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Abstract

An estuary is a transition zone, where river water mixes with saline

sea water. This process creates brackish water flowing into the ocean

and saltwater entering the estuary. This estuarine exchange flow

and the net mixing in an estuary can be associated with quantifying

the salinity variance budget, where the mixing is defined as the rate

of destruction of volume-integrated salinity variance. This mixing

can be estimated by new relations that are derived using the well-

known Knudsen relations and the Total exchange Flow (TEF) analysis

framework. Also, the mixing is estimated for each salinity class or

isohaline using the most recent universal law of estuarine mixing in

isohaline coordinates. Further, the effective diahaline diffusivity is

computed for each salinity class represented as a ratio of diahaline

turbulent salinity transport and respective salinity gradient. These

relations are tested here using the numerical model GETM (General

Estuarine Transport Model) to simulate an idealized three-dimensional

estuary under periodic flows (including monochromatic semi-diurnal

tides and spring-neap cycle). Some of these relations are tested for the

first time over the three-dimensional model and also under the forcing

of spring-neap cycle. As a result, the mixing relations are tested and

found that one of mixing relation deviates by 0% error and other by

error of 28%. The mixing is also quantified in this numerical model

using universal law of estuarine mixing over the entire estuary for every

isohaline. Also, the effective diahaline diffusivity spatial distribution

are plotted for a individual isohaline over the estuary.
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Chapter 1.

Introduction

An estuary is a coastal embayment, where a fresh river water meets the ocean. In

estuaries, the salty ocean/sea mixes with fresh river water, resulting in brackish water.

Brackish water is salty, but not as saline as ocean water. Estuary may also be called as

bay, lagoon or slough.

The seawater which is higher in density than the river water tends to intrude beneath

the river water outflow. Part of this intruded salted sea water mixes with river water

and is returned to the sea by estuarine outflow in the upper water layer. This allows

new seawater to enter estuary at the lower layer and creates a circulation of seawater.

This is called estuarine circulation, which directs high saline water towards inland

or riverside at the bottom and seaward at the surface. This estuarine circulation is

driven by horizontal density gradient along the estuary. This mixing of salt water and

river water is mainly due to turbulence generated by tides. The salt intrusions are the

important phenomenon for the ecosystem, as they determine the limit of freshwater

availability and the species living in an estuarine environment. This is where mixing

determines the dispersion of salt and other dissolved substances along the estuary.

The inflow of seawater and outflow of the fresh river water is also known as the

exchange flow. Initially, an early approach to estimate inflow and outflow volume

transport and salinities was given by Knudsen (1900). As, the estuarine system is highly

dominated by the density gradient mostly due to the salinity Walin (1977) proposed a

theoretical framework based on continuous functions of salinity and time. Later, this

framework was tested on Baltic sea (Walin, 1981). Combining these two concepts of

Knudsen (1900) and Walin (1977), a new theory is proposed by MacCready and Geyer

(2010) as Total Exchange Flow (TEF) analysis framework. The TEF framework is to

calculate the time-averaged volume and mass transports in a closed volume of water
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2 Introduction

bodies (i.e oceans, estuaries, etc.). This TEF framework is also applied on the Baltic sea

(Burchard et al., 2018).

The salinity mixing is quantified as a decay of ensemble averaged salinity variance

as proposed by Burchard and Rennau (2008). Using this mixing quantification from

salinity variance and TEF framework MacCready et al. (2018) has derived a bulk relation

to estimation time-averaged and volume-integrated estuarine mixing. Later, Burchard

et al. (2019) derived an exact Knudsen relation for mixing by using the concept of

MacCready et al. (2018). These two mixing relations are derived for an estuary

volume, bounded by a fixed transect. Further, extending this Burchard (2020) has

presented a universal law of estuarine mixing, which dwells with mixing quantification

in isohaline coordinates over the entire estuary rather than a fixed transect. Also,

Burchard et al. (2020)(submitted) have developed a new idea of determining effective

diahaline diffusivity from this universal law of estuarine mixing.

In this thesis, these methods of quantifying mixing are discussed and are applied

to three-dimensional numerical model. The outline of my thesis is: presenting the

governing equations applied in estuarine modeling, details on the mixing relations,

a brief discussion on numerical model set-up and results from the numerical estuary

model.



Chapter 2.

Theory

This chapter derives and discusses the basic governing equations, the hydrodynamic

laws of Physical Oceanography used for this thesis such as Navier-Stokes equation,

shallow water equations and Total Exchange Flow (TEF) analysis framework.

2.1. Governing equations

2.1.1. Navier-Stokes equations

The momentum equations describe the basic motion of particles which is derived from

the Newton’s Second law. In hydrodynamics the Navier-Stokes equation define the

principles of fluid motion, the Navier-Stokes equation reads as:

∂ui

∂t
+

∂(uiuj)

∂xj

+ 2ǫijkΩjuk = −
1

ρ0

∂P

∂xi

−
g

ρ0

ρδi3 + ν
∂2ui

∂x2
j

(2.1)

where u is velocity, ρ is density, g is acceleration due to gravity, P is pressure, ν is

kinematic viscosity, Ωj is Coriolis force (Earth rotation) and ρ0 is the reference density

(which is 1000 kg/m3 for water).

The above Navier-Stokes equation (2.1) describes the change of momentum due to

effect of forces (Coriolis force, pressure gradient, gravitational force, viscous force).

3



4 Theory

In equation (2.1), we assume that the density of fluid is constant, but not in the

buoyancy term ( g

ρ0

ρδi3). This is called Boussinesq assumption, which is widely used in

fluid mechanics for ocean circulations.

As the result of Boussinesq assumption, the mass balance is similar to that of

incompressible fluid, which is also referred as continuity equation

∂ui

∂xi

= 0 . (2.2)

2.1.2. Reynolds averaged Navier-Stokes equations

Most of the fluid flows occurring in nature are involving non predictable stochastic

fluctuations which are called turbulent flows. This complicates to solve Navier-Stokes

equation (2.1). To deal with this problem Reynolds decomposition is used. Where, a

variable X is decomposed into mean part 〈X〉 (also known as ensemble average) and a

fluctuating component X ′, such that X = 〈X〉 + X ′. Now, Reynolds decomposing the

variables in Boussinesq approximated Navier-Stokes equation (2.1) and using ensemble

averaging properties (see appendix A) result in the following Reynolds Averaged

Navier-Stokes (RANS) equations:

∂〈ui〉

∂t
+

∂(〈ui〉〈uj〉)

∂xj

+ 2ǫijkΩj〈uk〉 = −
1

ρ0

∂〈P 〉

∂xi

−
g

ρ0

〈ρ〉δi3

+
∂

∂xj

(

ν
∂〈ui〉

∂xj

− 〈u′

iu
′

j〉

)

.

(2.3)

Similarly, Reynolds Averaged continuity equation is

∂〈ui〉

∂xi

= 0 , (2.4)

where 〈u′

iu
′

j〉 is called as the Reynolds stress tensor. However, further attempt to

solve these Reynolds stress tensor only leads to higher momentum terms like 〈u′

iu
′

ju
′

k〉

and so on. This is referred as the problem of turbulence closure.
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2.1.3. Turbulence closure

In order to solve this turbulence closure problem, the Reynolds stress tensors are

parameterized by introducing turbulent viscosity νt also known as eddy viscosity, which

is first proposed by Boussinesq,

〈u′

iu
′

j〉 =
2

3
kδij − νt

(

〈∂ui〉

∂xj

+
〈∂uj〉

∂xi

)

. (2.5)

Where k is turbulent kinetic energy, this equation (2.5) is also often called as

Boussinesq hypothesis. Unlike the molecular viscosity which is constant with material,

the turbulent viscosity is dependent on time and space. Depending on the Reynolds

number of the flow, magnitude of the turbulent viscosity can be higher than material

viscosity. In the present numerical setup k − ǫ turbulence closure is used (see 4.1), in

which νt is computed as

νt = cµ

k2

ǫ
, (2.6)

where cµ is the a non-dimensional adjustable constant and ǫ is the dissipation rate.

These k and ǫ are calculated using equations which includes production and dissipation

terms, for details see Umlauf and Burchard (2005).

2.1.4. Shallow water equations

The Reynolds Averaged Navier-Stokes equation (2.3) can be used to solve most of

the fluid flow problems. These equations can be even simplified for the geophysical

bodies like oceans, lakes, atmosphere etc. where the vertical scale H is smaller than

the horizontal scale L. Doing a scale analysis for each term, by assuming H/L ≪ 1 the

following equations can be derived from equation (2.3) parameterized with turbulence

closure, which are also called three-dimensional shallow water equations:
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∂〈u〉

∂t
+

∂〈u〉〈u〉

∂x
+

∂〈v〉〈u〉

∂y
+

∂〈w〉〈u〉

∂z
− f〈v〉 = −

1

ρ0

∂〈P 〉

∂x

+
∂

∂z

(

(νt + ν)
∂〈u〉

∂z

)

,

(2.7)

∂〈v〉

∂t
+

∂〈u〉〈v〉

∂x
+

∂〈v〉〈v〉

∂y
+

∂〈w〉〈v〉

∂z
+ f〈u〉 = −

1

ρ0

∂〈P 〉

∂y

+
∂

∂z

(

(νt + ν)
∂〈v〉

∂z

)

,

(2.8)

∂〈P 〉

∂z
= −gρ , (2.9)

where f is Coriolis parameter defined as f = 2Ω sin φ, φ is latitude. The equation

(2.9) is known as the hydrostatic equilibrium or hydrostatic balance equation. The

pressure term P , is eliminated by vertical integrating hydrostatic equilibrium equation

(2.9) from a position z to the water surface η. This results in following equation:

1

ρ0

∂〈P 〉

∂x
= −g

∂〈η〉

∂x
−

g

ρ0

∫ η

z

∂〈ρ〉

∂x
dz −

1

ρ0

∂〈pa〉

∂x
. (2.10)

Hence, the horizontal pressure gradient includes all the contributions of sea surface

slope (barotropic pressure gradient), density gradient (baroclinic pressure gradient)

and the atmospheric pressure. Similar, it can be written for y-direction, shallow water

equations (2.7) and (2.8) are deduced as below:

∂〈u〉

∂t
+

∂〈u〉〈u〉

∂x
+

∂〈v〉〈u〉

∂y
+

∂〈w〉〈u〉

∂z
− f〈v〉 = −g

∂〈η〉

∂x
−

g

ρ0

∫ η

z

∂〈ρ〉

∂x
dz

−
1

ρ0

∂〈pa〉

∂x
+

∂

∂z

(

(νt + ν)
∂〈u〉

∂z

)

,

(2.11)
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∂〈v〉

∂t
+

∂〈u〉〈v〉

∂x
+

∂〈v〉〈v〉

∂y
+

∂〈w〉〈v〉

∂z
+ f〈u〉 = −g

∂〈η〉

∂y
−

g

ρ0

∫ η

z

∂〈ρ〉

∂y
dz

−
1

ρ0

∂〈pa〉

∂y
+

∂

∂z

(

(νt + ν)
∂〈v〉

∂z

)

.

(2.12)

Note that, the horizontal Reynolds stress tensors are neglected in the shallow water

equations (2.11) and (2.12). These are only parameterized for the vertical components.

As the high-resolution simulation used for the study sufficiently resolves the lateral and

longitudinal dispersion. Hence, it is not necessary to parameterize it with horizontal

diffusivity.

2.1.5. Boundary conditions

In general, there are two types of boundary conditions depending on the flow kinematics

and material properties of the fluid. The Kinematic boundary conditions are derived

from the arguments, that the fluid particles on the boundaries are at the same position

independent of time. This condition has to be satisfied by the fluid irrespective of the

material properties, and reads as:

w(η) =
∂η

∂t
+ u(η)

∂η

∂x
+ v(η)

∂η

∂y
at free surface z = η(x, y, t) , (2.13)

w(−H) = −u(−H)
∂H

∂x
− v(−H)

∂H

∂y
at bottom z = −H(x, y) . (2.14)

Now, by integrating the continuity equation (2.2) and using equations (2.13) and

(2.14) the surface elevation η equation yields to:

∂η

∂t
= −

∂

∂x

∫ η

H

u(z)dz −
∂

∂y

∫ η

H

v(z)dz

= −
∂U

∂x
−

∂V

∂y
,

(2.15)
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where U and V are referred as horizontal transports. For the viscous fluids, so-

called dynamic conditions can be derived under the assumption that the fluid particles

adjacent to the solid boundaries moves with velocity of the wall (also known as no-slip

condition), which reads as:

u = 0 at bottom boundary z = −H(x, y) , (2.16)

where it equivalent to Dirichlet-type boundary conditions. A von Neumann boundary

condition can also be expressed using momentum flux instead of momentum itself,

which reads as:

ν
∂u

∂n
=

τ b

ρ0

at bottom z = −H(x, y) , (2.17)

ν
∂u

∂n
=

τ s

ρ0

at free surface z = η(x, y, t) , (2.18)

where τ b and τ s are the momentum fluxes into the fluid at bottom and surface

respectively and n denotes the normal outward vector on the boundaries.

2.1.6. Tracer equations

Density ρ of seawater is given by temperature and salt content of the water. Where,

density ρ is a parameter in the Navier-Stokes equation (2.1) and in the shallow water

equations (2.11),(2.12). Hence, the temperature θ and salinity S are also important

for the dynamics as density is influenced by these parameters. Presently, we assume

density ρ is only influenced by salinity S as temperature factors are not considered in

the current study. Thus, density is computed from Gibbs function formulation based on

thermodynamic properties of seawater (TEOS-10, www.teos-10.org, McDougall and

Barker, 2011). Which is being used as standard for computing density since 2010.
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The salinity equation with no source or sink as input can be written as:

∂〈s〉

∂t
+

∂〈u〉〈s〉

∂x
+

∂〈v〉〈s〉

∂y
+

∂〈w〉〈s〉

∂z
−

∂

∂z

(

(ν ′

t + νs)
∂〈s〉

∂z

)

= 0 , (2.19)

where νs is molecular diffusivity of salt and ν ′

t is eddy diffusivity of salt. The eddy

diffusivity is the parameter to close the eddy fluxes 〈u′s′〉, or can also be stated as a

parameter determined for the diffusion of salt caused by the turbulence in the fluid.

There are zero salinity fluxes added from the surface and zero fluxes from the

bottom. Hence, the boundary conditions can be given as:

(ν ′

t + νs)
∂〈s〉

∂z

∣

∣

∣

∣

∣

z=ν

= 0 and (ν ′

t + νs)
∂〈s〉

∂z

∣

∣

∣

∣

∣

z=−H

= 0 (2.20)

Therefore, no evaporation or precipitation and no salt intrusion from the bottom

bed are considered in this study.

2.2. Estuarine circulation

Estuaries are a complex system with nonlinear coupling of circulation and density

structure. The first classical estuarine circulation theory was developed by Hansen and

Rattray (1965), later many other authors have refined the theory to understand better

physics of the estuarine circulation.

2.2.1. Dynamics of estuarine circulation

To study the classical dynamics of estuarine circulation, a one-dimensional problem is

considered. In most of the simple quantitative model of estuarine circulation, Earth

rotation, horizontal velocity gradients and atmospheric pressure gradient are neglected

from the shallow water equation (2.11). This leads to the following:

∂〈u〉

∂t
−

∂

∂z

(

(νt + ν)
∂〈u〉

∂z

)

= −g
∂〈η〉

∂x
−

g

ρ0

∫ 0

z

∂ρ

∂x
dz . (2.21)
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The above equation can be further simplified by assuming a spatially constant

horizontal density gradient as follows:

∂〈u〉

∂t
−

∂

∂z

(

(νt + ν)
∂〈u〉

∂z

)

= −g
∂〈η〉

∂x
− zbx , (2.22)

with

bx =
∂b

∂x
= −

g

ρ0

∂ρ

∂x
. (2.23)

Considering the temporal average of periodically oscillating solution ū and neglect-

ing the molecular viscosity, the equation is as follows:

−
∂

∂z

(

νt

∂ū

∂z

)

= −gη̄x − zbx , (2.24)

where η̄x is the temporally averaged surface elevation gradient.

An analytical solution for the estuarine circulation equation (2.24) is given by

Hansen and Rattray (1965), (see also MacCready and Geyer (2010)) considering

constant eddy viscosity νt and assuming no wind stress is given as below:

ū(z) =
bxH3

48νt

[

8

(

z

H

)3

+ 9

(

z

H

)2

− 1

]

−
3

2

[(

z

H

)2

− 1

]

ur , (2.25)

with

ur =
1

H

∫ 0

−H
u(z)dz , (2.26)
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where ur is the vertically and tidally averaged residual run-off velocity and H is the

water depth. The analytical solution (2.25) strongly depends on ur and on the factor
bxH3

48νt
which is also known as exchange flow intensity.

Figure 2.1.: Velocity profile ū(z) for the analytical solution (2.25) with H = 20 m, bx = 10−6

s−2, νt = 3 · 10−3 m2s−1 and ur = −0.02 ms−1.

The Fig 2.1 shows the classical estuarine circulation with an outflow at the surface

and an inflow at the bottom.

2.2.2. Knudsen relations

The basic dynamics of estuarine circulation described in the previous section can be

used to determine the exchange flows in estuaries. The estimation of exchange flow in

the estuaries was first described by Knudsen (1900) using a bulk formulas, which are

later known as Knudsen relations.

This is done by evaluating volume and salinity balance in a two-layered closed

system. The out-flowing upper layer salinity is considered as sout and the bottom layer

in-flowing salinity as sin. And assuming a steady state or periodic variability in time the

following budgets can be evaluated:

1. The volume balance is as:
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Figure 2.2.: Visualization of volume fluxes in an estuary: On left shows the river fluxes with

zero salinity flowing into the estuary. On right is the ocean boundary, shows the

exchange flow with the ocean. The blue lines indicate the isohalines with constant

salinity.

Qin + Qout + Qr = 0 , (2.27)

where Qin is inflow volume transport, Qout is outflow volume transport and Qr is

river volume transport.

2. The salinity balance is as:

Qinsin + Qoutsout = 0 . (2.28)

The following Knudsen (1900) relations can be derived combining the above equa-

tions (2.27) and (2.28) as:

Qin =
sout

sin − sout

Qr, Qout =
−sin

sin − sout

Qr . (2.29)

From the relations one can say that the inflow and outflow volume fluxes can be

calculated just with the information of inwards and outwards flowing currents salinities

and river run-off.
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2.2.3. Total Exchange Flow

The term "Total Exchange Flow" (TEF) was described by MacCready (2011) where

the estuarine salinity and volume fluxes are investigated in the isohaline coordinates

instead of the spatial coordinates.

For any tracer c, the outward total(advective plus diffusive) flux at a boundary can

be defined as:

F c = unc − Kh∂nc , (2.30)

where F c is the flux of tracer c, un is the normal velocity component. Now, the

tidally averaged transports of the tracer c over the cross-section A(S) can be expressed

as:

Qc(S) = −

〈

∫

A(S)
F cdA

〉

and qc(S) =
∂Qc(S)

∂S
, (2.31)

where A(S) is the tidally varying portion of cross-section with salinity s greater than

S, Qc(S) is the incoming transport of c flowing through the cross-sectional area A(S)

with salinities s higher than S, and qc(S) is the incoming boundary flux of c per salinity

class.

The inflow and outflow bulk values of any tracer c are defined as:

Qc
in =

∫ Smax

0
(qc)+dS ≥ 0, Qc

out =
∫ Smax

0
(qc)−dS ≤ 0 , (2.32)

where (qc)+ indicates positive part of the function (qc), (qc)− indicates negative

part of the function (qc) which give positive inflow transports and negative outflow

transports, the volume fluxes can be calculated with c = 1 as:

Q(S) = −

〈

∫

A(S)
FdA

〉

and q(S) =
∂Q(S)

∂S
. (2.33)
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Similarly, the inflow and outflow bulk values are:

Qin =
∫ Smax

0
(q)+dS ≥ 0, Qout =

∫ Smax

0
(q)−dS ≤ 0 . (2.34)

From the equations (2.32) and (2.34) the tracer concentrations flowing into and

flowing out of the estuary can be calculated as:

cin =
Qc

in

Qin

, cout =
Qc

out

Qout

. (2.35)

In above stated relations the tracer c can be any tracer (Walin, 1977). Presently,

in the following study we use c=s, s2 and s′2 for salinity, salinity-squared and salinity

variance respectively.



Chapter 3.

Mixing in estuaries

In general, mixing is associated with eddy viscosity or diffusivity. However, this cannot

be used as a suitable means to measure mixing. For example, in a well mixed estuary

the salinity mixing vanishes despite the high value of eddy diffusivity. To solve this

issue, Burchard and Rennau (2008) had suggested a way to quantify mixing from

conservation of salinity variance. Further, MacCready et al. (2018) and Burchard

et al. (2019) had developed the following mixing relation using the concept of salinity

variance.

3.1. Exact mixing relations

Now, the following mixing relation are derived for time dependent estuaries cases

considering mass and salinity conservation as shown in Burchard et al. (2019).

From the volume integrating the continuity equation (2.4), volume budget in the

estuary is expressed as

∂tV = −
∫

A(0)
undA −

∫

Ar

undA (3.1)

where A(0) is the open boundary transect area for salinities larger than zero,

typically located at open boundary and Ar is the area through which freshwater of zero

salinity is discharged into the control volume. un is the normal velocity component

(positive outwards estuary).
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Similarly, volume integrating the salinity equation (2.19) results in,

∂t

∫

V
sdV = −

∫

A(0)
F sdA , (3.2)

where F s is referred as effective salinity flux

F s = uns − Kv∂zs . (3.3)

Now, if we multiply the salinity equation (2.19) with 2s, we obtain a salinity squared

equation

∂ts
2 + ∂x(us2) + ∂y(vs2) + ∂z(ws2) − ∂z(Kv∂zs2) = −χs , (3.4)

where χs is the local salt mixing, see Burchard and Rennau (2008),

χs = 2[Kh(∂xs)2 + Kh(∂ys)2 + Kv(∂zs)2] . (3.5)

Integrating the s2 equation (3.4) over the total volume V results in

∂t

∫

V
s2dV = −

∫

A(0)
F s2

dA − M , (3.6)

with

F s2

= uns2 − Kv∂zs2 , (3.7)

where F s2

is the effective salinity squared flux at the open boundary and M is the

volume-integrated mixing
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M =
∫

V
χsdV . (3.8)

Using the equation (3.4), rewriting salinity as s = s̄ + s′ and multiplying 2s̄ to

salinity equation (2.19), salinity variance squared equation is derived (see appendix B)

as:

∂ts
′2 + ∂x(us′2) + ∂y(vs′2) + ∂z(ws′2) − ∂z(Kv∂zs′2) = −χs − 2s′∂ts̄ . (3.9)

Volume integrating the salinity variance squared equation (3.9), results in the

following salinity variance budget:

∂t

∫

V
s′2dV = −

∫

A(0)
F s′2

dA − s2
∫

Ar

undA − M , (3.10)

with

F s′2

= uns′2 − Kv∂zs′2 , (3.11)

where s′ = s − s is the salinity deviation and s = (1/V )
∫

V sdV is the volume-

averaged salinity. For further details see equation (2) and (3) of MacCready et al.

(2018). Now, comparing the (3.6) equation and variance equation (3.10), there is

additional term of freshwater input (on the right-hand side). The salinity variance

budget is more clearly related to the concept of molecular mixing, and it highlights the

importance of river flow as a source of unmixed high-variance water. We define the

temporal averaged fresh-water as,

Qr = −

〈

∫

Ar

undA

〉

. (3.12)



18 Mixing in estuaries

Now, using transport fluxes equation (2.31) from TEF framework, the volume

integral budget equation (3.1) is transformed as

Vstor = 〈∂tV 〉 =
∫ Smax

0
q(S)dS + Qr = Qin + Qout + Qr , (3.13)

the salinity integral budget (3.2) as

Sstor = 〈∂t(s̄V )〉 =

〈

∂t

∫

V
sdV

〉

=
∫ Smax

0
qs(S)dS = Qinsin + Qoutsout , (3.14)

volume integrated salinity squared budget (3.6) as

(S2)stor = 〈∂t(s̄2V )〉 =

〈

∂t

∫

V
s2dV

〉

=
∫ Smax

0
qs2

(S)dS − 〈M〉

= Qin(s2)in + Qout(s
2)out − 〈M〉 ,

(3.15)

and salinity variance squared volume integrated budget (3.10) as

(S ′2)stor = 〈∂t(s̄′2V )〉 =

〈

∂t

∫

V
s′2dV

〉

=
∫ Smax

0
qs′2

(S)dS −

〈

s̄2
∫

Ar

undA

〉

− 〈M〉

= Qin(s′2)in + Qout(s
′2)out −

〈

s̄2
∫

Ar

undA

〉

− 〈M〉 .

(3.16)

Where s̄2 is volume averaged salinity squared and s̄′2 is volume-averaged salinity

variance. Vstor, Sstor, (S2)stor and (S ′2)stor are the storage terms for volume, salinity,

salinity-squared, and salinity variance respectively. In periodic case, when properly

averaged over one or more periodic tides these storage terms are equal to zero.
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Qin =
sout

sin − sout

Qr −
sout

sin − sout

Vstor +
1

sin − sout

Sstor ,

Qout = −
sin

sin − sout

Qr +
sin

sin − sout

Vstor −
1

sin − sout

Sstor ,

(3.17)

the time-independent Knudsen relation (2.29) can be obtained by assuming Vstor =

Sstor = 0.

From these equations (3.17) and with salinity squared stored term (3.15), we can

derive four different Knudsen relations for mixing, depending on the assumption of

periodicity and constancy (Burchard et al., 2019).

1. For non-constancy[(s2)in 6= (sin)2 and (s2)out 6= (sout)
2] and non-periodicity, we

obtain exact mixing relation,

Me =
sout(s

2)in − sin(s2)out

sin − sout

(Qr − Vstor) +
(s2)in − (s2)out

sin − sout

Sstor − (S2)stor . (3.18)

2. Now, assuming both periodicity and constancy [(s2)in = (sin)2 and (s2)out =

(sout)
2], the simplified mixing relation is,

Mcp = sinsoutQr . (3.19)

The latter equation (3.19) is also derived with time-independent Knudsen-relation

as shown in MacCready et al. (2018) and also see section 2 in Burchard et al. (2019).

3.2. Universal law of estuarine mixing

In the previous mixing relations (3.8), the mixing is estimated when the estuary is

separated from ocean by a transect T which is fixed in time. Hence, in the equation

(3.19) the salinities sin and sout are inflow and outflow salinities flowing through the

transect T . These salinities are calculated using the Knudsen (1900) relations and Qr is

the average freshwater runoff into the estuary volume bounded by transect T .
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Figure 3.1.: Sketch for transport fluxes with respect to the isohaline S, modified after Burchard

(2020).

In general, classical estuaries are dominated by salinity gradient. Hence, Burchard

(2020) has described a different approach by considering a certain isohaline S as the

boundary for estuary instead of transect T . This kind of framework using salinity as a

coordinate to analyze the estuarine systems was proposed by Walin (1977). The mixing

in estuary volume bounded by an isohaline S is given as,

M =

〈

∫

V (S)
χsdV

〉

, (3.20)

where the volume of estuary V (S) includes all the salinities s ≤ S. Assuming

conditions of periodicity for long-term averaging, the averaged volume transport

through the isohaline S equals the freshwater flux Qr and it does not depend on

S, assuming all river runoff occur at zero salinity. The inflow and outflow salinities

occurring at the bounded isohaline S would be sin = sout = S. All the salinity fluxes

are bounded by the isohaline S. The simplified mixing relation will be,

M(S) = S2Qr . (3.21)
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Now, using salinity as a vector space, i.e in salinity classes ranging from 0 to S the

mixing per salinity class is

m(S) = ∂SM(S) = 2SQr , (3.22)

where m(S) is the mixing within an infinitesimal salinity interval δS centered around

the isohaline S. Integrating m(S) from 0 to S gives M(S).

Equation (3.22) implies a fundamental law of estuarine physics: the long-term

averaged mixing per salinity class in any estuary is twice the product of the salinity and

the freshwater runoff (Burchard, 2020).

3.3. Effective diahaline diffusivities in estuary

As previously stated mixing is associated with eddy viscosity or diffusivity. According

to Hansen and Rattray (1965) the intensity of estuarine exchange flow is inversely

proportional to the specified constant vertical eddy viscosity and diffusivity. Also, from

the numerical model study of Hetland and Geyer (2004) showed that eddy viscosity

and diffusivity impacts the longitudinal extent of the brackish water zone (i.e estuary

length), higher eddy coefficient result in shorter estuary and vice-verse.

As eddy diffusivity plays an important role in estuarine circulation, there is a recently

presented study on estimating the diahaline turbulent salinity fluxes and diffusivities in

an numerical model by Burchard et al. (2020, submitted), which are calculated using

the previously presented mixing relations.

As previously presented χs as local loss of salinity variance (Burchard and Rennau,

2008), is represented as:

χs = 2[Kh(∂xs)2 + Kh(∂ys)2 + Kv(∂zs)2] = −2 ~F s
diff · ~∇s . (3.23)

To be noted that, single components of the turbulent salinity flux vector are down-

gradient, but due to the non-isotropic eddy diffusivity (Kh ≫ Kv ) the entire vector



22 Mixing in estuaries

itself is generally not down-gradient. Hence, it is not orthogonal to the isohaline surface

(Burchard et al., 2020, submitted).

So, for isohaline surface the total (advective plus diffusive) diahaline salinity flux is

defined as

F s = F s
adv + F s

diff = uns − Kn∂ns , (3.24)

where un is the outgoing velocity normal to ~n = ~∇s/|~∇s| (pointing towards higher

salinity), ∂ns is the salinity gradient and Kn denotes diahaline diffusivity. Note that,

the diahaline turbulent salinity flux F s
diff = ~F s

diff · ~n, is the orthogonal projection of

turbulent salinity flux vector to the isohaline surface.

Using equation (3.23), diahaline turbulent salinity flux (3.24) and considering only

diffusion terms, Kn diahaline diffusivity can be expressed as:

Kn = −
F s

diff

∂ns
=

Kh(∂xs)2 + Kh(∂ys)2 + Kv(∂zs)2

(∂ns)2
=

1
2
χs

(∂ns)2
. (3.25)

According to Walin (1977) the isohaline volume is defined as the infinitesimal

volume per salinity class, which can be formulated as:

v(S) = ∂SV (S) = ∂S

∫ S

0
v(S ′)dS ′ =

〈

∫

A(S)
(∂ns)−1dA

〉

. (3.26)

Using equations (3.25) and (3.26), mixing per salinity class can also be expressed as
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m =

〈

∫

A(S)
(∂ns)−1χsdA

〉

=

〈

∫

A(S)
(∂ns)−12Kn(∂ns)2dA

〉

=

〈

∫

A(S)
Kn∂nsdA

〉

= −2F s
diff ,

(3.27)

where −2F s
diff is the diahaline turbulent salinity transport. Motivated by the equation

(3.25), the effective total diahaline diffusivity Kn can be calculated by dividing the

negative mean diahaline turbulent flux averaged over the isohaline surface −F s
diff/a

with the mean diahaline salinity gradient b−1 = a/v. Where, a is the isohaline area, v is

the volume per salinity class and b can also be referred as the isohaline thickness. Also,

this can be further simplified by using relation (3.27) and substituting −F s
diff in terms

of m as:

Kn =
−F s

diff/a

b−1
=

1

2

mv

a2
. (3.28)

So, using this equation the effective diahaline diffusivity can be estimated for an

isohaline without any need to salinity squared budget estimation. Also, Kn is dependent

on salinity gradient b−1. From this, one can argue that the diahaline diffusivities are

different for each tracer although the horizontal and vertical diffusivities are not.
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Chapter 4.

Idealized estuary simulation

4.1. Model setup

To quantify the mixing and analyze the mixing relation derived in the previous chapter

(3), an idealized estuary is simulated. This model estuary is located at 53.5◦N latitude

stretched across a length of 100 km. The estuarine channel has a minimum width of

1 km at riverside and exponentially increasing mouth opening at the ocean boundary of

width 81 km. And the central navigational channel is of 15 m depth, with an average

lateral shoals depth of 3 m (see Fig 4.1).

For the simulations, the General Estuarine Transport Model (GETM, www.getm.eu,

Burchard and Bolding, 2002; Gräwe et al., 2015) has been applied, a primitive equation

coastal ocean model using general vertical coordinates and explicit mode splitting. It

is coupled to the turbulence module of the General Ocean Turbulence Model (GOTM,

www.gotm.net, Burchard and Bolding, 2001; Umlauf and Burchard, 2005), using the

k-ε two-equation turbulence closure model with an algebraic second-moment closure

by Cheng et al. (2002). Explicit horizontal diffusion is not applied.

A curvi-linear grid is constructed with 200 cells in longitudinal direction and 30

cells across the estuary. In the vertical, 30 σ-layers are used with some grid refinement

towards the bottom. For the temporal discretization, each tidal cycle is resolved with

5000 baroclinic and 50000 barotropic equidistant time steps. The advection terms

in the momentum, salinity and turbulence budgets are discretized by means of TVD-

SPL-max-1/3 scheme (Waterson and Deconinck, 2007) using Strang splitting (Pietrzak,

1998).
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This model is simulated from rest with zero elevation, zero velocity and with

constant salinity of 15 g/kg to a quasi-steady state. The open boundary at the ocean has

a salinity of 35 g/kg. A constant freshwater (i.e zero salinity) river-runoff of Qr =700

m3s−1 is prescribed at river boundary. Two different tidal forcings are investigated in

the following:

(i) Monochromatic semi-diurnal tide amplitude of 2 m

(ii) Spring-Neap tidal cycle with amplitudes of 2.5 m (spring tide) and 1.5 m (neap

tide). Which is the resultant of lunar semi-diurnal(M2) tide with amplitude of 2 m

and solar semi-diurnal (S2) tide of 0.5 m.

4.2. Results and discussion

Figure 4.1.: Salinity distributions of the estuary forced with monochromatic semi-diurnal tide.

The upper left figure shows surface salinity, lower left figure show longitudinal

transect at y=0 km, and the figures on right shows the cross-sectional transects

at three different location ( x= -90 km, -80 km, and -70 km ). The black lines

indicate the salinity isohalines.
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The idealized model is run until a quasi-periodic state is reached. The last 10 tidal

periods are taken to examine the presented mixing relations in the previous chapters.

The Fig 4.1 is a snapshot of the simulation, taken where the salt-wedge is located

furthest into estuary with a strong stratification downstream. It is also visible that the

river plume at the mouth of estuary is steering towards the North (i.e towards positive

y-direction) due to Earth rotation.

For calculating the bulk quantities with the TEF framework, the methods of Lorenz

et al. (2019) was used with 0.1 salinity bin width (δS). Since, it solves the numerical

issues of TEF framework for realistic exchange flows (i.e two or more layer exchange

flows). Also, the mixing value from the relations are compared with the mixing value of

numerical model. In general, for a numerical model the mixing is combination of both

numerical and physical, this numerical mixing is contributed by discretization of tracer

quantities for the advective terms (Burchard and Rennau, 2008). In the following study

the mixing is decomposed into physical and numerical mixing, using the method of

Klingbeil et al. (2014).

4.2.1. Results of monochromatic semi-diurnal tides

The exchange flow profiles Fig 4.2 are investigated at transect B. From the profiles,

inflow occurs around the range of S > 26 g/kg and outflow over the salinity range less

than 26 g/kg. The highest transports (volume, salinity and salinity-squared) flowing

into the estuary occurs around ≈ 31 g/kg salinity. Also, the river-runoff can be estimated

from the volume transport at zero salinity i.e Q(0) = 700 m3s−1. From the volume

transport profiles, it can be said that this is a two-layered classical exchange flow.

Table 4.1 shows the details of inflow and outflow transports of estuary at transect B

(i.e, x= -80 km). The mean salinity range at which the inflow occurs is ≈ 31 g/kg, and

the outflow water salinity is ≈ 12 g/kg. The storage terms 〈Vstor〉, 〈Sstor〉 and 〈(S2)stor〉

are not equal to zero. This implies that, estuary is not completely periodic as there is a

change in transport budgets of estuary over time.

The mixing diagnosed from the numerical simulation 〈M〉 exactly equals the mixing

computed from the exact mixing relation 〈Me〉. Whereas, the mixing relation 〈Mcp〉

assuming time-independence (i.e 〈Vstor〉 = 〈Sstor〉 = 〈(S2)stor〉 = 0) and constancy

((s2)in = (sin)2 and (s2)out = (sout)
2) deviates by 28 % (see Table (4.2)).
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Figure 4.2.: Exchange flow profiles in salinity class S for monochromatic semi-diurnal tidal

forcing taken averaged over 10 tidal periods. a) blue showing volume transport

Q(S) and orange showing volume transport per salinity class q(S). b) blue showing

salinity transport Qs(S) and orange showing salinity transport per salinity class

qs(S). c) blue showing salinity-squared transport Qs2

(S) and orange showing

salinity-squared transport per salinity class qs2

(S).

Transport Values Variable Value

Volume transport inflow Qin 466.291 m3s−1

Volume transport outflow Qout -1157.217 m3s−1

Salinity transport inflow Qs
in 14442.528 m3s−1(g/kg)

Salinity transport outflow Qs
out -14439.466 m3s−1(g/kg)

Salt inflow sin 30.973 g/kg

Salt outflow sout 12.477 g/kg

Salinity-squared transport inflow Qs2

in 442402.475 m3s−1(g/kg)2

Salinity-squared transport outflow Qs2

out -231504.461 m3s−1(g/kg)2

Salt-squared inflow s2
in 948.767 (g/kg)2

Salt-squared outflow s2
out 200.052 (g/kg)2

Volume storage term 〈Vstor〉 9.074 mss−1

Salinity storage term 〈Sstor〉 3.062 mss−1(g/kg)

Salinity-squared storage term 〈(S2)stor〉 124.302 mss−1(g/kg)2

Table 4.1.: Exchange flow quantities of estuary forced with monochromatic semi-diurnal aver-

aged over 10 tidal periods at transect B.

Further discussing the isohaline mixing, the integrated mixing M(S) almost follows

the theoretical curve until the salinity isohaline not leaving the estuary, see Fig 4.3a.

Whereas in Fig 4.3b, the mixing per salinity class m(S) obeys the theoretical curve

until the salinity reaches 23 g/kg, which is the maximum salinity not reaching the open
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boundary. The integrated isohaline mixing M(S) is smoother and does not deviate

much from the theoretical curve as it is the integrated from mixing per salinity class

m(S), all the fluctuations add-up to make the curve smoother. The integrated numerical

mixing Mnum and numerical mixing per salinity class mnum increases at high salinity

classes and are dominant from 30 g/kg, where resolution of the estuary is coarser at

the opening. These high salinity classes occur at these larger grid cells.

Mixing Estimates Variable Value[mss−1(g/kg)2]

Mixing 〈M〉 210773.711

Physical mixing 〈Mphy〉 198288.832

Numerical mixing 〈Mnum〉 12484.879

Exact mixing relation 〈Me〉 210773.711

Mixing relation
〈Mcp〉 270532.624

(assuming constancy and periodicity)

Table 4.2.: Mixing estimates averaged over 10 tidal periods for monochromatic semi-diurnal

tide, rounded up to three decimal places.

Figure 4.3.: Numerical estuary model forced with monochromatic semi-diurnal tides averaged

over 10 tidal periods: a) tidally averaged mixing M(S) (blue) and its decomposi-

tion integrated over all salinities < S as function of S, including the theoretical

curve (red), b) tidally averaged mixing per salinity class m(S) (blue) and its

decomposition as function of S, including the theoretical curve (red). The ver-

tical hatched line indicates the maximum salinity (23 g/kg) reaching the open

boundary.

The Fig 4.4a, shows the area of isohaline a(S) and the volume of isohaline v(S)

which are the required inputs to calculate the effective diahaline diffusivity Kn. Fig

4.4b represents the mean salinity gradient per salinity b−1. For the salinities from 16
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g/kg to 23 g/kg the gradient is above 10 (g/kg)m−1, which means the isohaline in this

salinity range is stretched with a thickness below 0.1 m per salinity class (see Fig 4.5).

The effective diahaline diffusivity Kn increases linearly from 1·10 −5 m2s−1 for every

1 g/kg of salinity to a peak of 6·10 −5 m2s−1 at 7 g/kg and decreases again to 1·10 −5

m2s−1 at 23g/kg (see Fig 4.4c). And for salinities larger than 23 g/kg the Kn is nearly

greater than 2·10 −5 m2s−1 with a peak diahaline diffusivity of 1·10 −4 m2s−1 is due to

small salinity gradient and high isohaline volume.

Figure 4.4.: Averaged over 10 tidal periods estuary forced with monochromatic semi-diurnal

tides: a) area of isohaline a(S), and volume per salinity class v(S), b) averaged

salinity gradient, b−1 resulting from a(S) and v(S), and c) effective physical, nu-

merical and total diahaline diffusivity. The vertical dashes indicates the maximum

salinity (23 g/kg) not reaching the open boundary.

The TEF-based and thickness-weighted salinity distributions are shown in Fig 4.5,

taken at the center-line estuary (y=0). The TEF-based salinity distributions are taken

from the Total Exchange flow (TEF) framework, where the isohaline position is indicated

inside the water column for all locations (x,y), at every position of the salinity S has

occurred during the averaging period. The thickness-weighted distribution has first

been averaged on σ-layers and weighted over the changing water depth, then the

averaged salinity values are associated with vertical averaged position of the respective

σ-layers (for more details, see (Burchard et al., 2020, submitted) and Klingbeil et al.

(2019)). As seen, the TEF-based isohalines are spread widely when compared with

the thickness-weighted isohalines. For example, the isohaline S = 15 g/kg (marked in

red) in TEF-based is twice long than the thickness-weighted. This is because, when a

specific salinity appears in water column, the respective isohaline is stretched across

the horizontal position. Which might not be seen in the thickness-weighted averaging.

However, the isohaline are differently spread, the volume of isohalines are same for

both the cases (see Burchard et al. (2020), submitted). Fig 4.6 shows the spatial
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Figure 4.5.: Estuary simulation averaged over 10 tidal periods forced with monochromatic semi-

diurnal tides: a) TEF-based averaged salinity distribution and isohaline positions,

b) thickness-weighted averaged salinity distribution and isohaline positions. Both

taken at the center-line of estuary (y=0), the isohaline are shown at ∆S =1 g/kg.

The red-line indicates isohaline at S = 15 g/kg

distribution on diahaline diffusivity for S = 15 g/kg, as seen they reach high values at

the inner channel. Also, the physical diahaline diffusivity values are dominant in the

well resolved channel, as the outer mouth of estuary numerical values are significant

due to the coarse resolution. These Fig (4.6) also helps to identify the mixing hotspots,

i.e the inner channel where the diffusivity is high.

The Fig 4.7a, shows the mixing distribution over the salinity class and spatial

longitudinal distance. Similarly, Fig 4.7b shows the mixing per salinity class integrated

over the longitudinal distance and Fig 4.7c shows the mixing per longitudinal distance

integrated over the salinity classes. As seen, most of the mixing takes place in the

region of -90 km to -75 km, and also at higher salinity ranges. However, this doesn’t

follow any specific law.
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Figure 4.6.: Estuary simulation averaged over 10 tidal periods forced with monochromatic

semi-diurnal tides: a) total, b) physical, c) numerical effective diahaline diffusivity

for the isohaline S = 15g/kg spatial distributed (as a function (x,y)).
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Figure 4.7.: Estuary simulation averaged over 10 tidal periods forced with monochromatic semi-

diurnal tides: a) mixing per salinity class and longitudinal distance, ∂xm(S), b)

mixing per salinity class m(s) = ∂sM(S) (integrated along longitudinal distance),

c) mixing per longitudinal distance ∂xM(S) (integrated along salinity class).
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4.2.2. Results of spring-neap tides

The exchange flow profiles seen in Fig 4.8, are investigated at the same transect B for

the spring-neap cycles. These profiles are smoother compared to the exchange profiles

of monochromatic semi-diurnal tidal forcing (see Fig 4.2) because these are averaged

over 60 tidal periods (i.e two spring-neap cycles). Here also, inflow occurs around

salinities S > 26 g/kg and is also a two-layered exchange flow. The average inflow

and outflow transports also occur at the same salinities that is, inflows at ≈ 31 g/kg

and outflows at ≈ 12g/kg. Even though, there is a loss in salinity and salinity-squared

storage terms, the inflow and outflow volume, salinity and salinity-squared transports

are similar to the monochromatic semi-diurnal tidal forcing values (see Table 4.3).

Figure 4.8.: Exchange flow profiles in salinity class S for spring-neap tidal cycle forcing taken

averaged over two spring-neap cycles. a) blue showing volume transport Q(S)
and orange showing volume transport per salinity class q(S). b) blue showing

salinity transport Qs(S) and orange showing salinity transport per salinity class

qs(S). c) blue showing salinity-squared transport Qs2

(S) and orange showing

salinity-squared transport per salinity class qs2

(S).

The mixing estimates from the simulation 〈M〉 also obey the mixing value from the

exact mixing relation 〈Me〉. Similarly, the mixing relation 〈Mcp〉 assuming constancy

and periodicity deviates by 28% (see Table 4.9). The universal law of estuarine mixing

is also satisfied by the mixing quantified from the simulation, and is slightly deviated

from the theoretical curve after 20 g/kg salinity class.

The isohaline volume and the isohaline area (see Fig 4.10a) are nearly same to that

of the previous result of the monochromatic semi-diurnal tides, but are smoother after

25 g/kg salinity classes compared to the monochromatic tides. The salinity gradient

b−1 increases linearly from 2 g/kg to a peak at 18 g/kg and drops after 20 g/kg (see
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Transport Values Variable Value

Volume transport inflow Qin 454.454 m3s−1

Volume transport outflow Qout -1145.857 m3s−1

Salinity transport inflow Qs
in 14100.101 m3s−1(g/kg)

Salinity transport outflow Qs
out -14187.554 m3s−1(g/kg)

Salt inflow sin 31.026 g/kg

Salt outflow sout 12.381 g/kg

Salinity-squared transport inflow Qs2

in 432724.589 m3s−1(g/kg)2

Salinity-squared transport outflow Qs2

out -225607.208 m3s−1(g/kg)2

Salt-squared inflow s2
in 952.183 (g/kg)2

Salt-squared outflow s2
out 196.889 (g/kg)2

Volume storage term 〈Vstor〉 8.597 mss−1

Salinity storage term 〈Sstor〉 -87.453 mss−1(g/kg)

Salinity-squared storage term 〈(S2)stor〉 -1436.440 mss−1(g/kg)2

Table 4.3.: Exchange flow quantities of estuary forced with spring-neap tidal cycle averaged

over two spring-neap cycles periods at transect B.

Mixing Estimates Variable Value[mss−1(g/kg)2]

Mixing 〈M〉 208553.866

Physical mixing 〈Mphy〉 197009.515

Numerical mixing 〈Mnum〉 11544.351

Exact mixing relation 〈Me〉 208553.821

Mixing relation
〈Mcp〉 268909.604

(assuming constancy and periodicity)

Table 4.4.: Mixing estimates averaged over two spring-neap cycles, rounded up to three decimal

places.

Fig 4.10b). Here, there are less salinity classes in a salinity gradient values more than

10 (g/kg)m−1 compared to the monochromatic tides. In Fig 4.10, the Kn also reaches

a peak of 4·10 −5 m2s−1 at 5g/kg which is lesser than effective diahaline diffusivity

of monochromatic tides. This can be the cause of averaging a complete spring-neap

cycle (i.e, over a well mixed phase and weakly mixed phase). The Fig 4.11, shows

the TEF-based and thickness weighed isohalines distributions, where, the TEF-based
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Figure 4.9.: Numerical estuary model averaged over two consecutive spring-neap cycles: a)

tidally averaged mixing M(S) (blue) and its decomposition integrated over all

salinities < S as function of S, including the theoretical curve (red), b) tidally

averaged mixing per salinity class m(S) (blue) and its decomposition as function

of S, including the theoretical curve (red). The vertical hatched line indicates the

maximum salinity (20 g/kg) reaching the open boundary.

Figure 4.10.: Averaged over two consecutive spring-neap cycles: a) area of isohaline a(S), and

volume per salinity class v(S), b) averaged salinity gradient, b−1 resulting from

a(S) and v(S), and c) effective physical, numerical and total diahaline diffusivity.

The vertical hatched line indicates the maximum salinity (20 g/kg) reaching the

open boundary.

isohalines are nearly twice of the thickness weighted isohaline as discussed in the

previous result section.

The spatial distribution of effective diahaline diffusivity of S = 15 g/kg is shown

in Fig 4.12. Which also, shows the mixing hotspots at the inner channel region where

the diffusivities are high. In Fig 4.13, also provide the information on high amount of

mixing happening in region x= -95 km to -75 km. As mention before this plot is just to

show the mixing distribution over longitudinal distance and salinity classes.
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Figure 4.11.: Estuary simulation averaged over two consecutive spring-neap cycle: a) TEF-

based averaged salinity distribution and isohaline positions, b) thickness-

weighted averaged salinity distribution and isohaline positions. Both taken

at the center-line of estuary (y=0), the isohaline are shown at ∆S =1 g/kg. The

red-line indicates isohaline at S = 15 g/kg.

Now, looking at the exchange flows on every tide in the two investigated spring-neap

cycles, Fig 4.14, the exchange flow are measured at the transect B (i.e, x= -80 km).

The outflow salinities are around 10 g/kg to 15 g/kg with high salinity outflows at

the end of neap tide and there is decrease in the outflow at spring tides (see Fig 4.14c

and Fig 4.14d). The volume transport variations effected by the spring-neap cycle at

transect B are seen in Fig 4.14b, the inflow fluctuate around 450 m3s−1 and outflow

volume around 1150 m3s−1, huge significant effect of tide cannot be seen from the plot.

However, the exchange flow variations computed at transect A (i.e, x= -90 km) are

seen in Fig 4.15, the effect of tides can be seen over the exchange flow. There are high

inflow and outflow transports happening at the neap tides and low transports at the

spring tides, even for the net river discharge flowing out of estuary (see Fig 4.15b).

There is high out flowing salinity at end of the neap tides and low at end of spring

tides, where the peaks are at an offset of 5 days with respect to volume transport peaks.

There is no considerable change in the inflow salinities as the transect A is closer to the

open boundary. However, a slight peak in inflow salinities can be seen at the neap tides

(see Fig 4.15c and Fig 4.15d). As the estuary is wider in transect A than transect B,

which enabled a strong lateral exchange flow can be seen in Fig 4.1. Hence, this large
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Figure 4.12.: Estuary simulation averaged over two consecutive spring-neap cycle: a) total, b)

physical, c) numerical effective diahaline diffusivity for the isohaline S = 15g/kg

spatial distributed (as a function (x,y)).

variations in the exchange flow can be seen at the transect A more compared to the

transect B. The high saline water flowing out of estuary at the neap tides suggest that a

high mixing occurs in neap tides compared to spring tides, which will be described in

detail in next section.
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Figure 4.13.: Estuary simulation averaged over two consecutive spring-neap cycle: a) mix-

ing per salinity class and longitudinal distance, ∂xm(S), b) mixing per salinity

class m(s) = ∂sM(S) (integrated along longitudinal distance), c) mixing per

longitudinal distance ∂xM(S) (integrated along salinity class).
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Figure 4.14.: Tidally averaged inflow and outflow transports in two consecutive spring-neap

cycle: a) sea-surface elevation at open-boundary b) inflow and outflow volume

transports c) salinities flowing into and out of estuary d) squared-salinities

flowing in and out of estuary. All taken at transect B. S-represents spring tide and

N-represents neap tide.
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Figure 4.15.: Tidally averaged inflow and outflow transports in two consecutive spring-neap

cycle: a) sea-surface elevation at open-boundary b) inflow and outflow volume

transports c) salinities flowing into and out of estuary d) squared-salinities

flowing in and out of estuary. All taken at transect A. S-represents spring tide

and N-represents neap tide.
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4.2.3. Results of spring-neap tides (averaged over weak tides and

strong tides)

In the previous section, the results are discussed over a complete spring-neap cycle. In

this section, the dynamics of estuary are presented which are concentrated over the

weak tides (neap tides) and strong tides (spring tides) in the spring-neap cycle.

Figure 4.16.: Exchange flow profiles in salinity class S for spring-neap tidal forcing taken

averaged over 10 consecutive weak tides. a) blue showing volume transport Q(S)
and orange showing volume transport per salinity class q(S). b) blue showing

salinity transport Qs(S) and orange showing salinity transport per salinity class

qs(S). c) blue showing salinity-squared transport Qs2

(S) and orange showing

salinity-squared transport per salinity class qs2

(S).

Figure 4.17.: Exchange flow profiles in salinity class S for spring-neap tidal forcing taken

averaged over 10 consecutive strong tides. a) blue showing volume transport

Q(S) and orange showing volume transport per salinity class q(S). b) blue

showing salinity transport Qs(S) and orange showing salinity transport per

salinity class qs(S). c) blue showing salinity-squared transport Qs2

(S) and orange

showing salinity-squared transport per salinity class qs2

(S).

The exchange flow profiles are drawn for 10 tidal averaged consecutive weak tides

(see Fig 4.16) and 10 tidal averaged consecutive strong tides (see Fig 4.17) of spring-
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Transport Values Variable
Averaged over 10 consecutive

Units
Strong Tide Weak Tide

Volume transport inflow Qin 478.744 452.676 m3s−1

Volume transport outflow Qout -1168.904 -1159.411 m3s−1

Salinity transport inflow Qs
in 14574.244 14352.244 m3s−1(g/kg)

Salinity transport outflow Qs
out -14594.855 -13133.345 m3s−1(g/kg)

Salt inflow sin 30.442 31.705 g/kg

Salt outflow sout 12.485 11.327 g/kg

Salinity-squared transport inflow Qs2

in 438750.708 450689.828 m3s−1(g/kg)2

Salinity-squared transport outflow Qs2

out -244431.956 -184346.985 m3s−1(g/kg)2

Salt-squared inflow s2
in 916.460 995.612 (g/kg)2

Salt-squared outflow s2
out 209.112 159.001 (g/kg)2

Volume storage term 〈Vstor〉 9.840 -6.734 mss−1

Salinity storage term 〈Sstor〉 -0.006 0.119 mss−1(g/kg)

Salinity-squared storage term 〈(S2)stor〉 0.013 -13.261 mss−1(g/kg)2

Table 4.5.: Exchange flow quantities of estuary forced with spring-neap cycle averaged over 10

consecutive spring tides and 10 consecutive neap tides at transect B.

neap cycles over the transect B. Seeing from the profiles, inflow occurs at salinities

nearly S > 26 g/kg for the strong tides and S > 24 g/kg for the weak tides, where, the

inflow occurs at S > 26 g/kg for a complete spring-neap cycle (see 4.2.2). As expected,

the inflow volume transport is higher for the strong tides compared to the weak tides

with a difference of 26 m3s−1. Also, the inflow and outflow salinities differ by 1 g/kg

between the strong and weak tides (see Table 4.5).

Now comparing the mixing estimates from the model and from relations (see Table

4.6), the exact mixing relation 〈Me〉 deviates by 0.3 % for the strong tides and -16 % for

the weak tides. This error in estimation of mixing from the exact mixing relation can

be due to individual strong tides or weak tides, which are not in equilibrium compared

the complete spring-neap cycle. When assuming constancy and periodicity 〈Mcp〉, the

mixing is estimated with an error of 36 % for the strong tides and -2 % for the weak

tides. There is no particular hypothesis that can de drawn from these estimates.

However, inspecting the universal mixing law for these weak tides (Fig 4.18) and

strong tides (Fig 4.19) individually in comparison with the theoretical curve, there is
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Mixing Estimates Variable
Strong Tide Weak Tide

[mss−1(g/kg)2] [mss−1(g/kg)2]

Mixing 〈M〉 194371.483 258326.862

Physical mixing 〈Mphy〉 186542.361 238835.259

Numerical mixing 〈Mnum〉 7829.122 19491.602

Exact mixing relation 〈Me〉 195130.354 216318.911

Mixing relation
〈Mcp〉 266072.897 251401.681

(assuming constancy and periodicity)

Table 4.6.: Mixing estimates averaged over 10 consecutive strong tides and 10 consecutive

weak tides, rounded up to three decimal places.

Figure 4.18.: Numerical estuary model forced with spring-neap cycle averaged over 10 consec-

utive weak tides: a) tidally averaged mixing M(S) (blue) and its decomposition

integrated over all salinities < S as function of S, including the theoretical curve

(red), b) tidally averaged mixing per salinity class m(S) (blue) and its decom-

position as function of S, including the theoretical curve (red). The vertical

hatched line indicates salinity class (23 g/kg) in comparison with results of

monochromatic semi-diurnal tides.

more mixing estimated in the weak tides and less mixing in the strong tides. This seems

counter-intuitive as the stronger tides have less mixing values than the weaker tides. It

can be a reason that the estuary in strong tide phase is already in a well mixed phase

due to the early spring tides and thus, less mixing in strong tides. Whereas, in weak

tide phase the salinity gradients are increased due to weaker tidal stresses, this leads

to more mixing. The Fig 4.20b and Fig 4.21b explains the salinity stratification. The

salinity gradient is high in the weak tides overall compared to the spring tides, even

though the stronger tides have a high peak ≈ 14 (g/kg)m−1 in salinity gradient and

drop down to 1 (g/kg)m−1 at salinity 26 g/kg. The Kn in the weak tides reaches a peak
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of 8·10 −5 m2s−1 at the initial salinities following a drop to 1·10 −5 m2s−1 at 20 g/kg

salinity class and again reaches to peak of 1·10 −4 m2s−1 at the higher salinity classes

of 33 g/kg (see Fig 4.20c). Whereas, in the strong tides Kn reaches a peak of 4·10 −5

m2s−1 at 5 g/kg salinity and drop to 7·10 −6 m2s−1 at salinity class 25 g/kg, and again

reaches a peak of 1·10 −4 m2s−1 at salinity 27 g/kg (see Fig 4.21c). This implies, there

is more diffusivity in weak tides as a result of high mixing than the strong tides.

Figure 4.19.: Numerical estuary model forced with spring-neap cycle averaged over 10 consec-

utive strong tides: a) tidally averaged mixing M(S) (blue) and its decomposition

integrated over all salinities < S as function of S, including the theoretical curve

(red), b) tidally averaged mixing per salinity class m(S) (blue) and its decom-

position as function of S, including the theoretical curve (red). The vertical

hatched line indicates salinity class (23 g/kg) in comparison with results of

monochromatic semi-diurnal tides.

Figure 4.20.: Averaged over 10 consecutive weak tides, estuary forced with spring-neap cycle:

a) area of isohaline a(S), and volume per salinity class v(S), b) averaged salinity

gradient, b−1 resulting from a(S) and v(S), and c) effective physical, numerical

and total diahaline diffusivity. The vertical hatched line indicates salinity class

(23 g/kg) in comparison with results of monochromatic semi-diurnal tides.

The TEF-based and thickness-weighed averaged salinity distributions also show that

the salinity gradient are high for weak tides to that of strong tides. The isohaline 15
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g/kg is stretched wide for the weak tide compared to the strong tide. Also, saline water

intrusion is more into the estuary at weak tide phase than the strong tide phase (see

Fig 4.22 and Fig 4.23).

Figure 4.21.: Averaged over 10 consecutive strong tides, estuary forced with spring-neap cycle:

a) area of isohaline a(S), and volume per salinity class v(S), b) averaged salinity

gradient, b−1 resulting from a(S) and v(S), and c) effective physical, numerical

and total diahaline diffusivity. The vertical hatched line indicates salinity class

(23 g/kg) in comparison with results of monochromatic semi-diurnal tides.

Figure 4.22.: Estuary simulation averaged over 10 consecutive weak tides forced with spring-

neap cycle: a) TEF-based averaged salinity distribution and isohaline positions,

b) thickness-weighted averaged salinity distribution and isohaline positions. Both

taken at the center-line of estuary (y=0), the isohaline are shown at ∆S =1 g/kg.

The red-line indicates isohaline at S = 15 g/kg

Looking at the spatial distribution of diahaline diffusivity for S = 15 g/kg in the

weak tides, the diahaline diffusivity is higher and covers more region from x = -61 km
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Figure 4.23.: Estuary simulation averaged over 10 consecutive strong tides forced with spring-

neap cycle: a) TEF-based averaged salinity distribution and isohaline positions,

b) thickness-weighted averaged salinity distribution and isohaline positions. Both

taken at the center-line of estuary (y=0), the isohaline are shown at ∆S =1 g/kg.

The red-line indicates isohaline at S = 15 g/kg

to -100 km (see Fig 4.24), to that of the strong tides which only covers a region of x

= -97 km to -68 km and also has lesser magnitude (see Fig 4.25). This justifies that

the weak tides have more salinity gradient than the stronger tides. In both the cases

diahaline diffusivities are higher at the inner channel.

Considering, the mixing distribution over longitudinal distance and salinity classes

for the weaker tides, they have a single mixing spot at salinity range S = 10 g/kg to 30

g/kg at the longitudinal distances x = -95 km to -75 km with a higher magnitude can

be seen Fig 4.26. Whereas, the strong tides have two mixing spots, a strong mixing spot

at x= -95 km to -90 km and a second mixing spot at x= -80 km to -75 km. Note that,

the magnitude of mixing is lower in strong tides than compared to weak tides. From

this, one can say that there is more mixing at weak tide phase as it is in less mixed state,

and less mixing in strong tides as the estuary is already in well mixed state. Also, note

that, the high saline water is induced deeper in the weak tides than the strong tides.
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Figure 4.24.: Estuary simulation averaged over 10 consecutive weak tides forced with spring-

neap cycle: a) total, b) physical, c) numerical effective diahaline diffusivity for

the isohaline S = 15g/kg spatial distributed (as a function (x,y)).
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Figure 4.25.: Estuary simulation averaged over 10 consecutive strong tides forced with spring-

neap cycle: a) total, b) physical, c) numerical effective diahaline diffusivity for

the isohaline S = 15g/kg spatial distributed (as a function (x,y)).
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Figure 4.26.: Estuary simulation averaged over 10 consecutive weak tides forced with spring-

neap cycle: a) mixing per salinity class and longitudinal distance, ∂xm(S), b)

mixing per salinity class m(s) = ∂sM(S) (integrated along longitudinal distance),

c) mixing per longitudinal distance ∂xM(S) (integrated along salinity class).
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Figure 4.27.: Estuary simulation averaged over 10 consecutive strong tides forced with spring-

neap cycle: a) mixing per salinity class and longitudinal distance, ∂xm(S), b)

mixing per salinity class m(s) = ∂sM(S) (integrated along longitudinal distance),

c) mixing per longitudinal distance ∂xM(S) (integrated along salinity class).
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Chapter 5.

Conclusions

The mixing is quantified for this three-dimensional estuary numerical model. The

presented study shows, the mixing computed from the model perfectly equals the

mixing calculated using the Exact Mixing relation Me derived by Burchard et al. (2019),

and the simple mixing relation Mcp by MacCready et al. (2018) shows an error of

28% for both the cases of monochromatic semi-diurnal tides and spring-neap cycle.

Where, the error percentage is higher than the two-dimensional estuary model tested in

Burchard et al. (2019). For the analysis around weak tides and strong tides, the mixing

estimates from the relations cannot be compared to the mixing computed from model

as the budgets of weak tides and strong tides are not properly closed.

In the isohaline mixing, the monochromatic semi-diurnal tides and spring-neap

cycle follow the theoretical curve. Also, obey the universal law of mixing until the

open boundary as suggested by Burchard (2020). In the analysis of weak tides and

strong tides, the weak tides have more mixing than the excepted theoretical curve and

strong tide have lesser mixing. This can also be justified as the weak tide phase in the

spring-neap cycle having more salinity gradient and deep intrusions of saline water to

the estuary compared to that of the strong tide phase. The effective diahaline diffusivity

is a newly introduce method by Burchard et al. (2020),submitted. This methods help to

identify the mixing spots in the estuary, which are shown for this presented numerical

model. The mixing is mainly happening around the inner channel than that of the

mouth ( for more details see chapter 4 ).

Further more, if a keen look is taken at the exchange flow and mixing at individual

tide in the spring-neap cycle, there is more mixing happening at the neap tides in

comparison with spring tides. Hence, resulting in high salinity outflows at the end

of the neap tides. Where as, from the results presented by MacCready et al. (2018)

there is more mixing and high salinity outflows at the spring. This might be a reason
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that MacCready et al. (2018) used weaker tidal forcing and high river discharge in

comparison with the forcing applied in this thesis study.



Appendix A.

Properties of Reynolds Averaging

1. Average of fluctuation:

〈X ′〉 = 0

2. Double averages:

〈〈X〉〉 = 〈X〉

3. Linearity:

〈X + λY 〉 = 〈X〉 + λ〈Y 〉

4. Derivatives:

〈∂tX〉 = ∂t〈X〉

5. Product average:

〈X〈Y 〉〉 = 〈X〉〈Y 〉

6. Average of fluctuations product:

〈X ′Y ′〉 6= 0
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Appendix B.

Salinity Variance Squared Equation

Following is the derivation of salinity variance squared equation (3.9), re-writing

s = s̄ + s′ as s′ = s − s̄, squaring and differentiating with respect to time t,

∂t(s − s̄)2 = ∂ts
2 − 2∂t(ss̄) + ∂ts̄

2

= ∂ts
2 − 2s̄∂ts − 2(s − s̄)∂ts̄

= ∂ts
2 − 2s̄∂ts − 2s′∂ts̄ .

(B.1)

From salinity-squared equation (3.4), the term can be re-arranged as,

∂ts
2 = −∂n(s2un) + ∂n(K∂ns2) − 2K(∂ns)2 . (B.2)

Multiplying 2s̄ with salinity equation (2.19),

2s̄∂ts = −2s̄∂n(sun) + 2s̄∂n(K∂ns) . (B.3)

Substituting (B.2) and (B.3) in equation (B.1), results as follows:

∂t(s − s̄)2 = −∂n(s2un) + ∂n(K∂ns2) − 2K(∂ns)2

+ 2s̄∂n(sun) − 2s̄∂n(K∂ns)

= −∂n(s2un) − ∂n(K∂ns2) − 2K(∂ns)2 − 2s′∂ts̄ ,

(B.4)
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using equation (3.5) and re-arranging the terms as,

∂ts
′2 + ∂n(s′2un) − ∂n(K∂ns′2) = −χs − 2s′∂ts̄ . (B.5)



Nomenclature

(S ′2)stor storage term for salinity variance

(S2)stor storage term for salinity-squared

η̄x temporally averaged surface elevation gradient

χs local salinity mixing per unit volume

ǫ dissipation rate of k

η surface height

ν kinematic viscosity

νs molecular diffusivity of salt

νt turbulent viscosity / eddy viscosity

ν ′

t eddy diffusivity of salt

Ωj Coriolis force

ρ density of water

ρ0 reference density

τ b bottom stress tensor

τ s surface stress tensor

a isohaline area
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A(S) cross-section with salinity s higher than S

b isohaline thickness

cµ non-dimensional constant

f Coriolis parameter

F c flux of tracer c

F s2

effective squared salinity flux

F s salinity flux

g acceleration due to gravity

H bottom depth

k turbulent kinetic energy

Kn effective diahaline diffusivity

M(S) integrated mixing in volume V (S)

m(S) mixing per salinity in isohaline S

Mnum numerical mixing

Mphy physical mixing

Mcp mixing (assuming periodicity and constancy)

Me exact mixing

n outward normal vector

P pressure

Qc(S) incoming transport of c through cross-section A(S)

qc(S) incoming boundary flux of c per salinity class
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Qin inflow volume transport

Qout outflow volume transport

Qr river discharge

S isohaline at salinity S

s2
in salinity-squared of inflow

s2
out salinity-squared of outflow

sin salinity of inflow

sout salinity of outflow

Sstor storage term for salinity

u velocity

ur residual run-off velocity

v volume per salinity class

V (S) volume of estuary including all salinities s ≤ S

Vstor storage term for volume
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