

∆z→0

1

∆z

∫
V (z)

∇ · (κ∇ϕ) dV − lim
∆z→0

1

∆z

∫
V (z)

∇ · (~uϕ) dV . (3.6)

Because A is constant with respect to t, it can be pulled out of the time derivative on
the left hand side. In index notation, with the Einstein summation convention applied,
equation (3.6) therefore becomes

A
∂ϕ̄

∂t
= lim

∆z→0

1

∆z

∫
V (z)

∂

∂xi

(
κ
∂ϕ

∂xi

)
dV − lim

∆z→0

1

∆z

∫
V (z)

∂(uiϕ)

∂xi
dV . (3.7)

The integrals on the right hand side of equation (3.7) can be calculated by applying the
Reynolds transport theorem in a modified form.
The Reynolds transport theorem, already introduced in chapter 2.1.1, is shortly repeated
here:

d

dt

∫
V (t)

F (~x, t) dV =

∫
V (t)

∂

∂t
F (~x, t) dV +

∮
∂V (t)

F (~x, t)~uA ·~ndA . (3.8)

In this case, F is an arbitrary tensor of any order, V is a simply connected arbitrary
volume, which is bounded by the surface ∂V . The vector ~n is normal to the surface ∂V

and points outwards. The variable ~uA = d~x
dt

∣∣∣
~x∈∂V

denotes the velocity which the boundary

∂V moves with.
This theorem can be adapted to the current problem in following way. The tensor F is
chosen to be of first order and is thus a scalar quantity. It is renamed to Fz. The time
t is exchanged with the depth z. This implies that the “speed” of the boundary ~uA is
no longer a change of position over time but over depth with the unit [~uA] = m/m = 1.
The normal vector ~n is replaced by a vector, which lies in the horizontal plane of the
hypsography A and is perpendicular to the boundary of A. It is renamed to ~nA. The
area of the basin boundary, which is enclosed by the horizontal planes at the depths z and
z + ∆z, is denoted with B(z). All this together gives:

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

Fz(~x, t) dV =

lim
∆z→0

1

∆z

∫
V (z)

∂

∂z
Fz(~x, t) dV + lim

∆z→0

1

∆z

∮
B(z)

Fz(~x, t)~uA ·~nA dA . (3.9)
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By applying this formula to equation (3.7) following expression is obtained.

A
∂ϕ̄

∂t
= lim

∆z→0

1

∆z

∫
V (z)

{
∂

∂x

(
κ
∂ϕ

∂x

)
+

∂

∂y

(
κ
∂ϕ

∂y

)}
dV+

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

κ
∂ϕ

∂z
dV − lim

∆z→0

1

∆z

∮
B(z)

κ
∂ϕ

∂z
~uA ·~nA dA−

lim
∆z→0

1

∆z

∫
V (z)

{
∂(uxϕ)

∂x
+
∂(uyϕ)

∂y

}
dV−

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

uzϕdV + lim
∆z→0

1

∆z

∮
B(z)

uzϕ~uA ·~nA dA (3.10)

The two integrals containing derivatives with respect to x and y can be examined by using
Gauss’ theorem ∫

V

∇ · ~F d(n)x =

∮
A

~F ·~nd(n−1)x , (3.11)

which is here used in an adapted way:∫
V

{
∂Fx
∂x

+
∂Fy
∂y

}
dV =

∮
A

{Fxnx + Fyny} dA . (3.12)

Utilising Gauss’ theorem in this form results in

A
∂ϕ̄

∂t
= lim

∆z→0

1

∆z

∮
B(z)

{
κ
∂ϕ

∂x
nAx + κ

∂ϕ

∂y
nAy

}
dA+

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

κ
∂ϕ

∂z
dV − lim

∆z→0

1

∆z

∮
B(z)

κ
∂ϕ

∂z
~uA ·~nA dA−

lim
∆z→0

1

∆z

∮
B(z)

{
uxϕnAx + uyϕnAy

}
dA−

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

uzϕdV + lim
∆z→0

1

∆z

∮
B(z)

uzϕ~uA ·~nA dA .

These integrals can be merged to

A
∂ϕ̄

∂t
=

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

κ
∂ϕ

∂z
dV − ∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

uzϕdV+

lim
∆z→0

1

∆z

∮
B(z)

{(
κ
∂ϕ

∂x
− uxϕ

)
nAx +

(
κ
∂ϕ

∂y
− uyϕ

)
nAy−

(
κ
∂ϕ

∂z
− uzϕ

)
~uA ·~nA

}
dA . (3.13)
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The three parentheses Fi =
(
κ ∂ϕ∂xi − uiϕ

)
are vector components of the total flux ~F

composed of the diffusive and advective flux. The factors behind each of the parentheses
are also components of a vector which will be named ~n. In the following it will be shown
that this vector ~n is normal to the boundary surface B. This geometry is visualised in
figure 3.2. If it is assumed that this is true, then the terms inside the last integral in
equation (3.13) can be expressed as ~F ·~n, which is a quantity for the amount of tracer
passing the boundary. In the case of a boundary which lets no tracer pass, it can be
formulated as ~F ·~n = 0.

Figure 3.2: A slice of the geometry of the boundary of an arbitrary bathymetry.

At first the vectors involved in the proof that ~n is perpendicular to the boundary surface
will be written down.

~n = nAx~ex + nAy~ey − ~uA ·~nA~ez
~nA = nAx~ex + nAy~ey + 0~ez

~uA =
∂x

∂z
~ex +

∂y

∂z
~ey +

∂z

∂z
~ez =

∂x

∂z
~ex +

∂y

∂z
~ey + 1~ez = uAx~ex + uAy~ey + ~ez

The z-component of ~nA is always zero because the vector lies in the plane perpendicular to
the z-axis. When looking along the z-axis the vector ~n points in the same direction as the
vector ~nA, which is obvious due to the same x- and y-components of these vectors. That
means ~n lies in the plane defined by ~nA and ~uA. To show that ~n is also perpendicular to
~uA it is utilised that ~x · ~y = 0 is only valid if ~x and ~y are perpendicular to each other:

~uA ·~n =

uAxnx + uAyny + uAznz =

uAxnAx + uAynAy − ~uA ·~nA =

uAxnAx + uAynAy + uAznAz − ~uA ·~nA =

~uA ·~nA − ~uA ·~nA = 0 �

Now a new variable for a source coming from the basin boundary can be introduced

q(z) = lim
∆z→0

1

B(z,∆z)

∮
B(z,∆z)

~F ·~ndA . (3.14)

The variable q describes the amount of tracer of ϕ coming from “outside” the exam-
ined system and entering it at the depth z. It denotes the horizontally averaged source
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which has the consequence that a source at only one point psource = psource(x, y, z) on
the boundary at depth z would enter the basin at depth z as an averaged source over the
whole horizontal slice of the basin. The source has the dimension of [q] = ms−1 [ϕ]. This
source term does not appear in the three-dimensional transport equations, it is obtained
by integrating equations (3.1) because a new boundary is introduced by this integration.
If a source is to be included when using equations (3.1) to model a basin, then the model
domain has to be expanded until a sensible geometrical constraint, e.g. a river mouth,
where boundary conditions can be prescribed. The boundary surface can be approximated
by B ≈ ∆z∆A

∆z . The greater ∆A
∆z the better the approximation. With this approximation

and by applying the limit to ∆A
∆z , equation (3.14) can be reformulated as

dA

dz
q = lim

∆z→0

1

∆z

∮
B(z,∆z)

~F ·~ndA .

With this result, equation (3.13) becomes

A
∂ϕ̄

∂t
=

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

κ
∂ϕ

∂z
dV − ∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

uzϕdV +
dA

dz
q . (3.15)

In order to calculate these remaining two integrals, a decomposition of the variables ϕ,
κ, and uz is made in analogy to the Reynolds decomposition. But instead of using an
ensemble average, a spatial average over the horizontal area of the hypsographical function
A is applied. Such an average was already introduced with equation (3.5). Because the
variable ϕ̄ is an average over a horizontal volume slice of the basin, it does not depend
on the horizontal coordinates. The fluctuating part of the decomposition is, in analogy
to the Reynolds decomposition, defined by ϕ̃(~x, t) := ϕ(~x, t) − ϕ̄(z, t). By applying this
decomposition to the three variables ϕ, κ and uz, they can be written as

ϕ(~x, t) = lim
∆z→0

1

∆zA(z)

∫
V (z)

ϕ(~x, t) dV + ϕ̃(~x, t) = ϕ̄(z, t) + ϕ̃(~x, t)

κ(~x, t) = lim
∆z→0

1

∆zA(z)

∫
V (z)

κ(~x, t) dV + κ̃(~x, t) = κ̄(z, t) + κ̃(~x, t)

uz(~x, t) = lim
∆z→0

1

∆zA(z)

∫
V (z)

uz(~x, t) dV + ũz(~x, t) = ūz(z, t) + ũz(~x, t) .

Inserting the decomposed variables into equation (3.15) results in

A
∂ϕ̄

∂t
=

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

(
κ̄
∂ϕ̄

∂z
+ κ̃

∂ϕ̃

∂z
+ κ̄

∂ϕ̃

∂z︸︷︷︸
=0

+ κ̃
∂ϕ̄

∂z︸︷︷︸
=0

)
dV−

∂

∂z
lim

∆z→0

1

∆z

∫
V (z)

(ūzϕ̄+ ũzϕ̃+ ūzϕ̃︸︷︷︸
=0

+ ũzϕ̄︸︷︷︸
=0

) dV +
dA

dz
q .

The terms containing a mixed product of a fluctuating and an averaged variable vanish,
because the integral being applied to them is nothing else as the spatial average used
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for the decomposition and the fluctuating quantities are zero in average (see the Reynolds
rules in chapter 2.1.3). The underbraces indicating that the individual terms vanish should
therefore not be misunderstood as they only vanish if the integral is applied. The terms
containing a product of two averaged variables do not depend on the horizontal coordinates
x or y anymore so the integrals can easily be calculated. With the terms containing the
product of two fluctuating variables still to be evaluated, this yields

A
∂ϕ̄

∂t
=

∂

∂z

(
Aκ̄

∂ϕ̄

∂z

)
− ∂

∂z
(Aūzϕ̄) + lim

∆z→0

1

∆z

∫
V (z)

(
κ̃
∂ϕ̃

∂z
− ũzϕ̃

)
dV +

dA

dz
q .

If it is assumed that the quantities κ̃ and ϕ̃ and the quantities ũz and ϕ̃ are not correlated
in any way, then this integral becomes zero too, because the average of the product of two
fluctuating quantities 〈x′y′〉 is the correlation of these two quantities. Now the variables
ϕ̄, κ̄, and ūz can be renamed to ϕ, κ, and w which finally results in the final equation

∂ϕ

∂t
=

1

A

∂

∂z

(
Aκ

∂ϕ

∂z

)
− 1

A

∂

∂z
(Awϕ) +

1

A

dA

dz
q . (3.16)

This equation can be transformed, so that it consists of a true diffusive and a true advective
part. This transformation can be done by applying the product rule inside the first
derivative with respect to z and by multiplying one term with A/A.

∂(Aϕ)

∂t
=

∂

∂z

(
Aκ

∂ϕ

∂z

)
− ∂

∂z
(Awϕ) +

dA

dz
q

∂(Aϕ)

∂t
=

∂

∂z

(
κ
∂(Aϕ)

∂z

)
− ∂

∂z

(
dA

dz

κ

A
(Aϕ)

)
− ∂

∂z
(w(Aϕ)) +

dA

dz
q

∂φ

∂t
=

∂

∂z

(
κ
∂φ

∂z

)
− ∂

∂z

({
dA

dz

κ

A
+ w

}
φ

)
+

dA

dz
q (3.17)

Equation (3.17) is valid for the new variable φ = Aϕ. The advection speed is wd =
dA
dz

κ
A +w. This form of the equation only consists of flux terms and one source term which

means that, if the source term vanishes, it has the form of a conservation law. This again
means that, even in a discretised form and using a finite volume scheme, the equation is
conservative and no artificial sinks or sources due to numerical errors can appear. However,
later it will be shown that equation (3.16) is also conservative in a discretised form. The big
advantage of equation (3.17) for φ is that it can be easily integrated into already existing
models as the numerical diffusion and advection routines do not have to be modified. The
results of this approach are discussed in section 4.2.
The derivation of the one-dimensional momentum equation from the three-dimensional
equations

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

(
ν
∂ui
∂xj

)
, (3.18)

with i = x, y, z, can be done in analogy to the derivation of the tracer equation 3.16. The
resulting equations are

∂ūi
∂t

+
1

A

∂

∂z
(Aūzūi) =

1

A

∂

∂z

(
Aν̄

∂ūi
∂z

)
+

1

A

dA

dz
fi , (3.19)
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where the index is now i = x, y. In this case the source f can be identified with the friction
caused by the water flowing along the basin boundary. Thus, it is a sink of momentum
and is parameterised in the usual way (see e.g. Kundu and Cohen (2008)):

fi = −cDūi
√
ū2
x + ū2

y . (3.20)

With this parameterisation, the final one-dimensional momentum equations are

∂ūi
∂t

+
1

A

∂

∂z
(Aūzūi) =

1

A

∂

∂z

(
Aν̄

∂ūi
∂z

)
− 1

A

dA

dz
cDūi

√
ū2
x + ū2

y . (3.21)

3.2 Deriving an analytical solution

An analytical solution will be derived for the modified diffusion equation

∂ϕ

∂t
=

1

A

∂

∂z

(
Aκ

∂ϕ

∂z

)
, (3.22)

which includes the hypsography and which was derived in section 3.1. For the initial
condition and the boundary conditions it is assumed that

ϕ(z, t = 0) = ϕ0δ(z − z0) (3.23)

ϕ(z = ±∞, t) = 0 , (3.24)

with δ being the Dirac delta distribution.
The hypsographical function is chosen to be A(z) = A0 en(z+H) with A0 being the area of
the basin at the depth H and n being an arbitrary factor with the dimension of an inverse
length.
For the derivation of the solution, the Fourier transform

ϕ =
1

2π

∞∫
−∞

dk ϕ̂ eikz

ϕ̂ =

∞∫
−∞

dz ϕ e−ikz

will be used. The modified diffusion equation (3.22) can be written as

∂ϕ

∂t
− κ

dA
dz

A

∂ϕ

∂z
− κ∂

2ϕ

∂z2
= 0 .

With
dA
dz
A = n it simplifies to

∂ϕ

∂t
− κn∂ϕ

∂z
− κ∂

2ϕ

∂z2
= 0 .

Now ϕ can be substituted by its Fourier transform and it can be differentiated under the
integral sign:
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1

2π

∞∫
−∞

dk

{
∂

∂t
ϕ̂ eikz − κn ∂

∂z
ϕ̂ eikz − κ ∂

2

∂z2
ϕ̂ eikz

}
= 0

1

2π

∞∫
−∞

dk eikz
{
∂ϕ̂

∂t
− iκnkϕ̂+ κk2ϕ̂

}
= 0 .

This equation can only be fulfilled, if the equation

∂ϕ̂

∂t
− iκnkϕ̂+ κk2ϕ̂ = 0

is satisfied. This is a first order ordinary differential equation for ϕ̂. It can be solved by
separating the variables:

∫
dϕ̂

ϕ̂
=

∫
dt
{
iκnk − κk2

}
ϕ̂ = ϕ̂0 eκt(ink−k

2) .

The constant of integration can be determined be transforming the initial condition into
Fourier space:

ϕ̂0 = ϕ̂(z, t = 0) = ϕ0

∞∫
−∞

dzδ(z − z0) e−ikz = ϕ0 e−ikz0 .

This yields a unique solution in the Fourier space:

ϕ̂ = ϕ0 exp
{
−κtk2 + iκtk

(
n− z0

κt

)}
With this solution, the transformation back into the time domain can be done.

ϕ =
ϕ0

2π

∞∫
−∞

dk exp
{
−κtk2 + iκtk

(
n− z0

κt

)
+ ikz

}

ϕ =
ϕ0

2π

∞∫
−∞

dk exp

{
−κt

[
k2 − ik

(
n+

z − z0

κt

)]}

By completing the square of the argument of the exponential function the integral can be
solved by substitution.
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ϕ =
ϕ0

2π

∞∫
−∞

dk exp

{
−κt

[(
k − i

2

(
n+

z − z0

κt

))2

− 1

4

(
n+

z − z0

κt

)2
]}

ϕ =
ϕ0

2π
exp

{
−κt

4

(
n+

z − z0

κt

)2
} ∞∫
−∞

dk exp

−κt
[
k − i

2

(
n+

z − z0

κt

)]
︸ ︷︷ ︸

=χ

2


ϕ =

ϕ0

π
exp

{
−κt

4

(
n+

z − z0

κt

)2
} ∞∫

0

dχ e−κtχ
2

The integral is solved by

∞∫
0

dχ e−κtχ
2

=
1

2

√
π

κt
, (3.25)

(Bronstein and Semendjajew , 2005) which yields the final solution

ϕ(z, t) =
ϕ0√
4πκt

exp

{
−κt

4

(
n+

z − z0

κt

)2
}
. (3.26)

This solution can be compared to the well-known analytical solution for the original dif-
fusion equation:

ϕ(z, t) =
ϕ0√
4πκt

exp

{
−(z − z0)2

4κt

}
. (3.27)

Equation (3.26) is equal to equation (3.27) if and only if n = 0 implying A = A0. This
result can be interpreted as the absence of any boundaries which is identical to the assump-
tion of a horizontally infinite ocean. Exactly this situation is assumed when formulating
the original one-dimensional diffusion equation. Thus, it can be said that the new solution
is consistent with the old one.
The constant n has the consequence that the Gaussian function gets shifted into the direc-
tion in which the hypsographical function decreases. This shift can be explained by looking
at the total mass of the tracer ϕ needed to reach a certain concentration. If the hypsogra-
phy is large, then a large amount of the tracer is needed to reach a certain concentration
because the dilution is greater. Thus, a higher concentration is reached faster in regions
with a small hypsography and, in this case, the Gaussian function of the concentration
grows faster where the hypsography is smaller which happens to be further down in the
water column. This dynamic explains the downward shift of the concentration. Figure 3.3
shows the graphs of equations (3.26) and (3.27) with the same initial conditions and after
the same period of time.
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Figure 3.3: The influence of the hypsography on the analytical solution of the modified diffusion
equation.

3.3 The entrainment model

A simple entrainment model for calculating the effects of entrainment on the dense bottom
current moving from the Arcona Basin to the Gotland Basin will be derived here. This
model is based upon the work of Stigebrandt (1987). The derivation will start with a
momentum equation which includes frictional forces and longitudinal pressure gradient
forces

∂u

∂t
− ∂

∂z

(
ν
∂u

∂z

)
= −1

ρ

∂p

∂x
, (3.28)

with u being the velocity, ν the eddy diffusivity for momentum, ρ the density and p denotes
the pressure. The boundary conditions are

ν
∂u

∂z
=
τs
ρ

for z = 0 (3.29)

ν
∂u

∂z
=
τb
ρ

for z = −H , (3.30)

where τs and τb are the frictional stresses at the surface and the bottom, respectively.

Equation (3.28) will be applied to following scenario. It is assumed that two basins are
connected by a channel of constant width B with a slope of s. A lighter fluid sits on top
of a denser fluid and the water level of the denser water is higher in the left basin than
in the right one and thus flows from the left to the right basin. The height of the denser
fluid in the channel is h and the density, the salinity and the temperature of the denser
fluid are denoted with ρd, Sd, and Td, respectively. The lighter fluid acts as a thermal and
saline reservoir with ρa, Sd, and Td being the ambient density, salinity, and temperature,
respectively. Figure 3.4 shows the channel flow together with some variables important
for this derivation. Because of the simple geometry, dp = ρg′dz and dz

dx = s can be utilised
to express the right hand side of equation (3.28) giving
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Figure 3.4: The geometrical setup for the entrainment model with the slope being s = dz
dx (after

Stigebrandt (1987)).

−1

ρ

∂p

∂x
= −1

ρ

∂p

∂z

dz

dx
= −g′s

for the longitudinal pressure gradient force, with g′ = g∆ρ/ρ being the buoyancy. If a
steady flow is governed by balancing the two forces, the time derivative ∂u

∂t vanishes and
an integration over the whole denser part of the water column can be applied. Together
with the boundary conditions this yields

−τs
ρ

+
τb
ρ

= −g′hs . (3.31)

The left hand side describes the frictional stresses at the bottom and at the interface
between the two fluids. This can be parameterised by using a combined drag coefficient
Cd for the bottom and surface stresses.

Cdu
2 = g′hs . (3.32)

Thus, the flow velocity is

u =
√
g′hs/Cd . (3.33)

Because the flow is unidirectional, a case-by-case analysis for the sign is needless when
extracting the root. If the volume flow Q is considered as an independent variable, it
is determined by Q = uBh. The specific volume flow q = Q/B = uh can be used to
substitute h in equation (3.33):

u = 3
√
qg′s/Cd . (3.34)

The friction velocity is defined as u2
∗ = Cdu

2, which is needed for the entrainment model
introduced by Kato and Phillips (1969). In this case, the entrainment velocity is

we =
2m0u

3
∗

g′h
= 2m0

√
Cdsu

with m0 being an empirical constant. The entrainment velocity we expresses the increase
of the specific volume flow along the channel:

dq

dx
= we ,

which means that the increase of the specific volume flow dq
dx can be expressed by the three

constants m0, Cd, and s and by the flow speed u:
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dq = 2m0su
√
Cddx . (3.35)

With this equation the volume flow flowing into the right basin can be calculated. The
entrainment influences the salinity Sd and the temperature Td of the dense current by
gradually converging these properties to the salinity Sa and temperature Ta of the upper
lighter fluid:

dSd = (Sa − Sd)
dq

q + dq
(3.36)

dTd = (Ta − Td)
dq

q + dq
(3.37)

The three equations (3.35), (3.36) and (3.37) can be calculated in an iteratively manner.
When the distance dx between the two basins is reached, an inflow occurs in the right
basin. But if the density difference ∆ρ = ρa−ρd vanishes, the dense current is completely
diluted and will not reach the basin. The density is calculated by means of the EOS80,
the UNESCO equation of state from 1983 (Fofonoff and Millard , 1983).
Following configuration for the parameters was used to calculate the effects of entrainment.
The distance between the Arcona Basin and the Gotland Basin was assumed to be 640 km
(Feistel et al., 2008) with the dense bottom current needing 3 months to reach the Gotland
Basin (Reissmann et al., 2009). The “slope” of the Baltic Sea between the Arcona Basin
and the Gotland Basin was calculated by taking the depth difference between the two
basins and dividing it by the distance between them which results in a slope of s = 10−4.
The constant width of the bottom current was calculated by an optimising algorithm
which varied the width to fit the highest measured bottom salinity in the Gotland Basin,
the result was B = 30 km, which is in good agreement with the width calculated by
Stigebrandt (1987). The combined drag coefficient of the bottom friction and the interface
friction between the two fluids was assumed to be Cd = 3 · 10−3. The value for the empirical
constant m0 was taken from Stigebrandt (1985) which is m0 = 0.6. The ambient salinity
of the Baltic Proper was assumed to be Sa = 10 g/kg and the temperature of 8 ◦C was
varied with a sine function with an amplitude of 3 ◦C and a cycle of one year according to
Stigebrandt (1987).

3.4 Including inflows

For modelling inflows, the source term in equation (3.16) is used. As a reminder, the
variable q was approximated with

q =

(
dA

dz

)−1

lim
∆z→0

1

∆z

∮
B(z,∆z)

~F ·~ndA .

The total flux of a tracer ϕ into the basin is equation (3.14) integrated over the whole
water depth which is

Qϕ =

0∫
−H

dz lim
∆z→0

1

∆z

∮
B(z,∆z)

~F ·~ndA . (3.38)
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If the approximated source q is inserted into equation (3.38), following relationship between
q and Qϕ can be found

0∫
−H

dz
dA

dz
q = Qϕ , (3.39)

with

Qϕ = ϕIQI (3.40)

andQI being the volume transport of water and ϕI being the concentration of the imported
tracer. This transport is related to the total water volume VI of an inflow which gets
transported into a basin by following relationship. If an inflow starts at t = t1 and ends
at t = t2 following expression can be formulated

VI =

t2∫
t1

dtQI .

If the properties of the inflowing water are only known somewhere far away from the
modelled basin (e.g. like in this thesis where the Gotland Basin is modelled and the
data for the inflows is taken from a transect across the Arcona basin) the entrainment
model derived in section 3.3 can be utilised. The volume flow QI can be calculated by
using equation (3.35). The salinity and temperature of the inflowing dense current may
be obtained by equations (3.36) and (3.37), respectively. After the current arrives at
the basin, it interleaves at a depth where the residing water has the same density as the
inflowing water. The newly arrived water masses push the masses of water above them
upwards, which is a consequence of mass conservation. The vertical advection velocity is

w = QI/A . (3.41)

The water reaching the upper layers of the water column eventually end up as a more or
less brackish outflow. This outflow in the upper layers of the water column balances all
the inflows happening in the deeper parts.

3.5 The scope of application

Before running a one-dimensional model it should be ensured that it is justified to restrict
the dynamics to one dimension. This means that horizontal gradients have to be far
smaller than vertical gradients. There are several origins of forces that could break this
assumption. These could be the atmospheric forcing, in- and outflows, the Coriolis force,
or differential heating. Differential heating could be caused by shallow regions where the
water heats up or cools down more quickly. It has to be assumed that the horizontal
variations of the atmospheric forcing are small enough to be represented by observations
only made at one place and that effects like convective overturning due to the sinking of
cooled surface water are homogeneous enough.
The effects of the in- and outflows on the one-dimensional structure of the water in a
basin can be evaluated by two different internal Froude numbers for inflows and outflows,
respectively (Patterson et al., 1984). These internal Froude numbers express the ratio of
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inertial forces, excited by the inflows or outflows, to the pressure gradient forces induced
by horizontal density gradients. The internal Froude number for inflows is defined as

FI =
u√
g′H

, (3.42)

with u being the velocity of the inflowing water, H being the total depth of the basin
and g′ being the buoyancy based upon the difference between the inflowing water density
and the surface density of the basin. Values of FI < 1 indicate that the pressure gradient
forces affect the horizontal gradients faster than the inflows generate them which, in the
end, means that the assumption of one-dimensionality is justified with respect to inflows.
The internal Froude number for outflows is defined as

FO =
Qout

H2
√
g′H

. (3.43)

Here, Qout denotes the outflowing water transport. A value of FO < 1 also means that
the horizontal gradients are small compared to vertical gradients.
The Coriolis force can cause effects like up- and downwelling or coastally trapped Kelvin
waves which in turn destroy the assumptions made for a one-dimensional model. The
influence of the Coriolis force can be evaluated by the internal Rossby radius defined as

RI =

√
g′h

f
, (3.44)

where f = 2Ω sin Φ is the Coriolis parameter (Φ is the latitude), with Ω = 2π
86164 s being

the rotation period of the Earth. The internal Rossby radius is the length over which the
Coriolis force balances pressure gradient forces generated by tilted interfaces. The ratio
of the internal Rossby radius and the width of the basin B

R =
RI
B

(3.45)

is a measure for the impact of the Coriolis force. If R > 1, then the Coriolis force is small
compared to the pressure gradient forces and the fluid dynamics can be described by a
one-dimensional model.

3.6 Discretisation of the transport equations

For the calculation of the diffusion equation

∂ϕ

∂t
− 1

A

∂

∂z

(
Aκ

∂ϕ

∂z

)
= 0

the model uses a semi-implicit central difference scheme:

ϕn+1
j − ϕnj

∆t
−
Afjκ

n
j

ϕn+σj+1 −ϕ
n+σ
j

1
2(hn+1

j+1 +hn+1
j )

−Afj−1
κnj−1

ϕn+σj −ϕn+σj−1
1
2(hn+1

j +hn+1
j−1 )

Acjh
n+1
j

= 0 . (3.46)

ϕn+σ is defined as ϕn+σ := σϕn+1 + (1 − σ)ϕn, with σ being a parameter determining
how implicit the scheme is. For σ = 0 the scheme is fully explicit and for σ = 1 it is fully
implicit. Ac is the hypsography at the grid centres and Af is the hypsography at the grid
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interfaces (see figure 2.1).
The advection equation

∂ϕ

∂t
+

1

A

∂

∂z
(Awϕ) = 0

is discretised by a simple first order upstream scheme:

ϕn+1
j − ϕnj

∆t
+
Afjw

n
j ϕ

n
j −Afj−1

wnj−1ϕ
n
j−1

Acjh
n+1
j

= 0 . (3.47)

These two schemes are applied successively in a scheme split technique for more generality
with respect to the implementation of the model. This way they can be applied indepen-
dently from each other.
In order to show the conservative nature of these two schemes, a new variable is introduced:

Fn+σ
j = Afjκ

n
j

ϕn+σ
j+1 − ϕ

n+σ
j

1
2

(
hn+1
j+1 + hn+1

j

) −Afjwnj ϕnj , (3.48)

which is the discretised advective and diffusive flux. Using this variable, the schemes can
be combined and written as

ϕn+1
j − ϕnj

∆t
−
Fn+σ
j − Fn+σ

j−1

Acjh
n+1
j

= 0 . (3.49)

The total amount of ϕ in the whole basin can be expressed as

Mn =

N∑
j=1

ϕnjAcjhj . (3.50)

Here, ϕnj gets multiplied with each discrete basin sub-volume Vj = Acjhj . In order to
show the conservative nature of this discretisation, the discretised time derivative of Mn

has to be examined.

Mn+1 −Mn

∆t
=

N∑
j=1

ϕn+1
j Acjhj −

N∑
j=1

ϕnjAcjhj

∆t

Mn+1 −Mn

∆t
=

N∑
j=1

ϕn+1
j − ϕn+1

j

∆t
Acjhj (3.51)

Inserting the discretisation (3.49) into equation (3.51) results in

Mn+1 −Mn

∆t
=

N∑
j=1

(
Fn+σ
j − Fn+σ

j−1

)
.

When applying the sum, the two terms Fn+σ
j and Fn+σ

j−1 cancel each other out for every
index except for j = 1 and j = N :

Mn+1 −Mn

∆t
= Fn+σ

N − Fn+σ
1 ,
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with Fn+σ
N and Fn+σ

1 being the surface flux and the bottom flux, respectively. This means
that if no external fluxes through the surface or the bottom occur, then the total amount
of ϕ̃ is conserved even in a numerically discretised form. This behaviour is often of great
importance, if e.g. one is interested in the total amount of salt in a basin after a simulation
period of several decades.
Everything in this section can be applied analogous to the momentum equations which
gives the same results and discretised equations.

3.7 Implementation details of the model

The modifications and extensions done to the source code of GOTM can be separated
into two different issues. The first major change in the code was done to incorporate
the horizontally averaged dynamic equations and the effects introduced by these new
equations. The hypsography has to be included for the calculation of the new equations.
As a consequence, e.g. the friction has to be calculated at every grid point, which acts
as a sink in the momentum equations. The second major change was done to calculate
inflows. These are handled separately which means that they can be switched off explicitly
in order to simulate basins without any kind of inflow.
Before entering the main time loop of the simulation, the hypsography gets initialised. The
values are interpolated to the grid used by GOTM which means that the hypsography can
be given at any arbitrary depth intervals. After this one initial step, the hypsography is
updated once a time step and gets adapted to the possibly changed grid. This can happen,
if for example σ-coordinates are used. Apart from providing the actual hypsographical
function, the advection and diffusion routines needed to be modified to correctly discretise
equation (3.16). This was done as shown in section 3.6. If the standard water column
model is wished to be used, the hypsography is set to unity which results in the original
advection and diffusion equations.
The entrainment of inflows prescribed far upstream is calculated offline by a separate
routine. The results of this computation are saved as the actual inflows and are passed
on to GOTM. The inflows are initialised before the main time loop starts. Values like the
volume flow, the salinity and the temperature are interpolated both, to the appropriate
time axis and to the depth axis. This also happens during the time loop every time new
values are read in from file. The frequency of the reading in of new values depends on the
time resolution with which they are provided to the model. If the water transport, which
was read in from file, is greater than zero, the inflow algorithm starts. In order to find
the interleaving depth of the inflowing water, the densities of the two water masses are
compared at every grid cell. If they are equal, the interleaving depth is found. Should the
volume of the inflowing water be so big that it does not fit into the volume of one grid cell
Vj = Acjhj the “inflow height” increases successively until it is large enough. From this
information, the hypsography, and the inflow related values, read in from file, the source
terms for salinity and temperature can be calculated. Subsequently the vertical flux is
determined by adding up the whole water volume flowing into the basin below the current

grid cell FQj =
j∑
i=1

Qi. From this, the vertical advection velocity can easily be calculated

with wj = FQj/Acj which gets passed on to the advection routine. Finally the sink terms
due to the outflowing brackish water at the sea surface are computed by balancing the
amount of inflowing water. Additionally, there is the possibility to include a water inflow
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at the sea surface to incorporate, e.g. the river runoff which would be a fresh water inflow.
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Chapter 4

Results

4.1 Idealised test cases

4.1.1 Comparison with an analytical solution

It is impossible to verify or validate a numerical model of natural systems (Oreskes et al.,
1994). But a numerical model must at least reproduce an analytical solution, if one
is known. A convergence between the numerical and the analytical solution does not
validate a model, because it only validates the numerical model in one certain point in
the parameter space. And the reason why numerical models are used is to go beyond the
initial conditions and the assumptions made for analytical solutions.
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Figure 4.1: Comparison of the analytical solution (3.26) with the numerical solution.

In order to compare the numerical model with the analytical solution presented in section
3.2, the assumptions made for this solution have to be adopted by the model. A constant
diffusivity is easily set up in the extended GOTM. The assumption that the solution
vanishes at ϕ(z = ±∞, t) = 0 cannot be fulfilled by a numerical model like GOTM.

But because the analytical solution is quadratically integrable
(∫∞
−∞ |ϕ(z)|2 dz <∞

)
, the

boundary effects can be neglected as long as the solution does not broaden too much due to
diffusion. This broadening can be avoided by setting the simulation time to a value small
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Figure 4.2: The fitted values obtained by a convergence analysis.

enough which means that the simulation stops before a non-zero value of concentration
is calculated at the boundaries. Furthermore, numerical schemes cannot deal with delta-
peaks which is the initial condition needed for the analytical solution. To deal with this,
the analytical solution at a certain point in time t0 > 0 can be used as a new initial
condition. With the offset t0 in time these two solutions can then be compared. Figure
4.1 shows the initial condition used for the simulation and both the analytical and the
numerical solution for a specific set of parameters.

The plots of a convergence analysis for the spatial and time discretisation are shown in
figures 4.2a and 4.2b. The numerical scheme has a convergence order of (1, 2) in time and
space. This result can be extracted from the properties of the graphs used to fit the points
in the figures 4.2a and 4.2b. The same order of convergence can be derived mathematically
for the numerical schemes of the original one-dimensional equations used by the original
GOTM. Thus, the introduction of the horizontally averaged transport equations does not
change the order of convergence.
It was checked that the total amount of tracer is conserved by means of equation (3.50)
which is the case.

4.1.2 Testing inflows

The inflows were tested with a very simple and unrealistic model setup. A linearly in-
creasing hypsography modulated with a relatively small random signal represents a simple
basin. As an initial condition for the salinity, a strongly stratified salt distribution with
a small and well mixed bottom boundary layer and a larger surface mixed layer was pre-
scribed. The initial temperature profile consisted of two well mixed layers with a strong
thermocline in the upper part of the water column. An inflow with constant volume flow,
salinity, and temperature, respectively was prescribed in a way that the density of the
inflowing water was high enough to flow into the deeper parts of the modelled basin. The
inflowing water was very cold compared to the water column. The total mass of salt
contained in this inflow can easily be calculated and could therefore be compared to the
total mass of salt being calculated by the numerical model. The eddy diffusivities were
computed by means of a k-ε turbulence closure model.
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Figure 4.3: The effects of a warm and salty inflow on the salinity and temperature profile.

Figure 4.3 shows salinity and temperature profiles before and after the inflow event. In
figure 4.3a it can be seen that in a depth of about 200 m a strong jump of salinity formed
due to the inflow event. From this depth on upwards, the salinity has increased up until
the surface mixed layer due to an advective transport, caused by the inflow which lifted
the water up from above the depth of where the inflow spread out into the basin. In figure
4.3b it can be seen that the cold inflowing water pushed the old residing water up and also
lifted up the thermocline. Due to the greater density of the newly arrived cold water, the
patch of cold water settled stably in the water column. The minor bumps in the profiles
are effects arising from the small random “fluctuations” in the hypsography. The increase
of the total salt mass in the basin was exactly as much as one would expect from analysing
the prescribed values of the inflow. One problem of the inflow algorithm can be seen in
figure 4.3a. Directly beneath the depth of where the inflow entered the basin, a minor
decrease of salinity was computed. This decrease only appears if the uplifting of the upper
water masses by an advective transport is included. The advective and diffusive routines
of GOTM are separated from each other. But the advective routine calculates the uplift of
the residing salt and the diffusive routine calculates the source of newly arriving salt. Due
to this splitting and the sudden increase of the advection velocity, minor discretisation
errors occurred. But the inflow simulated here was more intense (a strong volume flow
in a short time) than they normally occur in nature which was checked for the Gotland
Basin. The less intense an inflow the smaller the errors. Thus, it should not be a problem
in realistic model setups.

4.2 An alternative discretisation

The advantage of using equation (3.17)

∂φ

∂t
=

∂

∂z

(
κ
∂φ

∂z

)
− ∂

∂z

({
dA

dz

κ

A
+ w

}
φ

)
+

dA

dz
q

is that it can easily be integrated into existing models because the diffusion and advection
routines do not have to be altered. For this very reason this approach was chosen at first.
For every variable being transported, a transformation φ(t) = Aϕ(t) has to be performed
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every time step. This new variable can be processed by already existing diffusion and
advection routines. Afterwards, a reverse transformation ϕ(t + ∆t) = φ(t + ∆t)/A has
to be applied to obtain meaningful variables again which can be further processed and
finally get saved as an output. The idealised test case described in previous section 4.1
gives the same results for this approach. The problems arise when more sophisticated
setups are simulated. More precisely, when boundary conditions have to be formulated in
combination with unstable stratification causing turbulence. The correct Neumann-type
boundary conditions are

κ
∂φ

∂z
−
(

dA

dz

κ

A
+ w

)
φ = Fs for z = ζ , (4.1)

κ
∂φ

∂z
−
(

dA

dz

κ

A
+ w

)
φ = Fb for z = −H . (4.2)

But if the advective and diffusive parts of the transport equation (3.17) are solved sepa-
rately, the boundary conditions for the diffusive part are

κ
∂φ

∂z
= F ds for z = ζ , (4.3)

κ
∂φ

∂z
= F db for z = −H , (4.4)

and for the advective part

−dA

dz

κ

A
− wφ = F as for z = ζ , (4.5)

−dA

dz

κ

A
− wφ = F ab for z = −H . (4.6)

The problem caused by these differences can be illustrated by an example. Imagine a
situation where salt is not able to settle on the bottom and no fresh water sources are
available at the sea surface, meaning that there is, e.g. no rain. In this scenario the total
mass of salt is conserved. But during one time step, in the simulation of this scenario, a
certain amount of salt can be transported “into” the boundary by a diffusive transport
and at the same time step it can be advected back into the water column again. This can
of course also happen by first advecting salt out of the water column and diffusing it back
in again. This behaviour can be expressed as

F ds = −F as (4.7)

F db = −F ab . (4.8)

If the boundary fluxes are set to zero independently for the diffusive and advective terms
the conditions (4.7) and (4.8) are fulfilled although this drastically reduces the solution
set of these equations. Several attemps were made to compensate one flux with the other,
but no satisfying solution was found.
The effects of the insufficient boundary conditions on the simulation can be seen in strong
jumps in the tracer concentrations ϕ around the boundaries. These jumps can cause
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unrealistically unstable stratifications. In combination with the turbulence calculations
these instabilities can cause the complete simulation to become unstable. All this does
normally not happen, because the resulting effects are negligibly small. But due to the
transformation φ(t) = Aϕ(t) the numerical values of the involved variables φ are by several
magnitudes greater than the variables ϕ, which are normally calculated and the errors do
not get compensated by the inverse transformation.
Figure 4.4 shows what happens if no flux boundary conditions are applied to a setup in
which the salinity has a constant value of S = 10 g/kg over the whole water column. It
should be noted that in spite of the strong jumps at the boundaries the total salt mass
is still conserved up until the uncertainty of the floating number represention of the used
computer. No turbulence was applied for these simulations, instead, a constant diffusivity
was prescribed.
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Figure 4.4: The strong jumps are the consequence of the insufficient formulation of the boundary
conditions. The initial distribution of the salinity was a constant value of S = 10 g/kg. Despite
these jumps, the total mass of the salt is conserved.

4.3 Simulating the Gotland Basin

4.3.1 Description of the model setup

Before the model setup for the Gotland Basin will be described, the different criteria in-
troduced in section 3.5 will be applied to the Gotland Basin to see if a one-dimensional
model is a sufficient way to describe its dynamics.
The atmospheric forcing does not influence the vertical water circulation in the deeper
parts of the water column, i.e. beneath the halocline which was the focus of this sim-
ulation. Furthermore, following both Mohrholz (1998); Omstedt (1990) one can assume
that the horizontal scales of the atmospheric forcing are larger than the whole Baltic Sea.
Differential heating can be neglected, because there simply are no areas shallow enough
for this effect to take place in the Gotland Basin.
Assuming an inflow velocity of u = 6 cm/s, which is two times greater than estimates
made by Hagen and Feistel (2004), the internal Froude number was always FI < 0.7 for
the setup of the Gotland Basin which means that the inertial forces induced by the inflows
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get balanced fast enough by the pressure gradient forces to not create strong horizontal
inhomogeneities. The relatively fast balancing is important, because these inflows also
take place in the deep parts of the Gotland Basin. Evaluating the effects of the outflows
on the horizontal water structure is difficult, because the basin is only enclosed up to a
water depth of about 140 m. If it is assumed that the hypsography of the Gotland Basin
does not increase passed the water depth of 140 m, then the internal Froude number can
reach values as high as FO = 1.7. But the outflows take place in the upper layers of
the water column which are not constrained by the topography at all, so they belong to
the open Baltic Sea. On the one hand, this makes the application of the criteria of the
internal Froude number for outflows doubtful for the Gotland Basin. On the other hand,
like stated before, this work focusses on the dynamics of the deeper part of the Gotland
Basin, which does not get influenced by the outflows, as they are a consequence of the
inflows reaching the basin in greater depths.
In the Baltic Sea, the internal Rossby radius has a magnitude of RI ≈ 5 km. Hence, even
for the shortest distance across the Gotland Basin of about B ≈ 40 km the Coriolis force
has a major influence on the dynamics of the Gotland Basin, because of R = RI/B =
0.125 < 1. But the results of a highly time-resolved long-term mooring in the Gotland
Basin in combination with the application of a horizontally averaged one-dimensional
model show that the basin wide eddy diffusivities react in time scales of several days to
storm events (Holtermann and Umlauf , 2012). Together with the fact that mixing in the
Gotland Basin is boundary dominated (Holtermann et al., 2012), this means that the in-
terior water homogenises with the mixed water at the boundaries within a period of a few
weeks. The isopycnal homogenisation is influenced and probably increased by processes
such as subinertial topographic waves or internal waves which are motions affected by the
Coriolis force. Because of the fast homogenisation, the Coriolis force should not break the
assumptions made for a one-dimensional model.
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Figure 4.5: The hypsographical function of the Gotland Basin up to a water depth of 140 m where
the basin is not enclosed anymore.

In a nutshell, some problems could arise due to the use of a one-dimensional model, but so
would the use of a three-dimensional model have its own problems. Therefore, this sections
concludes that modelling the Gotland Basin with a one-dimensional water column model
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seems promissing especially if one considers that the main view lies on the dynamics in
the deeper parts of the Gotland Basin.
Thus, the Gotland Basin was simulated over a period of seven years from the 1 January
2003 until 1 January 2010 with a time step of ∆t = 10 min. The simulation of the basin
already started on 1 October 2002, but the inflows were only included from 1 January
2003 on. During this simulation period one major Baltic inflow occurred in January 2003
which arrived at the bottom of the Gotland Basin in May (Feistel et al., 2003). After this
event a prolonged period of stagnation began with only a few minor inflows of which non
had a significant impact on the conditions at the bottom of the Gotland Basin (Nausch
et al., 2011).
The eddy diffusivities were calculated by means of a k-ε turbulence closure model. The
hypsographical data was extracted from bathymetrical data compiled by Seifert et al.
(2001) and the meteorological data used for the atmospherical forcing like the wind speed,
the air pressure, the air temperature, and so on were taken from Saha et al. (2010). The
hypsographical function of the Gotland Basin is shown in figure 4.5.
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Figure 4.6: The inflows used to force the model. The strong peak in early 2003 marks the major
Baltic inflow discussed, e.g. by Feistel et al. (2003, 2006).

Unfortunately no data was available to realistically prescribe inflows. Therefore, data from
a simulation run with a three-dimensional circulation model of the western Baltic Sea was
used for prescribing the inflows. This data was gained by means of the General Estuarine
Transport Model (GETM) with a resolution of 600 m (Gräwe et al., 2012). A transect
across the Arcona Basin was used to calculate the inflows passing this basin. The volume
transport was computed by integrating the flow velocities perpendicular to the transect.
This volume transport, the salinity, and the temperature of the inflowing water in the
Arcona Basin where used together with the entrainment equations derived in section 3.3
to obtain the properties of the deep water currents entering the Gotland Basin. These
properties where then used to force the model. Figure 4.6 shows the volume of water being
transported into the Gotland Basin. The average transport is Q̄ = 6000 m3s−1. A constant
brackish water inflow at the sea surface with a salinity of 5.6 g/kg, which is the long-term
mean salinity of the surface water in the basins north of the Gotland Basin (Axell , 2002),
was added to incorporate the river runoff. The volume flow was set to 1200 m3s−1.
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The observed data to which the simulation results are compared to and which were used as
hydrological initial conditions were obtained from a database called DAS (Sokolov et al.,
1997). The database contains raw data which was not checked for plausibility. Therefore,
some filters were applied to the data to at least remove the obvious measuring errors.

4.3.2 Discussion of the results

Figure 4.7 shows a comparison of the simulation results with observed data of the salinity
and the temperature of the Gotland Basin. The pronounced and permanent halocline can
be seen in the salinity plots and the summer warming and winter cooling of the surface
layers can be clearly seen in the temperature plots. It can also be seen that the simulated
halocline is 10 m to 20 m too high in the water column and that the observed halocline is
sharper then the simulated one. The depth difference can be explained by the way the
outflows are modelled. The water masses, which are pushed upwards due to an inflow,
reach all the way up to the surface where they are treated as an outflow. This is most
likely not what happens in the Gotland Basin as it is only enclosed up to a water depth of
140 m. From this depth on, the water can also spread laterally and thus will not push the
halocline upwards in such a way. This inaccuracy of the model has another consequence.
From the time on, the major Baltic inflow occurred, the surface salinity is too high due
to smaller inflows pushing up the water masses from depths of about the halocline, see
figure 4.8a for a more detailed view. These, in comparison to the surface water, relatively
saline water masses also end as an outflow at the upper most water layers and therefore
increase the salinity at the surface.
Another discrepancy between the observations and the simulation results is the tempera-
ture of the deep Gotland Basin. This discrepancy can be seen more clearly in figure 4.8b.
Not only does the simulated initial inflow cool the Gotland Basin by 2 ◦C more than the
measurements indicate, but the data used to force the inflows obviously does not include
the warm baroclinic inflow in August 2003 (Feistel et al., 2006), which can also be seen
in figure 4.6, where there are no significant peaks around this time. Figure 4.8b shows
that due to this warm inflow the bottom part of the basin warmed up to similar values as
before the cold inflow of spring 2003. The 2 ◦C too cold inflowing water can also only be
explained by inconsistences in the data used to prescribe inflows because it was checked
that the entrainment could not have cooled the water so drastically.

The surface temperature was reproduced in good accordance with the observations which
can be seen in figure 4.8c. The discrepancies, especially in the summer months, are mainly
due to large temporal gaps in the observations. The bottom salinity dynamics are also
reproduced in agreement with the observations, see figure 4.8d. Although the highest
salinity is only reached gradually and the simulation predicts a sudden increase to the
highest values of salinity the slow decline of the salinity is in good accordance with the
measurements.
From figure 4.9a, it can be seen that the salinity profile is reproduced in a satisfying way
before the major Baltic inflow occurs, whereas the profiles after a prolonged stagnation
period on 18 September 2008 (figure 4.9b) show significant discrepancies. The salinity in
the deepest parts of the Gotland Basin was reproduced well, as already seen in figure 4.8d,
but above that, in depths between 120 m and 200 m, the salinity is underestimated. This
underestimation could arise from some subsequent smaller inflows following the major one
in spring 2003, like the warm inflow in August 2003, which was not included in the data
used for the simulation of the inflows.
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(a) Observations of salinity and temperature in the Gotland Basin.

(b) Results of the simulation for salinity and temperature.

Figure 4.7: A comparison of the simulation results to the observations made in the Gotland Basin.
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(b) Bottom temperature
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(c) Surface temperature
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(d) Bottom salinity

Figure 4.8: Time series of the salinity (a) and temperature (b) dynamics in the deep parts (220 m)
of the Gotland Basin. The strong jumps in both the salinity and the temperature time series mark
the major Baltic inflow of early 2003. The salinity and temperature in the surface mixed layer
(20 m) are shown in figures (c) and (d) respectively.
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(a) Salinity profile on 20 February 2003
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(b) Salinity profile on 10 July 2008
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(c) Temperature profile on 27 August 2003
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(d) Temperature profile on 10 July 2008

Figure 4.9: Profiles of the salinity before the major Baltic inflow (a) and after a prolonged stag-
nation period (b) and temperature profiles after the major Baltic inflow (c) and after a stagnation
period (d).

Figures 4.9c and 4.9d show that the temperature profiles can be reproduced up until a
depth depending on how long the major Baltic inflow from 2003 is already past, as the
too cold deep parts of the Gotland Basin gradually influence the upper parts of the water
column by cooling them.
To summerise this discussion, the observations could be reproduced qualitatively in nearly
all aspects with the deep temperature dynamics being the exception. Furthermore, the
surface temperature and the bottom salinity could be reproduced quantitatively. The
reasons for discrepancies between the observations and the simulation come down to two
problems. First, the data used to calculate the inflows came from a simulation run which
obviously has its own flaws and second, the outflow of the uplifted water masses is poorly
modelled.
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Chapter 5

Conclusions

A horizontally integrated one-dimensional hydrodynamical model was derived and imple-
mented into the already existing General Ocean Turbulence Model. The dynamic equa-
tions of this model not only include effects induced by the hypsography of the simulated
basin, but also give the ability to include inflows at arbitrary water depths and to account
for the resulting vertical transports. An analytical solution was found which satisfies the
newly derived equations. The numerical implementation of these equations could therefore
be tested against this solution and that with good results. A first approach to discretising
the dynamic equations failed, because the splitting of the advection and diffusion scheme
resulted in an insufficient formulation of the boundary conditions for the transport of a
tracer (e.g. salt or heat). This discretisation is more elegant with respect to the imple-
mentation, as it allows to reuse already written and tested numerical schemes. But this
approach was abandoned and instead the numerical schemes were adapted to the hori-
zontally integrated equations. Furthermore, an entrainment model was introduced which
makes it possible to include inflows measured or simulated far away from the actual sim-
ulated basin. These inflows could come from a river in the case of a simulated lake or
like in the case of this thesis they could be dense bottom currents entering a sub-basin of
the Baltic Sea. The entrainment model together with the extended version of GOTM was
finally used to simulate the Gotland Basin over a time period of seven years. During this
period one major Baltic inflow occurred. The comparison of the simulation results with
measured data showed that the hydrodynamics of the Gotland Basin could be reproduced
qualitatively. Some aspects of the hydrodynamics of the basin could even be reproduced
quantitatively in a very satisfying way. If some behaviour or property could not be re-
produced satisfyingly, then reasons for this inability could be found. If more time would
be spent tweaking parameters for the Gotland Basin and, more importantly, if the model
would be refined to consider the fact that the Gotland Basin is only enclosed up until a
water depth of 140 m, then the results should be significantly better. The refinement of
the model would include brackish outflows from 140 m on upwards and thus, not pushing
the halocline so far upwards. A minor discretisation error, which was found with the
help of idealised inflow simulations, could possibly be significantly reduced, if higher order
advection schemes would be implemented for the horizontally averaged version of the ad-
vection equation. Another problem of the simulation runs was the data from the Arcona
Basin which was used to calculate the inflows into the Gotland Basin. This data had to
be taken from a simulation performed with a three-dimensional circulation model because
observations were not available. If measurements could have been taken, then the simula-
tion of the Gotland Basin would have certainly given better results, as, e.g. the important
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warm inflow in August 2003 was not reproduced by the simulation used for prescribing the
inflows. The Gotland Basin is a very complex and complicated hydrodynamical system
and the fact that the inflows were precribed over 600 km further upstream does not make
the task of modelling the Gotland Basin easier. Thus, the model, as it is, will most likely
give even better results for systems with more simple hydrodynamics. In the scope of this
thesis it could not be tested elaborately how well the entrainment model performed, but
Stigebrandt (1987) showed that the entrainment model gives satisfying results for synthet-
ically generated inflow properties which have the same statistical properties as observed
inflows. Of course, this excludes month-to-month comparisons with observations.
The extended version of GOTM, which was developed in the course of this thesis, was
published under the GNU General Public License (GPL) and can be found under www.

gotm.net in the “lake” branch of the source code repository. For only browsing the source
code following web page is recommended: http://sourceforge.net/projects/gotm/.
Without any modifications the model can be used for simulating lakes or sub-basins of
oceans. For simulating a lake, the entrainment model can be fully omitted and the river
discharge together with the temperature of the river water can be prescribed. The original
version of GOTM can be coupled to biogeochemical models. In principle, this coupling is
also possible for the horizontally integrated version of GOTM, but the transport equations
for the biological state variables have to be horizontally integrated first.
In a nutshell, the horizontally integrated version of GOTM could become an important
tool for not only studying hydrodynamic processes in lakes and ocean basins, but also for
calibrating parameters in a very short time compared to other models. The last point
could be even more important for coupled physical-biogeochemical models because the
amount of parameters which need to be adjusted increases a lot for such coupled models.
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