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Foreword

The simulation of turbulent mixing processes in marine waters is one of the
most pressing tasks in oceanography. It is rendered difficult by the various
complex phenomena occurring in these waters like strong stratification, ex-
ternal and internal waves, wind-generated turbulence, Langmuir circulation
etc. The need for simulation methods is especially great in this area because
the physical processes cannot be investigated in the laboratory. Tradition-
ally, empirical bulk-type models were used in oceanography, which, however,
cannot account for many of the complex physical phenomena occurring. In
engineering, statistical turbulence models describing locally the turbulence
mixing processes were introduced in the early seventies, such as the k-& model
which is still one of the most widely used models in Computational Fluid Dy-
namics. Soon after, turbulence models were applied more and more also in
the atmospheric sciences, and here the k-kL model of Mellor and Yamada
became particularly popular. In oceanography, statistical turbulence mod-
els were introduced rather late, i.e. in the eighties, and mainly models were
taken over from the fields mentioned above, with some adjustments to the
problems occurring in marine waters. In the literature on turbulence-model
applications to oceanography problems controversial findings and claims are
reported about the various models, creating also an uncertainty on how well
the models work in marine-water problems. The author and his co-workers
have done much clarifying research in this area and have also developed new
model versions, and this work is now comprehensively summarised in this
book.

The author gives an introduction to the modelling problems and an ex-
tensive overview on turbulence models used for applications in oceanography,
focusing then on the highest level models in use, namely two-equation mod-
els with algebraic-stress relations and on extensions accounting for special
problems occurring in marine waters. These models are described in detail
and analyses on homogeneous shear flows are presented as well as extensive
tests for idealised mixing situations and real-life oceanic and limnic applica-
tions, performed with the computer code GOTM (General Ocean Turbulence
Model). The interested reader should note that the source code of GOTM
containing many of the turbulence models discussed as well as the application
examples is available freely on the internet. Of special value for the readers
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of the book is the extensive comparative study of the various models and the
reconciliation between the different modelling schools which the author has
achieved.

In the field of engineering, more advanced, quite complex models were
developed since the 70’s employing model transport equations for the indi-
vidual turbulence stresses and heat and mass fluxes. This level of modelling
has not received much consideration in oceanography, probably because of
the considerable uncertainties about the boundary conditions there. How-
ever, also in engineering practice these models were never really accepted;
rather the simpler two-equation models (or even one-equation models) are
still used whose performance and range of applicability has been increased
by non-linear eddy-viscosity and algebraic-stress- model versions. It is there-
fore interesting to note these are also the types of models on which this book
focuses. Engineering turbulence models have been covered well in a number
of books, but there was so far no comprehensive treatise on the subject of
turbulence modelling in marine waters. The author has filled this gap and
has produced a much needed book that provides invaluable information for
everybody who sets out to simulate turbulent mixing processes in marine
water problems.

W. Rodi



Preface

The original manuscript for this book has been submitted as a Habilitation
thesis at the Institute for Oceanography of the University of Hamburg about
fifteen months ago. The amount of updates I had to consider now for this
published version even after such a short time shows that there is still a lot of
research activity going on in the field of marine turbulence. This is motivated
to a great extent by the steadily growing available computer power, which
allows not only to increase the spatial resolution and temporal coverage, but
also the physical resolution of ocean models. Ten years ago, ocean modellers
could probably argue that higher-order turbulence closure models were com-
putationally too expensive for consideration in their modelling studies, but
nowadays this is only true for climate models simulating several hundreds or
thousands of years.

In contrast to that higher-order turbulence closure models have been pop-
ular in hydraulic engineering since about thirty years, see the state-of-the-art
review by Rodi [1980]. Such a model review has however not been writ-
ten so far for the field of marine turbulence modelling. That might explain
why different schools of marine turbulence modelling (basically the Euro-
pean k-¢ modellers and the American k-kL modellers) could co-exist more
or less peacefully until today, not knowing much of each other. The recently
finished concerted action CARTUM (Comparative Analysis and Rationalisa-
tion of Second-Moment Turbulence Models, funded by the European Com-
mission) clearly demonstrated persisting misunderstandings between these
two schools. The present book tries to fill this gap by presenting applicable
turbulence closure models in a general notation.

This book is written not only for all those who work with numerical ocean
models. It is also designed for graduate students since it does not require a
deep insight into the field of turbulence modelling. It is written as well for
observing oceanographers who are interested in the assumptions made for
deriving these models and who would like to explain their observational data
by means of a water column model. However, a general understanding of
applied mathematics and physics is essential for working with this book.

The book is structures as follows: After a general introduction, the full
derivation from the Navier-Stokes equations to mathematically complete sta-
tistical turbulence closure models is shown. Then the numerical discretisation
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of these equations is carried out, followed by a brief overview on the computa-
tional implementation into the Public Domain water column model GOTM.
Finally, a number of idealised test cases and simulations of in-situ data from
field campaigns are discussed. The book is then completed by a list of ten
future research perspectives, an appendix with notation rules, transforma-
tions between different notations and a list of symbols, a reference list and
an index.

Warnemiinde, Germany H. Burchard
May 2002
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1 Introduction

The pioneering work on statistical turbulence closure schemes performed in
the 1970s by many different researchers has been concisely reviewed by Rodi
[1980]. In those days, complex turbulence schemes were mainly applied in the
field of computational fluid dynamics with its well-defined model problems.
This restriction to technical and engineering applications can be explained
by several arguments: clearly defined model domains and forcing, higher rel-
evance of complex physical features such as non-hydrostatic pressure, bigger
computer resources due to better funding e.g. from nuclear research pro-
grams, and maybe some more reasons. Apart from technical and engineering
applications, higher order turbulence closure schemes were more and more
applied in atmospheric sciences as well, see e.g. the famous article by Mellor
and Yamada [1974]. There, the demand for better turbulence closure models
came mainly from meteorological institutes which wanted to improve their
weather prediction models. In oceanography however, complex turbulence
models were introduced rather late, see e.g. Rosati and Miyakoda [1988]. The
reason might be that simple bulk models or length scale parametrisations
gave reasonable answers and the scientific focus (understanding of general
circulation) was not so much related to turbulence closure modelling. The
limited computational resources were mainly used for achieving fine spatial
resolution and long model runs, see e.g. the recent study by Demirov and
Pinardi [2001] for the Mediterranean Sea. It has been shown in compara-
tive studies by Ruddick et al. [1995] for coastal seas and by Goosse et al.
[1999] for the global ocean that differential mixing parameterisations should
at least consider processes such as production, dissipation and diffusion of
turbulence in order obtain qualitatively acceptable results. The trend to-
wards simple and fast turbulence closures is however still ongoing, see e.g.
the work of Large et al. [1994] who suggested a bulk type empirical model
which is wide-spread in oceanography today. In contrast to that, statistical
turbulence closure models are believed to mix too inefficiently and exclude im-
portant physical processes such as non-local features. This attitude might be
explained to a high degree by the work of Martin [1985] who compared bulk
models with statistical turbulence closure models and found that the mixed
layer depth is underpredicted by the latter models. There are many reasons
for the failure of statistical models in predicting the depth of the mixed layer.
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The main reason seems to be the insufficient consideration of internal waves.
The role of these for mixing in the ocean is not fully understood yet and
thus parameterisations of their effect on mixing can only be of preliminary
character. There is considerable effort in better understanding the complex
dynamics of internal waves going on in several international projects, one
of them being the CARTUM (Comparative Analysis and Rationalisation of
Second-Moment Turbulence Models) project funded by the European Com-
munity. Langmuir circulation, caused by the interaction of Stokes drift due
to surface waves with mean shear is one other poorly understood mixing
mechanism.

Statistical turbulence closure models rather than empirical bulk-type
models are the appropriate tool for proper modelling of mixing in the ocean.
There are two basic arguments for this. Statistical models do reflect many
more physical properties of turbulence than only mixing. Higher statistical
moments such as turbulent kinetic energy, its dissipation rate, temperature
variance and so on are calculated and can thus be compared to observations.
The second argument for statistical turbulence modelling is that bulk-type
models cannot account for many processes in estuaries and coastal seas, such
as strain-induced periodic stratification (Simpson et al. [1990]) or transport of
high concentration suspended matter loads ( Winterwerp [1999]). Since estu-
arine, shelf sea and ocean modelling studies are often combined, it is desirable
that the models for their simulation are equipped with the same turbulence
closure model.

Thus, statistical turbulence modelling leads to a better understanding of
complex small-scale phenomena in the ocean, although it does not help to
understand turbulence itself (Lesieur [1997]). Consequently, the focus of this
book is put on phenomenological turbulence models rather than fundamental
turbulence properties. For better understanding turbulence itself, completely
different methods are used, such as Direct Numerical Simulation or Large
Eddy Simulation as numerical methods or Particle Image Velocimetry (PIV,
see Bertuccioli et al. [1999]) or the use of autonomous underwater vehicles
(AUV, see Thorpe et al. [2002]) equipped with high-resolution sensors as new
observational methods. These latter high-resolution methods can be used for
finding better parameterisations for statistical turbulence models. However,
they are not suitable for investigating macro-scale effects of turbulence such
as mixed-layer deepening, tidal straining or the long-term effect of internal
wave-mixing.

The aim of this book is to derive statistical turbulence closure models
which are fairly general, theoretically well-founded and computationally ef-
ficient such that they can be used for a wide range of oceanic applications.
This is what the title of this book stands for. It is obvious that these criteria
are soft, and that not one only closure scheme will be found which is superior
to all others. Furthermore, for each application another closure scheme would
be preferable, depending on the complexity of the problem under investiga-
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tion. Thus, many different turbulence closures are discussed in this book. The
most important steps in the whole spectrum of turbulence closure modelling
ranging from the Navier-Stokes equations to a computer executable code for
statistically simulating turbulent boundary layer flow is described here. The
major focus is put on two-equation turbulence models combined with alge-
braic second-moment closure schemes. Such models use dynamic equations
for the turbulent kinetic energy and a length scale related turbulent quantity
which might be the turbulent dissipation rate, the macro length scale, the
turbulence frequency or a fully generic length scale equation. Mainly two such
models have been competing in oceanography during the last two decades,
the k-e model developed at the Imperial College in London (see Launder
and Spalding [1972]) and the k-kL model developed at Princeton University,
New Jersey by Mellor and Yamada [1982]. Here, k stands for turbulent ki-
netic energy, € for its dissipation rate and L for the macro length scale. Both
models have been applied independently for many years but only recently be
compared in detail (Burchard et al. [1998], Burchard et al. [1999], Baumert
and Peters [2000]). Both models have been protected by its protagonists like
icons. The result of these comparative studies is, that after modifications! of
the buoyancy production term suggested by Burchard and Baumert [1995]
for the k-e model and Burchard [2001a] for the k-kL model both models are
basically equivalent. It seems to be much more relevant with which second-
moment closures these two-equation models are combined, see Burchard et al.
[1998].

In the same way as numerical models, turbulence measurements in the
ocean have become more detailed and reliable in recent years. This is specifi-
cally true for dissipation rate observations with micro-structure shear probes
as they have been introduced into oceanography by Osborn [1974]. Conse-
quently, several comparative model studies have been carried out of which
some are discussed in this book. However, such comparative studies can only
reach agreement between model results and observations up to a certain de-
gree. This is because turbulence measurements are — due to their statistical
character — often based on at least as many idealising assumptions as the nu-
merical models. Furthermore, the forcing data are never complete in a sense
that all changes of certain physical parameters in the domain under inves-
tigation are explained by fluxes through the boundaries and inner sources
or sinks. Therefore, the argument is that turbulence closure models cannot
properly be validated with the aid of field observations. The models have to
be validated by means of theoretical considerations, and with laboratory ex-
periments or numerical experiments with higher order models such as Large
Eddy Simulation.

The final aim of developing practically applicable turbulence closure
schemes must be their integration into three-dimensional ocean models. One

! These modifications have already been suggested by Kantha [1988] but have
never been published.
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precondition for this is the numerical robustness of these turbulence closure
models in the sense that they perform well also for coarse temporal and spa-
tial resolution and numerical noise from the mean flow equations. Another
precondition is the availability of a well-tested computer code which can be
integrated into three-dimensional models without any further changes, since
a complete three-dimensional model is not an appropriate environment for
developing turbulence closure models. Development and validation of turbu-
lence models must be performed in the framework of one-dimensional water
column models. Therefore, the water column model GOTM (General Ocean
Turbulence Model) has been developed and published in the World Wide
Web under the address http://www.gotm.net, see also the report by Bur-
chard et al. [1999]. The model concepts discussed here have been implemented
into three-dimensional ocean models and applied to ocean circulation studies.
One convincing example is the work of Meier [2001] who uses the k-¢ model
with an algebraic second-moment closure recently presented by Canuto et al.
[2001] (which is evaluated in the present book as a physically sound and
numerically stable closure) for high-resolution simulations of the circulation
and heat and salt transport in the Baltic Sea.

This book is structured as follows. After this introduction, the viscous
equations of motion are briefly discussed in chapter 2, for a complete math-
ematical derivation, see e.g. Chorin and Marsden [1979)]. It is described how
turbulence results from these dynamic equations. The problem of multiple
scales due to the non-linearity of the Navier-Stokes equations is briefly men-
tioned. As solution to the problem, the Reynolds decomposition is presented
and defined in such a way that the Reynold’s averaged equations are derived.
The closure problem of turbulence is shown and various parameterisations
for the second moments are presented.

In chapter 3, the boundary layer approximation is made such that hy-
drostatic equations are obtained for which only a few second moments have
to be parameterised. The local equilibrium assumption for second moments
finally leads to the algebraic second-moment closure schemes for which this
book aims for. Non-dimensional stability functions are derived which contain
the whole information of the second-moment closure. Four different classes
of stability functions are investigated in more detail in terms of the perfor-
mance of their equilibrium versions for some basic flow situations. Various
two-equation turbulence models are then presented, among them the k-¢ and
the k-kL models, but also a generic two-equation model which has recently
been developed by Umlauf and Burchard [2001]. The concept of homogeneous
shear-layers and the resulting simplifications of the turbulence equations are
then used for showing a new perspective of two-equation turbulence models.
The steady-state Richardson number is defined which helps better under-
standing the length scale related equation and calibrating the buoyancy term
therein. Finally, modifications are discussed which allow for the consideration
of breaking surface waves, internal wave effects and Langmuir circulation.
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Numerical discretisation methods are presented in chapter 4. Three prob-
lems are discussed in more detail: Positive definite schemes in order to guar-
antee positivity of turbulent quantities, numerical conservation of energy flux
between mean flow and turbulence and numerically stable and accurate dis-
cretisations of boundary conditions for turbulent quantities.

The General Ocean Turbulence Model (GOTM) in which most of the
physical, mathematical and numerical features discussed here are realised as
computer code, is briefly presented in chapter 5.

First model calibrations and validations are performed in chapter 6. These
idealistic scenarios are open channel flow, a wind-entrainment study moti-
vated by the Kato and Phillips [1969] laboratory experiment and a convective
penetration study motivated by the Willis and Deardorff [1974] laboratory
experiment.

Finally, some one-dimensional water column simulations of field cam-
paign measurements are discussed in chapter 7. The classical scenarios Ocean
Weather Station Papa in the Northern Pacific Ocean and the Fladenground
Experiment 1976 in the Northern North Sea with only temperature profile
observations as validation data are simulated. Four more recent campaigns
including turbulence measurements in the Irish Sea, Liverpool Bay, again the
Northern North Sea and Lago Maggiore (a lake) are simulated as well.

Ten perspectives for future research resulting from the discussions in this
book are listed in section 8.






2 Basic model assumptions

2.1 The viscous equations of motion

In this section, the Navier-Stokes equations which are valid basically for all
flow situations are briefly introduced. It is then discussed in detail why real-
istic environmental problems involving a range of temporal and spatial scales
cannot be reproduced on today’s (and tomorrow’s) computers by means of
these equations.

2.1.1 Continuum hypothesis

Seen from almost all viewpoints, fluids are considered as continuous media.
The so-called continuum hypothesis is based on the fact that the temporal
and spatial scales of the underlying molecular structure are clearly separated
from the macroscopic scales of e.g. (1 mm)?®. In contrast to this macroscopic
scale, the average distance between two water molecules is of the order of
10~7 mm.

By making this continuum hypothesis, some of the most relevant prop-
erties of a real fluid have to be parameterised such that they are properly
represented in the continuous model fluid. The most important properties
are the concepts of viscosity and density. In a continuous fluid, the dynamic
viscosity p relates the frictional forces in the fluid, F;, to the gradients of
flow velocity!, v;:

Fi = uajjvi. (2.1)

The properties of viscosity can most easily be explained by considering
a so-called perfect gas, in which the molecules are freely moving without
any forces between them, except during mutual collisions. When denoting
the root mean square (r.m.s.) speed of one single molecule with ¢/ and the
average time between two collisions with 7, then the viscosity v of a perfect
gas can be approximated by

! Flow velocity is defined as mean velocity of molecules averaged over a volume
considerably larger than the free-path length. For an exact statistical definition
of flow velocity, see Batchelor [1967].
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v= % ~UAT = LU (2.2)

with the so-called free-path length £ = UT, the density p and the kinematic
viscosity v. The density p is defined as the r.m.s. mass per unit volume and
strongly depends on the temperature and the pressure? of the fluid. In liquids
however, such as water, molecules are packed much more closely such that
repulsive and attractive forces between them cannot be neglected any more.
Thus the viscosity of water is more complex and cannot be explained by this
simple imagination of molecule collisions.

The parameterisation of these inter-molecular forces by the concept of
viscosity allows for the accurate description of most macroscopic processes.
One important feature which is however not retained any more with this
concept is surface tension, which occurs at the interfaces between fluids and
gases. Due to inter-molecular forces, there is the tendency to minimise the
area of this interface. This has the consequence that gas bubbles mixed into
a liquid and liquid drops in gases tend to spherical structures®. With this
minimisation of the gas-liquid interface area, the transfer of properties and
solutes between gas and liquid is minimised as well. This has the consequence
that the air-sea interactions between ocean and atmosphere, which are greatly
determined by breaking surface waves and subsequent bubble injection into
the water and water drops in the air, cannot be directly simulated with this
kind of concept. Thus, parameterisations for the air-sea interactions need to
be introduced already on this closure level.

For further reading about this topic, the text book of Batchelor [1967] is
recommended.

2.1.2 Navier-Stokes equations

The equations of motion of a Newtonian fluid? have already been derived in
the 19t® century by Navier [1822] and Stokes [1845] and are known as the
Navier-Stokes equations. After applying the so-called Boussinesq approxima-
tion (vertical density deviations from the mean value are small®) the following
equations of motion remain (see e.g. Sander [1998] or Haidvogel and Beck-
mann [1999)):

6jv,- =0 (2.3)

2 For proper statistical definitions of temperature and pressure, see Batchelor
[1967].

3 Tt also allows insects to move on the water surface without getting wet.

* Water behaves to a high degree like a Newtonian fluid, which is characterised
by a linear relationship between the non-isotropic parts of the stress and the
rate-of-strain tensor, see Batchelor [1967].

5 By means of the Boussinesq approximation, the mass conservation equation sim-
plifies to the incompressibility condition (2.3).
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Orv; + ’Ujaj’Ui - Vajj’l]i + 28250 = —p— - —.p. (2.4)

The equations are given in a Cartesian coordinate system with the first
coordinate z; = z pointing eastwards, the second coordinate x2 = y pointing
northwards and the third coordinate x3 = z pointing upwards, i.e. normal
to the geopotential. Time is denoted by ¢t. Here, v1 = u, v2 = v and v3 = w
are the eastward, the northward and the upward velocity components, re-
spectively. Further prognostic variables are potential density p and pressure
p. A constant reference density is given by pg. The flow is assumed to be
influenced by geophysical properties such as gravitation g; = (0,0, g) and ro-
tation §2; = (0, £2 cos(®), 2 sin(P)) where g = 9.81 ms~? is the gravitational
acceleration and {2 = 7.289 - 10~° s~ ! is the angular velocity of the earth
and & the latitude. The kinematic viscosity v has a value of v = 1.3-1076
m?s~! at 10°C, which strongly varies with temperature such that its value
decreases to v = 8.0 - 1077 m?s~! at 30°C.

For the alternating tensor €5, see equation (9.5) in section 9.1.

Although the Navier-Stokes equations (2.3) and (2.4) have been known
for so long and although they are the basis for treating all kinds of fluid
dynamics problems ranging from small-scale technical applications to cli-
mate prediction studies, the existence of smooth and physically reasonable
solutions could not yet be proven (see Fefferman [2000]). This problem is
considered by mathematicians as being so severe that it has actually been
named as one of seven Millennium Prize Problems by the Clay Mathematics
Institute of Cambridge, Massachusetts and its solution will be awarded with
one million US Dollar. This dramatic gap in the theoretical understanding
of fluid dynamics should always be kept in mind when dealing with systems
of partial differential equations derived from the Navier-Stokes equations.
However, numerical solutions of the Navier-Stokes can be found such that
the hypothesis of existence of smooth and physically reasonable solutions is
supported.

2.1.3 Tracer equations

Equations for the active tracers potential temperature 7' and salinity S are
needed in order to calculate the density p in marine waters. They can be
derived on similar grounds than the Navier-Stokes equations. The potential
temperature budget equation has the following form:

0.1

6tT -+ U16‘]T — I/Ia‘”T = c;)?,

(2.5)

where I is local solar radiation in the water, ¢, the specific heat capacity
of water, and v’ the molecular diffusivity of temperature, which has a value
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of ' = 1.38- 1077 m2s7!, slightly varying with temperature. The salinity
budget equation can be written as:

OS +v;0;S — Vllajjs =0, (2.6)

where v is the molecular diffusivity for salinity, which has a value of "' =
1.1-107° m2s~ 1.

The potential density p of water is determined by the potential tempera-
ture T, the salinity S and the pressure p:

p=p(T,S,p). (2.7)

For most oceanic applications, the equation of state is approximated by
the UNESCO equation of state, see Gill [1982]. For lakes however, a slightly
modified equation of state should be used in order to account for small salt
concentrations (see Chen and Millero [1986]). Often, more simple approxi-
mations are sufficient:

p = po+ Br(T —Tp) + Bs(S — So). (2.8)

with the thermal and haline volume expansion coefficients 1 = drp(Ts, So, 0)
and Bs = 9sp(To, So,0), respectively and the reference density po = p(To, So,0).

Together with suitable initial and boundary conditions, the equations
(2.3) - (2.7) form a closed system for the seven prognostic quantities vy,
va, V3, p, T, S and p. Further dynamic equations for other properties or
dissolved substances (e.g. oxygen or carbon dioxide) could easily be added
to this system of equations in order to model more complex environmental
situations.

2.1.4 Phenomenology of turbulence

The relevant processes in hydrodynamic flows can be described with great
accuracy by the set of equations given above. Because of the turbulent dy-
namics which develop in such flows due to non-linear instabilities, predictions
can however only be accurate in a statistical sense. Turbulence is by definition
a random and thus unpredictable process (see Lesieur [1997] for an in depth
discussion). The idealised view for turbulence generated in simple flow geome-
tries is that non-linear instabilities first create large overturns. The kinetic
energy contained in these eddies is then transferred to smaller and smaller
eddies. Finally, the turbulent eddies are that small that their kinetic energy
dissipates into heat due to viscous friction. This so-called energy cascade from
larger to smaller scales has been poetically described by Richardson [1922]
(loc. cit. Lesieur [1997], p. 177):

Big whirls have little whirls,
which feed on their velocity,
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and little whirls have lesser whirls,
and so on to viscosity.

In the ocean of course, the generation of turbulence is much more com-
plex. Due to internal and surface waves and viscous effects near boundaries,
turbulence is produced on a whole range of scales.

It was Kolmogorov [1941] who predicted for the idealised case of station-
ary isotropic turbulence at high Reynolds numbers (see definition (2.10))
that the rate of energy dissipation £ at viscous scales controls the whole en-
ergy cascade in the so-called inertial subrange. This part of the spectrum
lies between the integral wave number (macro-scale) characterising the large
energy-containing scales at which turbulence is produced and the dissipative
wave number (Kolmogorov micro-scale) characterising the small dissipative
scales. Such a typical turbulence energy spectrum is sketched in figure 2.2.
According to the famous two-thirds law by Kolmogorov [1941], the turbu-
lent energy spectrum for fully developed turbulence scales as follows in the
inertial subrange:

E(ky) x €23k, (2.9)

with the energy spectrum E(k,,) and the wave number k,,.

This means in turn that the energy input to turbulence at the macro-
scale determines the dissipation rate ¢ (see e.g. Kantha and Clayson [2000]).
This assumption of a spectral equilibrium is the theoretical basis on which
all turbulence modelling builds up.

2.1.5 Range of scales

The set of equations (2.3) - (2.7) has been numerically discretised and solved
on computers since several years in the field of computational fluid dynam-
ics for solving idealised small-scale problems such as flows around cylinders
or between plates. This method of numerically calculating flow problems is
known as Direct Numerical Simulation (DNS). However, the applicability of
this method to real-world situations is limited by the range of spatial and
temporal scales involved. These cover several orders of magnitude, see figure
2.1 for relevant scales in the ocean. The major problem here is that pro-
cesses on all scales interact with each other due to the non-linear character
of the Navier-Stokes equations such that a consideration of only the scales of
interest is not sufficient.

One quantity which characterises the intensity of turbulence is the dimen-
sionless integral-scale Reynolds number

R, == (2.10)

with the r.m.s. velocity of the turbulent fluctuations, ¢, and the integral
length scale of the turbulent motions, L. The latter length scale can also be
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Fig. 2.1. Temporal and spatial scales of various typical processes in the ocean from
von Storch and Zwiers [1999]. Courtesy to Hans von Storch, Geesthacht, Germany.

interpreted as the macro length scale of turbulence representing the size of
the energy-containing eddies (see Kantha and Clayson [2000]). The Reynolds
number can be interpreted as the ratio of the non-linear terms (advection)
and the linear terms (diffusion) in the Navier-Stokes equations. With typical
sizes of ¢ = 0.1 ms™! and L = 1 m like in the oceanic mixed layer values
of R, ~ 10° can easily be reached. According to Frisch [1995] the number
of grid points to fully resolve this flow up to the smallest eddies grows with
Rg/ *. With a time step proportional to the grid size, the numerical effort
for the calculation of such a problem for a certain number of eddy turnovers
behaves like R2. Since with todays computers only problems with integral-
scale Reynolds numbers up to R, = 10* can be solved, we are even far away
from fully resolving a few large (i.e. energy-containing) eddies. Since real-
world problems itself are some orders of magnitudes larger than such large
eddies, it is for now and for the near and far future impossible to entirely
solve them by applying DNS (see Lesieur [1997]). Only small details such as
turbulence caused by Kelvin-Helmholtz instability in the thermocline could
be so far investigated by means of DNS, see Smyth et al. [2001].
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One attempt to solve this problem is Large Eddy Simulation (LES). With
this method, the large energy-containing eddies are resolved. The smaller
scales into which the kinetic energy is transferred are parameterised with a
sub-scale turbulence closure model. Such a division of the flow is justified
since it is the large eddies which most efficiently transport properties of the
fluid (see Ferziger and Perié [1999]). This division of the flow in resolved
and unresolved parts is obtained by a spatial filtering of the Navier-Stokes
equations. The filter length is determined by the grid size of the numerical
model. This filter length should idealistically be inside the inertial subrange
replacing the Kolmogorov micro-scale by the filter scale without significantly
changing the dynamics of the large eddies. LES models are by definition
three-dimensional and non-hydrostatic. Thus, LES models are in principle
based on the same set of equations as DNS with the only difference that now
the viscosity v and the diffusivities v’ and v" are replaced by eddy viscosities
and diffusivities obtained from a turbulence closure model (see e.g. Ferziger
[1995]). Depending on the sub-grid scale model, these eddy viscosities and
diffusivities might be different for horizontal and vertical directions leading
to a tensorial formulation for the turbulent mixing. A hierarchy of subgrid
scale models of various complexities is given by Canuto [1994].

LES has been applied to a variety of oceanic problems in recent years.
Deep convection in the ocean has been studied by Jones and Marshall [1993],
Send and Marshall [1995] and Denbo and Skyllingstad [1996]. Processes
in the equatorial Pacific have been investigated by Large and Gent [1999]
and Skyllingstad et al. [1999], ice-ocean interactions have been simulated by
Kampf and Backhaus [1999], and the phenomenon of Langmuir circulation as
consequence of wave-current interaction has been studied by Skyllingstad and
Denbo [1995] and McWilliams et al. [1997]. The deep diurnal cycle of tur-
bulence in the surface mixed layer of the equatorial Pacific Ocean has been
studied by Wang et al. [1998]. LES has been extensively used for validat-
ing one-dimensional turbulence closure models, see e.g. Ayotte et al. [1996]
and Large and Gent [1999]. For some idealised scenarios LES has been fre-
quently applied for statistical properties of turbulence which cannot easily
be quantified in laboratory experiments or field studies. For a recent study
of the effect of rotation on statistical properties of convective turbulence, see
Mironov et al. [2000]. Most of these studies deal with convective turbulence
in which the size of the large eddies is relatively large with respect to the
relevant mean flow scales processes such as the mixed layer depth. For stably
stratified flows, where the energy-containing eddies are limited in size, LES
is in principle computationally too costly for resolving the turbulent mo-
tion down into the inertial subrange. Sometimes, nesting techniques coupling
models for larger scales to models for smaller scales are used for overcoming
these problems, see Sullivan et al. [1998].

All these applications are however in principle used for studying processes
which are macroscopically homogeneous in the horizontal direction. This is
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obtained by using periodic or solid wall boundary conditions at the lateral
boundaries and spatially homogeneous (often slightly disturbed by noise)
surface forcing. Due to limited computer resources, the application of LES
models to more complex three-dimensional situations is still in the far future.

The method suitable for such more complex flow situations is the so-called
ensemble averaging resulting in the so-called Reynold’s-averaged Navier-
Stokes equations (RANS), from which various classes of turbulence closure
models can be derived, see section 2.2.3. It is characteristic for RANS that
they do not contain any random turbulent motion. These are all parame-
terised by the sub-scale turbulence model in a statistical sense. Thus, we
have a hierarchy of methods at hand, ranging from DNS for resolving the
entire turbulence over LES resolving large eddies and parameterising smaller
structures to RANS where all turbulent motion is parameterised (see Ferziger
[1995]). The range of resolved and parameterised scales are shown in figure
2.2.

log(Turbulent kinetic energy)

log(wavenumber)

resolved ke model

< >« > ke-model
Boundary resolved LES
< >« >« > LES
Boundary resolved
< >« > DNS

Fig. 2.2. Range of resolved and parameterised scales for Reynold’s averaged models
(here: k-e model), Large Eddy Simulation (LES) and Direct Numerical Simulation
(DNS). The curve shown above is an idealised turbulence energy spectrum ranging
from low wave numbers (left, large eddies) to high wave numbers (right, dissipative
Kolmogorov scale). Courtesy to Ole Petersen, Hgrsholm, Denmark.



2.2 The Reynold’s decomposition 15

In the following, methods based on RANS are discussed in further detail.

2.2 The Reynold’s decomposition

Here, the dynamic equations are derived which result from the Reynold’s
decomposition. It is discussed, how transport equations for unknown higher
moments can be constructed which in turn contain new unknown moments of
one order higher. This leads to the well-known Friedmann-Keller series (see
Keller and Friedmann [1924]) and the turbulence closure problem.

2.2.1 One-point closures

The method derived in the following and used throughout this work is often
referred to as one-point closure modelling. Statistical properties of a flow are
considered for each single point in the physical space, allowing for correla-
tions between different physical quantities or autocorrelations in this point.
By doing so, characteristics such as mean flow, fluctuations, variances etc.
are defined, which have certain significant physical meanings for the flow un-
der consideration. This method of one-point closure modelling is suitable for
complex geophysical flows, since it is economic in terms of computational
costs and has a certain degree of realism in modelling these statistical flow
properties of interest. It should however be noted that this method does not
contribute to a deeper understanding of the underlying turbulence itself. It
is therefore necessary to extensively validate models within the class of one-
point closure modelling against results of DNS and LES, and also against
laboratory and field data.

In contrast to this, two-point closure models deal with the correlations of
physical properties between various scales of motion, in the physical as well
as in the Fourier space. This theory has been described in detail by Orszak
[1977]. It is very promising for investigating various properties of turbulence,
since it is much faster than DNS such that high Reynolds numbers can be
reached. However, similarly to LES, it is still too costly for solving com-
plex geophysical fluid problems. Two-point closure models can however be
exploited in the framework of renormalisation group theory for the determi-
nation of empirical parameters for one-point closure models, see e.g. Canuto
et al. [2001] and the work of Semion Sukoriansky and Boris Galperin carried
out in the framework of the CARTUM project (pers. comm., see section 5.6).

2.2.2 Ensemble averages

For any prognostic variable U, a decomposition into a mean field U= (U)
and a fluctuating field U is formally carried out:
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U=U+U. (2.11)
The fluctuating part of the flow is defined such that the mean of it vanishes:

(Uy=0 (2.12)

This decomposition is named after Reynolds [1895] who observed turbu-
lent motion in pipe flows. Generally, such a decomposition is only well-defined
when a clear separation between small and large scales, a so-called spectral
gap, exists. For the phenomenon of turbulence a spectral gap is generally
not present in contrast to the separation between molecular motions from
flow motions which leads to the continuum hypothesis discussed above. How-
ever, with a suitable averaging technique, the decomposition can be formally
carried out.

Various averaging procedures have been proposed. For example, the av-
eraging by means of a temporal filter is quite an arbitrary procedure, see
Hinze [1975]. Here, the theoretical concept of ensemble averaging is a way
around this problem: Assume that a certain realisation of a flow situation
is repeated n times on the same domain with the same macroscopic initial
conditions and external forcing. At a certain time tg and at a certain position
(0,Y0,20) the property U; is observed for the experiment i. The ensemble
average is then defined as the mean value of all U;(tg, zo, Yo, 20) for the limit
of infinitely many realisations:

1y
U(to, @0, Y0, 20) = lim — " Us(to, %0, Yo, 20)- (2.13)
i=1

n—oo N, 4

The following four properties of the averaging process are needed for the
derivation of the Reynold’s equations, see section 2.2.3:

1. Linearity:

({U+AV) =(U) + XV). (2.14)
2. Derivatives and averages commute:
(0:U) = 0:(U) (2.15)
3. Double averages:
() =) (2.16)
4. Product average:
UV)) = {UNV) (2.17)

It can be shown that only the ensemble averaging procedure (2.13) ful-
fils the properties (2.14) - (2.17), see Mohammadi and Pironneau [1994].
However, other than temporal or spatial filters, this cannot be applied to
the analysis of real world phenomena. According to the ergodic assumption
however, it is assumed that for stationary and homogeneous turbulence the
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ensemble average can be identically replaced by temporal and spatial filters,
see Hinze [1975]. For those who observe turbulence in the ocean, this has the
important consequence that temporal and spatial averaging intervals have
to be chosen such that turbulence within these intervals can be regarded as
stationary and homogeneous in principle.

2.2.3 The Reynold’s equations

By applying the ensemble average operation (2.13) to the system of equa-
tions (2.3) - (2.6) and applying the rules (2.14) - (2.17), the following budget
equations for velocities and tracers result:

0;D 0
Byi + 0;0;0; — 0; (v — (B5:)) + 2ea o = — 22 — gL (2.18)
Po Po
ajﬁj =0 (2.19)
_ Y
OT +v;0;T — 0;( ;T — (5;T)) = 2=, (2.20)
Cppo
(9,55 + Ujajg - 8j(1/”8jg - <1~}]§>) =0. (2.21)

For the density, it is assumed that the Taylor expansion around (7', S, p)
converges fast such that the higher order terms can be neglected (see Burchard
[1995]):

p={p(T+T,5+5,p+p)~ p(T,S,p). (2.22)

Some new terms appear in the equations (2.18) - (2.22) such that the
system is no longer closed. These second moments (statistical correlations
between two flow properties in the same location) are the Reynolds stresses
(;9;), turbulent heat fluxes® (#;T) and the turbulent salinity fluxes (#;S),
i.e. in total 12 new terms for which closure assumptions have to be made.

The Reynold’s equations (2.18) may be transformed into a transport equa-
tion for the mean kinetic energy per unit mass, defined as

1
e= 5@,?. (2.23)

After multiplying (2.18) by ¥;, the following energy equation is obtained:

5 Heat flux and temperature flux are used here synonymously, assuming basically
constant density and specific heat content.
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Oie + 6]- (ﬁje + ’l_}i<’l~}i’l~)j) — m‘?je + %)
’ (2.24)

On the left hand side, only gradient terms appear which redistribute the
energy due to advective or diffusive processes whilst on the right hand side
appear fluxes between mean kinetic energy and turbulence (see the equa-
tion for turbulent kinetic energy, (2.31)), fluxes between mean kinetic and
potential energy and direct viscous dissipation into heat.

2.2.4 The Reynolds stress and turbulent flux equations

For the so-called second moments, transport equations can be derived from
the viscous equations and the Reynold’s averaged equations. In order to ob-
tain equation for the Reynolds stresses (0;7;), equation (2.4) is subtracted
from equation (2.18) which gives an equation for @;. This will then be formally
multiplied by 9; and added to the same equation but with exchanged indices.
After ensemble averaging the resulting equation and applying the rules (2.14)
- (2.17), transport equations for the Reynolds stresses are obtained:

0¢(0;05) + Oy (@l(ﬁiﬁj) + (0,9;05) — vO, (17,17,))

= \—61%(’51’5]') - alﬁj (171175)4—\201 (Eilm <17]’l~)m) + €jim <’171’l~)m))1

~~ ~~

P;; 2;5
1 o o 1, i
— —{9i(8;0) + 9;(®:ip)} — —((8:0;P + 5;0:5)) (2:25)
po L o .
B?irj ﬁ:j
= 2v((0,9;)(0i%;)) -
— —m———

£ij

It was Chou [1940] who first derived such a transport equation for the
Reynolds stresses, see also Chou [1945]. The terms on the right hand side are
grouped together such that P;; is the shear production, (2;; redistribution due
to rotation, B;; the buoyancy production, II;; the pressure-strain correlator
and g;; the dissipation of the Reynolds stress (¥;;).

After an analogous procedure, transport equations for the turbulent heat
and salinity fluxes are obtained as well:
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O (ﬁzf) + 6j (77j <i~},T) + (’f)z’ﬁJT) - (I/ + I/')aj (’f)zT))

+V'<T6jj1~)i) + I/<’l~1jajjT)

= —(0:9;)0;T — <5jf>5j5£—?€ijzﬂj<@zfz (2.26)
Pir Qir
P | B -
= (T = o (T0) = 2w + ) (250 (55T
—_——— —— 5:-;
Bir It

Here, P;7 is the mean gradient production, (2;7 redistribution due to
rotation, B;r the buoyancy production, II;7 the pressure-strain correlator
and &;7 the dissipation of the turbulent heat flux (#;T). The solar radiation is
here considered to be non-fluctuating. This is indeed a crude assumption since
radiation in the water column should be expected to be fluctuating due to
differential refraction at surface waves and organic and anorganic suspended
matter. To the knowledge of the author of this book, this phenomenon has
not yet been investigated in detail. The transport equation for the turbulent
salinity flux (#;S) is analogue and is therefore not shown here.

Since the density fluctuations p are usually approximated by the linear

term of its Taylor series (see Burchard [1995]),

p~ Topp(T, §) + $95p(T, ), (2.27)

transport equations are also needed for the second moments (1), (S?) and
(T'S) in order to calculate the B;r term in the (9;T') equation. Exact transport
equations for those can be derived as well, examples are given here for (72):

BT + 0, (@,- (T2 + (5,72 + 10, <T2>) -

o ] (2.28)
— 25, T)9;T - 2v/((8;T)%)

~ ~~

Pr T

and (T'S):
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O(TS) + 9; (@j (T8) + (5;TS) — (V' +v"); (Té))

= —(5;9)0;T — (,T)9;S
g (2.29)

Prg

- (2(1/ + V") {((8;T)(9;5)) + v'(T9;;5) + v" (S@ﬁ“))

~ >
~~

ETS

In (2.28) and (2.29), Pr and Prg are production due to mean gradients
and g7 and epg dissipation of (T?) and (T'S), respectively.

New unknown quantities appear now in the equations, namely the third
moments (#;3;0y), (8;9;T), (%, T?) and (;TS) and the pressure-strain corre-
lators II;; and II;r.

Also for these correlators, transport equations could be derived from the
sets of equations (2.4) - (2.6) and (2.18) - (2.21). However, this would cre-
ate unknown fourth order terms. This so-called Friedmann-Keller series (see
Keller and Friedmann [1924]) could be continued until infinity, but by doing
S0, a closed system of equations will never be obtained. This is the well-known
closure problem of statistical turbulence.

The solution is to make closure assumptions for the unknown terms based
on empirical considerations. This procedure is motivated by the hypothesis
that the importance of the higher order terms deceases with their order in
relevant flow situations.

So-called second-moment closures are discussed in section 2.3.

2.2.5 The exact equations for turbulent kinetic energy and its
dissipation rate

The turbulent kinetic energy k, defined as the kinetic energy per unit mass
of the velocity fluctuations is defined as
1, 1
k=503 = 50, (2.30)
the unit is usually Jkg~!. A transport equation for k can be derived directly
from (2.25) by setting i = j:

Ok + 6]' (@jk + <'17J %ﬁf) — V@jk + pl—o('ﬁjﬁ)>

) (2.31)
= —(0;0;)0;0; — £ (03p) — v{(0;0:)"),
————s ) N———
P B €
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Here, P is the shear production, B the buoyancy production and e the
dissipation rate of turbulent kinetic energy. It should be noted that the shear
production term P equals the energy loss of mean kinetic energy due to inter-
nal friction into turbulent kinetic energy, see equation (2.24). This conserva-
tion principle will be considered for the discretisation of the shear production
term, see section 4.3. For the dissipation rate,

e = {(;)%) (2.32)

(the unit is usually W kg 1), which appears as a sink on the left hand side
of the k-equation, an exact equation can be derived as well, see e.g. Wilcox
[1998]:

Oie + 6]- (’UjE + (ﬁjl/(ajﬁi)Q) - V@j&‘ + 2/%(&616,;5))

= —2V6j’l_)i ((61'17];3]'17];) + (8k17i6k17j)> - 2V6jk’(_)i<’(~)k8j’(~)i)
N ., (2.33)
P

—21/%6]' <’l~)36jﬁ) —?V ((6j17i6k17,-6j17k) + V<(a,'j’l~)k)2))4

B €e

In (2.33), the terms on the right hand side have been ordered such that
those containing mean flow shear or curvature are denoted by shear produc-
tion of dissipation, P, those containing density fluctuations are denoted by
buoyancy production, B, and those containing only gradients of fluctuations
are denoted by dissipation of dissipation, .. The gradient terms are all put
onto the left hand side.

It is evident that for both equations (2.31) and (2.33), the effect of the
Coriolis rotation is vanished and that pressure fluctuations do not act as
sources or sinks for k¥ and €, but do only transport these quantities such as
advective or diffusive transports.

2.3 Second-moment closures

The aim of second-moment closures is to derive a closed system of equations
based on the second-moment equations for (9;9;) and (3;T'), (2.25) and (2.26).
Other second moments which have to be closed are the temperature variance
(T?) as part of the By term in equation (2.26), and - if salinity is considered
as well - terms containing salinity fluctuations such as (#;5), (52) and (T'S).
The closure is achieved by relating the pressure-strain correlators IT;; and
II;7 to the known second moments and mean flow quantities, see section
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2.3.1. Some assumptions have to be made for the viscous dissipation terms
€;; and g;7, see section 2.3.2. In the case of more than one active tracer,
further assumptions have to be made for the tracer cross-correlations, which
is briefly discussed in section 2.3.4.

Since the full consideration of equations (2.25) and (2.26) requires the
solution of nine (plus one for the tracer invariance and eventually four more
if salinity is included plus one more for (T'S)), often some assumptions are
made which lead to an algebraic system for the second moments, see section
3.1.2. Together with this, the rotational terms which mean an enormous com-
plication for obtaining this algebraic system of equations are often neglected.
The class of closure schemes which finally results are the so-called algebraic
second-moment one-point closure schemes, which are good compromise be-
tween high accuracy and low computational costs for many environmental
flow situations. The problem will then still depend on two parameters for
which dynamical transport equations have been derived in section 2.2.5, the
turbulent kinetic energy (TKE), k, and the turbulent dissipation rate of the
TKE, . For these two quantities, various closures will be presented in sec-
tion 3.2. The basic results which are summarised in sections 2.3.1 - 3.1.2 have
been taken from the recent publication by Burchard and Bolding [2001].

2.3.1 Pressure-strain correlators

Here, three different approaches for closing the pressure-strain correlators I1;;
and IT;7 will be presented. They have been published by

— Kantha and Clayson [1994] (henceforth denoted by KC). This model is an
extension of the theory which has been developed by Mellor and Yamada
[1974] and Mellor and Yamada [1982], two publications which play a fun-
damental role in geophysical fluid dynamics since that time. A hierarchy
of models has been presented in these papers of which the level 2.5 model
defines the algebraic second-moment one-point closure schemes on which
the focus is put here.

— Burchard and Baumert [1995] (based on the work of Rodi [1980] and Hos-
sain [1980], henceforth denoted by RH). In his famous review publication,
Rodi [1980] summarised the work of Daly and Harlow [1970], Hanjalic and
Launder [1972], Launder and Spalding [1972], Launder [1975a], Launder
et al. [1975], Rodi [1976], Gibson and Launder [1978] and many others on
the field of second-moment closures. After simplifying the pressure-strain
correlator according to Rodi [1980], Hossain [1980] extended this theory
towards a complete algebraic closure. Burchard [1995] and Burchard and
Baumert [1995] derived implicit so-called stability functions from this the-
ory.

— Canuto et al. [2001] (henceforth CA). In this recent publication, the work of
the 80’s and 90’s is exploited for deriving state-of-the-art algebraic second-
moment closures. Important contributions to this theory are from Shih and
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Shabbir [1992], Canuto [1994], Canuto et al. [1994], Canuto and Dubovikov
[1997a] and Canuto and Dubovikov [1997b]. For the determination of em-
pirical parameters, extensive use of two-point closure modelling has been
made.

The theories developed in KC, RH and CA can be summarised in the fol-
lowing general expression for the pressure-strain correlator II;; which appears
on the right hand side of (2.25):

Ef,. . 2 2 2
Hij = ClE ((’Uﬂ)j) - géwk) +02 (Pz] — 5611P> +Cg (B,‘j — géijB)

(ﬁl) (1{2) (§3)

2
+c4 (D,’j - 5611P> +C5ksij
= (R5)

R4)

(2.34)

with P;; and B;; from (2.25) and P and B from (2.31), respectively. For

the Kronecker symbol d;;, see section 9.1. The basic form of (2.34) can be

derived by applying the divergence operator to the exact transport equation

for velocity fluctuations and solving the resulting Poisson equation for the
pressure fluctuations by means of the Green’s function, see Rotta [1951].

Further definitions are mean shear

1
Sij = 5(0:9; + 9;0i) (2.35)
and the anisotropic shear production
D;; = —(0;01)0;0; — (0;01)0;0;. (2.36)

The parameters ¢y, ..., ¢s have been introduced for parameterisation of
the pressure-strain correlators. Setting them all to zero would result in the
neglect of these terms. The single terms have the following meaning: Return to
isotropy (R1), see Rotta [1951], shear production (R2), buoyancy production
(R3), and anisotropic contribution due to shear, (R4) and (R5). It has been
found by Launder et al. [1975] that the isotropic shear production term (R2)
clearly dominates the anisotropic shear terms (R4) and (R5). These terms
are therefore neglected in the closure RH by Rodi [1980], Hossain [1980] and
Burchard and Baumert [1995]. A consideration of these terms would have led
to serious problems in solving the resulting non-linear system of equations, see
section 3.1.3. The empirical parameters ¢y, . .., c5 are given in table 2.1 for the
closures KC, RH and CA. It can be seen that the model KC neglects pressure-
strain effects due to shear and buoyancy production, the model RH neglects
effects of terms (R4) and (R5), and only the model CA considers all terms.
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It is shown in detail by Umlauf [2001]7 that the CA model is isomorphic
to the model by Launder et al. [1975], see also Zeman and Tennekes [1975].
The calibration of these empirical parameters is referenced in the respective
publications of the KC, the RH, and the CA model. It should be noted that
in the original version of the RH model, wall proximity functions have been
included in the parameters (see Hossain [1980]). These are neglected here.

Model|c1 ez c3 |ca cs ciT |c2r |C3T |caT |CT
KC |2.98({0.0 (0.0{0.0 (0.32 |3.70|0.7 |0.2 |0.0|1.23
RH (1.8 |0.6 [0.5/0.0 (0.0 |3.0 |0.33]|0.33|0.0|1.6
CA (2.5 [0.776]0.5(0.208(0.512|5.97(0.6 [0.33|0.4 |1.44

Table 2.1. Parameters for the Reynolds stress closure models.

Similarly to (2.34), the theories KC, RH and CA for parameterising the
pressure-strain term II;7 appearing on the right hand side of (2.26) can be
generally written as (see Launder [1975b]:

I I
ILir = clTE('UiT>
—_——
(H1)
_ (2.37)
+ cor(0;T)0ju; — CBT&(aTP<T2) —car{(0;T) Vi
———— Po ———
~—_——
H2) (H3) (H4)
with mean vorticity
1
Vij = 5(8j17i — 6,"17]'). (2.38)

In (2.37), the terms have the following physical meaning: return to
isotropy (H1), production by mean gradients (H2), production by buoyancy
(H3), and contribution due to vorticity (H4). Here, the KC and the RH model
neglect the (H4) term whereas CA considers all terms (see table 2.1). The
closure by Mellor and Yamada [1982] chose the same value for ¢i7 than KC
did, but used cor = c37 = 0.

2.3.2 Dissipation terms

Following the theory of Kolmogorov [1941], the statistical properties of tur-
bulent flow at high Reynolds numbers are invariant in terms of rotation, see
also the discussion by Frisch [1995]. This so-called local isotropy assumption

" The author of this book is grateful to Lars Umlauf for providing a manuscript
with the conversion of the Canuto et al. [2001] closure to the present notation.
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leads to the following simplification of the dissipation term ¢;; appearing on
the right hand side of the Reynolds stress equation (2.25):

2
Eij = 551']'6. (2.39)

According to Rotta [1951], this local isotropy principle can be further
exploited such that the dissipation term e;7 in the heat flux equation (2.26)
vanishes:

gir =0. (2.40)

For the dissipation of (12), see equation (2.28), the following parameter-
isation is used (see Launder [1975a]):

2 &
CTk

er = (T?) (2.41)
with the empirical parameter ¢y from table 2.1.

The assumption of high Reynolds number seems to be very restrictive
for the application of oceanic turbulence models. However, only a few low
Reynolds number models have so far been applied in the marine environment,
see e.g. Svensson and Omstedt [1990] for an application of the k- model to
flow under melting sea-ice, which establishes a stably stratified near-wall flow
with low flow velocities. In most other applications, the Reynolds number is
assumed to be high, i.e. of the order of at least 10®, which is theoretically
justified when the water is deep or flow velocities are high.

2.3.3 Third moments

Further closure assumptions have to be made for the third moments (9;9;7;),
(0;0;T) and (#;T?), which occur on the left hand sides of equations (2.25),
(2.26) and (2.28), respectively. By following the same principle as applied to
derive equations for the second moments (see section 2.2.4), equations for the
third moments can be derived as well, see Andre et al. [1982], Canuto [1992].
Based on this and by assuming stationarity and locality, Canuto et al. [1994]
derived a closed set of algebraic equations for the shear-free third moments.
The extensive use of symbolic algebra is however inevitable on this level of
sophistication. Recently, Canuto et al. [2001] extended this third-moment
closure to flow with shear.

An alternative approach has been suggested by Zilitinkevich et al. [1999].
They related the third moment (2T) (vertical flux of vertical turbulent
temperature flux) to the vertical temperature flux (w7T) by means of the ver-
tical velocity skewness (%) /(@?)3/2. With similar arguments, Mironov et al.
[1999] suggested to parameterise the vertical flux of temperature variance,
(wT?), by the product of the temperature skewness (7°)/(T?)3/? and the
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vertical turbulent temperature flux. By doing so, they remove an inconsis-
tent non-symmetric behaviour of a similar parameterisation suggested earlier
by Abdella and McFarlane [1997]. However, since these parameterisations de-
pend on the skewnesses of velocity and temperature, closures for the third
moments (@) and (T) are still required.

In a different approach, D’Alessio et al. [1998] use non-local informations
provided by the surface fluxes for the parameterisation of third moments.
These are used for obtaining non-local algebraic expressions for the second
moments.

In the so-called down-gradient approach, which is most widespread due to
its simplicity, third moments are related to the gradients of second moments
by using an eddy diffusivity:

<1~]z~ig> = _Vavyai <'i'g) (2'42)

with the eddy viscosity v,, for any fluctuations & and §. It has however
been shown by many investigations (see, e.g. Moeng and Wyngaard [1989])
that the down-gradient approximation (2.42) seriously underestimates third
moments due to the neglect of non-local characteristics.

In the turbulence closure models on which focus is made in the present
investigation, the closure of third moment in the budget equations of the
second moments is however made in a much simpler way: they are neglected
since local equilibrium is assumed such that consequently the left hand sides
of (2.25), (2.26) and (2.28) and (2.29), vanish, see section 3.1.2.

Third moments also appear in the transport equations for turbulent ki-
netic energy and its dissipation rate, see equations (2.31) and (2.33), respec-
tively. Also for the third moment for k, Canuto et al. [1994] and Canuto
et al. [2001] suggest complex algebraic closures. The flux of dissipation rate
could then be related to the TKE flux by scaling the latter with the turbu-
lent time scale, k/e, see Canuto [1992]. However, in most applications, the
down-gradient approach is used for the parameterisation of the third mo-
ments of the TKE and its dissipation rate, see e.g. Rodi [1980]. The eddy
diffusivities for these quantities are then usually related to the eddy viscosity
for momentum by turbulent Schmidt numbers, see section 3.2.5. Also with
the down-gradient approximation for these fluxes of turbulent kinetic energy
and dissipation rate, observed values seem to be significantly underestimated,
see figure 6.11. In the convective boundary layer for example, (w3) which is
one of the components of the vertical TKE flux is positive throughout the
boundary layer (see Canuto et al. [1994], Mironov et al. [2000]) whilst 0, (?)
changes sign at about half of the depth of the convective boundary layer, see
figure 6.10. Therefore Canuto et al. [2001] postulate:

... Due to these reasons we shall abandon the DGA and solve [the
third-moment transport equations]. The only approximation is that
we consider the stationary case.
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However, in the present investigation the down-gradient approximation
is used for the turbulent transports of turbulent kinetic energy k and its
dissipation rate . There is one simple reason for this: computational costs.
In a one-dimensional model environment these costs are of course irrelevant.
But since it is the intention to suggest improved turbulence closure models
for three-dimensional models, computational costs are an issue. However, the
influence of better parameterisations for third moments of k and e should be
investigated in the future for the framework presented here.

2.3.4 Tracer cross-correlations

Most publications in which turbulence models are derived deal with only
one active tracer which is usually potential temperature, see e.g. Mellor and
Yamada [1974], Mellor and Yamada [1982], Rodi [1980], and Canuto et al.
[2001]. However, in most geophysical flow applications a second active tracer
is relevant as well, which is usually salinity for the ocean and moisture for the
atmosphere. After carrying out the Reynold’s decomposition and averaging,
one additional term has to be considered, which is the tracer cross-correlation
term representing the turbulent interaction between the two tracers. In the
ocean, this term is (TS’), for which an exact transport equation can be de-
rived, see equation (2.29). What is in principle done here, is assuming that
the dissipation rate of (TS') is zero, as already done for the dissipation term
in the heat flux equation (2.28). After neglecting the transport terms, see
section 3.1.2, the production term consequently vanishes as well. It is thus
assumed that temperature and salinity fluctuations are not correlated, i.e.
(T'S) =0.

Experience shows that this simplifying assumption does not always hold.
Typical examples are double-diffusive processes such as salt fingering (warm
and salty over fresh and cold water) or diffusive convection (cold and fresh
over warm and salty water). Such processes are driven by the different molec-
ular diffusivities of heat and salt which differ by two orders of magnitude, see
section 2.1.3. Parameterisations for such processes have been proposed for
example by Large et al. [1994] in order to overcome the problem of neglected
tracer cross-correlations. Recently, Canuto et al. [2002] suggested to carry
out a complete derivation of algebraic second moments including such cross-
correlations. In order to do so, they had to apply the mass average rather
than the Reynold’s average, see Canuto [1997]. The consequences of this new
closure however need further investigation.






3 Boundary layer models

3.1 Boundary layers

In this section the basic assumption is made that the aspect ratio of the flow
is small, i.e. that horizontal scales are much larger than vertical scales. This
leads to considerable simplifications of the dynamic equations. For the mean
flow this has the main consequence that now prognostic equations only for
the horizontal velocity components are needed. For the turbulence modelling,
the number of terms to be parameterised decreases significantly.

3.1.1 Boundary-layer approximation

In environmental flow situations, not all terms in the Reynold’s averaged
equations (2.18) are relevant for the determination of the flow characteris-
tics. In order to investigate which terms could be neglected, a scale analysis is
usually performed. Here, we look at a typical ocean mixed layer or estuarine
scenario. For the latter, processes near the bottom are considered as well.
Typical scales would be:

Horizontal velocity U ~O(1)ms?
Horizontal length scale £ =~ 0(10°) m
Vertical length scale H =~ O(10) m
Molecular viscosity v~ 0O(107% m?s7!
Turbulent velocity scale U, ~ O(1072)ms™!
Angular velocity 2 =010 st
Reference density po  ~ O(10%) kgm 3
Reference density difference Apy ~ O(1) kgm 3
Reference pressure difference APy ~ 0(10%) Nm™2

Gravitational acceleration g ~ O(10) ms~2

It should be noted that the scalings are somehow arbitrary and that the
boundary layer equations could also be derived with other combinations of
scales. In contrast to the other scalings, the scaling of the reference pressure
difference AP, is not easy to determine and is more an experience value than
an observation. A value of 102 Nm™2 is equivalent to a surface elevation
difference of 0.1 m, a scale which is actually typical in the open ocean over
distances of the order of £ = 10° m.



30 3 Boundary layer models

The turbulent velocity scale could be either surface or bottom friction
velocity or the convective Deardorff scale, see equation (6.5). The range of
values for the ratio of vertical to horizontal velocity fluctuations is about
0.522 < (17)2)1/2/(712)1/2 < 1.58, see e.g. Galperin et al. [1988]. Thus, the
same scaling for vertical and horizontal velocity fluctuations, U, will be used
here. From the scales defined above, a typical aspect ratio a = H/L ~ 1074
and a typical time scale £/U ~ 10°s = O(1day) can be derived. The scaling
of the mean vertical velocity w is obtained by using the mass conservation
(2.19) as UH/L ~ O(10 %) ms~L.

For estimating the order of magnitude of individual terms, the equations
for w = v; and w = U3, see (2.18), are rewritten in explicit form:

Oytn + Oy (u?) + 0y (u0) + 0, (W) + V03,4 + V0yyt + 10, .U
U/ uz/c uz/c uz/c vU/L? L2 vU/H?

+ 05 (U2) + 8y () + 8., (WD) + 202 cos(P)w — 202 sin(P)v = (51)

—— Y\ —  —\— ~
uz/c uz/L U2/H QUH/L QU
“1q =
— Po 6zpa
N——
APy /(po L)

O + Oy (WD) + Oy (D) + 0, (0?) + V0yyW + vByy + v,
N~~~ —— —— e — MY~ e— ~——

UPH/L®  UPH/L2 UPH/CL? UPH/L? vHU/LS  ynu/c3 vU/(HE)

+ 0y (D) + Oy (D) + 8, (w0>) — 202 cos(P)a =
—_— Y=\ Y= Y

(3.2)
uz/L uz/L Uz/H Qu
—8515:4(15 - Poz—galg(P - Po}
APo/‘ZPO’H) yAp‘c:/po
where
bo = Z'gpo (3.3)

with the distance from the surface, z’, is the hydrostatic reference pressure.

The resulting orders of magnitude for the single terms in equations (3.1)
and (3.2) are shown in table 3.1. According to this, the major balance in the
4 equation is established by the horizontal component of the Coriolis term
and the pressure gradient term. This balance is known as geostrophy. Terms
with one order of magnitude lower are the substantial derivative (containing
change in time and advection terms) and the turbulent vertical transport.
All other terms are at least three orders of magnitude smaller, and can thus
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4 equation (3.1)
ou APy u? u; P QuH uzg v
poL L H H2 £ L2
oo~ Hloao~Ho@o~>)|oao0=?)|0(10~®)|010~*)| 0(10~7) |0(10~°)
w equation (3.2)
AP, 94Apq ou Uz uz Uy U VUH
poH £0 H L HL L3
010> |o@ao=?) oo~ Hlo@ao=?)|0(10~?)|0@o~?)|0(10~"*)|0(10~*°)

Table 3.1. Typical scales for ocean mixed layers and estuarine flow for the @

equation (3.1) and for the @ equation (3.2). All terms have the unit ms™2,

be neglected in flow situations to which the scales given above fit. For the
¥ equation all terms scale in accordance to the @& equation. For the vertical
velocity equation (3.2), the major balance is given by the vertical pressure
gradient and the gravitational acceleration terms, which is the so-called hy-
drostatic equilibrium. All other terms are at least two orders of magnitude
smaller, and could thus be neglected in the flow situations scaled above. A
similar scaling can be carried out with the 7 and the S equation (2.20) and
(2.21), respectively.

All horizontal mixing terms, i.e. the horizontal gradients of the turbulent
fluxes, are of the order of four orders of magnitude smaller than the sub-
stantial derivative of the horizontal velocity components or tracers. This has
the consequence that the retention of these terms in the horizontal veloc-
ity and tracer equations is generally irrelevant. In ocean circulation models
however, the so-called meso-scale activity is generally not resolved by the
numerical discretisation due to relatively coarse horizontal grid spacing. In
order to account for this efficient physical transport process nevertheless, var-
ious parameterisations have been proposed, ranging from linear or bi-linear
diffusion with constant meso-scale eddy diffusivity over diffusion with grid-
size depending eddy diffusivity (see Smagorinsky [1963]) to the method of
thickness diffusion suggested by Gent and McWilliams [1990]. In the latter
scheme, eddy-induced transport velocities are added to the tracer advection
velocities. For a review of such meso-scale parameterisations, see Haidvogel
and Beckmann [1999]. For numerical problems associated with lateral mixing
schemes, see Griffies et al. [1998] and Beckers et al. [1998]. It should be kept in
mind that such meso-scale transport parameterisations are basically needed
for numerical reasons. Some of the meso-scale activity could however also be
suppressed due to the scaling with a horizontal length scale £ = O(100) km
(pers. comm. Jean-Marie Beckers).

The scales given above are quite arbitrary and should be regarded as an
empirical argument rather than a mathematical derivation. For each new ap-
plication of models, the validity of the underlying scaling assumptions should
in principle be tested. This could strictly only be done by first applying the
complete model and then evaluating the relevance of the single terms. The
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experience shows for example that the vertical turbulent fluxes are sometimes
only of the order of the viscous fluxes, such as near the surface or bottom or
in the areas of strong vertical density stratification, the so-called pycnocline.
These terms are thus often retained in the Reynold’s averaged equations
for @, ¥, T and S when focus is set on investigating turbulent mixing, al-
though they are three orders of magnitude smaller than the other terms in
the scaling above. This is of course inconsistent with the fact that the ver-
tical components of the Coriolis vector are still neglected in the horizontal
velocity equations. Inclusion of this rotational term would on the other hand
be inconsistent with energy conservation laws since vertical velocity does not
contribute to kinetic energy after this scaling analysis, see Haidvogel and
Beckmann [1999]. However, as said before, the scaling is arbitrary and can
only serve as a guideline for simplifying the set of equations.

More rigorous mathematical tools such as asymptotic analysis (see e.g.
Kevorkian and Cole [1996]) could be a perspective for more systematically
analysing the Reynolds averaged equations. Such methods have already suc-
cessfully been applied to low Mach number compressible flows with the aim
of constructing more efficient numerical schemes (see Klein [1995]). Meister
[1999] recently presented a rigorous mathematical justification of this method
of asymptotic expansions. However, the incompressible hydrostatic primitive
equations which are used here have so far not been derived with such ad-
vanced methods (pers. comm. Rupert Klein).

After this scale analysis, the Reynold’s averaged equations now form the
following set of primitive equations equations:

Ovi + 0, (u?) + 0y (ud) + 0, (uw) — vd,.u + 0,{aw) — fv =

) ) (3.4)
WLOPY | obaz,
Po z
040 + 0, (ub) + 0y(v?) + 0, (VW) — 9,0 + 0,{(vW) + fu =
_ C (3.5)
@ayc + [ d,bdz,
Po z
02T + 0yt + 0,w = 0, (3.6)
— - = - - s 0,1
O,T + 0,(aT) + 0,(0T) + 8. (wT) — v'8,.T + 8, (0T = o (3.7)
pF0O
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In (3.4) and (3.5), the hydrostatic equilibrium has been used for reformu-
lating the pressure gradient term into an external pressure gradient and an
internal pressure gradient, see Burchard and Petersen [1997]. Here, ¢ is the
surface elevation and b the buoyancy

R (3.10)
Po
The Coriolis parameter is now defined as f = 2(2sin(®). The surface el-
evation ( is calculated prognostically by vertically integrating the mass con-
servation condition (3.6) and applying kinematic boundary conditions which
basically prescribe that fluid particles at the boundaries move parallel to
these boundaries:

0 = —0, /CHu(z) dz — 0, /CH’U(Z) dz. (3.11)

The matrices P;;, Bj;, Sij, and Vj; (see section 2.3.1) resulting from the
application of the boundary layer approximation to equation (2.25) are now

of the following form:

—208, a(fw) — 8, (i) — O, B{ub) —d,a{w?)
P = | —0.u(vw) — 0,v(uw) —20,5(vw) —0,0(w?) (3.12)
-0, u{w?) -0, 0(w?) 0
g (0 0 (ap)
Bijzp— 00 (9p) (3.13)
O\ (ap) (0p) 2(wp)
L[ 0 0 d.a L[ 0 0 d.a
Sij=5| 0 009]), Vig=5| 0 0 872 (3.14)
8, 8,5 0 —8,4 —0,0 0

The calculation of density gradients is simplified by assuming that the
speed of sound, ¢ = 1/0,p is infinite, which is consistent with the assumption
of incompressibility. Thus, density gradients can be calculated as follows:

0ip = 6Tp6iT+asp6iS' (3.15)

with the thermal and haline volume expansion coefficients Orp and JOsp,
respectively, which still depend on the hydrostatic reference pressure pg.
The equations (3.4) - (3.9) are often referred to as the hydrostatic primi-
tive equations. Here, the further assumption has implicitly be made that £ is
small compared to the radius of the earth, which avoids the transformation



34 3 Boundary layer models

of these equations into spherical coordinates, see Haidvogel and Beckmann
[1999].

In terms of turbulence modelling, the main consequence of these scaling
assumptions is that the system of equations (3.4) - (3.9) now only contains
four turbulent transport terms for which closure assumptions have to be
made: (@), (6w), (WT) and (wS). This closure will be completed in section
3.1.2.

3.1.2 Algebraisation of second moments

With the assumptions made so far, the system of hydrostatic primitive equa-
tions (3.4) - (3.9) together with the transport equations for the second mo-
ments (2.25), (2.26) and (2.28) form a closed system of model equations.
However, this still requires the calculations of fourteen prognostic equations
for the second moments

(@), (av), (@), (%), (60), (@), (aT),
(@T), (@T), (a8), (85), (@S), (T?), (5*).

Additionally, the dissipation rate of the turbulent kinetic energy, € has to
be calculated, see e.g. equation (2.41).

In order to reduce the large amount of computational effort for solving
these equations, further simplifications have to be made. One method which
is often applied is the local equilibrium assumption for these dynamic equa-
tions, which leads to algebraic expressions for the second moments. The alge-
braic second-moment closures presented here are derived from the dynamic
equations (2.25), (2.26) and (2.28) by means of two different approaches. The
basic approach is to neglect time variation and advective and turbulent trans-
ports of Reynolds stresses {#;#;), the fluxes of temperature and salinity, (5;T)
and (@T), respectively and the variances of temperature and salinity, (T'2)
and (S?), respectively. In order to retain the transport of turbulent kinetic
energy k, the TKE equation multiplied with %(Sz-j has to be subtracted from
the Reynolds stress equation (2.25) first, and then the left hand side of the
resulting transport equation for (@;i;) — %(ij is set to zero. Furthermore,
the left hand sides of the temperature and salinity flux equations and the
equations for (T2) and (S?) are set to zero as well.

Mellor and Yamada [1974] and Mellor and Yamada [1982] used this ap-
proach for their so-called level 2% model. They justify the neglect of trans-

(3.16)

ports for (%;0;), (%;T) and (#;S) by a scaling procedure where terms are
ordered by their degree of deviation from isotropy. This results in their level
3 model. The additional neglect of transport terms in the (7'?) and (S?)
equations then allows for a complete algebraisation.

Here, a non-equilibrium version of the model suggested by Kantha and
Clayson [1994] is derived by applying the above discussed algebraisation pro-
cedure to the equations (2.25), (2.26) and (2.28). This is an extension of the
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Mellor and Yamada [1974] and Mellor and Yamada [1982] level 21 model
in which the parameterisation of the pressure correlations in the heat flux
equation are simpler, because of co7 = c37 = 0. The quasi-equilibrium model
by Kantha and Clayson [1994] is achieved from the non-equilibrium model
by applying the equilibrium condition P + B = ¢ to the resulting equations,
see section 3.1.6.

The same approach for algebraisation is used by Canuto et al. [2001].

After this procedure, a linear system of algebraic equations for the 14
second moments listed in (3.16) is obtained for the non-equilibrium version
of the model by Kantha and Clayson [1994] and the model by Canuto et al.
[2001].

A different, less rigorous procedure for the algebraisation of the Reynolds
stress equation has been suggested by Rodi [1976]. The basic assumption is
that the ratio of transport of Reynolds stresses to the transport of TKE (see
equation (2.31)) is equal to the ratio of Reynolds stresses to TKE:

01(0:0;) + O (01 (0:0;) + (0:9;01))  (Di0;)

P+B-¢ Tk (3:17)
A similar approach is then used for the temperature flux equation:
80 T) + 0,0 (5:T) + (515:T)) _ 1@ ) (3.18)
P+B-—¢ 2 k’ )

and, analogously, for the salinity flux equation.

This alternative approach has been first applied by Rodi [1980] to the
Reynolds stress equation and by Hossain [1980] to the heat flux equation.

The transport equations for the temperature and salinity variances (T2)
and (S?) are algebraised in the same manner as for the previously discussed
models simply by setting the transport to zero.

Application of this method for algebraisation to the transport equations
(2.25), (2.26) and (2.28) and the analogous equations for salinity flux and
salinity variance leads to a non-linear system of algebraic equations for the
14 second moments listed in (3.16).

However, already when solving for the linear system of equations for the
14 second moments, the resulting algebraic expressions are expected to be
extremely complex! due to the rotational terms. For some simplified cases, so-
called stability functions which contain the algebraic second-moment closures
have been explicitly calculated by Galperin et al. [1989], Galperin and Kantha
[1989], Hassid and Galperin [1994] and Canuto et al. [2001]. These simplified
cases are flows without stratification, i.e. 8,b = 0, limitation to axial rotation,
i.e. at the poles (¢ = +90°) and limitation to spanwise rotation, i.e. at the
equator (¥ = 0°). Canuto et al. [2001] conclude in their recent publication
that

! For the non-linear system, it is even not sure whether a solution exists.
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Rotation affects the closure problem through the pressure corre-
lations and the equation for the dissipation .

Since rotational terms are not explicitly included in the exact equation for
€, (2.33), rotation should be considered indirectly for the parameterisation of
the vertical fluxes due to third-order moments and pressure gradients.

For stable stratification, the effect of rotation on the flow seems to be
small, see Galperin et al. [1989]. For instable stratification however, there is
numerous evidence mainly from Large Eddy Simulation studies that rota-
tion can significantly reduce turbulent convective mixing when the turbulent
Rossby number R, = w,/(fD) is sufficiently large, see Jones and Marshall
[1993], Sander et al. [1995] and Mironov et al. [2000]. Such strongly convec-
tive situations with deep mixing and subsequent deep water formation occur
however only in limited areas during limited periods. Such specific areas are
mainly located in the Gulf of Lions (Western Mediterranean Sea) and the
Greenland Sea, see Schott et al. [1994] and Marshall and Schott [1999] for an
overview.

Due to the problems associated with the consideration of rotation for the
derivation of algebraic turbulence closures and to the comparably limited rel-
evance for marine flows, the rotational effect in the Reynolds stress equations
(2.25) will be neglected in the following.

After all the assumptions made above, i.e.

— parameterisation of pressure-strain correlators,

— parameterisation of dissipation terms,

— neglect of tracer cross-correlations,

— boundary layer approximation,

— neglect or simplification of transport of second moments,

— neglect of rotational terms in the second-moment equations,

closed systems of equations are obtained for the second moments listed in
(3.16). The empirical parameters for the correlators including salinity fluctu-
ations are simply set to the same values than in the corresponding correlators
including temperature fluctuations. This resulting system of equations is lin-
ear for the models KC and CA, and non-linear for the model RH. Despite the
different structures of the systems of equations, they all result in the simple,
well known relations of the eddy viscosity and the eddy diffusivity principle:

kZ
(aw) = —cu?aza, (3.19)
]{,‘2
(00) = —cu—0:7, (3.20)
~ k2 _
(wT) = —c:t?&zT (3.21)
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2
(wS) = —c;k?azé (3.22)

With (2.27), an adequate eddy viscosity assumption for the vertical den-
sity flux results:

o k2
(0p)y = —CL?azp. (3.23)

The eddy viscosity v; and diffusivity »; resulting from this closure are of
the following form:

v =cy—, v, =c,—. (3.24)

This reflects the relation of Kolmogorov [1942] and Prandtl [1945] which
assumes that eddy viscosity and diffusivity are proportional to a velocity scale
and a macro length scale of turbulence. Here, k'/? = ¢/+/2 is the velocity
scale and

k3/2

with ¢, = (02)3/ 4 a macro length scale for energy-containing eddies, which
is calculated by means of the Taylor [1935] scaling. In (3.25) ¢, is the value
for ¢, resulting from B = 0 and P = ¢, see table 6.1 on page 120.

The relation of Kolmogorov [1942] and Prandtl [1945], equation (3.24),
resembles the derivation of kinematic viscosity for a perfect gas, see equation
(2.2), where also proportionality of viscosity to a length scale and a velocity
scale has been assumed. At this point it should be briefly discussed, why
turbulence mixes. Due to the small-scale shear generated by turbulence dur-
ing the energy cascade, the instantaneous curvature of all flow properties is
increased significantly. Since viscous forces, see e.g. equation (2.1), are pro-
portional to the second derivative of the transported flow property, mixing is
increased. This leads to an apparent viscosity (for momentum) or diffusivity
(for tracers), the so-called eddy viscosity or diffusivity.

All the information on second moments is now contained in the rather
complex, non-dimensional stability functions ¢, and ¢,,. Despite their dif-
ferences, these stability functions depend for all models only on two non-
dimensional parameters, the shear number and the buoyancy number, re-
spectively:

an = — M?, ay = —N? (3.26)

with the shear frequency squared, M? = (9,4)? + (0,9)? and the Brunt-
Viisilé frequency squared, N2 = 0,b with buoyancy b from (3.10).

The fact that the eddy viscosity assumption is re-introduced by the alge-
braic formulations of the second moments, (3.19) - (3.22), might be considered
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as a step backwards. Launder [1990] has a clearly negative attitude versus
the eddy viscosity assumption:

If one had to pick an animal whose character most resembled
turbulence my choice would be an irritable, unpredictable old goat,
liable to react violently when prodded. Modelling turbulence by an
eddy viscosity scheme is roughly like replacing it by an inoffensive,
docile sheep.

He however continues saying:

For the Nineties one needs a model that retains something of the
old goat in turbulence. One class of closure that does that - indeed
the simplest class - is second-moment closure.

The way how the turbulence closure is treated here seems thus to be a
good compromise between the efficiency of eddy viscosity schemes and the
complexity of complete second-moment closures.

The different stability functions are given in the section 3.1.3. It should
be noted that up to this point no assumption about the calculation of the
turbulent dissipation rate € has been made.

3.1.3 Nomn-equilibrium stability functions

Here, the sets of stability functions are given for the models of KC (Kantha
and Clayson [1994]), HR (Rodi [1980], Hossain [1980], Burchard and Baumert
[1995]) and CA (Canuto et al. [2001]). An alternative set of stability functions
also proposed by Canuto et al. [2001] (from here on denoted by CB) is given
as well. They are displayed as functions of ay; and ay in figures 3.1-3.4.

At this stage, the closure of the second moments is practically finished. It
should be noted however that all these sets of stability functions should be
limited by certain constraints (see section 3.1.5) in order to assure positivity
of the eddy viscosity v; and diffusivity v, and of the velocity variances (%),
(9%) and (@?), see equations (3.30)-(3.32).

Model of Kantha and Clayson [1994]. In the paper of Kantha and Clayson
[1994], only the quasi-equilibrium version of the stability functions is given.
However, also full versions can be derived which are then of the same form
as the stability functions originally suggested by Mellor and Yamada [1982]
with the exception that ¢; and c3 in equation (2.34) are non-zero now.

In our notation (3.19) - (3.22), this set of stability functions may be
formulated as:

0.1682 + 0.03269an

cy = 1 ,
, _ 0.1783 + 0.01586a N + 0.003173aps
¢, = 1 ,

(3.27)
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Fig. 3.1. Complete version of stability functions ¢, and ¢, displayed as functions
of the non-dimensional buoyancy number ay and shear number aps according to
Kantha and Clayson [1994]. The white area indicates that the functions are not
defined there. The bold line marks the equilibrium state P + B = ¢.

with A =1+ 0.4679an + 0.07372a + 0.01761layanr + 0.0337103;.

The exact form of (3.27) in terms of the empirical parameters (see table
2.1) contained in equations (2.34), (2.37) and (2.41) is given in Burchard and
Bolding [2001].

It can be seen from figure 3.1 that both stability functions decrease with
increasing stratification and shear. For strongly instable stratification with
ay < 0 the stability functions are not partially defined such that realisability
constraints are necessary, see section 3.1.5.

Model of Rodi [1980], Hossain [1980], Burchard and Baumert [1995].
In contrast to the models of Kantha and Clayson [1994] and Canuto et al.
[2001], the model of Rodi [1980] and Hossain [1980] in the version of Burchard
and Baumert [1995] results in stability functions ¢, and ¢, which not only
depend on ajr and ay, but additionally depend on the non-dimensional term
(P+B)/e—1,i.e. on the degree of deviation from local turbulence equilibrium.
This is a consequence of the specific closure concept used in that model, see
equation (3.17) and (3.18). Traditionally, these stability functions have been
solved in numerical models by using the value for (P + B)/e — 1 on an old
time level. In this form, the stability functions have been presented first by
Rodi [1980] and Hossain [1980].

However, because of (P + B)/e = cyam — ¢, an, these equations for ¢,
and c;‘ can be expressed as implicit functions of aps and an. The evaluation
procedure which has been suggested by Burchard and Baumert [1995] is first
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Fig. 3.2. Same as figure 3.1 but for the Rodi [1980] and Hossain [1980] (version of
Burchard and Baumert [1995]) stability functions.

solving for (P + B)/e —1 by means of a Newton iteration and then inserting
that value into the formulations for ¢, and c},. This procedure is discussed in
detail in Burchard and Bolding [2001].

These numerically solved implicit stability functions are displayed in fig-
ure 3.2. In contrast to the Kantha and Clayson [1994] and also the Canuto
et al. [2001] stability functions, they are defined over the whole domain
—0 < ay < +o0 and 0 < apr < +00. This cannot be proved mathemati-
cally, but negative values have not been found for arbitrary values of ay and
ayr- This does of course not imply that these stability functions are physically
sound even for extreme values of ay and ajr. Indeed, the strong decrease
of ¢, for instable stratification suggests that the algebraic assumptions made
are not valid for such strongly convective regimes.

Model of Canuto et al. [2001]. The stability functions as they result from
the closure assumptions carried out by Canuto et al. [2001] are as follows:

~0.1070 + 0.01741a N — 0.000120 1

CH A s
(3.28)
, _ 0.1120 + 0.004519ax + 0.00088cas
Cu = A s

with 4 =1+ 0.26an + 0.029a s + 0.0087a%; + 0.005anan — 0.00003403,.

Despite the higher complexity of the transport equations for Reynolds
stresses and heat fluxes due to consideration of more terms for the pressure-
strain correlators, these stability functions are structurally similar to those
of Kantha and Clayson [1994].
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Fig. 3.3. Same as figure 3.1 but for the Canuto et al. [2001] (version A) stability
functions.
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Fig. 3.4. Same as figure 3.1 but for the Canuto et al. [2001] (version B) stability
functions.
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These stability functions will be denoted by CA. The exact form can be
found in Burchard and Bolding [2001]. In their paper, Canuto et al. [2001]
give another set of stability functions derived on the ground of different as-
sumptions. They will be denoted by CB and are of the following form:

~0.1270 + 0.01526ay — 0.000160 1

CIJ A 5
(3.29)
, _ 0.1190 + 0.004294a x + 0.000660 7
cy = 2 ,

with A =14+ 0.2ay + 0.0315a,7 + 0.00580&%\, + 0.004danap — 0.000040@”.

Both sets of stability functions are displayed in figures 3.3 and 3.4. They
look basically both similar to the Kantha and Clayson [1994] stability func-
tions displayed in figure 3.1. However, a closer inspection reveals that the
convective limit seems to be weaker and the line of local equilibrium is not
that close to the line of neutral stratification. This could be the reason why the
Canuto et al. [2001] version A set of stability functions allows for numerically
stable simulations of idealised boundary layers, in contrast to the Kantha
and Clayson [1994] scheme, see section 6.2.3 and Burchard and Deleersnijder
[2001].

It should be noted that the way how the stability functions (3.27) — (3.29)
are displayed here is physically not very appealing. However, it gives a feeling
about their general structure. For a deeper physical understanding of the
differences, one would have to step back to the derivation of these functions,
see equations (2.34) and (2.37), or even better to the original papers.

3.1.4 Velocity and tracer variances

Although not needed for the closure of the turbulent transport terms for
momentum and heat, it is possible to compute the auto-correlations (or vari-
ances) of velocity and temperature. They can be used for model validation,
see section 6.3. The auto-correlation terms are often measured in the field or
obtained in idealistic situations by LES or DNS. For four closure procedures
KC, RH, CA and CB, these auto-correlators can be written as:

. 2 k eavy(0,1)% — e3v4(0,0)% — B
o2 .k : 3.30
@) 3" T l+esE+E2-1) (3.30)

. 2 k —esvi(0,4)* + eary(0,0)> — B
2y = —k + — 5 3.31
<'U> 3 616 1+e4(§+€_1) ( )

- 2 k (e — e3)vy(0,u)? + (e — e3)vy(0,v)? — 2B

H="k—e~ , 3.32
<'LU) 3 elE 1+€4(§+%—1) ( )

(%) = er Suj(@.TY, (3.33)
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where the empirical parameters eq,..., e4 are given in table 3.2. For cr, see
table 2.1. Exact expressions for these parameters are given in the Burchard
and Bolding [2001].

Model|ey e2 es e4
KC 0.224(2.0 (1.0 |0.0
RH |0.185|1.6 |0.8 |0.556
CA (0.160{1.093(0.027(0.0
CB (0.135|1.362(0.033(0.0

Table 3.2. Parameters for calculating the variances (@2), (52), (@2 and (T'?).

It can be easily seen that (3.30) - (3.32) are consistent with the definition
of turbulent kinetic energy k, see equation (2.30). It should be noted that the
well-known stability functions suggested by Galperin et al. [1988] are included
in the analysis of section 3.1.2 as well. They are obtained from the KC model
by assuming quasi-equilibrium and setting ¢ = ¢3 = 0. In the paper by
Galperin et al. [1988], (2.30) does apparently not hold, because a residual term
remains. However, it can be shown that this residual term is proportional to
P + B — £ which vanishes with the quasi-equilibrium assumption.

3.1.5 Realisability constraints

Due to the simplifying model assumptions which lead to the formulation of
stability functions, these are not valid over the whole domain 0 < ay < o0
and —oo < ay < 00. There are restrictions for (i) convective regimes due to
instable stratification (large negative ay), (i) strong shear (large ar), and
(iii) strongly stable stratification (large positive ay).

The restrictions due to convection are the most obvious. It is known that
third moments such as (@3), (9?T) ,and (wT2) which have been set to zero
here, play an important role in such situations (see Canuto et al. [1994],
Mironov et al. [2000]). The stability functions KC, CA and CB predict neg-
ative values here which would turn the dynamical equations for momentum
and heat to ill-posed problems. Here we would suggest as a practical solution
to avoid negative stability functions and set upper limits for ¢, and cL. In
accordance with Galperin et al. [1988] these could be 0.46 for ¢, and 0.61 for
cL. For avoiding numerical instabilities, the smoothing procedure suggested
by Burchard and Petersen [1999] might be useful. The RH stability function
for ¢, is decreasing with increasing instability, a feature physically at least
difficult to interpret. Here, a lower limit for ay should be derived from the
criterium that the gradient of ¢, with respect to ax should be negative.

Since strongly stable stratification could as well lead to negative vertical
velocity variance, an upper limit for a should be introduced as well. Kantha
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and Clayson [1994] suggest for example a < 9.6 for their quasi-equilibrium
model.

Another physical constraint on the realisability of the stability functions
is the positivity of the velocity variances. It can be seen from the definition of
(@?), equation (3.32), that high shear as well as strongly stable stratification
might lead to negative values of (1?). Demanding positivity of (1?) leads after
application of equation (3.32) to a further (implicit and therefore difficult to
use) constraint on ays and an. In order to guarantee that the normalised
vertical velocity variance {(@?)/k is not smaller than 0.24 which seems to be
the physical limit, Mellor and Yamada [1982] suggest the condition

apy < 16.5+ 51704]\{, (3.34)

which also defines a lower limit for ay. Others (Hassid and Galperin [1983]
and Canuto et al. [2001]) suggest to derive upper limits for ays by demanding
that the shear stress should not decrease for increasing shear. Burchard and
Deleersnijder [2001] found however, that such a constraint is not needed for
the Canuto et al. [2001] stability functions when used together with a k-¢
model.

The reason for this can be understood by inspecting figure 3.5 where
the dimensionless shear stress SMG}Véz o u?/k is displayed as function of
Gy x ay and Gy « —ay. Following Burchard and Deleersnijder [2001],
the notation by Mellor and Yamada [1982] is used here, for an exact con-
version, see section 9.1.2. Shown are stresses computed from non-equilibrium

stability functions by Mellor and Yamadae [1982] (similar to Kantha and
Clayson [1994]) and Canuto et al. [2001], version A, see section 3.1.3. For
both cases, G o ayy is limited in the stress calculation such that the stress,
u2 /k, increases for increasing shear, G o apr, which is often used as real-
isability constraint for stability functions:

2 2
8c,, (%)  Oayy (%) > 0. (3.35)

The most striking difference between the two stress calculations in figure
3.5 is now, that for the Mellor and Yamada [1982] model, the local equilibrium
line P+B = ¢ is above constraint (3.35) and for the Canuto et al. [2001] model
below this constraint. This has the consequence that for the former model
without (3.35) (the constraint by Mellor and Yamada [1982], (3.34), is much
weaker) that the quasi-equilibrium state, which is a good approximation for
shear flows, is in the area where the shear stress decreases with increasing
shear. It has been shown by Burchard and Deleersnijder [2001] that this might
be the mechanism for the instabilities usually caused by this model, since the
instabilities vanish when limiting G ys by (3.35). These instabilities can also be
avoided by using so-called quasi-equilibrium versions of the stability function
from the beginning on, see section 3.1.6. For a detailed investigation of these
instabilities, see section 6.2.3.
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Fig. 3.5. The normalised shear stress ,5‘1\4(;7}\,/[2 o u2 [k as functions of G oc an
and Gy « —an computed by using the Mellor and Yamada [1982] (left) and the
Canuto et al. [2001], version A (right) stability functions. The bold line shows the
condition P + B = ¢, the dotted line the constraint (3.35) in the sense that (3.35)
is fulfilled for all points below the dotted line.

3.1.6 Quasi-equilibrium stability functions

The quasi-equilibrium state is defined as the state where production and
dissipation of turbulent kinetic energy are balanced, i.e. P+ B = ¢. This can
be transformed to the relation

Culn — cLaN =1. (3.36)

This quasi-equilibrium state has often been used for simplifying stability
functions depending on both, ajs and apy. The most well-known example
is the work of Galperin et al. [1988] where relation (3.36) has been used
for improving the performance of the stability functions proposed by Mellor
and Yamada [1982], which have been proven to be numerically unstable (see
Deleersnijder and Luyten [1994]). Galperin et al. [1988] found by applying
the scale analysis introduced by Mellor and Yamada [1974] that it is not a
model inconsistency to prescribe P + B = ¢ only for the stability functions
but still retain the full dynamic TKE equation, see also section 3.1.4.

The bold lines in figures (3.1) - (3.4) indicate the quasi-equilibrium states
for the four sets of stability functions discussed in this paper. The stability
functions suggested by Galperin et al. [1988] are expressed as functions of
an. Relation (3.36) allows also to express the stability functions depending
on the gradient Richardson number R; = an /o, which has often been done
for further analysing the stability functions as shown in figure 3.6 for the four
sets of stability functions. The maximum value of R; which can be reached
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Fig. 3.6. Quasi-equilibrium versions of stability functions ¢, and c:L displayed as
functions of the gradient Richardson number R;. a) Model of Kantha and Clayson
[1994] [1994], b) Model of Rodi [1980] and Hossain [1980], c) Model A of Canuto
et al. [2001], d) Model B of Canuto et al. [2001].

in the quasi-equilibrium is called the ’critical’ Richardson number R;. For
the models discussed here, they have the values shown in table 6.1 on page
120. It can be seen that the model of Kantha and Clayson [1994] already
suppresses turbulence for stratifications around R; = 0.2, whereas the other
models allow for mixing at Richardson numbers significantly higher.

For stable stratification, laboratory and LES data for the turbulent
Prandtl number P. = ¢,/c], are compared to the turbulent Prandtl num-
ber computed by the quasi-equilibrium stability functions (see figure 3.7).
All the functions are within the uncertainty of the data. Only the KC quasi-
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equilibrium stability functions do not reach high turbulent Prandtl numbers
due to their relatively small critical gradient Richardson number.
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Fig. 3.7. Turbulent Prandtl number, calculated from the quasi-equilibrium version
of stability function displayed as function of the gradient Richardson number R;.
KC: Model of Kantha and Clayson [1994], RH: Model of Rodi [1980] and Hossain
[1980], CA: Model A of Canuto et al. [2001], CB Model B of Canuto et al. [2001].
The laboratory data are from Rohr [1985], the LES data are from Schumann and
Gerz [1995]. The small bullets mark the maximum values of the turbulent Prandtl
numbers due to the critical Richardson number RY.

Another way of displaying the quasi-equilibrium stability functions is to
transform them into the Monin-Obukhov similarity form. This has already
been suggested by various authors, see Mellor and Yamada [1982] and Kantha
and Clayson [1994]. Monin and Obukhov [1954] found for the atmospheric
boundary layer non-dimensional relations between fluxes of momentum and
heat and gradients of velocity and density, respectively. Based on the Monin-
Obukhov length, Ly = —u?/(kB), gradients of momentum and buoyancy
can be expressed as follows:

Us 2! B 2!
Li= gy (2 ), b= — . .
0.1 ek (LM> 0 PR (LM> (3.37)
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with the distance from the boundary, 2z’ and the von Karmdan constant
2

k = 0.4. With the friction velocity u2 = ¢,%|0;u|, the buoyancy flux

B= —cL’i—zazb and the macro length scale L = k2, the variables £ = 2'/Lyy,

@) and @ can be expressed as

/

_ (.013/4 € aN
€= ()" s (3.38)

al” ay

and
QM4 4011/204}\44
Sy = (62)3/48%’ bp = (02)3/ Y (3.39)
1 it

where the turbulent Prandtl number can be expressed as P, = &y /Py =
culcy-
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Fig. 3.8. Monin-Obukhov similarity functions #r and $x as calculated from the
quasi-equilibrium stability functions of Kantha and Clayson [1994] (KC), Rodi
[1980] and Hossain [1980] (RH), Canuto et al. [2001] (CA,CB). The empirical curves
are taken from Businger et al. [1971].

Figure 3.8 shows the Monin-Obukhov similarity functions ¢, and &g as
functions of £ in comparison to empirical curves by Businger et al. [1971].
The stability functions by Kantha and Clayson [1994] are clearly the closest
to the empirical curves which are based on measurements in the atmospheric
boundary layer. It should be noted that this is due to a tuning of the pa-
rameters ¢y and c3. Mellor and Yamada [1982] achieved a good agreement
with the Businger et al. [1971] data with their relatively simple closure by
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setting co = ¢3 = 0. It is difficult to explain why more complex parameter-
isations of the pressure-strain correlations cause worse agreement with the
Monin-Obukhov theory. But it might be due to the fact that this theory is
valid only close to boundaries where some of the closure assumptions could
be wrong. Another reason could be that the Businger et al. [1971] measure-
ments are taken at the atmosphere where in comparison to water different
molecular viscosities and diffusivities are present. This could be particularly
significant at strongly stable stratification with large positive values of &.

3.2 Two-equation models

In the second-moment closure presented here as formulations for the eddy
viscosity and eddy diffusivity, see equation (3.24), the turbulent kinetic energy
k and its dissipation rate € still occur as unknows. They are contained in the
stability functions as a ratio, defining a time scale 7 = k/e and in the relations
of Prandtl and Kolmogorov as ratio k2 /e. Thus, either algebraic relations or
prognostic equations have to be calculated for k and . In principle, three
methods for this are found in the literature, see e.g. Luyten et al. [1996a):

— Zero-equation models: here, the TKE is calculated from the local equi-
librium condition of turbulence, P + B = ¢ and the dissipation rate is
calculated by means of an algebraic relation for the macro length scale L
from which the dissipation rate ¢ is then recalculated by means of equation
(3.25).

— One-equation models: here, the TKE is calculated from a transport equa-
tion derived from equation (2.31) and the macro length scale is treated
algebraically as in zero-equation models.

— Two-equation models: here, both the TKE and the macro length scale are
calculated from transport equations. This book is concentrating mainly on
such two-equation models.

There are many suggestions for the algebraic calculation of the macro
length scale. Rather simple forms are based on the work of Blackadar [1962],
where L is basically a function of the distance from surface and bottom.
Others follow a suggestion of Kochergin [1987] and choose a constant macro
length in the surface and bottom mixed layer plus a background value in
strongly stratified regions (see Pohlmann [1991], Pohlmann [1996b]). The
latter method has however two disadvantages: the law of the wall is not
reproduced near boundaries and the length scale has discontinuities in time
and space. Complex algebraic relations have for example been suggested by
Therry and Lacarrére [1983] and Gaspar et al. [1990] and built into an Ocean
General Circulation Model by Blanke and Delecluse [1993]. In this approach,
the macro length scale is calculated as the distance which a fluid particle
has to move such that the change of potential energy equals the turbulent
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kinetic energy. Other approaches by Fifler and Schrimpf [1992] and Demirov
et al. [1998] or by Beckers [1995] and Delhez et al. [1999] or by Azell and
Liungman [2001] combine several macro length scales such as the law of the
wall scaling, see equation (3.56), and the scaling according to the buoyancy
length scale, see equation (3.73) and also Meier [2000].

However, the focus of this book is on two-equation models. For the macro
length scale related transport equation, many options are possible. Through
equation (3.25) which defines a non-linear relation between k, £ and the
macro length scale L, a second transport equation for any quantity k™e"
with n # 0 would in principle be sufficient for calculating the dissipation
rate €, see Rodi [1987]. Such a generic model will be investigated in detail
in section 3.2.13. Furthermore well-known specialised cases of this generic
model will be discussed, namely the k-e model (section 3.2.5) and the k-kL
model (section 3.2.6). The k-w model with w = ¢/k will be briefly discussed
in section 3.2.7.

The € and the kL equation are the two prognostic transport equations for
a length scale related variable which are mainly in use in oceanography. The
structural similarity of these two equations has been discussed recently by
Burchard et al. [1998], Burchard and Petersen [1999], Baumert and Peters
[2000] and Burchard and Bolding [2001], see also section 3.2.9.

Since the late seventies, a controversial discussion about the higher phys-
ical relevance of each of the two length scale equations has been carried out.
The arguments of the main protagonists of this discussion are cited here:

Mellor and Yamada [1982]:

While one cannot assert great confidence in [the kL equation], we
prefer it rather than the differential equation for dissipation ...
... it seems fundamentally wrong to us to use an equation which de-
scribes the small scale turbulence to determine the turbulent macro-
scale. Operationally, however, after some terms are modelled, the dis-
sipation transport equation is a special case of a more general length
scale equation ...

Rodi [1987):

The arguments for the relative merits of the € and the kL equa-
tions are rather academic because both equations are fairly empirical
and, with the constants suitable adjusted, perform in a similar man-
ner. One difference is that the kL equation requires an additional
near-wall term ... while the ¢ equation does not.

In the concept of one-point closures, the macro length scale L is to be
defined via the Taylor [1935] scaling (3.25), since L cannot be directly de-
fined in terms of one-point correlators. This makes it difficult to construct a
transport equation for L. In the terminology of two-point closures however,
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the macro length scale L ”is defined as the integral of the two-point, longitu-
dinal correlation function, integrated with respect to the distance separating
the two points” (Mellor [1985]). Mellor [1985] adds to his criticism of the
k-& model that the e-equation cannot properly be extended into two-point
correlations. Thus, a transport equation for a macro length scale should be
preferred. However, both authors, Mellor and Yamada [1982] and Rodi [1987],
seem to express some kind of acceptance of the respective other model, since
both are subject to severe empirical assumptions. This pragmatic viewpoint
also holds here in this book, when the two models are discussed.

One appealing feature of the k-¢ model however is that it has one prog-
nostic equation for the macro scale of turbulence, which is the k-equation (k
is mainly contained in the large eddies), and one for the Kolmogorov micro
scale A which is defined by means of the dissipation rate ¢:

A= (”_3)1/4 . (3.40)

g

It should be noted that the viscous dissipation has been observed for the
ocean to be dominant at eddy sizes 30 to 60 times the Kolmogorov scale
A by Gargett and Holloway [1984] and Moum [1990]. Any instrument for
measuring turbulent dissipation such as shear probes is therefore limited in
size since the smallest dissipative eddies with diameters of about 27 A have
to be resolved, which is often difficult near the surface and the bottom, see
Prandke and Stips [1998].

3.2.1 The TKE-equation

The TKE equation is basically the same for all types of these models. It can
be derived from the exact Reynold’s averaged equation (2.31) by applying
the boundary layer approximation discussed in section 3.1.1, applying the
down-gradient approximation for the third moment and neglecting advective
terms:

Ok — 0, <<u+ :—t) 8zk) =P+B-—c¢, (3.41)
k

o denotes here the turbulent Schmidt number for vertical flux of TKE. For
the shear production P and the buoyancy production B application of (3.19)
and (3.23) results in:

P=u ((aza)2 n (6z17)2) ., B=-13.b (3.42)

with the buoyancy b from equation (3.10). It should be noted that the k-kL
model by Mellor and Yamada [1982] uses a slightly different parameterisation
of the third moment of the TKE, see section 3.2.6.
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Before discussing in detail the possibilities for deriving length scale related
equations for the calculation of &, the concept of roughness (section 3.2.2),
the law of the wall (section 3.2.3) and boundary conditions derived from that
(section 3.2.4) are presented.

3.2.2 Roughness

The coordinates for bottom and surface are located at the edge of the validity
of the model equations, which is excluding the unresolved zones near the
boundaries (see figure 3.9).

Roughness lengths at bottom and surface, 2§ and 2§ have to be defined.
For the bottom, this is done here as follows (see e.g. Kagan [1995]):

b= 0-1:7 +0.03h%. (3.43)

with the molecular viscosity v, the friction velocity u% and the height of
the bottom roughness elements, h}. The formula (3.43) interpolates between
the limits of completely smooth (kY = 0) and completely rough bottom
(h§ > v/ub). In tidal flow, e.g., the roughness can periodically change be-
tween smooth and rough bed. It should be noted that the bed roughness z§
may be a complex function of bed forms (see e.g. Ke et al. [1994]), sediment
dynamics (see e.g. Smith and McLean [1977] or Sheng and Villaret [1989])

and surface waves (see Grant and Madsen [1979] and also Mellor [2001D]).

For estimating the sea surface roughness zj, an adaptation of the Charnok
[1955] formula to the sea surface is often used:

(3.44)

with the dimensionless parameter ac = 1400 (see Craig and Banner [1994]).
Just to give a feeling for this formula: By using the Kondo [1975] bulk formu-
lae for estimating the air-sea fluxes, under the assumption of no temperature
difference between sea and air, a wind speed at 10 m above the sea surface
of Ujg = 5 ms™! results in z§ = 0.005 m and a wind speed of Ujg = 25
ms™! results in z§ = 0.19 m. This seems to slightly underestimate realistic
conditions, since Gemmrich and Farmer [1999] measured z§ = 0.2 at wind
speeds of only Ujg = 15 ms™!. For a discussion of the problems associated
with the determination of 2§, see page 90. For the interpretion of the surface
roughness as the virtual origin , see also Thompson and Turner [1975] and
section 3.3.1.

It should be noted that this definition of a surface roughness excludes
the so-called surface skin effect. Near the air-sea interface, strong gradients
are observed which develop due to the absence of turbulence in the viscous
sublayer, see e.g. Grassl [1976].
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Fig. 3.9. Sketch showing the definition of the model domain, which is only the
light grey area in the (¢, z)-space. The dark grey areas are the viscous sublayers,
which are not described by the model equations and the effect of which has to be
parameterised. The thicknesses of these sublayers are z§ for the bottom layer and
zg for the surface layer.

3.2.3 The law of the wall

The law of the wall is an idealisation of the equations of motions which
reproduces flow profiles near walls with high accuracy. In order to obtain
these equations, the stationary, unstratified and non-rotational equations for
one horizontal velocity component 4 is considered:

az(Vtaza) = gazC (345)

Vertical integration and the assumption a zero surface momentum flux
results in:

z

V0. = (uy)” (1 - 5,) (3.46)

with z = —H being the bottom coordinate, D = ( + H being the water
depth, (u«)? = —gDd,( (for 8,( < 0) being the bottom friction velocity
squared and z' = z + H being the distance from the bottom. Furthermore,
local turbulence equilibrium is assumed,

P=e¢, (3.47)

and the macro length scale being
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2\ 172

L = k(z + 20) (1 - —) ) (3.48)
D

with the von Karman constant £ = 0.4. This asymmetric formulation con-

siders the smaller dampening of turbulent eddies by the stress-free surface in

comparison to the bottom. With the eddy viscosity

k2
vy = 02?7 (349)
the shear production
P = v(0,u)?, (3.50)

the dissipation rate from (3.25) and the bottom boundary condition a(—H) =
0, the following solution for @, k, € and v, is obtained:

a(z') 1 2+ 2
.= Eln( . 0), (3.51)
K) = ng (1 _ %) (3.52)
3(1_2
e(z') = ( ;)(z,(i zof ) (3.53)
and
v = Kkux (2" + 20) (1 - %) . (3.54)

For positions close to the wall with 2’'/D < 1, the classical law of the wall
results. For further details, see Nezu and Nakagawa [1993].

It should be noted that usually constant stress near walls is associated
with the law of the wall, which is expressed by

0:(10:1) = (u3)’ (3.55)
instead of equation (3.46) and

L = k(z + 20) (3.56)

instead of equation (3.48). Both concepts lead to the logarithmic profile of
velocity, equation (3.51), anyway, see Burchard et al. [1999]. However, since
this situation is untypical for the ocean the alternative approach of linearly
decreasing shear stress has been chosen here.
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3.2.4 Boundary conditions

For the horizontal velocity components @ and 4, no-slip boundary conditions
are applied at the bed:

u=0=0, for z = —H. (3.57)

By exploiting the law of the wall, this is transformed to a quadratic fric-
tion boundary condition for the numerical discretisation, see section 4.4. The
bottom boundary conditions for temperature and salinity are usually formu-
lated as no-flux conditions unless specific thermal or freshwater sources at
the bed are considered:

v;0,T = v,0,5 =0, for z = —H. (3.58)

At the surface, fluxes of momentum and temperature are calculated by
means of bulk formulae which relate atmospheric parameters to these fluxes:

TE 7Y
l/taz'ﬁ, = —S, I/taz’l_) = —S, for z = C (359)
Po Po

with the surface stress components 77 = u*uf and 7¢¥ = ui¥

ud = /(u*)? + (u3?)? and

u? with

Qs + Q1+ Qb

C}Po ’
with the sensible heat flux, @4, the latent heat flux, @; and the long wave back
radiation, @p. For the studies presented in chapter 7, the Kondo [1975] bulk
formulae have been used for calculating the momentum and temperature sur-
face fluxes due to air-sea interactions. For the surface freshwater flux, which
defines the salinity flux, the difference between evaporation Qg (from bulk
formulae) and precipitation @Qp (from observations or atmospheric models)
is calculated:

110, T = for z = ¢, (3.60)

S(Qe —Qp)

po(0) 7
where pg(0) is the density of freshwater at sea surface temperature. In the
presence of sea-ice, the calculation of freshwater flux is more complex, see e.g.
Large et al. [1994]. For water column simulations with significant imbalance
between Qg and @ p, the freshwater flux is of great importance for the near
surface stratification, see e.g. Clayson and Kantha [1999] for the tropical
Pacific Ocean. However, for many short term calculations, the freshwater
flux can often be neglected compared to the surface heat flux.

The law of the wall, see section 3.2.3, is usually exploited for deriving
boundary conditions for turbulent quantities. For standard situations, no
difference is made for the bottom and for the surface. During strong wind

;0,8 = for 2 = ¢, (3.61)
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periods when breaking surface waves are present, surface boundary conditions
have to be however modified, see section 3.3.2. It is therefore assumed that
the boundaries under consideration lie inside the wall region with 2'/D < 1.
For marine applications, Dirichlet-type (prescription of value) or Neumann-
type (prescription of turbulent flux) are common, but also mixed types could
easily be derived from the law of the wall. With the notation shown in figure
3.9, which locates the bottom boundary z = —H at the upper edge of the
unresolved bottom layer and the surface boundary z = ¢ at the lower edge
of the unresolved surface layer, the Dirichlet-type boundary conditions for &
and ¢ are of the following form:

k(z') = “30 (3.62)
and
3

The distance from the boundary, 2/, is retained in the boundary condition
(3.63), in order to allow to locate the boundary condition at an arbitrary
position within the wall layer. This is specifically useful for numerical schemes
with staggered grid organisation.

It has been shown by Burchard et al. [1998] that the Dirichlet-type bound-
ary conditions may lead to poor numerical accuracy. The reason is the diffi-
culty of accurately discretising the fluxes of € between the two first discrete
e-values. Stelling [1995] had therefore suggested to exploit the law of the wall
for the discretisation of this term by setting

Vt = —*, (364)

Another possibility had been successfully tested by Burchard and Petersen
[1999], following a suggestion Eckard Kleine, Hamburg (pers. comm.): The
use of Neumann-type boundary conditions for k£ and € (see also Meier [1997]).
For the logarithmic boundary layer, they are of the following form:

Mok=0 (3.65)
Ok
and
3/2
Y= (D)0 KT (3.66)

o. o- k(2" + 20)

In (3.66), the down-gradient approximation for the third moment of
with the turbulent Schmidt number o, has been used. It has been avoided
to use uy in this Neumann-type boundary condition for € in order to obtain
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non-zero dissipation rate values near a stress-free surface. This is important
for reproducing pressure-gradient driven open channel flow, in which bottom-
generated turbulence penetrates up to the surface, see Nezu and Nakagawa
[1993] and also section 6.1, figure 6.1. An alternative Dirichlet-type boundary
condition containing one extra empirical parameter had been introduced by
Rodi [1980], which has been successfully used for example by Baumert and
Radach [1992] for simulating pressure-gradient driven channel flow. For the
numerical performance of the flux boundary conditions for the k- model, see
section 4.4.

3.2.5 The k- model

For ¢, an exact transport equation (2.33) has been derived from the Navier-
Stokes equations. In contrast to the equivalent equation for the turbulent
kinetic energy k, that equation needs a number of closure assumptions. The
most common approach is to model the right hand side of the e-equation as
scaled linear combinations of the three terms on the right hand side of the
TKE-equation, see (2.31) for the exact form and (3.41) for the modelled form.
The new empirical parameters which occur by applying this approach have
then to be determined by theoretical assumptions, observations or laboratory
or numerical experiments.

Cu |Ok | Cle | C2¢

0.09]1.0{1.44|1.92
Table 3.3. Empirical constants for the standard k-e model.

This modelling strategy leads to the following closed form of the e-
equation:

O — 0, ((V + ﬁ) st) = E(clsP + c3eB — ¢9.€), (3.67)

e k
which contains four adjustable parameters. These can be calibrated by con-
sidering idealised flow situations in which most of the terms are negligible.
¢2- had been calibrated by observing freely decaying homogeneous turbulence
behind a grid. In this situation, the k- model degenerates to a balance of time
derivatives and dissipation terms. It can be shown that for long integration
times, the solution for k follows a power law of the following type:

kﬁo —4 (%)d (3.68)

with the decay rate, d, with the constant parameter A and the initial values
for turbulent kinetic energy, ko and the turbulent time scale, 7. This gives
the following relation between d and c¢y:
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1
d=i—— (3.69)

The decay rates, d, have been estimated by a number of laboratory experi-
ments, see Bradshaw [1975], Townsend [1976], Domaradzki and Mellor [1984],
Mohamed and Laure [1990]. The range of these experimentsis —1.3 < d < —1.
The value from table 3.3, co. = 1.92 corresponds thus with d = —1.09 which
is well inside the experimental range.

c1e can be determined by wind tunnel experiments with homogeneously
sheared grid turbulence. An alternative, theoretical approach has been pre-
sented by Tennekes [1989], who analyses a transport equation for the macro
length scale L, see equation (3.86). The value resulting from this theoretical
consideration, ¢;. = 1.5 deviates only slightly from the value give in table
3.3, see also Baumert and Peters [2000].

The buoyancy related parameter cs. has been subject to controversial de-
bate since years. By pragmatic arguments, Rodi [1987] suggests a value of
0 < e3c < 0.29 for stable stratification and c3. = 1.44 for unstable stratifi-
cation?. Baum and Caponi [1992] suggest c3e = 1.14 for stable and unsta-
ble stratification, and Kochergin and Sklyar [1992] support this by arguing
that ¢z. > 1 should hold. Burchard and Baumert [1995] were the first who
published arguments for negative c3. (for stable stratification) based on the
consideration of stationary solutions of homogeneous shear layers. However,
Kantha [1988] has used such arguments several years earlier, but never pub-
lished them. The unpublished report by Kantha [1988] had been made avail-
able to the author of this book by Lakshmi L. Kantha not before August
2000. In later publications such as Kantha and Clayson [1994] and Kantha
and Clayson [2000], these arguments had never been repeated. For an in
depth discussion of the determination of c3. under stable stratification, see
section 3.2.11.

The turbulent Schmidt number o, can be determined by the requirement
that the solution of the e-equation fulfils the law of the wall. After assuming
stationarity, neglecting density gradients and inserting (3.47), (3.52), (3.53)
and (3.54) with 2’ < D into (3.67), the following expression results for o.:

Ii2

O =0e1 = G ——— R 1.111, (3.70)
Cu (C25 - cls)

where the empirical parameters from table 3.3 have been used. It should be
noted that o. needs a different scaling when the law of the wall does not

apply. This is typically the case under breaking surface waves, see Burchard

2 1t should be noted that Rodi [1987] uses a different notation for cs. than the
author of this book. This lead to an erroneous reference to the Rodi [1987] values
for cs. in Burchard et al. [1999] and other related publications. The author of
this book is grateful to Lars Axell, Norrképing, for pointing this out.
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[2001b] and figure 3.17, when o, is a function of the shear production to
dissipation ratio, P/e, with o from (3.70) being a special case for P/e = 1.

With these parameters, the so-called standard k- model is defined. It
should be noted that a major simplification has been carried out for this
model type concerning the stability functions. ¢, is a constant in the stan-
dard k-e model. In order to properly reproduce the dependence of the tur-
bulent Prandtl number, see figure 3.7, c;‘ is usually modelled as ¢, divided
by the turbulent Prandtl number. This turbulent Prandtl number could be
taken from Munk and Anderson [1948] (see Burchard and Baumert [1995]),
a simple linear relation (see Baumert and Peters [2000]) or a non-linear rela-
tion as suggested by Schumann and Gerz [1995] (see section 3.2.12, equation
(3.108)). Applications of the standard k-¢ model to marine and limnic flows
have been made by various authors such as Marchuk et al. [1977], Svensson
[1978], Svensson [1979], Omstedt et al. [1983], Rodi [1987], Omstedt [1990],
Burchard and Baumert [1995], Burchard and Baumert [1998], Burchard et al.
[1998] and Burchard et al. [1999].

Within a three-dimensional ocean model, Nihoul et al. [1989] slightly
modified the k-e model for simulating currents in the Northern Bering Sea.
Baumert [1992] used a standard k-e model for simulating three-dimensional
baroclinic flow around Heligoland Island (German Bight) and Pietrzak et al.
[2002] recently applied a three-dimensional baroclinic model with the stan-
dard k- model and general vertical coordinates to simulate drift of suspended
matter with the Jutland coastal current (Eastern North Sea) and the Odden
ice tongue formation in the Greenland Sea.

The use of k- models in connection to second-moment closure modelling
is not that widespread. Rodi [1980] and Hossain [1980] developed such ad-
vanced k-¢ models and applied them to flows typical to engineering problems
such as open channel flow. Burchard and Baumert [1995] and Burchard and
Bolding [2001] calibrated and applied such models successfully to mixed lay-
ers in shelf seas and the open ocean. Luyten et al. [1996a] reproduced the
complex dynamics of the Rhine outflow region with a k-¢ model in combina-
tion with a quasi-equilibrium second-moment closure scheme. Recently Meier
[2001] (see also Meier [2000]) applied k- models with various second-moment
closures inside a three-dimensional model for the Baltic Sea.

The fact that the k- model in connection with second-moment closures
has only recently been more extensively applied to geophysical flows, might be
the reason for the misunderstanding among many scientists that the concept
of the k-¢ model always means the standard k-¢ model. When the author of
this book gave a seminar to George L. Mellor in 1998 about such advanced
k-e models, the latter stated

Then, the k-€ model is a Mellor-Yamada type model as well.

This is fully acceptable, as long as the second-moment closures by Mellor
and Yamada [1974] and Mellor and Yamada [1982] or closures built up them



60 3 Boundary layer models

such as Galperin et al. [1988], Mellor [1989], Kantha and Clayson [1994] or
Mellor [2001a)] are considered. The main difference is that the kL-equation
is substituted by the e-equation in such advanced k- models, see Burchard
et al. [1998].

3.2.6 The k-kL model

In their classical paper on systematising turbulence closure models, Mellor
and Yamada [1974] applied a simple algebraic equation for calculating the
macro length scale, suggested by Blackadar [1962] for the atmospheric bound-
ary layer. Some years later, Mellor and Yamada [1982] developed an alter-
native equation for kL, which is a prognostic transport equation motivated
by the two-point correlation function, see Rotta [1951]. A similar equation
for kL had already been constructed by Rotta [1968] by means of dimen-
sional analysis. A wall correction term has first been introduced by Ng and
Spalding [1972] in order to properly reproduce near-wall flow. Similarly to the
e-equation, this equation is based on various, not well-founded assumptions.
Mellor and Yamada [1982] write about this equation:

The closure assumptions are complicated, and we consider the
result less convincing than the previous assumptions and more likely
to be amended in the future.

However, this equation has been unchanged since today, see Mellor
[2001a]:

0 (kL) - . (S1V2kLO, (kL)) =

) (3.71)
E\P + E3B — <1+E2 (%) )% .

Here, the same notation as for the k-¢ model is used. For the conversion
formulae to the Mellor and Yamada [1974] notation, see section 9.1.2. The
relation between L and ¢ is defined by equation (3.25) with ¢z, = 2%/?/B; ~
0.17.

It should be noted that a slightly modified TKE equation is generally
used in the k-kL models:

2

&k — 0, (Sq\/Z_kLazk) =P+B-c. (3.72)

The only difference in comparison to the TKE equation (3.41) is the
constant stability function S, which leads to higher entrainment through
density interfaces, see Simpson et al. [1996]. Furthermore, in contrast to the
k-e and the k-w model, the viscous mixing term is neglected in the Mellor
and Yamada [1982] model.



3.2 Two-equation models 61

The empirical parameters occurring in equations (3.71) and (3.72), see
table 3.4, are calibrated by the same means as for the k-¢ model. Thus, it
is not surprising, that they well correspond to each other, see Baumert and
Peters [2000] and section 3.2.9.

By |E1| B, |E3| S,
16.6/1.8]1.33[1.8[0.2

Table 3.4. Empirical model parameters for the k-kL model.

Only for the buoyancy production related parameter E3 which corre-
sponds to c3. for the k- model, the same problem arises as already for the k-
model. Like Rodi [1980] for the k-e model, Mellor and Yamada [1982] chose
the same empirical coefficient for the buoyancy production and for the shear
production, arguing that it "might be preceded by another constant if data
can be found to unambiguously support a value other than unity”, where
“unity” is here related to the ratio of E;/FEj3. It was again Kantha [1988] in
his unpublished manuscript who first suggested a completely different value
for F3, based on limitations of the macro length scale for stably stratified
flow. In the same year, Galperin et al. [1988], suggested to apply an algebraic
length scale limitation proportional to the buoyancy length scale (3.99) ,

0.56k
L*<r1i, = e for N? > 0, (3.73)
when using the k-kL with E3 = FEj, in order ”to reflect the limiting effects
of stable stratification on the size of turbulent eddies”. In combination with

(3.25), this limitation is is equivalent to

L<

0.65 ( € )1/2 (3.74)

(@7 \ s

with the Ozmidov length scale Lo = (/N 3)1/ ?_ see equation (3.98) and the
discussion by Luyten et al. [1996a].

Burchard [2001a] could recently show that the consequence of not us-
ing the limitation (3.73) leads to a pronounced, unphysical maximum of the
macro length scale L in the entrainment region below a stably stratified
boundary layer. However, after calibrating F3 in the same way as done be-
fore with ¢3¢, Burchard [2001a] could show that the model performs properly
also without the length scale limitation (3.73), see section 6.2.2. Recently,
Mellor [2001a] suggested to modify the Taylor [1935] scaling, (3.25), such
that the proportionality factor ¢y, is a function of stratification rather than
being constant. By doing so, he could much better than before reproduce
the Dickey and Mellor [1980] experiment. In this experiment the decay of
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turbulence in stably stratified flow without shear into internal waves is sim-
ulated in a tank. This new choice for ¢f could possibly compensate for the
physically unmotivated choice of E3 = 1.8.

Inserting the log-law solution from section 3.2.3, into (3.71) leads to

1+ E; — E;
Sl - K,ZB1
see Mellor and Yamada [1982]. Furthermore, S, = S; is used for the TKE
equation.

The diagnostic length scale L, which has to be prescribed for the kL-
equation should follow the law of the wall near boundaries. For matching the
surface and the bottom boundary layer, various profiles are possible, such as
a parabola shaped one,

~ 0.2, (3.75)

— (db+zg)(ds —}—Zg)
(dy + 2§) + (ds + 2§)’

z

(3.76)
and a triangle shaped one,

L, = kmin(dy + 23, ds + 28), (3.77)

see Burchard et al. [1998].

Here, ds is the distance from the surface and dp the distance from the
bottom. The choice for L, plays an important role in open channel flow, see
section 6.1.

Since the publication of Mellor and Yamada [1982], turbulence closure
models using the kL equation have been extensively used in geophysical fluid
dynamics. Most oceanic applications have been carried out with the Prince-
ton Ocean Model (POM) introduced by Blumberg and Mellor [1987], such as
Ezer and Mellor [1992], Aikman et al. [1996], Ezer and Mellor [1997], Ezer
[1999], Ezer [2000], Jungclaus and Vanicek [1999] and Jungclaous and Mellor
[2000]. The Modular Ocean Model (MOM, see Bryan [1969] and Coxz [1984])
optionally works with the k-kL model, see Rosati and Miyakoda [1988]. A
sensitivity study comparing the k-kL model with simpler turbulence param-
eterisations in the coastal zone has been carried out by Ruddick et al. [1995].
Yamada [1983] is one of the few applications of this model in the atmosphere.

3.2.7 Other approaches

The k-e and the k-kL model are the only two-equation models which have
been extensively applied to geophysical flows. However, due to the relation
between k, ¢ and L given by equation (3.25), any other variable k™™ with
m # 0 could be used for the calculation of the macro length scale, see section
3.2.13.

In engineering flow applications, some of such alternative length scale
equations have been developed. Extensions to geophysical flow situations
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should pose in principle no additional problems, the main additions would
be buoyancy effects which are mostly ignored in engineering applications.
The most well-known alternative model is the k-w model, where w = ¢/k
is the turbulence frequency with the unit [s~1]. Kolmogorov [1942] already
suggested the use of the k-w model, but the present form of this model has
mainly been developed by Wilcoz [1988] and Wilcoz [1998]. When adding
buoyancy effects (see Umlauf et al. [2001]) in analogy to the £ and the kL
equation, see (3.67) and (3.71), respectively, the w equation is of the following
form:

Oyw — 0, ((l/ + :—t) 6zw) = % (cw1P + cy3B — cyo€) - (3.78)
w

Baumert and Peters [2000] found that the parameters for neutral flow, ¢,
and ¢,2, are in good agreement with those for the k- and the k-kL model. In
the latest version of the k-w model, the coefficients for the dissipation terms,
cr (see equation (3.25)) and c,2 depend on the flow state itself, in order to
better account for free shear flows (see Wilcoz [1998]).

Two other types of model which should be mentioned here, are the k-7
(Speziale et al. [1990]) and k-kr models (Zeierman and Wolfshtein [1986]),
where 7 = k/e = w™! is the turbulent time scale. However, according to
the findings of section 3.2.13, these two models should have problems with
properly reproducing the law of the wall unless extra wall-terms are included
as in the kL equation (3.71).

3.2.8 Homogeneous shear layers

For some basic investigations of turbulence models it is instructive to consider
idealised flows far away from boundaries with constant shear and stratifica-
tion. This leads to the concept of homogeneous shear layers. Such flows have
been approximated in laboratory flumes (see Rohr et al. [1988] and Piccorillo
and van Atta [1997]) and numerically by means of Direct Numerical Simula-
tion (see Gerz et al. [1989], Holt et al. [1992], Shih et al. [2000]). In the real
ocean, such homogeneous shear layers might be present for short times only,
although usually disturbed by internal waves. However, situations in which
the time scales of the mean flow are much larger than those for the turbu-
lence are typical for the ocean. Therefore, homogeneous shear layers seem to
be a basic flow situation and turbulence closure models should thus be able
to properly reproduce them.

3.2.9 Two-equation models as dynamic systems

Mathematically formulated, this concept leads to vanishing diffusion terms in
all turbulent equations such that they become ordinary differential equations
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only depending on time ¢. For homogeneous shear layers, the idealised dy-
namical system for k¥ and e can be formulated in the following way (Burchard
[1995], Baumert and Peters [2000]):

k(12
=—|=-1 3.79
ak=%(5-1), (3.79)
e (T2
dig =~ | = —Cae (3.80)
T 1>
with the time scales:
k
= - 3.81
r=1, (3:81)
e = (cuM® — ¢, N?)7/2 (3.82)
and
7 = (crecuM? — e3¢, N?) /2. (3.83)
A dynamic equation may be derived for 7 as well:
72
F=(coe — 1) (1 - —2) (3.84)
TOO
with the asymptotic time scale
1/2
Coe — 1
=== ) 3.85
Tee (752—T;2> (38)

The mathematical properties of the dynamic system (3.79) - (3.85) with
special consideration of steady-state solutions and asymptotic behaviour will
be studied in more detail in sections 3.2.10 - 3.2.12.

In this context of ordinary differential equations, transport equations for
any property k™™ can be derived from (3.79) and (3.80). It is for example
interesting to inspect the transport equation for the macro length scale L o
k3/2¢~1 in homogeneous shear layers:

L= %/2 ((g - c15> P+ (g - C35> B+ (g - 025) 6) . (3.86)

For this situation of homogeneous shear layers, Tennekes [1989] argues:

On dimensional grounds, L cannot depend upon the shear because
the shear is homogeneous and cannot impose a length scale. This
requires that ¢ = 3/2. [Notation adjusted to this book.]
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This argument is an a posteriori confirmation of the empirical value of
c1e = 1.44 = 3/2 given in table 3.3, see also Baumert and Peters [2000].

It is also the transport equation for kL which can now be derived in the
same way:

L k?
di(kL) = 5 ({Elc,,M2 — Esc),N?} —- E25> i (3.87)

This formulation allows for a quantitative comparison of the empirical
parameters on the right hand sides of the € and the kL equation, see Baumert
and Peters [2000]:

E1 =5—2015,E2 =5—2025,E3 =5—2C35 (3 88)

With (3.88), E; = 2.12 and E; = 1.16 would result from table 3.3 contain-
ing the empirical parameters for the k- model, ¢;. and cp.. With E; = 1.8
and Ey = 1.0 (see Mellor and Yamada [1982]), these values are indeed similar
to each other.

Here, the question for appropriate values for c.3 and E3 has been left open,
for a discussion see Burchard and Bolding [2001] for c.3 and Burchard [2001a]
for E3 and section 3.2.11. The calibration of ¢.3 and E3 will be performed in
sections 6.2.1 and 6.2.2, respectively.

3.2.10 Analytical solution of idealised system

For constant values of 73 and 7., an analytical solution of the system (3.79)
and (3.80) exists® for each pair of positive initial values ko and &o:

i

1— -7
7(t) = Ljrm, (3.89)
1+Ce =t
t Tgc t 1
_ _t [14+Ce m|tze-1)F [1=Ce 71| c2e-1
b0 = ke~ |0 TS T )
and
t "'go t c2¢
e [14+Ce 1] Gae—2[1 —Ce 71| c2e-1
E(t) =Ep€ ™ |:1—|—70:| [T] (391)

% For the algebraic second-moment closure schemes presented in sections 3.1.3 and
3.1.6, this assumption of constant time scales 74 and 7. is not correct, since the
stability functions still depend on the variable time scale 7. Constant stability
functions would be obtained in this idealised situation with homogeneous shear
layers for the standard k-¢ model, see section 3.2.5.
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with
ko
T — ko
C = L;o (3.92)
Too + ;Q
0
and the time scales
2
r
T =T 5L - = (3.93)
and
1 7%
=Z ) .94
T1 D) oo — 1 (3 9 )

This solution has been already been presented by Burchard [1995] and
Burchard and Baumert [1995] with different notation.

Figures 3.10 and 3.11 display analytical solutions for k, € and 7 with
¢t = 1.5, cca = 2, c3 = —1.06, ¢, = 0.09, ¢}, = 0.073 and N> = 10 *s %
Three cases are studied in which the shear M is adjusted such that the
gradient Richardson number R; = N2/M? has the values R; = 0.15, R; = 0.2
and R; = 0.25, resulting in 73 < Too, Tk = Too and 7 > 7o, respectively. For
the three cases, 7, = 138 s, 7, = 163 s and 7, = 187 s, respectively, and
Too = 149 8, oo = 163 s and 7, = 174 s, respectively, holds. The choice for
ce3 leads to a steady-state Richardson number of R = 0.2, for the definition
see section 3.2.11. For k and ¢, a variety of different initial values kg and g
has been used.

The analytical solution of this idealised k- model allows for studying
some aspects of the general behaviour of such two-equation models. First of
all, the positivity of k and e for all positive initial values ko and ¢ and all
times t is obvious*. It can be furthermore immediately seen from the solution
for the time scale 7, (3.89), that for all M2 and N2, 7 converges towards a
steady state, i.e. 7 = T. The time scale of this asymptotic process is of
the order of 7, itself. This is graphically demonstrated in figures 3.10 and
3.11 for three different values of M?2. The steady state of (3.89), 7 = 7 is
called structural equilibrium and has some interesting physical implications,
see Baumert and Peters [2000] and section 3.2.12. The analytical solutions
for k and €, (3.90) and (3.91), respectively, contain an exponential factor
with the time scale 7,, which can be, depending on M2 and N2, positive,
negative or infinity. In the latter case, which is a consequence of 7o, = 7%, k
and € converge towards a steady state depending on the initial values. This
physically interesting situation will be discussed in more detail in section
3.2.11.

4 For a positivity proof for the complete k-¢ model, see Mohammadi and Pironneau
[1994].
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Fig. 3.10. Analytical solution of k-¢ model in k-¢ space with a steady-state
Richardson number of R = 0.2, see section 3.2.11. Shown are the solution with
steady-state (upper panel, R; = 0.2), a decaying solution (middle panel, R; = 0.25)
and a solution with unlimited growth (lower panel, R; = 0.15).
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Fig. 3.11. Analytical solution of k-¢ model as time series with a steady-state
Richardson number of RS* = 0.2, see section 3.2.11. Shown are the solution with
steady-state (upper panel, R; = 0.2), a decaying solution (middle panel, R; = 0.25)
and a solution with unlimited growth (lower panel, R; = 0.15).
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Finally one other physically interesting feature of this idealised k- model
should be discussed. From, (3.79) and (3.80), an ordinary differential equation
for the eddy viscosity v; can be derived:

= P {0 e - D - - D) (399

With 7, = 70 and ey = 2, (3.95) would lead to stationary eddy viscosity
v;. Since the empirical value for co. = 1.92 is very close to this, it can be
assumed that the eddy viscosity is more or less invariant in situations in
which the homogeneous k-¢ model has stationary solutions. It can be clearly
seen in figure 3.10 that the trajectories of k and e are basically parallel to
the lines of constant eddy viscosity even when 7, = 7o, does not hold.

It is not known to the author of this book whether this invariance of the
eddy viscosity has ever been investigated in more detail. One could possi-
bly find arguments similar to those by Tennekes [1989], see equation (3.86),
saying that for freely decaying turbulence the eddy viscosity should not de-
pend on the dissipation rate, and thus arguing cs. = 2. However, this idea is
very speculative, but should probably be further discussed in the turbulence
modelling community.

3.2.11 The steady-state Richardson number

If in equations (3.79) and (3.80), k and & are set to zero, then the total
equilibrium of the k-e model is reached and the following relation, which is
a precondition for the steady state can be derived:

C Coe — C1

st Hn 2 £
Ri=Rjt="0 2" (3.96)

Cy C2e — C3e

The steady-state Richardson number R$! thus depends on the empirical
parameters ci., coc and cs3¢ in the e-equation and on the actual stability func-
tion chosen. In contrast to ¢ic and co., the buoyancy flux related parameter
c3: has never directly been determined by laboratory experiments. Figure
3.12 shows how ¢z, and R;?t are related to each others for the various sta-
bility functions discussed in section 3.1.3. This figure may be compared to
figure 3 by Burchard and Baumert [1995] where the flux Richardson number
was considered instead.

For all four second-moment closure models, realistic steady-state Richard-
son numbers with th < 0.25 require c3. < —0.4, such that on physical
grounds, c3. should be negative in any case. This means that the value of
c3e > 0 as used in most investigations is physically unsound. Furthermore,
all graphs in figure 3.12 are monotonically increasing such it can be stated
for all four closures that smaller c3. cause smaller steady-state Richardson
numbers.

The concept of the steady-state Richardson number has recently been
applied to the Mellor and Yamada [1982] two-equation model by Burchard
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Fig. 3.12. Steady-state gradient Richardson number RS* as function of cs. for the
different sets of stability functions: Models of Kantha and Clayson [1994] (KC),
Rodi [1980] and Hossain [1980] (RH), version A of Canuto et al. [2001] (CA), and
version B of Canuto et al. [2001] (CB).
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tion —B/e and the parameter —G g o an for steady-state as functions of E3.
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[2001a] as well. The result is shown in figure 3.13 for the quasi-equilibrium
second-moment closure by Kantha and Clayson [1994]. Physically sound re-
sults are obtained for E3 > 4.752 only. This means that the original value
of E3 = 1.8 by Mellor and Yamada [1982] has no proper physical meaning.
Two other buoyancy related quantities are shown as function of Ej3 in figure
3.13 as well, B/e and —G g x ay (for the exact relation see equation (9.11)),
the latter quantity being an important parameter in the Mellor and Yamada
[1974] and Mellor and Yamada [1982] second-moment closures.

The steady-state Richardson number for homogeneous shear layers can be
estimated by means of Direct Numerical Simulation (DNS, see section 2.1.5)
and physical experiments in laboratory flumes. Gerz et al. [1989] and Holt
et al. [1992] were the first who used Direct Numerical Simulation of sheared,
stratified flow. They demonstrated the existence of a stationary (or steady-
state) Richardson number R$* and showed its dependence on the Reynolds
number R,. According to Schumann and Gerz [1995], Ri* < R$® with the
asymptotic Richardson number R{° = 0.25 should hold. By analysing lab-
oratory data from Rohr [1985] obtained from homogeneously shear-layered
saltwater flow, they conclude that Rf* = 0.16 +0.06. In a recent publication,
Shih et al. [2000] could quantify the dependence of the steady-state Richard-
son number R{* on the Reynolds number R.. They suggest the following
empirical relationship between these two non-dimensional numbers:

a0 00 (3.97)
1+ R R.—00
For proper implementation of the concept of the steady-state Richardson
number into numerical models, an exact calibration of R$! is needed, such
that c3. and E3 can be determined for each set of stability functions. Such
calibrations will be carried out in sections 6.2.1 and 6.2.2 with the aid of a
simple wind-entrainment experiment.

3.2.12 Structural equilibrium

The so-called structural equilibrium has been first defined by Schumann
[1994]. It is reached when the time scale 7 = k/e is in steady state and
the total equilibrium is obviously a special case of it. It can be shown that —
other than the total equilibrium discussed in section 3.2.11 — the solution for
(3.79) and (3.80) tends to the structural equilibrium for all Richardson num-
bers. Baumert and Peters [2000] recently showed how a k- model equipped
with an empirical closure for the stability functions could reproduce data
found for ratios of relevant turbulent length scales. This is here repeated for
the four algebraic second-moment closures presented in section 3.1.3.

Various length scales have been defined for turbulent flow. Among them
are the Ozmidov scale
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e \1/2
Lo = (ﬁ) (3.98)
and the buoyancy scale
k‘l/2
Ly = N (3.99)

of specific interest (see Baumert and Peters [2000]). The Ozmidov scale cor-
responds to a balance between inertial and buoyant effects (Lesieur [1997]).
The buoyancy scale is often used as a measure for an upper limit of L in
stably stratified flow, see Galperin et al. [1988] and equation (3.73). How-
ever, with the macro length scale L, the Ozmidov and the buoyancy scale are
closely related to each other:

73/2
Lo = (02)3/8# (3.100)
and
L
ﬁ =al/* (3.101)
Another important length scale is the Ellison scale, defined as:
—(p*)'/?
Lp=—"— 3.102
T e (3102)

(with the density fluctuation g), which is often set equal to the Thorpe scale
Lrp. The latter has been introduced by Thorpe [1977] as the distance over
which fluid parcels have to be vertically reordered in order to obtain a mono-
tone density profile. The Ellison and the Thorpe scale are related to the
macro length scale L through the following relation (see Baumert and Pe-
ters [2000]):

L
2C,(0)3/

with C; = 1.4. When assuming structural equilibrium for the k- model in the
homogeneous shear layer approximation, then the ratios Ly /Lo and Lg /Ly
can be transformed as follows:

Lg =Ly, = (3.103)

Lg 1 35

Lg 1 4

For a different view of the Thorpe to Ozmidov length scale ratio shown
in equation (3.104), see Luyten et al. [1996a] and equation (27) therein. Fur-
thermore, the two ratios (3.104) and (3.105) can be expressed as implicit
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functions of the gradient Richardson number R;. These implicit functions
can be numerically solved by a one-dimensional Newton iteration. The re-
sults are shown in figure 3.14 for five different sets of stability functions in
comparison to the empirical curves, resulting from fits to data by Rohr [1985]
and Schumann and Gerz [1995], see Baumert and Peters [2000]:

L
~E ~42RY* (3.106)
Lo

and
L
ZE ~16R}. (3.107)
Ly

Four of these stability functions tested are those resulting from second-
moment closures as introduced in section 3.1.3. The fifth is a semi-algebraic
closure where c,, is a constant and ¢, a function of the turbulent Prandtl
number P,.:

0 <)
c,=co, c, =L 3.108
v )] ) PT ( )
with cg = 0.09. We choose here for the turbulent Prandtl number P, a
formulation suggested by Schumann and Gerz [1995]:

R; R;
P, = P%exp (_PTOR‘-’O) + T (3.109)

with the neutral turbulent Prandtl number P? = 0.74 and R{° = 0.25. Simple
models like this are for example the standard k-¢ model, see section 3.2.5.

Figure 3.14 reveals that all tested stability functions reproduce the in-
crease of the Lg/Lo and Lg/Ly ratios with increasing gradient Richardson
number. However, the Kantha and Clayson [1994] stability functions do sig-
nificantly deviate from the empirical curves which are quantitatively well
approximated by the other stability functions. It is visible that the simple
stability functions from the standard k-e model show the best agreement with
the empirical curve. This has already been shown by Baumert and Peters
[2000] for a similar set of simple stability functions. The larger deviations of
the more complex second-moment closures (RH, CA and CB) for the Lg/Ly
ratio are not surprising, since they have been developed fully independently
from these data. Their performance could probably be improved by slightly
adjusting some empirical parameters.

This detailed investigation of idealised flow in structural equilibrium adds
some confidence to the use of second-moment closure schemes since it shows
that basic flow relations are well reproduced.

Recently, Shih et al. [2000] presented some new results from Direct Numer-
ical Simulations of homogeneous shear layers. They could confirm a hypoth-
esis by Rogallo [1981] who postulated that the non-dimensional shear rate
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Fig. 3.14. The ratios Ly/Lo and Lg/L; as functions of the gradient Richard-
son number R;, where Lg is the Ellison, Lo the Ozmidov and L; the buoyancy
scale. Shown are curves resulting from the Kantha and Clayson [1994] (KC), the
Rodi [1980] and Hossain [1980] (RH), the Canuto et al. [2001] (CA, CB), and a
semi-empirical set of stability functions using a turbulent Prandtl number param-
eterisation as suggested by Schumann and Gerz [1995] (SG), see equation (3.108).
These are compared to the empirical estimates from equations (3.106) and (3.107).
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Fig. 3.15. The dimensionless shear as as functions of the gradient Richardson
number R;. Shown are curves resulting from the Kantha and Clayson [1994] (KC),
the Rodi [1980] and Hossain [1980] (RH), the Canuto et al. [2001] (CA, CB), and a
semi-empirical set of stability functions using a turbulent Prandtl number param-
eterisation as suggested by Schumann and Gerz [1995] (SG), see equation (3.108).
For all stability functions, a steady-state Richardson number of R{* = 0.25 has
been used. The results are compared to a Direct Numerical Simulation result by
Shih et al. [2000] for R; = 0.16.

ay = M27? must approach a finite non-zero constant for large Reynolds
numbers. For a Richardson number of R; = 0.16 they found aj; — 30 for
large times, independently from the initial value of ajs. If one interprets
the approach towards this constant as the arrival at the structural equilib-
rium, then this can be simulated by the sets of stability functions discussed
before. This structural equilibrium is described for two-equation models by
T = Too, S€e equation (3.84). For the k- model, this can be transformed to
the following relation for a:

Coe — 1
(c1e = 1)y — (e3e = 1)), Ry

oy = (3.110)

The relation (3.110) is implicit for non-equilibrium stability functions,
since ¢, and cL do still depend on ajs and has to be solved by a non-linear
Newton iteration. Figure 3.15 shows the results for five sets of stability func-
tions as function of the gradient Richardson number R;. For the Kantha and
Clayson [1994] stability functions no solution could be found for R; > 0.11
and for the Rodi [1980] and Hossain [1980] scheme no solution was found for
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R; > 0.66. The two sets of stability functions by Canuto et al. [2001] and
the empirical set suggested by Schumann and Gerz [1995] do both weakly
decrease with R;. The version A by Canuto et al. [2001] predicts the result of
Shih et al. [2000] with great accuracy. The empirical stability functions with
a constant ¢, are much too low although they well predicted estimates for
the length scale ratios, see figure 3.14. It would be interesting to investigate
the performance of the quasi-equilibrium versions of the stability functions in
this framework. It would also be interesting to see whether the decrease of the
non-dimensional shear with increasing Richardson number can be confirmed
by means of DNS studies.

3.2.13 Generic two-equation model

If one accepts the Taylor [1935] scaling, see equation (3.25), which relates k,
€ and the macro length scale L, then the approach for modelling the right
hand side of the e-equation could be generalised to a transport equation for
any quantity k"™ with m # 0. This could then be used for calculating
€. This approach will be presented and tested here. For a more in depth
discussion, see also Umlauf and Burchard [2001]. Together with the down-
gradient approximation of the third moment, a transport equation for k"™
could be of the following form?®:

Vi

O (k‘nEm) -0, (V + 0. (knfm)) =k te™ (ClnmP + C3nmB — C2nm5) .

(3.111)
Here, 0, is a turbulent Schmidt number relating the vertical flux of
k™™ to the Reynolds stress. Together with the turbulent Schmidt number
oy, for the turbulent kinetic energy equation, (3.41), ¢1nm, Conms C3nm, Onm, N
and m, sum up to a total of seven adjustable parameters for the generic two-
equation model. It should be recalled here, that the parameters c;., co. and
¢3¢ for the dissipation rate equation (3.67) have been calibrated for the ver-
tically homogeneous transport equation, i.e. by neglecting vertical diffusion
of turbulent quantities, see section 3.2.5.
When neglecting the turbulent fluxes of € and k™™, then (3.111) is equiv-
alent with (3.67) such that

nm

Cinm = MCie + N, fori=1,...,3. (3.112)

The turbulent Schmidt number o, is determined by insertion of the
law of the wall into equation (3.111), as already done for the k-¢ model

5 It should be noted that Umlauf and Burchard [2001] use a different notation,
there m is the exponent for £ and n the exponent for the macro length scale L. For
converting their notation into the present notation, the following transformations
would be needed: m = —n and n = m+ %1‘1 with the overbars denoting the Umlauf
and Burchard [2001] exponents.
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(see equation (3.70)) and for the k-kL model (see equation (3.75)), see also
Launder and Spalding [1974]. The result for o, is:

7’I’LI€2

Onm = —————— =, 3.113
" (C2s - 015)0;11/2 ( )
which is a generalisation of equation (3.70). Thus, o, does not depend on
n. Much more interesting, though, is the fact that o, is positive only for
positive m. This has the consequence that all models with m < 0 do not fit
into this concept since the diffusivity v; /oy, should be positive by definition.
The k-kL model for example has the exponents n = 5/2 and m = —1. That is
the reason why that model needs an extra wall term for stabilising the model
near walls. The estimate (3.75) does therefore only work after considering this
extra term. The same problems are expected for the k-7 model with n = 1
and m = —1 and the k-k7 model with n = 2 and m = —1, see section 3.2.7.
In contrast to this the k-w model with n = —1 and m = 1 (see section 3.2.7)
does fit into this concept of a generic two-equation model.

Thus, the four empirical parameters cinm, C2nm, C3nm and o, are fixed
for the generic two-equation model, for m and oy, all positive values are admis-
sible and for n so far no restrictions have been found. The calibration of two
of these three empirical parameters will be discussed in section 3.3.1 for the
case of grid-generated shear-free turbulence, see also Umlauf and Burchard
[2001].

Boundary conditions for this generic model can easily be derived from
the law of the wall, see section 3.2.3. The adequate Dirichlet-type boundary
condition for k"e™ is

" uin+3m
Eme™ = 7z . (3.114)
(cg) K™ (2" + z9)™

The flux condition for k™™ can be formulated as:

k3/2m+n

Yt n.m 0\3/4
5, (knem) = — S —
a ( € ) (C ) K/m(zl+z0)m+1

Onm K

(3.115)

which is a generalisation of the flux condition for £, (3.66).

3.3 Surface and internal wave effects

There are various processes in the ocean which cannot sharply be separated
from turbulence. These are specifically non-linear waves which interact with
turbulence in ways which are not yet fully understood. Short surface waves
create turbulence when they break. They are also responsible for Langmuir
circulation, a near-surface process well understood only in recent years. For
both processes, dissipation of internal waves into turbulence and Langmuir
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circulation, theories exist which can be partially exploited for their parame-
terisation in boundary layer models. Consideration of such processes in ocean
models is however still far from being a standard procedure.

The same is true for internal waves which interact with turbulence in var-
ious ways. Also here a clear separation between internal wave kinetic energy
and turbulent kinetic energy is difficult.

These three processes are discussed in this section from the viewpoint
of turbulence modelling. The modelling of turbulence production by break-
ing surface waves with two-equation models has recently been investigated
in detail by Burchard [2001b] and Umlauf and Burchard [2001], the results
presented here in section 3.3.2 are mainly taken from those publications. An
important key to understand parameterisations of surface wave breaking is
the numerical simulation of shear-free turbulent flows which are typically gen-
erated by oscillating grids. The simulation of such idealised flows as carried
out by Umlauf and Burchard [2001] is discussed in section 3.3.1. Produc-
tion of turbulence by internal wave energy is discussed in section 3.3.3 and
the perspectives of parameterising the interaction between turbulence and
Langmuir circulation are outlined in section 3.3.4.

3.3.1 Shear-free turbulence

The first step in understanding the behaviour of two-equation models in the
wave-enhanced layer is the investigation of a special case, in which turbulence
decays spatially away from a source without mean shear. Turbulence gener-
ated by an oscillating grid in a water tank has been used in various laboratory
experiments to study the spatial decay of velocity fluctuations in this basic
turbulent flow, where turbulent transport and dissipation balance. Having
the influence of grid generated turbulence on interfacial mixing in stratified
fluids in mind, pioneering works of this type were conducted by Thompson
and Turner [1975] and Hopfinger and Toly [1976]. Since their results were not
entirely conclusive, a large number of similar experiments followed until very
recently (Hannoun et al. [1988], Nokes [1988], deSilva and Fernando [1992],
Cheng and Law [2001]). A DNS study of the transport-dissipation balance at
low Reynolds numbers was performed by Briggs et al. [1996].

All grid stirring experiments cited in table 3.5 confirm a power law for
the decay of k£ and a linear increase of the length scale L according to

k=K +25)*, L =k(z'+ 28), (3.116)

where K, &, and 2§ are constants, and the source of turbulence has been
assumed to be at 2z’ = 0. Note, that in these experiments, 2§ is not related
to any kind of surface roughness length. Rather, it is connected to the length
scale of injected turbulence which is determined uniquely by the spectral
properties of turbulence at the source. As already pointed out by Thompson
and Turner [1975], the decay of k occurs with respect to the so-called virtual
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origin 2z’ = —2§ which never coincides with the position of the source. In
agreement with Hopfinger and Toly [1976], we define the virtual origin as
the point, where the turbulent length-scale, L, becomes zero. It has been
remarked by almost all authors that the decay coefficients are very sensitive
with respect to small uncertainties in position of the virtual origin.

The values in table 3.5 suggest that the decay rate for the turbulent kinetic
energy is likely to be between —3 < ay < —2. The values of &, i.e. the slope
of the turbulent length scale, L, indicate that in all cases & < k = 0.4, in
contrast to & = & predicted by the models of Craig and Banner [1994] and
Craig [1996] and its adaptation to the k- model by Burchard [2001D].

|Measured decay rates: |ak |Fa |
Thompson and Turner [1975]|-(3.0) 0.1
Hopfinger and Toly [1976] -2.0 0.17-0.33
Nokes [1988] (1.7-3.0)—
Hannoun et al. [1988] -(2.0) 0.1
Briggs et al. [1996], DNS - 245 —

Cheng and Law [2001] - (2.0) 0.06-0.2

Table 3.5. Decay exponent for the turbulent kinetic energy, g, and the constants
of proportionality for the length-scale, &, in grid stirring experiments and DNS.
The values in brackets have been calculated by assuming that the decay exponent
for the horizontal velocity fluctuations is half of that for k. This table has been
adapted from Umlauf and Burchard [2001].

For parameterising the effect of an oscillating grid or breaking surface
waves, which has the consequence of injecting TKE into the water column,
Craig and Banner [1994] have suggested an alternative surface boundary
condition for TKE:

—110,k = ¢y (uf)?, for z = 0. (3.117)

For breaking surface waves, the empirical parameter ¢, should depend
on the wave age and has been estimated to be ¢,, = 100 for fully developed
waves. For ¢,, = 0, the classical boundary condition for no wave breaking,
see equation (3.65) is retained.

For achieving a problem for which an analytical solution can be found,
lower a boundary condition has to be fixed at infinite depth:

-0k =0, for z = —o0. (3.118)

With these boundary conditions and without mean shear and stratifica-
tion (P = B = 0), the analytical solution for the TKE equation is of the
form:
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o 42/3
(w)? [ (306" 4ya, (2 47\
k= 01/2 7 CI/ Cuw 2—8 (3119)
o
with
3 61/20'k
U = 55 (3.120)
such that the effective decay rate
2 1/2 1/2
ap = — (30’;2 Uk) (3.121)

depends on the choices for ¢,, o and &.
With (3.25) and the second equation from (3.116), the following equation
for the dissipation rate € is obtained:

s\3 3 1/2 ! s\ —Qm
(ug) (%) 0;1/4Cw (Z:—SZO> . (3.122)
0

CR(Z 4 28)

Generally, none of the existing two-equation models would yield the solu-
tion (3.119) and (3.122), since they have not been adapted to this situation
(see, e.g. Baumert et al. [2000]). Only recently, two different strategies, by
Burchard [2001b] and by Umlauf and Burchard [2001], respectively, have been
developed for extending two-equation models accordingly.

Approach of Burchard [2001b] For adapting the k- model for this sit-
uation, Burchard [2001b] suggested to use the classical values ¢, = 0.09,
o = 1.0 and § = k = 0.4 and to modify the turbulent Schmidt number in
the ¢ equation, o.. In the case of a wall layer, 0. has been determined in
section 3.2.5 by exploiting the law of the wall. Also for the shear-free case, an
exact value for o, can be found by inserting the analytical solution for k and
€ (3.119) and (3.122), respectively, into the dissipation rate equation (3.67):

E:Q

O =050 = (éam + 1) (am + l)ﬁ. (3.123)
3 CQECI/

For & = 0.4, as assumed in the models of Craig and Banner [1994] and
Burchard [2001b], the resulting turbulent Schmidt number is o, = 2.4.

It should be noted, that equation (3.120) predicts spatial decay rates of
ar = —1.12 for £ = 0.4. A comparison with table 3.5 shows that this value
strongly underestimates the results of the laboratory experiments. A more
realistic value of £ = 0.2 would lead to a TKE decay rate of oy = 2.24 which
is well in the range of the experiments.

In the latter case however, the law of the wall with k = 0.4 would have
been violated. It seems thus, that the k-¢ model does not contain enough
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free parameters for properly considering the law of the wall and shear free
turbulence at the same time (see also Umlauf [2001]). Recently, Umlauf et al.
[2001] could show that the k-w model (see section 3.2.7) accidentally performs
reasonably well in both, shear-dominated and shear-free flow.

Approach of Umlauf and Burchard [2001] Because of this failure of the
k-€ model, a more radical approach for extending two-equation models to
flows with shear-free turbulence has been suggested by Umlauf and Burchard
[2001]. They calibrated the generic length scale equation (3.111) to a number
of unstratified flow situations. The remaining six model parameters oy, Tpm,
Cmnls Cnm2, N and m are considered as completely free parameters. With the
following assumptions, most of these parameters could be fixed:

— In shear-dominated turbulence, the law of the wall with xk = 0.4 and ¢, =
0.09 has to be retained, see section 3.2.3.

— The decay rate of homogeneous turbulence is d = —1.2 which is well in the
range of the laboratory experiments, see section 3.2.5.

— The Tennekes [1989] argument on the macro length scale is used for deter-
mining ¢,m1, see section 3.2.8 and equation (3.86) therein.

— In shear-free turbulence, the spatial decay rate of turbulence is ay = —2.0
and the slope of the macro length scale is & = 0.2. Alternatively, a = —2.5
and & = 0.2 are considered.

With these five conditions for the 6 unknown parameters, four of the pa-
rameters could be fixed and a functional dependence between the exponents
n and m defined. The four resulting parameters and the exponent n for two
different values of the exponent m are listed in table 3.6 for two different
values of ay. It should be noted that the physical values chosen for determin-
ing these parameters are arbitrary choices of values lying well in the range
of the experimental values. However, for any other choice, empirical model
parameters could be calculated as well.

|ak |El |n ||m |0'k |0'nm|cnm1|cnm2|
-2.0{0.2]0.00 |{0.67{0.80{1.07|1.0 |1.22
-2.0|0.210.37 {|1.09(0.80|1.75]2.0 [2.36
-2.5|0.2]-0.58{1.05{1.25(|1.68|1.0 [1.35
-2.5|0.2|-0.61({1.74|1.25|2.78 (2.0 [2.58

Table 3.6. Empirical values of some model parameters for the generic model as
function of the spatial decay rate of TKE, o, the slope of the macro length scale, &,
and the choice for n. This table is adapted from table 11 by Umlauf and Burchard
[2001]. For the different notations, see footnote 5 on page 76.
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n-m relation for generic model
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Fig. 3.16. Functional dependence of the exponents n and m for the generic two-
equation model. The curves are shown for two different values of o. Furthermore,
the positions of the k-e and the k-w models as special cases of the generic model
and the four examples from table 3.6 are shown. This figure is adapted from figure
2 by Umlauf and Burchard [2001]. For the different notations, see footnote 5 on
page 76.

3.3.2 Wave-enhanced surface layer

Measurements of various investigators proved the existence of a layer of en-
hanced (with respect to the log-law) turbulence below breaking surface waves,
see e.g. Kitaigorodskii et al. [1983], Thorpe [1984a] and Osborn et al. [1992].
More detailed measurements showed that the turbulent dissipation rate has
logarithmic slopes between -2.7 and -1.9 in this wave-enhanced layer in con-
trast to -1 for the logarithmic law, see e.g. Terray et al. [1996], Drennan et al.
[1996] and Anis and Moum [1995]. The present view is now, that below a near
surface layer of thickness 2§ in which all properties including the turbulent
dissipation rate are well mixed, a wave-enhanced layer with a thickness of
about 10 times the so-called surface roughness length is situated. Below that,
the ”classical” law-of-the-wall boundary layer scaling is established. Between



3.3 Surface and internal wave effects 83

these three layers, intermediate states can be found. The wave-enhanced layer
is characterised by a shear production which is orders of magnitudes smaller
than the turbulent dissipation rate, whereas turbulence production and dis-
sipation are assumed to be of equal size in the log-layer below.

In their famous paper, Craig and Banner [1994] suggested to model the
flux of turbulent kinetic energy due to breaking waves into the water column
as proportional to the cube of the surface friction velocity. Additionally, they
found an analytical solution for an idealised model problem for the wave-
enhanced layer by simply neglecting shear production of turbulence. Two
years later, Craig [1996] published an analytical solution for an idealised
model problem which combines both, the wave-enhanced layer, and the log-
layer below including the transition zone between both of them. Since then,
several authors have included this new approach into their models, see e.g.
Stacey and Pond [1997], D’Alessio et al. [1998], Noh and Kim [1999] and
Canuto et al. [2001]. These models have however all in common that they are
one-equation models which diagnostically prescribe the macro length scale of
turbulence near the surface as proportional to the distance from the surface.

Here, the two two-equation approaches discussed in the previous section
3.3.1 will be applied to the case of surface wave breaking including shear.
However, before doing so, the shear-free analytical solutions for k£ and e,
(3.119) and (3.122), respectively, will be generalised to shear flow.

Analytical solution In order to account for shear, a prognostic equation
for the horizontal velocity has to be included. For this idealised situation,
rotation is neglected and the wind is assumed to be parallel to the z-direction
such that only one velocity component # is considered. In this contexts, the
surface momentum flux has the usual form, see equation (3.59):

—1 0,0 = (uf)?, for z = 0. (3.124)

Assuming constant stress over the whole water column, the lower bound-
ary condition for @ is formulated as follows:

—1;0,u = (uf)?, for z = —o0, (3.125)

For the turbulent kinetic energy, k, the same boundary conditions as in
the shear-free case, (3.117) and (3.118), respectively, are used.

Craig [1996] suggested an analytical function which approximates the
solution of the system of equations (3.25), (3.47), (3.49), (3.50), (3.55)
and (3.56) together with boundary conditions (3.117), (3.118), (3.124) and
(3.125). In contrast to that, the system of equations is here slightly modified
such that a problem is formulated which exactly has the analytical solution
of Craig [1996]. In order to achieve this, the turbulence production (3.50) has
to be slightly modified:
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5\3
P=a ) (3.126)
k(2 + 2§)
where a may be zero or unity, depending whether the shear-free case is con-
sidered (a = 0, see section 3.3.1 and Craig and Banner [1994]) or the general
case of combining the wave-enhanced and the ’wall-of-the-law-layer’ (a = 1,
see Craig [1996]). For a = 1, the production for (3.126) is taken from the
analytical solution for the law of the wall without wave breaking, see section
3.2.3.
With this modified turbulence production, the analytical solution can be
generalised as follows:

2/3
(uf)? 30k 12 1/4 2428\
k= 77 at (=5 /e pr (3.127)
(us)? 30k s (FH2\ T
= =k o 12
"+ ) a+ 2 ¢/ c p (3.128)

with a,, from (3.120).

For a = 0 and ¢,, > 0, this is identical with the analytical solution pre-
sented by Craig and Banner [1994], for a = 1 and ¢,, = 0, the law of the
wall is obtained. For the general case, a = 1 and ¢,, > 0, the wave-enhanced
upper layer and the log-layer below can be identified from this solution for k&
and e: for 2’ > 2§, the first term in the square brackets and thus the log-law
dominates. For 2/ — 0, the second term and thus enhanced turbulence is
dominant, if the standard values in table 3.3 are used.

Approach of Burchard [2001b] It has been shown in the previous section
3.3.1, that for the shear-free case a modified Schmidt number for the dissi-
pation rate, 0. ~ 2.4 must be used instead of the wall-law value of 0. & 1.1.
For the general case of shear strongly varying with depth, Burchard [2001b]
suggested an interpolation of o. between these two cases characterised by
P/e =0 (shear-free) and P/e = 1 (shear-dominated). In order to obtain this
dependency on P/e, the fact that the expression in the square brackets of
equation (3.128) equals ¢/ P with P from equation (3.126) has been exploited.
The result is shown in figure 3.17 for o5 = 1. It can be seen that the curve
for o, is close to a linear interpolation between P/e = 1 and P/e = 0.

In order to carry out numerical simulations of the wave enhanced layer
with the k-¢ model, a surface boundary condition for the dissipation rate e
has to be derived. By using the analytical solutions for k£ and &, (3.119) and
(3.122), a Neumann-type boundary condition for € is of the following form:

Uk(02)3/4

3
2 Cp

3 3/2
TPV ACVITS i
o. - B oy K2(2' + 2§)?

(3.129)
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Fig. 3.17. The turbulent Schmidt number o, as it occurs in the dissipation rate
equation for o, = 1. Shown are numerical solution of the idealised analytical prob-
lem and a linear fit.
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Fig. 3.18. Results of a numerical simulation of the wave-enhanced layer obtained
by the non-modified k- model compared to analytical solutions for the log-law
and the wave-enhanced layer. Shown are profiles of non-dimensional eddy viscosity,
turbulent kinetic energy, and turbulent dissipation rate.

This is a generalisation of the Neumann-type boundary condition (3.66)
suggested by Burchard and Petersen [1999] (see also the discussion by Meier
[1997]) which is obtained by setting ¢,, = 0.

Since indefinite depth is not realisable in a numerical model, a water depth
D of 3000 times larger than the roughness length 2o (here D = 50 m and
zo = 0.0166 m~?) is applied for the idealised model simulations. It is such
assumed that near-bed processes play a negligible role for the wave-enhanced
layer. In this section, the standard value for the turbulent Schmidt number
for TKE, o, = 1 is used.
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Fig. 3.19. Results of a numerical simulation of the wave-enhanced layer obtained
by the modified k-& model with constant ¢, compared to analytical solutions for the
log-law and the wave-enhanced layer. Shown are profiles of non-dimensional eddy
viscosity, turbulent kinetic energy, and turbulent dissipation rate.

The model is driven with a constant surface friction velocity which in this
case was uf = 0.01 ms~!. After initialising the velocity with u = 0, it took
about 5 days of simulation in order to reach a steady-state solution with a
constant shear stress over the whole water column.

The simulations in this section were carried out with high numerical res-
olution with Az/zp < 0.1 at the surface which was obtained by choosing
adequate values for the number of layers N; and the grid zooming parameter
d,, with N; =1000 and d,, = 3, see equation (4.2).

The need for adapting o. in order to reproduce surface wave breaking
is shown in figure 3.18, where the analytical solution is compared to the
application of the k-¢ model with unmodified turbulent Schmidt number
0. = 0¢1 from equation (3.70). It can be seen that the results for k£ and ¢
significantly deviate from the analytical solution in the wave-enhanced layer.

In contrast to that, when using the modified k-¢ model, the analytical
and the numerical solution are almost identical, if the spatial resolution of
the numerical model is sufficiently fine (not shown here). Small deviations
between numerical result and analytical solution are mainly due to the fact
that the linear fit to o, has been used instead of the more exact numerical
solution, see figure 3.17.

Furthermore, numerical solutions of the complete problem with shear pro-
duction from (3.50) instead of (3.126) are shown in figure 3.19. It should be
noted again that an analytical solution for this problem could not be found.
It can be clearly seen here that the numerical solution is now sufficiently close
to the idealised analytical solution given as equations (3.119) and (3.122).

Approach of Umlauf and Burchard [2001] The approach suggested by
Umlauf and Burchard [2001] can directly be applied to the shear flow with
injection of turbulence kinetic energy at the surface. From the calibration
carried out in the previous section 3.3.2, it would be expected that the slope
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of the macro length scale would be & = 0.2 near the surface where the shear
production to dissipation ratio is small and x = 0.4 in deeper layers where
turbulence is near local equilibrium. The profiles of the macro length scale
shown in figure 3.20 in linear scale do indeed exactly fulfil this: near the
surface, the profiles for shear-flow converge to those for shear-free flow. For
the case with shear, small differences in slope occur between different choices
of the exponent n in the transition zone between shear-free (P/e <« 1) and
shear-dominated (P/e ~ 1) flow. However, deeper down in the water column
the two slopes are identical again. The profiles for the turbulent kinetic energy
are shown in figure 3.20 with double-logarithmic scaling. From this, it can
be clearly seen that the surface slope is exactly ar = —2, as prescribed by
means of the calibration procedure discussed in the previous section 3.3.2.

The depth of the wave-enhanced layer calculated by the generic two-
equation model with the present specifications seems to be slightly shallower
than the one predicted by the modified k- model, see figure 3.19.

Generic model, length scale Generic model, turbulent kinetic energy
5 T T T T T T ; T
no shear, n = 0.00
10 + no shear, n = 0.37  =eeennnn i
with shear, n = 0.00
15 N\t with shear, n = 0.37  -------- i
. oob ]
S 0t 1.5 10
g =2
~ r 4 —~
= 5 =
| 30 4 |
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~ ... ~ /
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[ noshear,n =037  eoeeees
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Fig. 3.20. Profiles of macro length scale L (left panel) and turbulent kinetic energy
k (right panel) computed by the approach of Umlauf and Burchard [2001] for the
wave-enhanced layer. The profiles have been normalised by the surface values of &
and L, ko and Lo = 0.2* 2o, respectively. The spatial decay rate of turbulent kinetic
energy was set here to ar = —2.0, see also table 3.6.

Reproducing near-surface dissipation rate measurements Terray
et al. [1999] scaled three different sets of near surface dissipation rate mea-
surements under breaking waves such that they more or less collapse into one
curve. The scaling of depth was made by using the significant wave height H,.
By comparing the Craig and Banner [1994] model to these data, they found
a z§/H, ratio of 0.85. In figures 3.21 and 3.22, this comparison is reproduced
with the k-¢ model equipped with the Canuto et al. [2001] shear-dependent
stability function ¢, and the generic model approach by Umlauf and Bur-
chard [2001] with ap = —2.0, respectively. The profiles for the dissipation
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Fig. 3.21. Observations and simulations of turbulent dissipation rate in the wave-
enhanced layer. The observations of Terray et al. [1996], Drennan et al. [1996] and
Anis and Moum [1995] are normalised by surface TKE flux and significant wave
height, see Terray et al. [1999]. The simulations have been carried out with the k-
model by Burchard et al. [2001] using the modified turbulent Schmidt number o,
with surface roughness length to wave height ratios of 1, 0.5 and 0.25. The shear-
dependent stability function ¢, by Canuto et al. [2001] has been used here. As
comparison, the log-law with . = 0.1 and the pure wave breaking case (no shear
production) with o, = oo are shown as well.

rates have here been calculated from profiles made non-dimensional with the
friction velocity u, and the surface roughness length 2o (as in figures 3.18
and 3.19) which have then been shifted by the factor zo/H, in z-direction
and by the factor of ¢, * 2o/ H; in e-direction. For the modified k-¢ model,
most of the data fall within the two simulated curves given by z§/Hs = 0.25
and z§/Hs = 1. Similarly, for the generic two-equation model approach by
Umlauf and Burchard [2001] (see figure 3.22), most of the data lie between
the simulated curves for z§/H, = 0.5 and 2§/Hs = 2.

Although the two models calculate considerably different slopes for the
near-surface dissipations rates (-2.68 for the Burchard [2001b] model and -4.0
for the Umlauf and Burchard [2001] model), both models seem to fit the data
quite well. However, the data do not allow to give preference for one or the
other model approach.
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Fig. 3.22. As figure 3.21, but simulations have been carried out with the generic
two-equation model by Umlauf and Burchard [2001] with surface length scale zp =
Lo/0.2 to wave height H, ratios of 2.0, 1.0 and 0.5. As comparison, the log-law
and the shear-free case are shown as well. The empirical constant ¢,, = 100 is the
coefficient of proportionality for relating the surface flux of turbulent kinetic energy
to the cubed friction velocity. The spatial decay rate of turbulent kinetic energy
was set here to ar = —2.0, see also table 3.6.

It should be noted that recent results of Gemmrich and Farmer [1999]
contradict the assumption of a fixed z§/H, ratio, as there a ratio of less
than 0.05 had been measured in the open ocean. Since zj is the significant
height of air-bubble entrainment into the water due to wave breaking, it is not
necessarily related to the significant wave height. However, this discussion will
not be continued here, because the surface roughness length is the relevant
model parameter which has to be calculated outside the model and then used
as model input. It is unfortunately the significant wave height which is part
of standard oceanic measurements and not the surface roughness length, so
the question how to calculate zj remains open.

The upper model boundary is here located at the bottom of the unresolved
surface layer of height 2§, the air-bubble entrainment zone, in which the
turbulent dissipation rate is assumed to be constant. At this location, where
the vertical coordinate z of the model is set to zero, the macro length of
turbulence is fixed to L = kz§. This is in accordance to the arguments of
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Terray et al. [1999] that the macro length scale should increase proportionally
to the distance from the surface.

Remaining problems The determination of the surface roughness length
2§ is still an open scientific question. Several authors have related this quan-
tity directly to the significant wave height, see Terray et al. [1996], Drennan
et al. [1996] and Terray et al. [1999]. However, recent field measurements in
the open ocean by Gemmrich and Farmer [1999] showed a completely differ-
ent relation between roughness length and significant wave height, such that
obviously more complex parameterisations for the surface roughness length
are needed. Stacey [1999] found that the Charnok [1955] formula, see equa-
tion (3.44) actually is consistent with a scaling of z§ with the significant wave
height H,. Until better parameterisations are found, the Charnok [1955] for-
mula relating surface roughness length to surface friction velocity seems thus
to be a good compromise. The empirical parameter a¢ used within (3.44)
however seems to underestimate actual roughness lengths. Craig [1996] con-
cludes that the determination of the surface roughness length will be a major
challenge in the future. This is motivated even more after the Gemmrich and
Farmer [1999] paper.

3.3.3 Internal waves

Compared to surface waves, internal waves are a much more complex phe-
nomenon. They are guided by stratification varying with time in the three-
dimensional space. They are three-dimensional themselves with horizontal
and vertical modes in contrast to surface waves which are essentially two-
dimensional. And, moreover, they interact non-linearly with their wave guide,
the stratification of the flow. Various models have been developed for simu-
lating and understanding oceanic internal waves, for a review, see e.g. Olbers
[1983].

From a turbulence modellers point of view, internal wave dynamics must
not be neglected, since dissipation of internal waves creates mixing, which
is a priori not considered by classical turbulence closure models. There are
two main mechanisms for dissipation of internal waves: Kelvin-Helmholtz
instabilities and breaking of internal waves.

Kelvin-Helmholtz (or shear) instabilities occur when mean shear locally
increases such that the local Richardson number is below the asymptotic
gradient Richardson number of R® = 0.25 such that turbulent patches are
produced at the crest of the internal wave. By means of Direct Numerical
Simulation of single Kelvin-Helmholtz billows, the creation of mixing due
to Kelvin-Helmholtz instabilities has been investigated in detail by Smyth
[1999], Smyth and Moum [2000a] and Smyth and Moum [2000b]. One of the
surprising features which have been found in these investigations is the fact
that mixing is extraordinary efficient during preturbulent overturns when tur-
bulence is not yet fully developed. The future aim of such small scale DNS
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studies of internal wave dynamics must be to improve internal wave parame-
terisations for large scale oceanic models, since DNS is computationally much
too expensive for use on larger scales, see the reasoning in section 2.1.5.

Similarly to surface waves, breaking of internal waves occurs when the
particle speed of the wave crest exceeds the wave speed and a statically
unstable stratification is created. This phenomenon has been investigated in
detail by Thorpe [1979]. In contrast to Kelvin-Helmholtz instabilities, mean
shear is not needed for this process.

According to D’Asaro and Lien [2000], dissipation of internal waves into
turbulence mainly takes place in high energy (i.e. high shear) regions with
gradient Richardson numbers of R; < 1. At about R; ~ 1, a so-called wave-
turbulence transition exists, above which the internal wave dynamics is dom-
inated by interactions between internal waves. In their recent paper, D’Asaro
and Lien [2000] discussed that the dissipation rate depends in this low en-
ergy regime above the wave-turbulence transition on the internal wave energy
squared. For models of such wave-wave interaction regimes in the ocean, see
Miller et al. [1986]. For internal waves dynamics in estuarine flow, see e.g.
Uittenbogaard [1995].

For both, Kelvin-Helmholtz instabilities and breaking of internal waves,
simple parameterisations have been suggested in the past. They are simple
because they do not use any explicit information on the internal wave state
in the model.

Following Gill [1982], Mellor [1989] suggested to add internal wave shear
(related to the Brunt-Viisild frequency N?2) to the mean shear M? in the
shear production term such that it is of form

P = v, (M? +0.7N?). (3.130)

In (3.130), the square of the internal wave shear has been parameterised
by 0.7N2, see Gill [1982]. With inserting this modified shear production term
into the TKE equation (3.72) and the length scale equation (3.71), Mellor
[1989] was able to significantly improve the surface temperature results for
the 1977 Mixed Layer Experiment (MILE, see Martin [1986]). Burchard et al.
[1999] and Villarreal [2000] could however show in an application to the Ocean
Weather Station Papa data that internal mixing is greatly underestimated
with this scheme, when integrated into a k-¢ model. This could be due to
the fact that diffusion of TKE is treated differently by the k-¢ and the k-kL
model. In the k-¢ model application, internal mixing could only be raised
to realistic levels by additionally imposing a lower limit for the turbulent
kinetic energy, see Villarreal [2000]. For a one-dimensional application of the
k-e model to the Southern Baltic Sea, Azell [2002] added an internal wave
shear production term (and a Langmuir circulation term, see section 3.3.4)
to the k and the € equation. The internal wave shear production is assumed
to be proportional to the vertically integrated internal wave energy and the
Brunt-Viiséls frequency. The internal wave energy pool is filled by an energy
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flux proportional to the wind energy input. After properly calibrating this
model, Azell [2002] could well reproduce the Baltic Sea deep water mixing
over 10 years.

Large et al. [1994] suggest separate simple parameterisations for shear in-
stabilities (SI) and internal wave breaking (IW). The shear instability induced
viscosities and diffusivities are modelled as a strongly decreasing function of
the gradient Richardson number R;,

0, for R; > 0.7,
SI ST r2\°2 . '
)™ = @)™ =510 (1= (&))" mis?, for 0< Ry < 0.7,
5-1073 m2?s71, for R; < 0.

(3.131)
In contrast to that, it is assumed that internal wave induced viscosities
and diffusivities are constant:

v)IW =107* m2s71,
EVngW — 10—5 m25_1. (3132)

Thus, when the turbulent kinetic energy is small (extinction of turbu-
lence, diagnosed by the turbulent kinetic energy k£ being smaller than a cer-
tain value, usually 1076 Jkg 1), the sum of shear induced and internal wave
induced viscosities and diffusivities (1)1 + (v4)!" is imposed instead of us-
ing the diffusivities 14 and v; given by the model. This model was applied by
Kantha and Clayson [1994] to different situations and appeared to promote
increased mixing in stably stratified situations. For achieving satisfying re-
sults for the Ocean Weather Station Papa data in the Northern Pacific Ocean
with a k-kL model, they needed however to increase (v})’" from (3.132) by
a factor of 5.

Another method has been proposed by Luyten et al. [1996b] in order to
realistically reproduce dissipation rate measurements in the Irish Sea inside
the pycnocline. According to a suggestion by Galperin et al. [1988], they used
the length scale limiting condition (3.73) as lower limit for the turbulent
dissipation rate e:

€2 > emin = 0.045k*N?  for N? > 0. (3.133)

Luyten et al. [1996b] however found that condition (3.133) is not suffi-
cient for avoiding an unlimited extinction of the turbulence level in strongly
stratified regions since a decrease of the turbulent kinetic energy k signifi-
cantly weakens (3.133). Based on observations of oceanic turbulence by Gregg
[1987], Luyten et al. [1996b] motivate a lower limit of the turbulent kinetic
energy k, which turns out to be a tuning parameter:

k > Kmin. (3.134)
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For their Irish Sea simulation, they use kmin = 3-1076 Jkg='. In a
numerical simulation of the same Irish Sea measurements with different k-¢
model than Luyten et al. [1996b], Burchard et al. [1998] used a slightly higher
value of ki, = 7.6-107% Jkg™!, see also section 7.4.1. In a more recent
study, Bolding et al. [2000] however needed to reduce the minimum value to
kmin = 1.0-107% Jkg! in order to reproduce internal mixing coefficients
in the Northern North Sea of about 5 - 107° m2s~!. It was found by van
Haren [2000] that this seems to be a quite constant background diffusivity
in the thermocline which changes only insignificantly when the shear regime
switches from inertial oscillations to semi-diurnal tides. This difference to the
Irish Sea study by Burchard et al. [1998] could be motivated by the fact that
here the new stability functions by Canuto et al. [2001] have been used and
not the older functions by Galperin et al. [1988], which have been shown by
Burchard and Bolding [2001] to mix less efficiently.

One could actually try to extend the suggestion by Luyten et al. [1996b]
by using an estimate for the turbulent dissipation rate made by Gregg and
Sanford [1988] inside the thermocline:

e =13vN2 (3.135)

According to D’Asaro and Lien [2000], such models do however only hold
for the high energy regime below the wave-turbulence transition at about
R; ~ 1. After presenting their model for the low energy regime above the
wave-turbulence regime, they argue:

The observation that both the high energy limit of the model
presented here and the low energy limit of Burchard et al. [1998] yield
similar parameterisations (eq. 3.74, 3.133, 6.2) suggests that a hybrid
model, combining appropriate aspects of each, may be possible.

Thus, it seems that some perspectives are given for improving the parame-
terisation of internal mixing dynamics. The problems related to the modelling
of internal mixing near the wave-turbulence transition is clearly underlined
by Baumert and Peters [2000] when discussing micro-structure data analysed
by Peters et al. [1995] in the equatorial undercurrent:

The underlying problem is that the turbulent kinetic energy, ...,
is not uniquely defined in stratified flows with a broadband energy
spectrum dominated by internal waves.

Motivated by this work, Baumert and Peters [2002] recently suggested
that

there is an extra buoyancy-related loss term to TKE that does not
contribute to mixing. Physically, this is thought of as energy transfer
from turbulence to internal waves and other non-turbulent processes.
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With a zero-dimensional version of such a heuristic type of model, they
could well simulate the laboratory experiment by Dickey and Mellor [1980]
and other observational studies of turbulence. It will be interesting to see,
how this model performs in comparison to complete one-dimensional water
column models as discussed in this book.

A great portion of the ocean abyssal mixing below the thermocline is
believed to be caused by internal wave dynamics as well. It is known from
tracer release experiments by Ledwell et al. [1993] and many other studies that
the mixing coefficients are of the order of 107® m2s~! almost everywhere in
the deep ocean. There are attempts to account for this abyssal mixing in
turbulence closure modelling by using the universal Garrett-Munk spectrum
(see Garrett and Munk [1972], Garrett and Munk [1975]) for estimating the
shear induced by internal waves in order to insert it into the shear production
term P, see Canuto et al. [2002]. However, at certain locations such as near
seamounts or mid-ocean ridges, mixing can be up to the order of 1072 m?s—!
due to interaction of internal tides with bathymetry and other processes (see
Polzin et al. [1996]). It is almost impossible to account for these mixing effects
in turbulence closure models, although they might be be of great importance
on larger time scales.

3.3.4 Langmuir circulation

As a characteristic phenomenon on the sea surface of lakes, estuaries, coastal
seas or the open ocean, Langmuir circulation is well-known to many sailors,
even when they have no theoretical understanding of fluid dynamics. The
streaky patterns on the sea surface roughly aligned to the wind direction have
been first qualitatively been described and interpreted by Langmuir [1938]
as convergence zones caused by vortices counter-rotating around horizontally
oriented axes. More recently, bubble clouds concentrated in the Langmuir
cell convergence zones have been investigated in detail by Thorpe [1984b],
Thorpe [1992] and Osborn et al. [1992].

Although the phenomenon is obvious even to laymen, convincing theories
for the dynamics of Langmuir circulation have only been developed in recent
years. The mechanism with which Langmuir circulation could successfully be
simulated by means of Large Eddy Simulation (LES) studies has first been
proposed by Craik and Leibovich [1976]. According to their model, Langmuir
circulation arises from the nonlinear interaction between the Stokes drift due
to surface waves and the vertical shear of wind-induced currents. Leibovich
[1977] models this instability as a vortex force

“V, xw (3.136)

entering the left hand side of the Reynold’s averaged momentum equations
(2.18). Here,
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Vs = (Us, Vs, 0) = 0.016 exp(#' /L) (Uto, Vio, 0) (3.137)

is the Stokes drift vector, where L,, = 0.12(UZ, + V;3)/g is the wave length
for a fully developed sea (see Li and Garrett [1993]), Uip and Vig are the
10 m wind speed components, and w = (w1, ws,ws) is the absolute vorticity
with

Wi = EimnOmin + ;. (3.138)

McWilliams et al. [1997] show that this vortex force reduces for boundary
layers with horizontally averaged equations to simply modifying the Corio-
lis terms. When considering the vortex force, they are of form —f (v + Vj)
and f(u+Us) as on the left hand sides of the hydrostatic primitive equations
(3.4) and (3.5), respectively. In order to consider Langmuir circulation for the
budget of turbulent kinetic energy as well, Skyllingstad and Denbo [1995] de-
rive modified shear production and vertical flux terms for the TKE equation
(3.41). When accepting the down-gradient approximation for the Reynolds
stresses and vertical TKE flux, these terms are of the form

P =, {0,a(0,a + 0,Us) + 0,0 (0,0 + 0,Vs) } (3.139)

for the shear production and

F(k) = =4 (0:k — Us0,u — V50,0) (3.140)

for the vertical flux of TKE. Furthermore, for their non-local mixed-layer
model, D’Alessio et al. [1998] suggest to add the maximum downwelling ve-

locity
wkC = 9\ UL + VE, (3.141)

with 0.0025 < ¢FC < 0.0085 (see Leibovich [1983]) to the Deardorff velocity
scale w,, see equation (6.5), which is used for parameterising the third mo-
ments. With all these modifications, D Alessio et al. [1998] could improve the
performance of their water column model when applied to the OWS Papa
data set which is described in section 7.2. The mixed layer depth was signif-
icantly deeper during autumn and winter when high wind speeds dominated
the surface forcing. However, the overall changes in sea surface temperature
were relatively small, since the thermal stratification is weak during these high
wind speed seasons. The significant additional deepening during autumn and
winter might be caused by the non-local formulation of the parameterisation
by D’Alessio et al. [1998]. Due to the exponential decrease of the Stokes drift
velocity with depth, it would however be expected that only shallow diurnal
mixed layers would be rapidly eroded by Langmuir circulation, see Weller
and Price [1988].

A somewhat simpler parameterisation of Langmuir circulation has re-
cently been suggested by Azell [2002] who assumed a sine profile of the
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downwelling velocity wX¢ in the mixed layer and an additional shear pro-
duction term Prc due to Langmuir circulation with

wk¢
Pro =5 (3.142)
with the mixed layer depth D,,. However, also Azell [2002] concludes that
the effect of this parameterisation on the mixed layer depth is small.

This limited impact on the depth of the ocean mixed layer has been sim-
ilarly discussed for the direct effect of breaking surface waves on turbulence,
see the work of Craig and Banner [1994] and Craig [1996] and also section
3.3.2. What seems to be missing up to now is a unified theory for the turbu-
lence dynamics under breaking surface waves combining the theories of Craig
and Banner [1994] for the TKE surface flux due to wave breaking and Craik
and Leibovich [1976] for the Langmuir circulation due to Stokes drift.

It is evident from Large Eddy Simulation studies (see Skyllingstad and
Denbo [1995]) that Langmuir circulation is a multi-scale phenomenon, in
contrast to the idealistic, theoretical view as given for example by Pollard
[1977]. Similarly to internal wave-turbulence interaction (see section 3.3.3),
there is a definition problem also for separating turbulence from Langmuir
circulation. That might be the reason why models for Langmuir circulation
are still only rarely included in ocean circulation models, see e.g. Large et al.
[1994]. According to Eric Skyllingstad (pers. comm.), there has been so far
"no concerted effort to include Langmuir circulation (LC) into turbulence
closure models”. This problem is mainly related to the non-local character
of Langmuir circulation which should probably be parameterised in terms of
non-local closures for third moments.



4 Numerics

After the big task of deriving closed sets of mathematical equations for the
physical processes under investigation is discussed in depth in chapters 2 and
3, the next task will be discussed in much less detail here: The numerical
discretisation of these sets of equations in such a way that the solution of the
mathematical equations is approximated with sufficient accuracy. The reason
for this numerical discussion being considerably shorter is not its limited
relevance but the fact that here many standard methods can be applied
which are in detail presented in numerical text books such as those by Hirsch
[1988] or LeVeque [1992]. This chapter focuses mainly on numerical methods
which are of specific relevance for turbulence modelling in a one-dimensional
water column model such as ensuring positivity of positive definite quantities
(section 4.2), conservation of kinetic energy (4.3) and boundary conditions
related to the law of the wall (section 4.4).

For the one-dimensional applications discussed in chapters 6 and 7, much
care in discretising the equations would probably not be necessary, since suf-
ficiently fine resolution in time and space is generally not a limiting prob-
lem. However, since one major scope of small-scale turbulence modelling
must be the simulation of turbulence and mixing in three-dimensional coarse-
resolution models, discretisations have to be found which guarantee sufficient
accuracy also for such models. This can however not always be achieved, es-
pecially when the relevant processes are of smaller scale than typical model
resolutions.

4.1 General second-order approximation

For the spatial discretisation, the water column is divided into N; layers of
not necessarily equal thickness h;:

hi = (’Yi_7i—1)D7 i=1,...,N;. (41)

with nondimensional interfaces v; with v = —1, v;-1 < v; and yn, = 0,
see Burchard and Petersen [1997]. A zooming of layers can be for example
obtained by:
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tanh ((dl +du) 5 — d,) + tanh(d;)
tanh(d;) + tanh(dy)

Yi = —1, Z=O,,Nl (42)
where D is the height of the water column, N; the number of layers and d;
and d, zooming parameters. For d, = d; = 0, the discretisation is equidis-
tant, for d; = 0 and d, > 0, the grid is refined towards the surface and for
d; > 0 and d, = 0, the grid is refined towards the bottom. With both d; > 0
and d,, > 0, zooming towards surface and bed is obtained. In other cases, it
might be advantageous to perform a zooming somewhere else in the water
column such as in the region of the thermocline. Such a refinement could
however be much more efficiently obtained by using general vertical coor-
dinates such as isopycnal coordinates (see Bleck and Smith [1990]) or layer
thicknesses proportional to the macro length scale (see Baumert et al. [2000]).
Especially the latter technique requires to consider some extra grid-related
vertical advection.

The discrete values for the mean flow quantities @, ¥, T, and S represent
interval means and are therefore located at the centres of the intervals, and
the turbulent quantities k, L, ¢, v, v, N, P, B, c,, and c,, are positioned at
the interfaces of the intervals. The indexing is such, that the interface above
an interval has the same index than the interval itself. This means that mean
flow quantities range from ¢ = 1,.., N; while turbulent quantities range from
1 =0,..,N; (see figure 4.1). The staggering of the grid allows for a straight-
forward discretisation of the vertical fluxes of momentum and tracers without
averaging. However, for the vertical fluxes of k, L, and &, averaging of the
eddy diffusivities is necessary. This is only problematic for the fluxes near
the surface and the bottom, where viscosities at the boundaries have to be
considered for the averaging. These can however be derived from the law of
the wall, see section 3.2.3.

The time stepping is equidistant, based on two time levels and not limited
by Courant numbers, because of the absence of advection and an implicit
treatment of vertical diffusion. In the following, the discretisation of a simple
diffusion equation

84X — 8.(v9.X) =0 (4.3)

will be shown with the Neumann-type boundary conditions

v0,X = F; for z = ¢, (4.4)

and
v0, X = Fy for z = —H. (4.5)

The semi-implicit discretisation for a mean flow quantity such as momen-
tum or tracers is of the following form!:

! Despite the fact that the layers are moving, the variable layer thickness is not
considered in the discretisations of the time derivatives. In a two- or three-
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Fig. 4.1. Spatial organisation and indexing of the numerical grid.
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Fig. 4.2. Temporal organisation and indexing of the numerical grid. Here, a time
stepping slightly more implicit than the Crank and Nicolson [1947] scheme with
o = 0.6 is shown.
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for 1 < ¢ < N;. Here, the semi-implicit time level is defined as follows:

X — X" L (1 -0)X™ (4.9)

Thus, for ¢ = 0 a fully explicit, for ¢ = 1 a fully implicit and for o =
0.5 the Crank and Nicolson [1947] second-order in time scheme is obtained.
Figure 4.2 shows an example for ¢ = 0.6. It should be noted that often a
time stepping is preferable which is slightly more implicit than the Crank and
Nicolson [1947] scheme in order to obtain asymptotic stability, see Samarskij
[1984] and the discussion by Burchard [1995].

This semi-implicit differencing leads for each transport equation to a sys-
tem of linear equations with the following tri-diagonal matrix:

ntl o Atvy,
N0 5RR (A + AL

o AtVY
+X7H (1 + Ni—1 ) -

0K TR+ L)
(4.10)

n (1-o0)Atvg, _,

N0 sR L (W + B

F
hn—‘,—l ’
N;

u—@m%%l)>+zm

+X7 [1-
R ( OSHT RT + AT

dimensional model this would cause non-conservation of the physical quantity to
be transported because the continuity equation would be violated without using
the conservative formulation of the equations. However in this one-dimensional
environment, advection is not considered and thus the conservative form of the
equations would be incomplete and non-conservative.
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which is solved by means of the simplified Gaussian elimination.

+X5 Fy,

4.2 Positive definite quantities

Many basic turbulent quantities are non-negative by definition, such as the
turbulent kinetic energy, k, the turbulent dissipation rate, €, or the macro
length scale L. Their prognostic transport equations and the boundary condi-
tions are formulated in such a way, that the non-negativity is mathematically
ensured, see Mohammadi and Pironneau [1994]. The same is true for marine
ecosystem models in which e.g. nutrients and phytoplankton are considered
as concentrations which have to be non-negative as well.
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It is thus necessary that the discretised forms of the physical equations
retain the principle of non-negativity. This problem will be here investigated
in more detail.

A typical model problem would be the following;:

HX=P-QX, P,Q>0 (4.13)

with X denoting any non-negative quantity, P a non-negative source term,
@X a non-negative sink term, and ¢ denoting time. P and () may depend on
X and t. It can easily be shown that with (4.13) X remains non-negative for
any non-negative initial value Xy and limited (). For the k-equation and the
kL equation, Q would be proportional to k/2L~1 and for the ¢ equation, Q
would be proportional to ek~!.

A straight-forward, explicit in time discretisation of (4.13) would be the
following:

Xn+1 —_Xn
At

with the superscripts denoting the old (n) and the new (n+1) time level and
At denoting the time step. In this case, the numerical solution on the new
time level would be

=P" — QX" (4.14)

XM= XP(1 - AtQT) + AtP!, (4.15)
which is negative for a negative right hand side of (4.14) and
t> L

XnQn — pn’
Since it is computationally unreasonable to restrict the time step in such a

way that (4.16) is avoided, a numerical procedure first published by Patankar
[1980] is generally applied:

A (4.16)

Xn+1 —_Xn
At B
which yields the always non-negative solution for X™t!,

P —QrXH, (4.17)

i1 _ X"+ AP
14 AtQr

see also Deleersnijder et al. [1997]. Thus, the so-called quasi-implicit formula-
tion (4.17) by Patankar [1980] is a sufficient condition for positivity applied in
almost all numerical turbulence models. Given this, the commenting footnote
made by Patankar [1980] on page 145 of his book is still justified:

(4.18)

For many readers, this seemingly minor topic may turn out to be
most valuable information in this book. In practical computations, it
is quite common to encounter erroneous results such as negative mass
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fractions and negative turbulence kinetic energy. These have such a
devastating effect on the rest of the calculation and on the success of
the iterations that they must be prevented at all costs. Fortunately,
prevention is possible and easy.

Unfortunately, the use of the Patankar [1980] trick has the consequence
that the numerical scheme is only of first order in time. It would be desirable
to construct a higher-order scheme still guaranteeing positivity.

4.3 Conservation of energy flux

As shown in equation (2.24), the loss of mean kinetic energy into turbulence
equals the shear production as source for the turbulent kinetic energy, see
equation (2.31). The same principle holds for the buoyancy production when
a transport equation for the buoyancy b is calculated. In a recent publication,
Burchard [2002] demonstrated how a numerical scheme can be constructed
which retains this physical principle also for the discrete solutions. For doing
S0, a simplified system of equations is considered. When neglecting horizontal
transports, pressure gradients, and rotation, the transport equation for the
along-wind velocity component is of the following form:

6,5@ - 82(146211) =0. (419)
From (4.19), the budget of mean kinetic energy, ey, = 4?/2, is derived:

Orerin — 0, (V0 ekin) = —11(0.0)? = —P (4.20)

with P = v;(0,%)%. The buoyancy b is calculated by means of the following
dynamic equation:

b — 9, (v,0,b) = 0. (4.21)

By multiplying (4.21) with the coordinate z, a dynamic equation for the
potential energy e,,t = —zb is obtained:

Orepot — 0, ((—2)1,0,b) = 1,0,b = —B. (4.22)

The discretisation of the momentum equation is carried out according to the
Crank and Nicolson [1947] scheme, see equation (4.7):

Uj41—Uj Uj—Uj—1
0 g Vi, 1 —v, 11—
UJ U] . ]+§ Zj+1—2j J—3 zj—zj—1 — 0 (4 23)
At Zip1— 21

with @ = ot + (1 — 0)u, where 4 is the velocity value on the 'new’ and u the

velocity value on the ’old’ time level, see figure 4.2. z; 1 and z;_1 denote the
. . . . 2 o, 2

heights of the grid interfaces on which the turbulent quantities are located,

see figure 4.1.
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Fig. 4.3. Profiles of eddy viscosity v; obtained by applying the new (bullets) and
the old (circles) discretisations of turbulence production terms. The three spatial
and temporal discretisations 1. (left), 2. (middle) and 3. (right) have been used.

Multiplying (4.23) with 1 (d; + u;) leads to:

Gmey VnpSEIE oyt
At Zjy1/2 — Zj—1/2
1 o (i1 — 45) (G541 — u5) + (1 — o) (Uj41 — uy) (ujr1 — G;)
PIEARA Giorrn = 2i12) erst — 27)
Zj+1/2 — Zj—1/2)\RZj+1 — Zj
1 s oty —;—1)(4; —uj—1) + (1 — o) (u;j —uj—1) (@ —u;-1)
27 (24172 = 2j—1/2) (25 — 2j-1)

= _P;-H/z - PJ"u—l/Q'
(4.24)
Thus, the shear production should be discretised as follows (denoted by

"New”):

Pj+1/2(zj+1/2 —2j_1/2) + Pl (24372 = Zj41/2)

P; =

j+1/2 Zi41 — 2

(4.25)

(i1 — 5) (G0 — y)
(zj4+1 — z;)?

= Vjt1/2 )
where @; = 1(d; + u;). For deriving (4.25), the discrete equation (4.24)
was first multiplied with (2;41/2 —2;_1/2) in order to obtain layer-integrated
discrete energy fluxes. When inserting the discrete production terms P}* and
P} into the discrete turbulent kinetic energy equation, they have to be divided
by the thickness of the reference layers for turbulent kinetic energy.

In contrast to that, a ”straight-forward” discretisation would be (from
now on denoted as ”0ld”):
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Piv1/2 = Vjyy

N L 42
M] ) (4.26)
Zj41 = Zj

An equivalent formalism can be applied to the buoyancy equation (4.21).
With the formalism given above, the discretisation is of the following form:
N bjt1—b; bj—b;_
bj=bj _ Vit e T Vi12E
— =0 (4.27)
At Zj+1/2 — Rj-1/2

After multiplication with z; and some algebraic operations, the following
equation for the discrete potential energy p; = —z;b; is obtained:

R 1, AN bit1=bi 1y, , , bj—bj—1
p‘j _p] + Z(Z]J"l + Z])VJ+1/2 Zj+1—2; Q(z] + z]_l)yj_1/2 zj—2zj—1 _
At Zj+1/2 = Zj-1/2

1 bjt1 — b 1 bj —bj_1

SVitl2, Tt gVi1j2

2 2 — Z; 2 2 — 2

j+1/2 j—1/2 j+1/2 j—1/2
—. ! u
— _Bj+1/2 - Bj—1/2’

(4.28)

The terms on the right hand side are the discrete expressions for the sinks

and sources of potential energy due to vertical mixing of density. In order to

achieve total energy conservation, these have to be used for the discretisation

of the turbulent buoyancy production. The discrete buoyancy production at
Zj41/2 would thus be of the following form:

b — by

e — 4.29
Zj+1 — %j (429

Bji1/2 = —Vjt1/2
which again differs from a direct discretisation which would be formulated
as:

bj+1 —b;

R 4.30
o (4.30)

Bjti/2 = ~Vjt1/2
In the following the performance of these two discretisations for the shear
production term will be tested with a simple wind entrainment experiment.
This experiment by Kato and Phillips [1969] which simulates the entrainment
of a turbulent surface boundary layer into stably stratified flow is described
in detail in section 6.2.
In order to keep the mathematical model as simple as possible, a one-
equation model is used with the TKE-equation (3.41), and an algebraic length
scale equation of the following form:
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—1

1 1
= 4.31
(n(—z+zo) - ck;f) ’ (31)

where the first term is a length limitation near the surface given by the law
of the wall and the second term is a length limitation due to the effect of
stable stratification. The surface roughness parameter is here set to zo = 0.1
m and the von Kdrmén constant is given by x = 0.4. The stability parameter
c should depend on the stability functions ¢, and cL and has been calibrated
here to ¢ = 0.4 such that it reasonably reproduces the mixed layer depth
evolution for the wind entrainment experiment given by equation (6.1). This
length scale parameterisation is similar to that of Azell and Liungman [2001]
who used slightly different values for c.
The eddy viscosity is then calculated from the simple relations

(4.32)

V= Cu s v, = P,
with ¢, = 0.09 and the turbulent Prandtl number P, from (3.109). For the
numerical simulations, three different resolutions in time and space have been
used:

1. A non-equidistant grid spacing with strong zooming towards the surface
according to (4.1) and (4.2) with zooming coefficients d,, = 3 and d; =0
and the number of layers, N; = 200. This results in a near-surface layer
depth of Ay, = 0.008 m and a near bed layer depth of h; = 0.754 m. The
time step chosen here is At = 200 s.

2. An equidistant grid-spacing with IV; = 200 (resulting in layer thicknesses
of 0.25 m) and At = 200 s.

3. An equidistant grid-spacing with N; = 200 (resulting in layer thicknesses
of 0.25 m) and At = 20 s.

The level of implicitness has been set to ¢ = 0.6 for the momentum
and the buoyancy equation, a value slightly larger than the semi-implicit
value 0.5 ensuring second-order accuracy in time, but which is also known
for causing numerical instabilities. For the turbulent kinetic energy equation,
a fully implicit time-stepping with ¢ = 1 has been chosen in order to further
stabilise the model.

Figure 4.3 shows profiles of eddy viscosity v, obtained with the new
energy-conserving discretisation of turbulence production terms (4.25) and
(4.29) and the old not energy-conserving discretisation (4.26) and (4.30),
using the three spatial and temporal resolutions 1. - 3. given above.

It is clearly seen that the old discretisation is numerically unstable in the
region of maximum eddy viscosity for non-equidistant grid-spacing with long
time steps of At = 200 s. In contrast to this, the new discretisation results
in a stable and smooth solution.

For equidistant grid-spacing and large time steps of At = 200 s, the
old method is numerically stable at the end of the run time, but significantly
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underestimates the mixed layer depth obtained with high resolution. Only for
equidistant grid spacing and small time steps of At = 20 s, the old method
results in a final viscosity profile optically not distinguishable from the profile
obtained with the new method.

For a more detailed discussion of the implications of this new numerical
scheme, see Burchard [2002].

4.4 Boundary conditions

It would be a desirable property of a model to accurately reproduce relevant
processes also for rather coarse vertical resolution. Only then, the integration
of such a model into three-dimensional ocean models is justified. This is
difficult near the boundaries, since large gradients can significantly reduce
the performance of numerical models. Therefore, caution is needed when
discretising the boundary conditions.

The Dirichlet-type bottom boundary condition for momentum, (3.57), is
an example for a physical condition which has to be modified for the numerical
discretisation, since the discrete velocity point nearest to the bottom is half
a grid box away from the point where the boundary condition is defined.
Furthermore, due to the logarithmic law, high velocity gradients are typical
near the bed. Simply setting the discrete bottom velocity to zero, would
therefore lead to large discretisation errors. Instead, a flux condition using
bottom stresses is derived from the log-law discussed in section 3.2.3.

For the determination of the normalised bottom stresses

€T
Do = yboyb, (4.33)
Po

y
- ubvulb (4.34)
Po

with the friction velocities u® = \/7,/po with 7, = \/(78)% + (77)?, assump-
tions about the structure of velocity inside the discrete bottom layer have to
be made. We use here the logarithmic profile (3.51) derived from the law of
the wall in section 3.2.3. Therefore, estimates for the velocities in the centre
of the bottom layer can be achieved by:

bx b

up = Y 1 (70'5}“:_ ZO) ) (4.35)
K E
by b

vp = % In (w) . (4.36)
K 25

For hy — 0, the original Dirichlet-type no-slip boundary conditions (3.57)
are retained. Another possibility would be to specify the bottom velocities
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up and vy such that they are equal to the layer-averaged log-law velocities
(see Baumert et al. [1989], Baumert and Radach [1992]). The calculation of
this is however slightly more time consuming and does not lead to a higher
accuragcy.

For the discretisation of the turbulent quantities, the law of the wall has
to be further exploited. For the k-kL model (see section 3.2.6), Burchard and
Petersen [1999] found that it is accurate also for coarse vertical resolution,
when the Dirichlet-type boundary conditions for k£ and L, (3.62) and (3.56),
respectively, are directly discretised. In order to obtain this property also for
k- models, the boundary conditions have to be formulated and discretised
with care. This is necessary in order to cope with the asymptotical behaviour
of the dissipation rate near vertical boundaries. In the following, the straight-
forward discretisations of the boundary conditions (3.63) and (3.66) will be
discussed and their numerical performances compared to an analytical test
case. The viscosities for the turbulent equations have to be averaged from
vy values (placed at the same position as other turbulent quantities, see fig-
ure 4.1) in order to guarantee second-order accuracy for the discretisation of
diffusion terms in the case of uniform grid spacing. In the standard discreti-
sation used here, this is also applied to the surface and the bottom interval.
The spatial accuracy of this standard discretisation of € boundary conditions
(3.63) and (3.66) will be tested by discretising the constant stress steady state
boundary layer equations, see section 3.2.3.

The results for u are shown in figure 4.4 on a logarithmic scale. With
the flux condition (3.66), the logarithmic profile of @ is reproduced for all
vertical resolutions, even if the boundary layer is resolved with three inter-
vals only. With the Dirichlet-type boundary condition (3.63), an extremely
fine vertical resolution is needed near the bottom in order to reproduce the
analytical solution accurately. Only the bottom values for 4 are by definition
identical with the analytical solutions, see equation (4.35). This fine resolu-
tion could only be achieved with the non-equidistant zooming (4.2) resulting
in a height of the near bottom interval of only 0.003zp. Such fine resolutions
are not affordable in three-dimensional models. Stelling [1995] discussed the
low accuracy of the standard discretisation of the Dirichlet-type boundary
condition. He suggested to compute the first discrete eddy viscosity value
for € by ve = ut/(0.€), a relation which can be derived from the law of the
wall with P = €. A test computation carried out by Burchard et al. [1998]
for the analytical test case discussed above shows the same high accuracy
than achieved by the standard discretisation of the Neumann-type boundary
condition (3.66). However, the Stelling [1995] approach does not work for
stress free surface flow, because it assumes a no-flux condition for £ there.
In contrast to the flux condition (3.66) this predicts unrealistically high near
surface values for the eddy viscosity. Therefore, the use of the Neumann-type
flux condition (3.66) seems to be preferable for k-¢ model computations, see
section 6.1.
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Fig. 4.4. Non-dimensional profiles of velocity for non-stratified boundary layer
flow calculated with a k-¢ model with different vertical resolution. Upper panel:
Dirichlet-type boundary condition for €, (3.63); Lower panel: Neumann-type bound-
ary condition for ¢, (3.66). This figure has been taken from Burchard and Petersen

[1999].
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It has been shown by Burchard and Petersen [1999] that with this bound-
ary condition, the k-¢ and the k-kL models are of similar accuracy also in
the mixed layer (see figure 7.17).

Another approach has been suggested by Baumert et al. [1989] and was
later used by Burchard [1995] and Baumert et al. [2000]. They averaged the
log-law distribution of dissipation rate over the lowermost grid box and use
this as boundary condition at z = —H. Since this location is half a grid box
away from the centre of the lowermost grid box, this scheme can only be of
first order in space.



5 The GOTM model

After presenting the mathematical equations for marine turbulence modelling
in chapters 2 and 3 and their numerical discretisation in chapter 4, this all
needs to be implemented in a computer code before it is of any practical
use. Many of the physical and numerical features discussed in these chapters
have indeed been implemented, tested and applied in recent years by the
author of this book and his co-workers in the GOTM model. This model will
briefly be described here in this chapter. For more information, see Burchard
et al. [1999] or at http://www.gotm.net on the World Wide Web. All model
simulations presented in chapters 6 and 7 have been carried out with GOTM.

Other examples for water column models which are freely available are
for example PROBE (see Svensson [1998]) and the one-dimensional versions
of the Princeton Ocean Model (POM, see Blumberg and Mellor [1987]) and
COHERENS (see Luyten et al. [1999]).

5.1 General introduction

GOTM stands for General Ocean Turbulence Model and means that the
model simulates small-scale turbulence and vertical mixing as far as pos-
sible in a general manner and without calibration to specific applications.
This general character is underlined by the fact that the model is applied to
scenarios in various regions, specifications and scales, such that the model
is frequently verified (and unfortunately sometimes falsified as well). The
model is modular such that refinements or extensions especially for the tur-
bulence models, but also for the mean flow modelling can easily be carried
out. The aim of generality is very ambitious, and there are always situations
for which turbulence closures on a higher level would be required. GOTM
is a one-dimensional model for the water column, which means that all hor-
izontal gradients have to be either prognostically prescribed, parameterised
or neglected. The turbulence module inside GOTM is organised such that
it can be integrated into three-dimensional ocean or atmosphere models for
calculating the vertical exchange coefficients. Observational data can be read
in into GOTM such that — after interpolation to the temporal-spatial grid —
they can be used as forcing or validation data. The model output is optionally
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in ASCII or netCDF format, the latter being a binary format which can be
read by various modern graphical packages.

Since April 1999, GOTM can be downloaded as FORTRAN77 or FOR-
TRAN90/95 source code from the web site http://www.gotm.net on the
World Wide Web, together with forcing and validation data, a report by
Burchard et al. [1999], etc. The user group consists of more than 120
users world wide. Until May 2002, the web site had more than 10000
visitors (since June 1999). Apart from the author of the present study
(hans@gotm.net), Karsten Bolding (karsten@gotm.net,Ispra), Manuel Ruiz
Villarreal (manuel@gotm.net, Hamburg), Pierre-Phillipe Mathieu
(pp@gotm.net, Reading), Georg Umgiesser (georg@gotm.net, Venice), En-
cho Demirov (encho@gotm.net, Bologna) and Lars Umlauf (lars@gotm.net,
Lausanne) are co-authors of GOTM.

5.2 Treatment of physics

Standard transport equations for mean quantities are designed for horizontal
velocity components, potential temperature, salinity and suspended matter.
A general tracer algorithm is part of GOTM as well, allowing for easy imple-
mentation of biological models, if only the source and sink terms are known.
Several terms which contain horizontal gradients need special treatment. The
surface slopes which represent the barotropic pressure gradients can easily be
determined by local observations or results from three-dimensional numeri-
cal models. It is also sufficient to prescribe a time series of near-bed velocity
components for reconstructing the barotropic pressure gradient, see Burchard
[1999]. The internal pressure gradient, which results from horizontal density
gradients can be prescribed from observations or model results. Advective
and horizontal diffusive terms are neglected in the velocity equations. Rota-
tion, and vertical mixing (assuming that an eddy viscosity is known) do not
pose any problems. For the active tracer equations it is especially the ad-
vective terms which are not easy to handle: There are three options: neglect
(especially in the open ocean), relaxation to observations or prescription of
observed horizontal gradients. In cases where the vertical velocity is known
from observations or theoretical considerations, it can be used for vertical
advection, see Bolding et al. [2000]. Standard relations derived from the law
of the wall are used as surface and bottom boundary conditions, see section
3.2.3. At the sea surface, they have to be prescribed or calculated from me-
teorological observations with the aid of bulk formulae using the simulated
or observed sea surface temperature. The suspended matter module is writ-
ten so far for non-cohesive matter, but there are plans for refinements. The
density is calculated by means of the UNESCO equation of state, either with
the full version or linearisations of it. A somewhat exotic GOTM module
simulates the interaction of sea grass canopies with turbulence and currents
according to the method suggested by Verduin and Backhaus [2000].
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In GOTM, the modelling of turbulence is carried out as described in
chapters 2 and 3. It is based on the Boussinesq eddy viscosity assumption
(3.19), with which the turbulent fluxes are proportional to the gradients of
the transported quantities. By doing so, phenomena such as counter-gradient
fluxes, which are relevant for convection scenarios, are however not repro-
ducible. Another effect which is not considered is the direct effect of rotation
on turbulent mixing, which is significant only for deep convection, see sec-
tion 3.1.2. The proportionality factors between the fluxes and the gradients
are the vertical exchange coefficients, which are calculated according to the
Kolmogorov-Prandtl relation as product of three factors: a dimensionless sta-
bility function, a turbulent velocity scale and a turbulent macro length scale,
see equation (3.24). The stability functions which are different for momen-
tum and for tracers and which can depend on shear and stratification contain
complex algebraic closures for the second moments, see section 3.1.3. For the
calculation of the velocity scale and the macro length scale, various zero-,
one- and two-equation models are included into GOTM. The k-¢ (see sec-
tion 3.2.5) and the k-kL model by Mellor and Yamada [1982] (see section
3.2.6) are the most well-known two-equation models inside GOTM. For these
models some recent developments are considered. Furthermore, the generic
two-equation model recently suggested by Umlauf and Burchard [2001] (see
section 3.2.13) has been implemented into GOTM. Especially for the pur-
pose of better comparison, also other types of models such as the K-profile
parameterisation (KPP) model (see Large et al. [1994]) will be integrated
into GOTM in the future.

One weakness of all turbulence models is the reproduction of internal
mixing processes which are controlled by the dynamics of internal waves,
see section 3.3.3. These are often produced non-locally by various complex
processes not properly represented in three-dimensional models. In GOTM,
we solve the problem by limiting the macro length scale by means of the
buoyancy length and the turbulent kinetic energy by a constant minimum
value, which acts as a tuning parameter. By doing so, background values
for the eddy viscosity of the order of 107°...10~* m2s~! are obtained, see
section 3.3.3.

5.3 Coupling with three-dimensional models

For the FORTRANT7- as well as for the FORTRAN90/95-version of GOTM,
the turbulence modules are separated from the rest of the model such that an
eagy integration into three-dimensional circulation models is possible with-
out changes in GOTM!. Inside the three-dimensional models, interfaces need

' A scale analysis by Delhez et al. [1999] shows that the advective terms and the
horizontal diffusion terms in the TKE-equation are negligible compared to the
other terms in this equation for a shelf sea simulation. This justifies the use of
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to be installed which simply transfer the data structure of GOTM to that
of the three-dimensional model. That might decrease the execution speed
of specifically efficient three-dimensional models, but the experience with
three-dimensional community models shows that this is generally no prob-
lem. Couplings between three-dimensional models and GOTM have so far
been tested for MOM (Modular Ocean Model, Geophysical Fluid Dynamic
Laboratory, Princeton, see Bryan [1969] and Coz [1984]), a classical Ocean
General Circulation Model, with POM (Princeton Ocean Model, Princeton
University, Blumberg and Mellor [1987]), a coastal model, with COHERENS
(European Community, see Luyten et al. [1999]), a shelf sea model, with MO-
HID (Instituto Superior Técnico, Universidade Tecnica de Lisboa, Portugal,
see Martins et al. [1998]) and with GETM (General Estuarine Transport
Model, see Burchard and Bolding [2002]), both estuary models. These cou-
plings are presently under further investigation.

5.4 Informatics

For obtaining the full spectrum of GOTM, a FORTRAN90/95-compiler, the
program Make and the netCDF library are needed. GOTM runs under all
UNIX and LINUX systems, but has also been used under WINDOWS-95
and later WINDOWS versions. For the documentation of the source code,
the system protex is used, with the aid of which standard WTEX text can
be integrated into the code such that even complex mathematical formulae
can be documented in a clear way. Since protex is a target in Makefile, the
command make doc generates a ATEX document of about 120 pages.

5.5 Applications

The most well-known GOTM application is the simulation of the mixed layer
at Ocean Weather Station Papa in the Northern Pacific, see section 7.2, for
which data of temperature profiles and meteorological parameters for a period
of about 20 years are available. Typical shelf sea applications which include
surface as well as bottom processes, are located in the Irish Sea (Burchard
et al. [1998], see section 7.4.1) and the Northern North Sea (see Burchard
and Baumert [1995], Burchard and Petersen [1999], Bolding et al. [2000]),
see section 7.3.1, where FLEX (Fladenground-Experiment 1976) is the clas-
sical scenario. Some realistic estuarine scenarios have been simulated with
GOTM as well, such as the Oosterschelde in The Netherlands and Knebel
Vig in Denmark, see Burchard et al. [2000]. For some newer scenarios in the

one dimensional version of this equation inside a three-dimensional model. The
situation could however be different in estuaries were strain-induced periodic
stratification acts, see section 7.4.2.
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North Sea (see section 7.3.2), the Liverpool Bay (see section 7.4.2) and lake
Lago Maggiore (see section 7.5), observations of the turbulent dissipation
rate have been made. Those could in principle be well reproduced by apply-
ing GOTM. For more details regarding the simulations of realistic scenarios
with GOTM, see chapter 7. GOTM also contains some idealised scenarios
such as the penetration of a mixed layer into a stably stratified water col-
umn by means of wind (Kato-Phillips experiment, see section 6.2) or cooling
(Deardorfl experiment, see section 6.3). Furthermore, GOTM is increasingly
applied to estuaries, for which the idealised scenario Estuary with constant
horizontal gradients of salinity is a helpful exercise.

5.6 User group

Without the users of GOTM, most of them working in Europe or North Amer-
ica, GOTM could have never become a well-tested and documented model.
Through the regular contact between authors and users, the user-friendliness
and the physical basis of the model could be significantly improved. Round
mails are sent regularly by email to the GOTM user group (users@gotm.net)
informing them about model innovations. Further motivation for improve-
ments and extensions comes from the close connection between GOTM and
the concerted action CARTUM (Comparative Analysis and Rationalisation
of Second-Moment Turbulence Models), a brainstorming activity bringing
together turbulence experts from all over the world.






6 Idealised test cases

In order to study the basic performance of boundary layer models, it is often
advantageous to apply them first to idealised situations for which solutions
are known from laboratory experiments or Large Eddy Simulation studies.
This procedure does of course not guarantee that these models also perform
sufficiently well for complex real-world problems. However, when the mod-
els already fail for such standard situations, it is almost certain that their
performance in real-world situations is even worse.

Three idealised scenarios will be studied here in detail, which are open
channel flow (see section 6.1), a wind-entrainment experiment motivated by
the laboratory experiment by Kato and Phillips [1969], see section 6.2, and
a convective penetration experiment motivated by laboratory experiments
by Willis and Deardorff [1974], see section 6.3. The wind entrainment ex-
periment in section 6.2 will be extensively used for the calibration of the
buoyancy production related quantities ¢z, for the k-¢ model and E3 for the
k-kL model, see sections 6.2.1 and 6.2.2, and a stability analysis of vari-
ous stability functions, see section 6.2.3. It should be noted that the wind
entrainment experiment has already been used for studying the numerical
stability of two different discretisations of the vertical velocity shear and the
Brunt-Viisila frequency, see section 4.3.

6.1 Channel flow

As basic comparative tests for the performance of k- and k-kL two-equation
models, two steady state barotropic channel flow situations, including com-
parisons with data, have been chosen: A surface stress forced flow which
induces a constant stress over the vertical (Couette flow) and a pressure
gradient-driven flow (e.g., tidal or river flow). Empirical data and numerical
model results are displayed in figure 6.1 in non-dimensional form. For a more
extensive discussion see Burchard et al. [1998].

If surface stress is the only forcing for steady-state open channel flow,
then a constant stress over the whole water column and a solution symmetric
to mid-depth results for all models. It can be shown furthermore that P = ¢
and k = (ul/c,)? hold everywhere, if molecular viscosity is neglected. The
solution for the turbulent kinetic energy k implies that for a constant stability
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Fig. 6.1. Simulations of barotropic open channel flow with comparison against
data. (top) Stress-driven Couette flow. Data from Telbany and Reynolds [1982]
(turbulent kinetic energy and eddy viscosity). (bottom) Pressure gradient-driven
flow. Data from Nakagawa et al. [1975] (turbulent kinetic energy and dissipation
rate), Jobson and Sayre [1970], and Ueda et al. [1977] (both eddy viscosity). Bold
line, k-¢ model; thin line, k-kL model, triangle-shaped L., see equation (3.77);
dashed line, Mellor-Yamada model, parabola-shaped L., see equation (3.76). This
figure has been taken from Burchard et al. [1998].
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function ¢, the TKE will also be constant. In contrast to that, the empirical
data in figure 6.1 strongly increase towards bottom and surface. This defi-
ciency of the model is even given for the stability functions of Canuto et al.
[2001] which depend on shear. This is because local equilibrium of turbulence
(P = ¢) directly implies apr = (c),)?/c,, which means that ays and ¢, are
here not depending on the flow structure and are therefore constants. A solu-
tion to this problem could here be the introduction of wall proximity functions
(see Rodi [1980]). Except at mid-depth where the measurements might not be
reliable, the k-¢ model result for eddy viscosity shows good agreement with
the measurements. For the Mellor-Yamada model, a triangle-shaped length
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scale L, had to be prescribed rather than the usual parabolic-shaped one
in order to achieve sufficient agreement between measurements and model
simulations.

If the only forcing is a surface slope then a shear stress linearly decreasing
from bottom to surface is resulting. As figure 6.1 shows, the models suffi-
ciently reproduce the measured turbulent profiles with the limitations men-
tioned above: the increase of TKE towards the bottom is underestimated
by all models. And for the Mellor-Yamada model, only a triangle-shaped
L, sufficiently reproduces the viscosity. It should be mentioned here, that a
straight forward discretisation of the k- model with Dirichlet-type boundary
conditions and an averaging of eddy viscosity for turbulent quantities would
lead to an eddy viscosity profile with an unrealistic maximum near the sur-
face (see also Burchard et al. [1998]). Therefore, the Neumann-type boundary
conditions (equation (3.65) for k¥ and equation (3.66) for £) have been used
here.

6.2 The Kato-Phillips experiment

In this experiment, a mixed layer induced by a constant surface stress pene-
trates into a stably stratified fluid with density increasing linearly down from
the surface. The water depth is assumed to be infinite. Price [1979] suggested
a solution for the evolution of the mixed-layer depth D,,, based on a constant
Richardson number

D(t) = 1.05us Ny /24172, (6.1)

where uf is the surface friction velocity and No the constant initial Brunt-
Viisdld frequency. Following several authors (see e.g. Deleersnijder and
Luyten [1994], Burchard et al. [1998]) we transform this laboratory exper-
iment to ocean dimensions with 42 = 1072 ms~! and Ny = 1072 s~ ..

6.2.1 Calibration of c3.

First of all, the concept of the steady-state gradient Richardson number R3*
can be validated by means of this entrainment experiment. The stability func-
tions by Canuto et al. [2001], CA and CB, see section 3.1.3 are applied in
combination with the k-¢ model with values for Rf! ranging from 0.2 to 0.8.
Figure 6.2 shows the evolution of the entrainment depth, here defined as the
distance of the lowermost point below the surface with a turbulent kinetic
energy of k > 107° Jkg L. The results for the mixed layer depth are how-
ever not sensitive to the actual choice of this criterium, see also Deleersnijder
and Luyten [1994]. It can be clearly seen that Rf' determines the entrainment
rate. For low values of R{?, a situation with R; > R$? in the region of the pycn-
ocline is reached earlier with the consequence that turbulence is decaying and
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the entrainment is reduced. For high values of R$*, R; < R¢* holds over nearly
the entire mixed layer and therefore mixing and entrainment is enhanced. It
can be seen from this experiment that R5* = 0.25 seems to be a reasonable
value for the steady-state Richardson number. With this choice, we can now
fix 3. for each set of stability functions (see table 6.1). Obviously, ¢3. has
the same value for equivalent non-equilibrium and quasi-equilibrium stabil-
ity functions. In this framework, values of ¢3. with a steady-state Richardson
number of R' = 0.25 can also be determined for the standard k-e model
with simple stability functions. If a turbulent Prandtl number according to
equation (3.109) is chosen, then ¢3. = —0.4 results, which is in agreement to
the findings of Burchard et al. [1998], who calibrated c3. for an even simpler
standard k- model with constant stability functions. The value of Rf* = 0.25
cannot be reached by the model of Kantha and Clayson [1994]. We there-
fore use Rf* = 0.225 for their model, which corresponds to the value for cs.
given in table 6.1. Negative values for ¢z, are indeed confirmed for all sets of
stability functions.

[Modellc), [R{ [cs. [Es |
KC 0.094|0.235(-0.404|5.093
RH ]0.121]0.615(-0.444|5.33

CA  |0.077]0.847|-0.629(5.884
CB  |0.094(1.02 |-0.566|5.939

Table 6.1. Neutral stability function cg, critical Richardson number RS, and buoy-
ancy related parameters cs. and Ej3. ¢3¢ is based on a steady-state gradient Richard-
son number of RS* = 0.25, only for the model KC R§® = 0.225 was used. Fj3 is based
on R$* = 0.196, see section 6.2.2.

As mentioned in section 3.2.11, the estimates for the steady-state Richard-
son number by Shih et al. [2000] do indeed indicate a value of Rf* ~ 0.25 for
the case of high Reynolds numbers.

Figures 6.3 and 6.4 show results for the mixed layer depth evolution and
profiles of eddy viscosity and diffusivity and turbulent kinetic energy at 30
hours after the onset of surface stress. Eight different sets of stability func-
tions have been used for these simulations, namely the models KC, RH, CA,
CB and their quasi-equilibrium versions. For all simulations, the dissipation
rate equation (3.67) has been used with the values for ¢z, from table 6.1. It
can be seen from figure 6.3 that the non-equilibrium version of the KC model
(it should be noted that it is the quasi-equilibrium version which has been
suggested by Kantha and Clayson [1994]) tends to strong oscillations and
therefore produces useless results. This has already been reported by Deleer-
snijder and Luyten [1994] for the very similar model of Mellor and Yamada
[1982]. In contrast to this, the quasi-equilibrium version of the KC model
performs well, empirical and simulated mixed layer depth are very close to
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Fig. 6.2. Development of the mixed-layer depth (deepest point with k£ > 1075
Jkg™!) for the simulation of the Kato-Phillips experiment. Model results for the

complete versions of the models A (left) and B (right) of Canuto et al. [2001] for
various values of RS

each other (see figure 6.4). For a detailed investigation of this stability prob-
lem, see Burchard and Deleersnijder [2001] and section 6.2.3. It is however
strange that the profile of turbulent kinetic energy shows a maximum in the
lower part of the mixed layer. This effect has already been demonstrated by
Burchard et al. [1998]. Turbulence measurements for this mixed layer experi-
ment do unfortunately not exist. However, in a Large Eddy Simulation study
of a similar experimental set-up (but with consideration of rotation) carried
out by Moeng and Sullivan [1994] such a local maximum of k is not visible.

The other sets of stability functions all show (i) a perfect fit with the
empirical curve of Price [1979], (ii) the expected monotone decrease of tur-
bulent kinetic energy down from the surface and (iii) a numerically stable
performance.

6.2.2 Calibration of Fj

As mentioned in section 3.2.11, the choice of E3 = 1.8 does not allow for
steady-state solutions for homogeneous shear layers, see also Baumert and
Peters [2000] and Burchard and Bolding [2001]. This should have negative
consequences for the performance of the k-kL model. Figure 6.5 shows the
evolution of mixed layer depth D,,, over 30 hours and the profile for the macro
length scale L at the end of the simulation of the wind entrainment experi-
ment calculated with the quasi-equilibrium stability functions by Kantha and
Clayson [1994]. If no constraints to L are applied, the simulated mixed layer
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Fig. 6.3. Development of the mixed-layer depth (deepest point with k£ > 1075
Jkg™') and profiles of mixing coefficients and turbulent kinetic energy after 30
hours for the simulation of the Kato-Phillips experiment. Model results for the
complete versions of the a) model of Kantha and Clayson [1994], b) Rodi [1980]
and Hossain [1980], ¢) model A of Canuto et al. [2001], and d) model B of Canuto
et al. [2001]. For all model runs, R® = 0.25 has been chosen, with the exception of
the KC model, where RS = 0.225 was used.
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Fig. 6.4. Development of the mixed-layer depth (deepest point with k£ > 1075
Jkg™') and profiles of mixing coefficients and turbulent kinetic energy after 30
hours for the simulation of the Kato-Phillips experiment. Model results for the
quasi-equilibrium versions of the a) model of Kantha and Clayson [1994], b) Rodi
[1980] and Hossain [1980], c) model A of Canuto et al. [2001], and d) model B
of Canuto et al. [2001]. For all model runs, R{* = 0.25 has been chosen, with the

exception of the KC model, where R$t = 0.225 was used.
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Fig. 6.5. Kato-Phillips experiment simulated with the k-kL model with and with-
out length scale limitation (3.73). Displayed are here evolution of mixed layer depth
and macro length scale L and the critical length scale Ly, .

depth D, exceeds the estimate (6.1) by 38 %. It has to be concluded that
this simulation result is physically unsound which is a consequence of the
inadequate choice for F3.

In the past, this problem has been circumvented by explicitly limiting the
macro length scale by the constraint (3.73), see Galperin et al. [1988]. The
resulting mixed layer depth evolution and the length scale profile are shown
in figure 6.5 as well. The mixed layer depth is now nearly indistinguishable
from the estimate (6.1), and, of course, the length scale has now the desired
limitation due to stable stratification. However, this could only be achieved
by replacing the dynamic equation for kL by the algebraic relation (3.73) in
the lower half of the mixed layer.

(B |-B/e|-Gu[Bs [Dm_ |
0.160]0.209 ]0.110]5.634]32.50 m
0.180(0.229 |0.178(5.294(33.25 m
0.200(0.246 |0.320[5.05133.75 m
0.220]0.260 |0.755|4.87534.00 m
0.239]0.271 |15.864.75234.25 m

Table 6.2. Values of normalised buoyancy production —B /e, buoyancy parameter
—Gu, parameter E3 and mixed layer depth D,, (in m) after 30 hour for the Kato-
Phillips experiment as a function of the steady-state gradient Richardson number
R§'. These values are for the Kantha and Clayson [1994] quasi-equilibrium stability
functions.
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It is expected also for the k-kL model equipped with the quasi-equilibrium
stability functions of Kantha and Clayson [1994] that mixing increases with
increasing steady-state gradient Richardson number R:' since for R; > R:!
turbulence decays and vice versa. The wind entrainment experiment is per-
formed for values of R{' ranging from 0.16 to 0.239 without the limit (3.73).
Respective values for E3 are given in table 6.2. Figure 6.6 and table 6.2 show
that indeed higher values of R:! induce deeper mixing. For all choices of R,
the mixed layer depth (defined as the uppermost position in the water col-
umn with k¥ < 107° Jkg 1) is slightly below the estimate (6.1), after 30 hours
of entrainment ranging from 32.50 m (R$* = 0.16) to 34.25 m (R = 0.24)
whereas (6.1) estimates 34.50 m. This is an indication that also for the k-kL
model, Rf* = (.25 appears to be a suitable choice.

Mixed-layer depth

35 , | | . |
30 +
25 ¢
g 20 r
y
£
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R3t =0.239
R =0220 -
10 R'.” — 0200 c---ee--e--- T
R{* =0.180 I
S R3* =0.160 I |
0 | L I ! | |

0 5 10 15 20 25 30

t/h

Fig. 6.6. Kato-Phillips experiment simulated with the k-k£L model for various val-
ues of the steady-state gradient Richardson number R§® without limitation (3.73).
Displayed is here the evolution of the mixed layer depth.
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Fig. 6.7. Kato-Phillips experiment simulated with the k-kL model without length
scale limitation and R$* = 0.196 (equivalent to E3 = 5.093). Displayed are macro
length scale L, turbulent kinetic energy k, eddy diffusivity v; and gradient Richard-
son number R;. For this simulation, the stability parameter Gg o any has been
limited in accordance with (3.73).

Osborn [1980] actually gives an estimate of an upper bound for eddy
diffusivity in the ocean pycnocline:

€
N2’
which may be transformed to the simple relation Py /e < 0.2 giving E5 > 5.8
and is equivalent to R = 0.152 (see Burchard [2001a]). This low value for
the steady-state Richardson number R$* might be a consequence of breaking

internal waves acting as an additional source of turbulent mixing which is
neglected in this study, see section 3.3.3.

vl <0.2 (6.2)
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For the case R$* = 0.196 which is equivalent to the length scale limita-
tion under stable stratification, (3.73), some profiles will be inspected here
since this leads to Gy = G4™ for the steady-state solution in homogeneous
shear layers being equivalent to (3.73). The Ej3 values for R:* = 0.196 as
computed from the non-equilibrium stability functions presented in section
3.1.3, are shown in table 6.1. The profile of the macro length scale L shows
that this constraint is automatically fulfilled with high accuracy (see figure
6.7) although L is unconstrained. This is a consequence of the fact that the
gradient Richardson number is close to the steady-state Richardson num-
ber in the entrainment region above the pycnocline. The local maximum of
k in the lower half of the mixed layer is a specific effect of the Kantha and
Clayson [1994] stability functions and has already been discussed by Bur-
chard et al. [1998] for the Galperin et al. [1988] stability functions, see also
section 6.2.1. Although the use of R5* = 0.196 is equivalent to the algebraic
length scale limitation by Galperin et al. [1988], R* = 0.25 might also here
be the physically more correct value, see figure 6.6.

6.2.3 Stability of second-moment closures

Several authors have reported serious stability problems with the Mellor and
Yamada [1982] stability functions, which are structurally similar to the Kan-
tha and Clayson [1994] non-equilibrium stability functions as presented in
section 3.1.3 (see Deleersnijder and Luyten [1994], Burchard et al. [1999] and
Villarreal [2000]). It could be shown that the specific algebraic closure for the
second moments was responsible for these instabilities, since they occurred
as well, when using other length scale parameterisations such as the dissipa-
tion rate equation. A solution to the problem had already been suggested by
Galperin et al. [1988] without discussing the stability problem: to use the so-
called quasi-equilibrium version of the closure for the second moments which
can be derived from the Mellor and Yamada [1982] model by additionally
assuming local turbulence equilibrium only for the second-moment closure.

Burchard and Deleersnijder [2001] have recently further investigated this
stability problem. The numerical experiments had the major purpose to test
the hypothesis by Deleersnijder and Luyten [1994] that normalised stress
u2 /k decreasing with increasing normalised shear s is responsible for the
instabilities. Therefore, they conducted experiments with the original con-
straint on normalised shear, (3.34), and the more restrictive version (3.35).
They carried out the following numerical simulations of this wind entrainment
experiment!:

1. Mellor and Yamada [1982] stability functions with the old constraint
(3.34) on Gy ox apr and the k-e model.

! Besides the k-¢ model simulations shown here, Burchard and Deleersnijder [2001]
made equivalent simulations with the k-kL model. Apart from a slightly less
stable behaviour of the k-kL model no significant differences could be observed.
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Fig. 6.8. Simulation results of run # 2 for the wind entrainment experiment by
using the Mellor and Yamada [1982] stability functions with constraint (3.34) on
Gu o anr. The turbulent length scale is here calculated with the e-equation (3.67).

2. Mellor and Yamada [1982] stability functions with the new constraint
(3.35) on G x apr and the k- model.

The time step is At = 100 s, and the vertical spacing is 0.5 m. For both
model runs, profiles after 30 h for eddy viscosity and diffusivity, normalised
stresses and local turbulence equilibrium (P + B)/e, and time series of mixed
layer depth, eddy viscosity »; and normalised stress 0.5u2/k are shown in
figures 6.8 — 6.9. For the latter two time series, the values at discrete indices
N =89, N =90 and N = 91 corresponding to 5.5, 5 and 4.5 m below the
surface, respectively, have been recorded.

The stability functions by Mellor and Yamada [1982] with the original
constraint on Gy o ayy, see equation (3.34), show significant spikes in the
eddy viscosity and diffusivity profiles, see figures 6.8 and 6.8. This has already
been shown by Deleersnijder and Luyten [1994] for the k-kL model. Similar
spikes are visible for the local turbulence equilibrium profiles. It is striking
that except for the boundaries of the mixed layer, the expected value of
(P + B)/e = 1 is never close to unity. In contrast to that, the profiles of
normalised stresses are rather smooth, with small spikes only. The same can
be observed for the turbulent kinetic energy k and the shear stress u2. This
means that two solutions for the viscosity (and the shear) lead to the same
shear stress, both of which are physically irrelevant, since they are far from
the local turbulence equilibrium. The time series of viscosity at three adjacent
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Fig. 6.9. Simulation results of run # 4 for the wind entrainment experiment by
using the Mellor and Yamada [1982] stability functions with constraint (3.35) on
Gu o anr. The turbulent length scale is here calculated with the e-equation (3.67).

grid points about 5 m below the surface show that there are some oscillations
in time with a period of the order of hours, much longer than the time step.
The solution seems to be smooth in the beginning, but at a certain point, a
bifurcation for the viscosities sets on (after about 3 hours).

When using the new constraint (3.35) instead of the original constraint
(3.34), the bifurcation problem does not arise any more, and consequently,
all profiles are rather smooth, see figure 6.9. Only a small spike remains for
the viscosity/diffusivity profiles which can be removed by further decreasing
the upper limit for Gy o ay. Since turbulence is close to local equilibrium
over the whole mixed layer, it is not the original stability functions which are
used here, but only the constraint (3.35). The k-¢ model shows now a good
agreement with the empirical mixed layer depth.

This confirms what has been discussed in section 3.1.5: that shear stress
decreasing with increasing shear in the region of local turbulence equilibrium
probably causes instabilities. It is shown here that this problem problem can
be avoided by tightening up the constraint on Gar o< ar. It can be seen from
figure 6.3 that these problems do not arise for the RH, CA and CB stability
functions, which also depend on stratification and shear. This physically cor-
rect behaviour can be explained by the fact that the local turbulence equilib-
rium is in a region where shear stress increases with shear, see figure 3.5. The
use of the alternative constraint (3.35) is however not an adequate means for
improving the performance of the Mellor and Yamada [1982] stability func-
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tions, since they are simply replaced by a simple algebraic condition. Two
alternatives should be considered instead: either using the quasi-equilibrium
version of the Mellor and Yamada [1982] stability functions (which are iden-
tical with the Galperin et al. [1988] stability functions) or using physically
more complete stability functions like those of Canuto et al. [2001] or also
the Rodi [1980] and Hossain [1980] stability functions.

A third alternative had been applied to older versions of the Princeton
Ocean Model and the Modular Ocean Model (pers. comm. George Mellor),
which is to numerically filter Gy x ays before using it for the calculation of
the stability functions Sy o ¢, and Sy o c;L:

G (i) = 0.25G (i — 1) + 0.5G 1 (§) + 0.25G (i + 1). (6.3)

Experiments with the implementation of this filter conducted by the author of
this book did however not sufficiently remove these instabilities. Furthermore,
the use of such a numerical filter is simply hiding the physical problems with
this type of stability function and can therefore not be recommended.

6.3 The Willis-Deardorff experiment

Although strong convective events occur in the ocean only in a few areas, they
are important for the ocean circulation and it is therefore desirable that they
are sufficiently reproduced by turbulence closure models. A free convection
simulation similar to the laboratory experiment carried out by Willis and
Deardorff [1974], will be presented here. The scenario simulated here is the
same as used by Large et al. [1994]. By means of a constant negative surface
heat flux of 100 Wm~2, a convective boundary layer is entrained into a
stably stratified ocean with a surface temperature of 22°C and a temperature
gradient of 1°C per 10 m. Shear and rotation are not present. For this free
convection simulation recent Large Eddy Simulation (LES) data are available
from Mironov et al. [2000].

[Model |[Entrainment depth]|
k-& model, KC 12.5
k- model, RH 11.9
k-& model, CA 12.2
k-& model, CB 12.4
KPP 13.0
Convective adjustment|11.2

Table 6.3. Entrainment depth D, in m for various mixed-layer models after three
days of constant cooling with 100 Wm™2, with an initially stable temperature
gradient of 0.1 Km™" and a constant salinity of 35 psu.



6.3 The Willis-Deardorff experiment 131

In table 6.3, the entrainment depth (position of minimum normalised
turbulent heat flux) for all experiments after three days of cooling is given.
Comparison is made to a simple scheme with convective adjustment (see
Bryan [1969], the depth is here the height of the homogenised layer) and the
K-profile parameterisation (KPP) model (see Large et al. [1994], the value has
been estimated from their figure 1). As expected, all depths for the models
presented here are between the latter two depths. The least deepening (11.2
m) is provided by the convective adjustment scheme which does not perform
any active entrainment in terms of steepening the buoyancy gradient below
the convective boundary layer.

Similarly to the wind entrainment experiment, see equation (6.1), also
here a formula for the depth of the convective boundary layer D,, can be
derived from simple energy conservation considerations, see Turner [1973]:

2B, \/?
b= (220)", ”
which is based on convective deepening without entrainment. For a more
general theory including entrainment, see Zilitinkevich [1991]. With the sur-
face heat flux and the initial temperature structure given above, a surface
buoyancy flux? of By ~ 0.52-10~7 Wkg~! and a background stratification
of N ~2-10~* 572 result, leading with (6.4) to D,, ~ 11.6 m, which is close
to the numerical value for convective adjustment given in table 6.3.

The turbulence models presented here mix deeper (11.9 m - 12.5 m) due
to their capability of reproducing active entrainment. The fully empirical,
non-local KPP model provides further deepening (13.0 m) of the convective
boundary layer.

Furthermore, after 3 days of cooling profiles of various quantities are
shown, normalised by the Deardorff convective velocity scale,

ws = (BoDw)'"?, (6.5)

the temperature scale,

Ty = (10:T)|2=0/ws, (6.6)

and the surface buoyancy flux By versus z/D,,. Here D,, is the depth of
the entrainment layer the base of which is defined as the height with the
minimum heat flux.

The results for mean temperature, heat flux, dissipation rate and the vari-
ances (i), (@2) and (T?) (see equations (3.30) - (3.33)) and the respective
results from the Mironov et al. [2000] LES study are shown in figure 6.10. In
contrast to the idealised view of a mixed layer, the temperature profile in the

2 The buoyancy flux varies slightly with time and the initial Brunt-Vaisils, fre-
quency varies slightly with depth because of the non-linearity of the equation of
state.
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Fig. 6.10. Free convection experiment of Willis and Deardorff [1974]. Profiles of
the normalised temperature profile (T — Tmax)/T%, normalised temperature flux
(0T /w.Ts, and the normalised autocorrelations (%?)/w?, (w?)/w?, and (T?)/T?
and dissipation rate £/By calculated by using different models for the stability
functions: Kantha and Clayson [1994] (KC), Rodi [1980] and Hossain [1980] (RH),
Canuto et al. [2001] version A (CA), and Canuto et al. [2001] version B (CB). The
model simulations are compared to LES simulations by Mironov et al. [2000].
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convective boundary layer (CBL) resulting from the LES study has an almost
symmetric structure with a super-adiabatic dense layer near the surface and
a stably stratified layer at the base. A comparison with the temperature flux
from the LES study shows that counter-gradient fluxes occur over a large por-
tion (roughly —0.8 < z/D,,, < —0.4) of the convective boundary layer. The
counter-gradient fluxes can be explained by the structure of the vertical ve-
locity fluctuations. Strong but narrow downdrafts transport cold near-surface
water down, causing compensating weak updrafts bringing warmer water up
(see e.g. Zilitinkevich et al. [1999]). In a recent study of convective turbulence
in a small Swiss lake, Jonas et al. [2002] concluded that the cold water at the
base of the CBL is not entrained from the underlying thermocline, but sup-
plied by the strong downdrafts from the super-adiabatic surface layer. This
view is further supported by the fact that the cold stratified layer at the base
of the CBL vanishes in the presence of a mean shear which might destroy the
structure of up- and downdrafts (see Jonas et al. [2002]).

From figure 6.10, three shortcomings of the two-equation models are ob-
vious:

1. Counter-gradient fluxes are not included in the model because of its in-
herent down-gradient approximation. Therefore, temperature profiles of
LES and turbulence closures are principally different. This suggests that
non-local processes are important here.

2. The height of the active entrainment layer is underestimated by the tur-
bulence closure models. This can best be seen in the profiles of (1) and
(T?). Potential reasons could here be the down-gradient approximation
for the turbulent kinetic energy flux and the fact that turbulent transport
of (wT) and (T?) is neglected. It can be seen from figure 6.11 that the
TKE-diffusion term is qualitatively reproduced by the model (here CA),
but underestimated by a factor of approximately 2.

3. The profile of (@?) near the surface suggests that the turbulent transport
of this quantity should not be neglected here. Otherwise, the positive
flux of (%?) through the surface as suggested by the LES simulations
cannot be properly prescribed. Similarly, the temperature variance <T2)
lacks vertical diffusion at the base of the convective mixed layer where the
profile from the present closures tend to zero when the mean temperature
gradient vanishes.

Despite these problems, numerical simulations of convective turbulence
with two-equation models including the down-gradient approximation result
in generally good agreement with field data, see the study by Stips et al.
[2001] and the discussion in section 7.5.

It should be noted that Canuto et al. [1994] obtained a good agreement
between LES data and simulation results for a free convection experiment
with a full Reynolds closure model using dynamic transport equations for
(wT), (T?), (0?), (@*) and ¢ including complex algebraic closure schemes for
all relevant third moments. It should be the aim of future work to find a
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Fig. 6.11. Budget of the TKE equation calculated from the CA model compared
to LES data from Mironov et al. [2000]. Diss: turbulent dissipation rate; Buoy:
buoyancy production; Turb: turbulent transport. For the LES data, turbulent and
pressure transport are added together here. All terms are normalised with the
surface buoyancy flux By, the height z is normalised with the entrainment layer
depth D,,.

reasonable compromise between this complex model by Canuto et al. [1994]
and the two-equation models presented here, in terms of both, efficiency and
predictability.
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7.1 Introduction

In this chapter, the turbulence closure schemes developed and discussed in
chapters 2 - 6 are finally applied for simulating real world scenarios observed
by means of in-situ measurements. All these simulations have been described
in more detail in journal publications of which the author of this book is
a co-author. In the framework of this study it is not possible to describe
all interesting details of the field campaigns and the model simulations. The
most important features are shown here, but for details, the reader is referred
to the original publications.

For most model simulations in this chapter, one certain model has been
used. It is the k-¢ model as described in section 3.2.5 in combination with
the algebraic second-moment closure by Canuto et al. [2001]. A steady-state
Richardson number of R$t = 0.25 is used, for a discussion, see section 6.2.1.
As simple internal mixing parameterisation a limitation of k£ and € according
to equations (3.73) and (3.134) has been chosen as discussed in section 3.3.3.

There are a lot of calculations to be made outside the actual water column
model. The surface fluxes have to be derived from meteorological observations
by means of bulk formulae. Here, the formulae of Kondo [1975] are mainly
in use. Due to the uncertainties of the meteorological observations and the
bulk formulae, it is however always difficult to determine which portion of
the heat content in the water column is due to surface fluxes and which is
due to lateral advection. When bed friction is important, the bed roughness
has to be determined. This can most accurately be done by fitting near-bed
high resolution Acoustic Doppler Current Profilers (ADCP) to a logarithmic
velocity profile, see equation (3.51) such that thus friction velocity and bed
roughness are estimated.

According to Paulson and Simpson [1977] the radiation I in the upper
water column may be parameterised by

I(z) = Ip (ae™™% + (1 — a)e™™%) . (7.1)

Here, Iy is the albedo corrected radiation normal to the sea surface. The
weighting parameter ¢ and the attenuation lengths for the longer and the
shorter fraction of the short-wave radiation, 1; and 7, respectively, depend
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on the turbidity of the water. Jerlov [1968] defined 6 different classes of water
from which Paulson and Simpson [1977] calculated the weighting parameter
a and the attenuation coefficients 71 and 75. It should however be noted
that these classes are idealisations. Natural waters have attenuation coeffi-
cients which are highly variable in time and space due to phytoplankton and
suspended matter concentrations.

During some of the field campaigns simulated below, observations of tur-
bulent dissipation rate have been carried out. In contrast to measurements of
mean flow properties such as flow velocity, temperature and salinity, turbu-
lence observations are not yet standard. Therefore, the basic principle of such
dissipation rate measurements as they have been introduced into oceanogra-
phy by Osborn [1974] is briefly discussed here. The technique which has been
used in the field studies presented below is based on small-scale vertical shear
measurements by means of a shear probe mounted on a freely rising or freely
falling profiler. The shear probe itself consists of an axially symmetric airfoil
of revolution mounted at the end of a cylindrical shaft. The operation prin-
ciple of the airfoil shear probe has been described in detail by Prandke and
Stips [1998]:

The mean velocity due to the profiling speed is aligned with the
axis of revolution. While the probe is not sensitive to axial forces, the
cross-stream (transverse) components of turbulent velocity produce a
lifting force at the airfoil. A piezoceramic beam embedded within the
airfoil made of rubber material senses the lift force. The output of the
piezoceramic element is a voltage proportional to the instantaneous
cross-stream component of the velocity field.

When the small-scale shear 9,4 is estimated from the voltage output, the
dissipation rate € can be calculated according to its definition, see equation
(2.32). Since only one component of the vertical shear is observed with shear
probes, the local isotropy assumption for the dissipative scales has to be made
in order to extrapolate to the complete dissipation rate:

e=T75v <(aza)2> . (7.2)

The ensemble averaging procedure needed for calculating ¢ is replaced by
spatial and temporal filtering. This is justified by making the ergodic as-
sumption.

Two types of shear probes are used in the field studies discussed below, the
FLY shear probe operated by the School of Ocean Sciences in Bangor, Wales
and the MST shear probe operated by the Joint Research Centre in Ispra,
Italy and the ISW Wassermeftechnik Dr. Hartmut Prandke in Petersorf,
Germany. They are different in many details, the major difference being the
bigger size of the FLY shear probe and the profiler on which it is mounted.
This bigger size makes the FLY shear probe on one hand more robust against
disturbances from surface waves, cable oscillations and ship movements, but
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also results in a more difficult resolution of the smallest dissipative eddies
when the level of turbulence is high. For a detailed discussion of these different
instruments, see Prandke and Stips [1998] and Dewey et al. [1987].

All simulations discussed below are carried out with the water column
model GOTM (General Ocean Turbulence Model). The scenarios including
all data are available from the address http://www.gotm.net. For details
concerning the GOTM model, see chapter 5.

Two classical scenarios without micro-structure observations will be sim-
ulated in the following and four more recent scenarios with observations of
the turbulent dissipation rate obtained with FLY or MST shear probes. The
classical scenarios are Ocean Weather Station Papa in the Northern Pacific
Ocean (see section 7.2), a mixed layer scenario with observations of tempera-
ture profiles in the upper 250 m during more than 20 years', and the Fladen-
ground Experiment 1976 in the Northern North Sea (see section 7.3.1), with
observations of temperature profiles for the full water column during spring
warming. These two scenarios have been used by several authors for the vali-
dation of various mixed layer models. They demonstrate how the temperature
structure in the water column reacts on turbulent mixing, but do not vali-
date the turbulence models directly. Therefore, the scenarios with turbulence
micro-structure measurements are investigated here as well. The oldest is the
1993, 24-hour stratified and tidally forced scenario in the Western Irish Sea
(see section 7.4.1), which has already been used by some authors for model
validations. The other three scenarios have only been simulated once (with
the GOTM model) so far: the Northern North Sea 1998 PROVESS scenario
with tidally induced turbulence in the bottom boundary layer and wind in-
duced turbulence in the surface boundary layer during autumn cooling (see
section 7.3.2), the Liverpool Bay 1999 scenario with turbulence generated
by strain-induced periodic stratification (see section 7.4.2) and (adding some
more generality to the title of this book) the 1995 Lake Lago Maggiore sce-
nario with convective turbulence mainly generated by surface cooling (see
section 7.5).

7.2 Northern Pacific Ocean

For the Northern Pacific, long term observations of meteorological parameters
and temperature profiles are available. The station Papa at 145°W, 50°N has
the advantage that it is situated in a region where the horizontal advection
of heat and salt is assumed to be small. Various authors used these data for
validating turbulence closure schemes (Denman [1973], Martin [1985], Gaspar
et al. [1990], Large et al. [1994], Kantha and Clayson [1994], D’Alessio et al.
[1998], Burchard et al. [1999], Villarreal [2000], Azell and Liungman [2001]).
As for any realistic oceanic test case, also other factors than the choice of

! Simulations during one year will be shown here only.
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Fig. 7.1. Relative heat content @ of the water column at OWS Papa from March
1961 to March 1962. Bold line: 5 day means of heat content as calculated from
measured temperature profiles. Thin line: 5 day means of heat content as calculated
from surface heat fluxes.

Measurements OWS Papa 1961/62 T [°C]

0 - 18
] [ 17

] 16

] 15

-50 7 - 14

= 13
£ 12
<-100 - 11
=1 10
9

= 8
-150 L 7

6

] [ S

-200 —re T T IRRRRRY T frrTTT IRARRRY T T T T LLARRN 4

90 120 150 180 210 240 270 300 330 360 390 420
Julian Day 1961/62

Fig. 7.2. Temperature evolution for OWS Papa in the Northern Pacific Ocean
from March 1961 to March 1962 from CTD measurements.

the mixed layer model play an important role for the agreement between
the model results and the measurements. First of all, the momentum and
heat fluxes at the sea surface are never available as direct observations, but
are calculated using bulk formulae. Measurements such as fractional cloud
cover are never exact. Furthermore, horizontal advection of heat and salt,
which is neglected in one-dimensional water column models, can strongly
influence the measured profiles of temperature and salinity. And, maybe the
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Fig. 7.3. Temperature evolution for OWS Papa in the Northern Pacific Ocean
from March 1961 to March 1962. Results of the simulation with the version A
of the Kantha and Clayson [1994] model with the stationary gradient Richardson
number set to Rt = 0.225.
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Fig. 7.4. Temperature evolution for OWS Papa in the Northern Pacific Ocean
from March 1961 to March 1962. Results of the simulation with the version A of
the Canuto et al. [2001] model with the stationary gradient Richardson number set
to R$t = 0.25.
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most important, the bulk formulae for the parameterisation of cross surface
fluxes of momentum, heat and fresh water are strictly empirical.

The way how bulk formulae for the surface momentum and heat fluxes
(see equations (3.59) and (3.60)) have been used here is discussed in de-
tail in Burchard et al. [1999]. The relative heat content of the upper 250 m
of the water column from temperature profiles and surface heat fluxes be-
tween March 1961 and March 1962 is shown in figure 7.1. Until beginning
of November 1961 (around day 310), the agreement between the curves is
sufficient enough for allowing for a one-dimensional simulation. Afterwards,
cold water is horizontally advected, a process described in detail by Large
et al. [1994].

For mixing below the thermocline, an internal wave and shear instability
parameterisation as suggested by Large et al. [1994] has been used.

Figures 7.3 and 7.4 show results of the model simulations with the stability
functions of Kantha and Clayson [1994] and Canuto et al. [2001], respectively,
in comparison to measured temperature profiles (figure 7.2). The overall tem-
perature evolution is well simulated by both models. A more detailed com-
parison between measurements and the two different model simulations of
temperature profiles is shown in figure 7.5. Until day 210, the agreement be-
tween both simulations and the observations is fairly good. Then, around day
240, the models predict a too shallow mixed layer, obviously due to wrong
surface fluxes or strong advective events such as downwelling, see figure 7.1,
where a mismatch between the heat content of the water column and the ac-
cumulated surface heat fluxes is evident around day 240. It can be seen as well
that the Kantha and Clayson [1994] model predicts a slightly shallower mixed
layer than the Canuto et al. [2001] model. This has the consequence that the
Kantha and Clayson [1994] model overpredicts the SST during summer (days
210 - 280 see figure 7.6). Until day 280, the r.m.s. error for SST between both
simulations and the observations is rather small, 0.36 K for the Canuto et
al. [2000] and 0.33 K for the Kantha and Clayson [1994] model. However,
the SST evolution strongly depends on the internal wave parameterisation,
and thus these r.m.s. errors are not discriminative for the quality of the tur-
bulence models. It should be noted that exactly the parameters of Large et
al. [1994] have been used for this, other than by Kantha and Clayson [1994]
who had (while applying a kL instead of an € equation) to use a background
diffusivity 5 times higher in order to predict the SST realistically. This leads
however to a thermocline too diffusive compared to measured temperature
profiles (see Burchard et al. [1999]).

As a final comparison, the standard k-¢ model with simple stability func-
tions from equations (3.108) and (3.109) is applied to the OWS Papa scenario.
As discussed in section 6.2.1, a value of ¢3. = —0.4 has been chosen in order
to reach a steady-state Richardson number of R;* = 0.25. Here, only the SST
evolution is shown in relation to observations (see figure 7.7). It can be seen
that this standard k-& model performs similarly to the other two, more com-
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Fig. 7.5. Measured and simulated temperature profile at station OWS Papa dur-
ing spring and summer 1961. The simulations were carried out with the quasi-
equilibrium version of the Kantha and Clayson [1994] model with the stationary gra-
dient Richardson number set to R$* = 0.225 and the version A of the Canuto et al.
[2001] model with the stationary gradient Richardson number set to RS’ = 0.25.

plex models. The agreement between measured and simulated SST is even
better for this model.

Altogether, three models have been finally used for simulations of the
Ocean Weather Station Papa observations: the quasi-equilibrium version of
the Kantha and Clayson [1994], the full version of the Canuto et al. [2001]
model, and the empirical second-moment closure provided by the standard
k-e model. The result is that the Canuto et al. [2001] model mixes slightly
deeper than the Kantha and Clayson [1994] model, maybe due to the smaller
steady-state gradient Richardson number which had to be chosen for the lat-
ter model. Too shallow mixed layers computed by so-called differential mixed
layer models (defined in contrast to bulk models which average over the entire
mixed layer) have been reported by Martin [1985] who used among others
the OWS Papa data for comparing various models. He made too small crit-
ical Richardson numbers responsible for this phenomenon and could obtain
acceptable model results at OWS Papa for increasing the critical Richardson
number to R = 0.3.
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Fig. 7.6. Sea surface temperature at OWS Papa from March 1961 to March 1962.
Upper panel: Measured SST and SST simulated with the quasi-equilibrium version
of the Kantha and Clayson [1994] model with the stationary gradient Richardson
number set to R{* = 0.225. Lower panel: Measured SST and SST simulated with the
version A of the Canuto et al. [2001] model with the stationary gradient Richardson
number set to R = 0.25.

It should however be noted here that it is mainly the steady-state Richard-
son number which determines the growth or decay of turbulence rather than
the critical Richardson number which just sets an upper limit to the gradient
Richardson number.

It is not surprising that the simple but widely used standard k-¢ model
with a constant stability function for momentum fully fits into our concept
of the steady-state Richardson number, and produces results for the mixed
layer test cases which are compatible with those computed by the complex
algebraic Reynolds stress closure model under consideration here, the Canuto
et al. [2001] model. It should be reminded that such standard k- models were
able to accurately approximate length scale ratios observed in the laboratory
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Fig. 7.7. Sea surface temperature at OWS Papa from March 1961 to March 1962.
Bold line: Measured SST, thin line: SST simulated with the standard k-¢ model
with the stationary gradient Richardson number set to R§* = 0.25.

under structural equilibrium conditions, see Baumert and Peters [2000] and
also figure 3.14.

In terms of mixed-layer modelling, this investigation can thus not dis-
criminate between the quality of performances between the fully empirical
stability functions (standard k-e model), the Kantha and Clayson [1994] and
the advanced Canuto et al. [2001] stability functions.

7.3 Northern North Sea

Due to its ecological and economic importance, the North Sea is probably
the shelf sea area in the world which has been most intensively investigated.
Two major oceanographic campaigns have been carried out in the Northern
North Sea in order to better understand the impact of physical processes on
biogeochemical parameters: the Fladenground Experiment 1976 (FLEX’76)
and the Northern North Sea campaign 1998 (NNS’98)2, see figure 7.8 for
the locations. One argument for choosing the Northern North Sea for these
investigations is the fact that horizontal advection is not dominant there due
to the long distance from coasts and lateral fresh water inflow. However,
many investigations have indeed shown, that even here advective effects are
present with high spatial and temporal variability, see e.g. the comprehensive
work by Becker [1981] and also the discussion by Bolding et al. [2000]. This

2 The Northern North Sea campaign 1998 has been carried out as part of
PROVESS (Processes of Vertical Exchange in Shelf Seas), a still ongoing project
funded by the European Commissions MAST-III program under the number
MAS3-CT97-0025.
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lateral advection of temperature and salinity needs to be considered with care
when the physical and biogeochemical processes in the Northern North Sea
are investigated.

In the following, the observations during FLEX’76 (see section 7.3.1) and
NNS’98 (see section 7.3.2) are simulated with a water column model in com-
bination with various turbulence closure schemes discussed in chapter 3.

354° 356° 358° O° 2° 4 6° 8° 10°
62" e —

FLEX'76

_____ B
354° 356° 358° O° 2° 4 6° 8° 10°

Fig. 7.8. Positions of the Fladenground Experiment 1976 (FLEX’76), see section
7.3.1 and the Northern North Sea Experiment 1998 (NNS’98), see section 7.3.2 in
the Northern North Sea.

7.3.1 Fladenground Experiment 1976

A data set which has been used throughout the last 20 years as a calibration
for mixing parameterisations has been collected during the measurements of
the Fladenground Experiment 1976 (FLEX’76) campaign. These measure-
ments of meteorological forcing and temperature profiles were carried out
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in spring 1976 in the northern North Sea at a water depth of about 145 m
and a geographical position at 58°55’'N and 0°32’E, see figure 7.8. Turbulent
quantities have not been measured. For further details concerning the mea-
surements, see Soetje and Huber [1980] and Brockmann et al. [1984]. This
FLEX’76 data set has been used by several authors in order to test different
mixing schemes (see e.g. Friedrich [1983], Frey [1991], Burchard and Baumert
[1995], Pohlmann [1997], Burchard and Petersen [1999], Mellor [2001a]).

Fladenground Experiment 1976
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Fig. 7.9. Relative heat content of the water column during the Fladenground

Experiment 1976. Bold line: heat content as calculated from measured temperature
profiles. Thin line: heat content as calculated from surface heat fluxes.

In figure 7.9, the relative heat budget for the FLEX’76 site calculated
from measured temperature profiles and from surface heat fluxes computed
by means of standard bulk formulae (for details, see Burchard and Petersen
[1999]) are shown. Differences between the two curves are mainly due to hori-
zontal advection of different water masses. Figures 7.11 and 7.12 demonstrate
that both models under consideration correctly simulate the basic evolution
of measured temperature profiles (given in figure 7.10). This temperature
evolution is characterised by homogeneous vertical temperature distribution
in the beginning (until day 110) and subsequent stabilisation of the water col-
umn due to increasingly positive surface heat fluxes. Around day 133, a storm
homogenises the upper 50 m. This storm is investigated in more detail below.
It can however be seen that the Canuto et al. [2001] model produces ther-
moclines which are deeper than those predicted by the Kantha and Clayson
[1994] model. This has the consequence that from day 125 on the sea surface
temperature is clearly lower for the Canuto et al. [2001] than for the Kantha
and Clayson [1994] model. Up to day 145 the model SST is closer to the mea-
sured SST. Afterwards, the Kantha and Clayson [1994] model shows better
agreement between measured and simulated SST.
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Fig. 7.10. Temperature evolution for the FLEX’76 site in the northern North Sea
from CTD measurements.
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Fig. 7.11. Temperature evolution for the FLEX'76 site in the northern North
Sea. Results of the simulation with the quasi-equilibrium version of the Kantha
and Clayson [1994] model with the stationary gradient Richardson number set to
Rit = 0.225.
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Fig. 7.12. Temperature evolution for the FLEX'76 site in the northern North Sea.
Results of the simulation with the version A of the Canuto et al. [2001] model with
the stationary gradient Richardson number set to R = 0.25.
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Fig. 7.13. Sea surface temperature during the Fladenground Experiment 1976.
Bold line: Measured SST, thin line: SST simulated with the quasi-equilibrium ver-
sion of the Kantha and Clayson [1994] model with the stationary gradient Richard-
son number set to R$® = 0.225.
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Fig. 7.14. Sea surface temperature during the Fladenground Experiment 1976.
Bold line: Measured SST, thin line: SST simulated with the version A of the Canuto
et al. [2001] model with the stationary gradient Richardson number set to RS’ =
0.25.

In the following, the most predominant physical feature of the FLEX’76
campaign is discussed: the storm during day 133 and its consequences for
the vertical temperature distribution. The impact of the surface wave break-
ing parameterisation by Craig and Banner [1994], see also section 3.3.2, and
the related modifications to the k-¢ model by Burchard [2001b] are inves-
tigated here as well. The forcing during four days before, during and after
the storm and the resulting surface roughness length calculated by means of
the Charnok [1955] formula (3.44) (which has here been limited by a lower
bound of 0.02 m) and simulated sea surface temperature are shown in figure
7.15. The simulated sea surface temperatures, which are here represented by
the value of the uppermost grid box, are nearly identical, with (¢,, = 100)
and without (¢,, = 0) wave breaking parameterisation. This is caused by the
fact that the near-surface temperature gradients are weak and therefore do
not create increased vertical fluxes due to higher eddy viscosities (see figure
7.16). It does therefore not matter here at which height near the surface the
sea surface temperature is defined in order to be compared with the observed
bulk sea surface temperature. The observations are in principle reproduced
by the model. Deviations may be explained by wrong estimates of air-sea
fluxes, horizontal advection or inaccurate measurements.

A closer inspection of the simulated current speed profiles before and
during the storm (see figure 7.16) reveals that the model indeed predicts
a wave-enhanced layer. During the storm this wave-enhanced layer can be
clearly seen in the near-surface current speed, which is due to increased ver-
tical mixing significantly smaller with wave-breaking parameterisation. The
vertical mean transport is of course the same with and without wave break-
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ing, since the boundary condition for momentum is not affected by the wave-
breaking parameterisation - other than the logarithmic representation of the
vertical axis would suggest. In contrast to that, the current speed profiles are
hardly affected by wave breaking during calm wind conditions.

For all wind conditions, the wave-enhanced layer can be clearly seen in the
profiles of eddy diffusivity, turbulent kinetic energy and turbulent dissipation
rate. The height of the wave-enhanced layer strongly depends on the surface
roughness as a function of surface friction velocity. It should be noted that
the shape of the turbulent quantities near the surface appear slightly different
here in comparison to the idealised experiments discussed in section 3.3.2.
This is merely due to the different scaling of the vertical axis. Here, the
distance from the lower end of the unresolved surface layer of height zj is
shown in contrast to the previous plots, where the distance from the surface
has been used.

It should be noted that a fine vertical resolution near the surface had
to be used in order to resolve the wave-enhanced layer also during weak-
wind phases with a small surface roughness length. In order to resolve the
minimum roughness length of 2§ = 0.02 m, N; = 200 vertical layers with a
surface zooming parameter of d,, = 3.5 had to be used, see equation (4.2).
This resulted in a height of the surface layer of less than 0.01 m such that
according to the study performed in section 4.4 a sufficient resolution was
reached. In spite of the fine vertical resolution numerically stable results
could be produced with relatively large time steps of At = 120s.

Finally, figure 7.17 shows profiles of temperature for the k-¢ and the k-
kL model (in combination with the Galperin et al. [1988] quasi-equilibrium
stability functions, see Burchard and Petersen [1999]) with different vertical
resolutions before and after the storm, without the Craig and Banner [1994]
wave breaking parameterisation. It is demonstrated that the models are dis-
cretised such that even for a coarse resolution of about 10 m (IV; = 14 layers),
the effect of the storm is well reproduced, although the mixed layer before
the storm is not resolved. As already discussed in section 4.4, only a careful
numerical treatment of the k-¢ model near the surface allows for this good
performance (see also Burchard and Petersen [1999]).

7.3.2 PROVESS-NNS 1998 Experiment

The data used here were collected as a subset of the overall PROVESS North-
ern North Sea (NNS) experiment, which lasted from September 1998 until
November 1998. During the PROVESS NNS experiment in autumn 1998,
microstructure measurements were taken from R/V DANA from October 16
until October 25 with an MST shear probe (see Prandke and Stips [1998]
and also Stips et al. [2000]) and from R/V PELAGIA from October 21 until
October 28 with a FLY shear probe (see Dewey et al. [1987]). There was fur-
thermore a 20 hour period of intensive joint measurements from October 22
to 23 when both ships were cruising against wind and waves at a distance of
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Fig. 7.15. Time series of surface friction velocity, surface roughness length, solar
radiation and surface heat loss, and simulated and observed sea surface temperature
before, during and after a storm at the FLEX'76 central station.

about one nautical mile, see Prandke et al. [2000]. During this period, 65 casts
were made with the MST profiler and 72 casts with the FLY profiler. The
central location was at 59°20’ N and 1° E, at a mean water depth of about
110 m. In addition to the microstructure measurements, concurrent observa-
tions of current velocity from a moored ADCP were available. The bottom
mounted ADCP was operated by the Proudman Oceanographic Laboratory
(POL). Further the temperature field was measured with a thermistor chain
from the Netherlands Oceanographic Institute (NIOZ). Meteorological data
were sampled by the ship’s weather station.

For a better understanding of the underlying physical processes at the
station NNS in the Northern North Sea, three simulations are carried out,
an annual for the whole year 1998, a seasonal for September and October
1998 and an episodical during the period of the observations of turbulent
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Fig. 7.16. Profiles of simulated current speed, simulated and observed temperature,
and simulated eddy diffusivity, turbulent kinetic energy and turbulent dissipation
rate before (left) and during (middle) a storm at the FLEX’76 central station. The
simulations have been carried out with and without wave breaking parameterisa-
tion. The vertical axis is logarithmic and for the turbulent quantities the horizontal
axis as well.
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Fig. 7.17. Profiles of modelled temperature for different vertical resolutions. Re-
sults are shown for strong near surface stratification before a storm (d=132) and
for a well-mixed situation after a subsequent storm (d=133.5). The upper panels
show k-& model results, the lower panels k-kL model results. This figure has been
taken from Burchard and Petersen [1999].

dissipation with the MST and the FLY shear probes. This period is char-
acterised by strongly variable winds and high surface waves. For all model
simulations carried out here, the k- model in combination with the Canuto
et al. [2001] second moment closure as described in chapter 3 is applied. As
simple internal mixing parameterisation, the length scale limitation (3.133)
and a minimum turbulent kinetic energy of kmin = 107¢ Jkg~! has been
applied, see also section 3.3.3 and the discussion by Bolding et al. [2000]. For
all model simulations, the time step was At = 100 s and the vertical layer
height Az =1 m.

For the annual simulation, time series of surface slopes ;¢ and 0y( were
extrapolated from observations during autumn 1998 based on four partial
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Fig. 7.18. Temperature evolution at station NNS during 1998 simulated with a
three-dimensional (left panel) and a one-dimensional (right panel) model. For the
one-dimensional simulations, a k-¢ model in combination with the Canuto et al.
[2001] second-moment closure has been applied.

tides by means of harmonic analysis. All necessary meteorological data are
from the UK Meteorological Office Model. For calculating the resulting sur-
face fluxes, the bulk formulae from Kondo [1975] were used. Since no obser-
vations for the sea surface temperature (SST) are available for the whole year
1998 at station NNS, the simulated SST is used as input into the bulk formu-
lae. For the evolution of the vertical salinity profile, which is known to stabilise
stratification during summer months, a relaxation to results obtained with a
prognostic three-dimensional model of the North Sea by Pohlmann [1996a]
was carried out. By doing so, the horizontal advection, which is the dominant
process for salinity dynamics in the Northern North Sea, is parameterised.
The resulting temperature evolution for this annual simulation is shown in
figure 7.18 in comparison to the results of the three-dimensional model of
Pohlmann [1996a] which is forced by weekly observed sea surface tempera-
ture and which uses the fully algebraic turbulence model by Kochergin [1987].
For both, the one-dimensional and the three-dimensional model, stratifica-
tion starts to establish in the beginning of May. The three-dimensional model
however is much more diffusive which might be either due to a too high back-
ground diffusivity or due to numerical diffusion caused by vertical advection.
As a consequence of this, the three-dimensional model destratifies earlier, al-
ready around November 10, in contrast to the one-dimensional model, which
remains stratified until December 5.

Figure 7.19 shows semi-diurnal oscillations of T' and S in the region of
the pycnocline during the period of the seasonal simulation in September
and October 1998. A major period of about 3 days is visible which can most
likely be interpreted as the synoptical meteorological scale. These semidiurnal
and synoptic oscillations are here interpreted as internal waves and not as
mixing events. One argument for this is that the oscillations only occur in the
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Fig. 7.19. Observed (left panel) and simulated (right panel) temperature at station
NNS during autumn 1998. The simulations have been carried out with relaxation
of temperature and salinity to observed values in the top and bottom 20 m and
application of observed vertical motion of the pycnocline. For the simulations, a
k- model in combination with the Canuto et al. [2001] second-moment closure has
been applied.
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Fig. 7.20. Simulated temperature at station NNS during autumn 1998. The simu-
lations in the left panel has been carried out without relaxation of temperature and
salinity to observed values and without vertical advection. For the simulations, a
k- model in combination with the Canuto et al. [2001] second-moment closure has
been applied. The results shown in the right panel are obtained without relaxation,
but with application of vertical advection.

strongly stratified region of the pycnocline, and not in the surface or bottom
mixed layers as would be expected for mixing events, see figure 7.19.

In order to consider this vertical advection in the model simulation, the
observed (from thermistor chains) and low-pass filtered vertical pycnocline
motion are applied as spatially constant advective velocity to temperature
and salinity in the whole water column. It is assumed that water of the same
temperature and salinity is flowing in at the surface boundary (during nega-
tive vertical velocity) and at the bottom boundary (during positive vertical
velocity). This is admissible due to the two-layered structure of the water col-
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umn with well-mixed surface and bottom boundary layers. We assume that
the current velocity and the turbulence quickly adapt to the new pycnocline
height and therefore do not apply vertical advection to the respective dy-
namical equations. In figure 7.20 two seasonal simulations are compared, one
with vertical advection and one without. In the simulation without vertical
advection, the pycnocline basically stays at about 40 m below the surface and
is only slightly mixed down during the storms during end of October. Since
both simulations are driven with the same surface heat fluxes (due to the use
of observed SST for calculating these fluxes), the surface layer is heated up
less when vertical advection is applied.

In order to achieve good agreement between model results and observa-
tions, a relaxation of simulated profiles to observations of temperature and
salinity is carried out in the upper 20 m of the water column with a relaxation
time scale of Tg = 24 h, see Burchard et al. [1999]. The resulting temperature
evolution is shown in figure 7.19. It is no surprise that the agreement between
observations and simulation results is good now after all these manipulations.
Such a realistic stratification is however needed for successfully simulating ob-
servations of velocity and turbulence, as carried out in the following episodic
simulations.

The main purpose of this episodic simulation is to intercompare observa-
tions and simulations of turbulent dissipation rate under these stormy con-
ditions. The most relevant forcing is thus shown in figure 7.21. The meteoro-
logical forcing is characterised by strong cooling with weak positive heat flux
due to solar radiation only during few hours on some days. The strongest
heat loss of about 300 Wm™2 during the night from October 20 to 21 is
driven by a storm with wind speeds of up to 20.5 ms~!. For the hours during
maximum wind speed, dissipation rate observations were not made due to
danger for staff and material.

The upper two panels in figure 7.22 give an overview over the dissipation
rate measurements carried out in October 1998 from two ships during this
campaign in the Northern North Sea. The dependence of dissipation rates
from surface and bed stress can roughly be seen, and also the expected de-
crease of the dissipation rates with increasing distance from the surface and
bottom, respectively.

The measurements of dissipation rate made from October 22 to 23 during
the period of intense parallel observations with the two profilers are repro-
duced in the upper two panels of figure 7.23. They have been compared in
detail by Prandke et al. [2000], state that the overall structure of the two
measured temporal-spatial fields agrees well. Due to the high surface stress,
high dissipation rates of above 10~7 Wkg~! are confined to the upper 20 m
most of the time. Also the temporal structure of the surface stress is clearly
visible in the dissipation rate observations: high near-surface dissipation rates
dominate until about 17 h of October 22, and the wind stress minimum in
the early morning of October 23 is present in both observational data sets
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Fig. 7.21. Atmospheric and tidal forcing at station NNS from October 16 to Oc-
tober 27. Upper panel: Total surface heat flux in Wm™?2 as calculated from bulk
formulae and cloud cover; second panel: Surface stress in Nm ™2 as calculated from
bulk formulae; third panel: absolute value of observed surface slopes; bottom panel:
Bed stress in Nm ™2 as estimated from ADCP and calculated from the CA model.
The period of intense parallel observations is marked by the two vertical dashed
lines.

as well. In contrast to the upper layer, the dissipation rate in the lower layer
is increasing with time due to periodically increasing bottom stresses. Fur-
thermore, the thermocline with enhanced dissipation rates is present in both
measurements at a height of about -60 m. Prandke et al. [2000] thus concluded
that ”fair agreement” between both observations was obtained, significantly
improving the credibility of dissipation rate measurements.
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Fig. 7.22. Observed (top two panel) and simulated (lower two panels) turbulent
dissipation rates € in Wkg~' during During one week in October 1998. Upper left
panel: FLY observations; upper right panel: MST-observations; lower left panel:
model with second-moment closure from Canuto et al. [2001] (CA); lower right
panel: k-model with an algebraic length scale from Robert and Ouellet [1987] (AG).

The small top panels show surface and bottom stress in Nm™ 2.

Results for observed and simulated dissipation rates are shown in W kg~!
in figures 7.22 and 7.23. The upper 12 m are not shown because there the
observations are clearly contaminated by the influence of the research vessels.

The general comparison between the observed and simulated dissipation
rates is difficult during the whole period of measurements (October 17 to
27) due to the sparseness of observations, see the upper two panels of figure
7.22. For the six day period from October 19 to 24, a comparative study
between observations with the MST shear probe and CA model results has
been carried out by Bolding et al. [2000]. Most of the observed features could
be reproduced and thus explained by the model. Differences occurred mainly
due to intermittency with randomly distributed levels of high turbulence not
reproduced by the model. Further discrepancies were due to wrong model
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Fig. 7.23. Observed (top two panel) and simulated (lower two panels) turbulent
dissipation rates € in W kg~! during the 20-hour period of intensive parallel obser-
vations. Upper left panel: FLY observations; upper right panel: MST-observations;
lower left panel: model with second-moment closure from Canuto et al. [2001] (CA);
lower right panel: k-model with length scale from Robert and Ouellet [1987] (AG).

The small top panels show surface and bottom stress in Nm™ 2.

forcing and simplified model assumptions such as the eddy diffusivity as-
sumption and simple parameterisation of internal wave mixing.

The lower panel of figure 7.22 shows model results for the whole period
obtained with the k- model with second-moment closure by Canuto et al.
[2001] (CA) and the one-equation model with the algebraic macro length
scale by Robert and Ouellet [1987] (AG). They do of course basically agree
well with each other, since they are identical except for the turbulence closure
models. The simple model AG shows significantly less time lag of dissipation
rate with distance from surface and bottom. From figure 7.23, the upward
propagation speed of the near-bed dissipation rate maximum generated at
about midnight from October 22 to 23 can be estimated as approximately
41073 ms~! for the CA model and 9-1072 ms~! for the AG model. From
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analysing time series of simulated dissipation rates at 30 m above the bed,
Burchard et al. [2001] estimated time lag behind the logarithmic law of about
3 1/2 hours for the CA model and about 1 1/2 hours for the AG model. This
results in a propagation speed of about 2.4-10~2 ms~! for the CA model and
of about 5.5-1072 ms~? for the AG model. Analysing this time lag from the
observations is rather difficult. As a rough estimate one could say that both
profilers show a time lag of about half an hour less than the two-equation
models. Similar phase lags have been observed by Simpson et al. [2000] for a
stratified site in the Irish Sea, see section 7.4.1.

Figure 7.23 shows model results for this period of intense parallel obser-
vations. In the surface mixed layer, the CA model results agree better with
the MST observations, which have been assumed by Prandke et al. [2000] to
be more realistic near the surface at high wind speeds than the FLY obser-
vations.

In the bottom boundary layer, the observations and model results basi-
cally agree with respect to the tendency of turbulence growing with time. It
should be noted that the first peak in dissipation rate is probably overpre-
dicted by the models, since the bed stress is overpredicted, see figure 7.21.
A better agreement between simulations and observations would have been
achieved by forcing the model directly with observed bed stresses instead of
surface slopes, a method introduced in detail by Burchard [1999].

It can be concluded from this comparative study for the Northern North
Sea that the turbulence in the bottom and surface boundary layer can be
successfully reproduced by two-equation turbulence model. The reliability
of such models seems to lie within the uncertainties of the measurements
as demonstrated here by comparing two independent observations. In the
region of stable stratification, good estimates for the dissipation rate cannot
be given. The instruments measure too scarcely for obtaining a statistical
basis for determining the dissipation rate with some confidence in this highly
intermittent region (see also the discussion by Baker and Gibson [1987]). The
models contain tuning parameters such as the lower limit of turbulent kinetic
energy used here, see equation (3.133).

One further conclusion is that the one-equation model AG used here does
underestimate time lag effects of turbulence, probably due to wrong repre-
sentation of turbulent time scales. In contrast to this, two-equation models
have been carefully calibrated by laboratory experiments of freely decaying
turbulence. It should be investigated in future model studies whether this is
a general feature of one-equation models or if more complex algebraic length
scale parameterisations such as the one by Gaspar et al. [1990] solve this
problem.
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Fig. 7.24. Map of the Irish Sea with the locations of the seasonally stratified
campaign in the Western Irish Sea (bullet) and the tidally induced stratification
campaign in the Liverpool Bay (star).

7.4 Irish Sea

7.4.1 Seasonally stratified

In this section, dissipation rate measurements carried out by Simpson et al.
[1996] in the Western Irish Sea with the FLY shear probe are simulated, see
also Burchard et al. [1998]. The measurements were made over a 24 hour
period in July 1993 at a site with water depth of 90 m and position 53°49°N,
5°27°W, see figure 7.24. The site has rectilinear tidal currents, and the tidal
current amplitude at the time of the measurements was 0.45 m s~!. Dur-
ing the observational period the water column was thermally stratified with
near surface temperature of 14°C and temperatures of 10°C below the ther-
mocline, which was situated 75 m above the sea-bed. In addition to hourly
conductivity-temperature-depth profiles and moored current meter measure-
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ments, turbulent dissipation was measured using a FLY free-fall shear probe.
Six profiles were made per hour, and these were averaged together to give
hourly means. Measurements made in the top 10 m of the water column have
been excluded as the probe may still be accelerating, and the signal may be
contaminated by the ships wake.

The forcing data for the model is provided by a time series of current
measurements taken 12 m above the bed, from which a sea surface slope
is calculated such that the model exactly reproduces the observed flow (see
Burchard [1999]). Cross-surface heat exchange is calculated from dew point
temperature, wind speed, and direct solar radiation observed at a nearby
meteorological station. Cross-surface momentum exchange is calculated from
the observed wind speed and direction (following Simpson et al. [1996]).

Figure 7.25 shows isopleth diagrams of measured and modelled dissipation
rate. The model results are shown for the stability functions by Galperin et al.
[1988] and the simple internal wave model by Luyten et al. [1996b], see also
section 3.3.3, and reproduce the observed M, period oscillations in the bottom
layer (caused by the flooding and ebbing of the predominant semi-diurnal M,
tide).

The phase lag between dissipation rate and bottom friction, which is in-
creasing with distance from the bottom, can be clearly seen in the measure-
ments (figure 7.25). This is in principle well reproduced by the simulations
with both of the models, although the k-¢ model seems to stronger and thus
more realistically simulate this time lag. This faster response of the k-kL
model could have two reasons: (i) the inclusion of the diagnostic length scale
L, in the kL equation or (ii) the higher values of diffusivity for turbulent
quantities in the k-kL model, see equation (3.71). In a recent analysis, Simp-
son et al. [2000] estimated the phase lag across the bottom boundary layer
to be approximately four hours. They argue that this phase lag is not due
to diffusion of turbulent kinetic energy up from the bottom boundary but
due to the phase lag in vertical shear, which in turn defines the turbulence
production.

However, the variability of the dissipation rate in the stratified core region
of the flow cannot be resolved by the simple internal wave model included,
see figure 7.26. Here, the effect of the simple internal mixing parameterisation
suggested by Luyten et al. [1996b] can be clearly seen. Without the limitations
(3.133) and (3.134), the dissipation rate would tend to values several orders
of magnitude smaller than the observations®. It should however be kept in
mind that here the minimum value for k, kmin = 7.6 - 107% Jkg™', has been
tuned to these observations.

The similarity between the k-¢ and the k-kL model, which is demonstrated
in figure 7.25, has been extensively discussed by Burchard et al. [1998], where
further details of this simulation are given. Earlier model simulations of the

3 1t should be noted that the dissipation rate in the thermocline might be below
the detection limit of the shear probes due to collapse of turbulence.
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Fig. 7.25. Irish Sea simulation: Isopleth diagrams showing the development of
dissipation rate during 24 hours in summer 1993. (top) Observations by Simpson
et al. [1996], (middle) k-e model result, (bottom) k-kL model result. For both model
simulations, the Galperin et al. [1988] stability functions and the simple internal
wave model by Luyten et al. [1996b] have been used. This figure has been taken
from Burchard et al. [1998].



7.4 Irish Sea 163

: —ee
| , @7
-0.2 |
Observation
- Standard k-e model
-0.4 - Quasi-eq. k-¢ model
] k-kL mod., L. (3.76)
k-kL mod., L. (3.77)
Q
~
® 4
-0.6
-0.8
-1.0 — . - .
9 8 ; |

7 6 5
log (5/(m2s_3))

Fig. 7.26. Irish Sea simulation: Mean profiles of turbulent dissipation rate € from
observations by Simpson et al. [1996] and model simulations. This figure has been
adapted from Burchard et al. [1998].

Irish Sea measurements have been carried out by Simpson et al. [1996] and
Lugyten et al. [1996b]. In these two papers, measurements at a well-mixed site
in the Irish Sea have been successfully simulated as well. Recently, these dis-
sipation rate measurements have also successfully been reproduced by Azell
and Liungman [2001] who used a one-equation model with a simple algebraic
length scale parameterisation.

7.4.2 Periodically stratified

In coastal areas with lateral freshwater inflow from rivers, the physical dy-
namics are even more complex than in seasonally stratified regions as dis-
cussed in sections 7.3.1, 7.3.2 and 7.4.1. In such so-called regions of freshwa-
ter inflow (ROFI), the assumption of horizontal homogeneity, which is often
made for seasonally stratified regions, is definitely wrong. ROFIs are charac-
terised by horizontal gradients of salinity and temperature which establish a
dynamically relevant horizontal density gradient. Generally, the riverine wa-
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ter is warmer and less saline than the marine water off-shore, such that the
density increases with distance from the estuary*.

In the presence of tides, a characteristic cycle of stratification and destrat-
ification is established. During flood, i.e. flow in the direction of decreasing
density, denser water is stratified above less denser water by means of vertical
current shear, thus building up an unstable stratification. This causes in turn
intense vertical mixing leading to a homogenised water column at the end
of the flood. In contrast to that, less denser water is moved over denser wa-
ter during ebb tide, leading to a dampening of turbulent mixing and strong
stratification of the water column at the end of the ebb tide. This mechanism
of strain-induced tidal stratification (SIPS) has been analysed in detail by
Simpson et al. [1990] on the basis of observations in Liverpool Bay.

Two mechanisms associated with horizontal density gradients establish a
residual flow in such a way that the long-term mean currents are directed
towards the coast (or freshwater source) near the bed and towards the sea
near the surface. One mechanism for this estuarine circulation known for long
is the direct consequence of the internal pressure gradient due to horizontal
density gradients, see equations (3.4) and (3.5). For this so-called gravita-
tional circulation, the presence of tides is not necessary. The second mecha-
nism is the tidal velocity asymmetry: During flood near-bed velocity profiles
are vertically homogenised due too enhanced vertical mixing and during ebb
they are stretched due to damped turbulent mixing. In the tidal average,
this leads to tidal mean flood-dominated near-bed currents. This mechanism
has been analysed in detail by Jay and Musiak [1994] as a major driving
force for estuarine turbidity maxima. In a two-dimensional modelling study
of an idealised estuary, Burchard and Baumert [1998] could show that this
tidal velocity asymmetry is even more important for the trapping of particles
in meso-tidal estuaries than the gravitational circulation. Detailed observa-
tions of mean flow and turbulence parameters in the Hudson River presented
by Peters [1997], Peters [1999], Peters and Bokhorst [2000] and Peters and
Bokhorst [2001] clearly show the dependence of this mechanism on external
parameters such as the spring-neap cycle and river run-off.

Various authors have carried out numerical simulations of circulation in
ROFIs with one-dimensional water column models. Luyten et al. [1996a] used
observations in the Rhine outflow area off the Dutch coast for the intercom-
parison of several turbulence closure models. Simpson and Sharples [1992]
and Sharples and Simpson [1995] applied a water column model to the Liv-
erpool Bay ROFI established by the freshwater run-off of the rivers Ribble,
Mersey and Dee.

Simpson et al. [2001] present for the first time numerical simulations of
turbulence dissipation measurements in a ROFI. These will be discussed here

* 1t should be noted that this is not true for all estuaries. In arid regions with
strong evaporation, estuaries might be saltier than the coastal ocean, such that
the estuary is inverse, see e.g. Nunes Vaz et al. [1990].
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in detail. The major question of this numerical model study is whether bound-
ary layer models as presented in chapter 3 are capable of qualitatively and
also quantitatively reproducing the asymmetric cycle of turbulence in a ROFI.
This is not clear a priori, since one characteristic feature of the underlying
SIPS mechanism is strong convective mixing, which is difficult to quantify
with local turbulence closure models in the absence of shear, see section 6.3.
Another difficulty is the correct quantification of density forcing which is dif-
ficult to observe, since it is believed to vary in time and space, see Simpson
et al. [1990].

The observations have been carried out by Rippeth et al. [2001] in the Liv-
erpool Bay ROFT on July 5 and 6, 1999 at a position of 53°28.4’N, 3°39.2’W,
see figure 7.24. This period is about three days after spring tide, with calm
weather and clear sky. The dissipation rate measurements were carried out
with a FLY shear probe mounted on a free-falling profiler. Sensors for tem-
perature and conductivity attached to the profiler give detailed information
on the vertical density distribution during each cast. Nearby, an ADCP was
mounted on the bottom, giving information on the vertical velocity structure.
Some accompanying CTD casts were made in order to achieve estimates for
the horizontal gradients of temperature and salinity. For further details con-
cerning the observations, see Rippeth et al. [2001].

Similarly to the simulations of OWS Papa (see section 7.2) and NNS’98
(see section 7.3.2), also here a k- model in combination with the second-
moment closure by Canuto et al. [2001] is applied with a steady-state Richard-
son number of R = 0.25. For the reproduction of these observations by
means of a numerical water column model, some further parameters have to
be estimated. The surface fluxes are based on ship observations and from a
nearby meteorological station at Hawarden. From the ship, wind speed and
direction at 10 m above the sea surface and air pressure have been taken.
From Hawarden station, observations of dry air, wet bulb and dew point
temperature are used. Since the surface fluxes are calculated externally by
means of bulk formulae of Kondo [1975], the sea surface temperature from
measurements (FLY profiler) has been used. The bed roughness has been
estimated from near-bed ADCP measurements as z§ =~ 0.0025 m by means of
fits to the law of the wall, see section 3.2.3. The external pressure gradient due
to surface slopes is estimated according to a method suggested by Burchard
[1999] by means of adjustment to near bed velocity observations. The CTD
casts carried out during the campaign did only allow for rough estimates of
the horizontal density gradient. The horizontal salinity and temperature gra-
dients for a typical summer situation have been estimated by Sharples [1992]
to 958 = 0.0425 psukm~! and 8,7 = —0.0575 Kkm™1, respectively. Here, s
is the gradient into the direction o = 78° rotated anti-clockwise from North.
However, good agreement between observed and simulated salinity and tem-
perature could here only be obtained after multiplying these estimated values
with the factor of 2. This discrepancy might be due to the neglect of temporal
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Fig. 7.27. Strain-induced Periodical Stratification (SIPS) in Liverpool Bay: Tem-
perature T, salinity S and velocity components % and o from observations by Rip-
peth et al. [2001] and simulations without nudging to observed T and S for two
tidal cycles.
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Fig. 7.28. Strain-induced Periodical Stratification (SIPS) in Liverpool Bay: Tem-
perature T, salinity S and velocity components 4 and v from_observiztions by Rip-
peth et al. [2001] and simulations with nudging to observed T and S for two tidal

cycles.
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Fig. 7.29. Strain-induced Periodical Stratification (SIPS) in Liverpool Bay: Tur-
bulent dissipation rate ¢ in Wkg™! from observations by Rippeth et al. [2001] and
simulations with nudging to observed T and S for two tidal cycles. For better
interpretation, the -6.2 isoline is drawn as a bold line.

and spatial variability of real horizontal gradients. From these gradients of
salinity and temperature, gradients of buoyancy, 0,b and 0yb as they occur
on the right hand sides of equations (3.4) and (3.5) are calculated by means
of the equation of state.

Figure 7.27 shows simulated temperature T, salinity S, and horizontal
velocity components @ and v in comparison to observations. With the above
mentioned increased horizontal T and S gradients, the observed tidal cycle is
basically well reproduced. The typical SIPS cycle is clearly visible in both, ob-
servations and model results with a well-mixed water column after flood (day
numbers 187.1 and 187.6) and strong stratification after ebb (day numbers
186.9 and 187.4). This comparison demonstrates the general capability of the
model to quantitatively and qualitatively reproduce the SIPS mechanism.

However, a closer inspection of figure 7.27 reveals some differences be-
tween observations and model results which lead to significant deviations be-
tween observed and simulated turbulent dissipation rate e (not shown here).
In contrast to the observations, T and S exhibit an increasing phase shift
during stratified periods with increasing distance from the bed. This is also
visible in the ¥ component of the velocity. This phase shift might be due to
the simplifying assumption of the T' and S gradients being constant in time
and space.

In order to avoid this mean flow error for the simulation of the turbulent
dissipation rate, a relaxation of simulated profiles of T and S profiles towards
observations with a time scale of 7g = 3 hours is applied. The resulting mean
flow and stratification is shown in figure 7.28. It is no surprise that now the
phase shift observed before is vanished. But now, also the simulated velocity
is better in phase with the observations.

For this improved mean flow situation, observed and simulated profiles of
turbulent dissipation rate € are compared in figure 7.29. The basic tidal cycle
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of observed dissipation rate is well reproduced by the model simulations. The
dissipation rate peaks with the M, tidal period at day numbers 186.8 (full
ebb), 187.1 (full flood), 187.3 (full ebb) and 187.6 (full flood). The tidal asym-
metry is clearly pronounced, with increased dissipation rates reaching only to
about 15 m above the bed during ebb and reaching the surface during flood.
Due to the calm weather conditions, near-surface turbulence is weak during
ebb tides, when strong stratification isolates the surface from the bottom.
During mixing events, the simulated dissipation rates do also quantitatively
agree well with the observations.

It seems however that more detailed and controlled observations of mean
flow properties would be needed for further investigating these details. This
model study presented by Simpson et al. [2001] shows that the basic features
of strain-induced periodic stratification and the underlying turbulence dy-
namics can be properly represented by boundary layer models. This has the
implication that three-dimensional hydrostatic models are indeed an appro-
priate tool for studying estuarine dynamics and associated estuarine turbidity
maxima.

7.5 Free convection in Lago Maggiore

The aim of this final study is to simulate convection observed in natural
waters with the turbulence closure models discussed in chapter 3. The diffi-
culties of such local models with simulating convective turbulence have been
discussed in detail in section 6.3 where turbulence profiles for free convection
are compared to LES results. Oceanic observations of free convection without
shear are however difficult to obtain, for one example in the Pacific Ocean, see
Brainerd and Gregg [1993a] for observations and Brainerd and Gregg [1993b]
for model simulations. In lakes however free convection is a characteristic fea-
ture. In this section, the work carried out by Stips et al. [2001] on observing
and simulating nearly shear-free in a pre-alpine lake is presented.

As study site Lago Maggiore (45°54’N, 8° 36’ E) in northern Italy® was
selected, see figure 7.30. The mean depth of the lake is 176 m with a maximum
depth of 370 m. In the northern part the shore is steep. The length is 66 km,
the mean breadth only 3.9 km. The lake has a surface area of 212.5 km? and
a volume of 37.5 km3. The river inflow has a mean of about 9 km? per year,
resulting in a theoretical water renewal time of about 4 years. Lago Maggiore
is a mesotrophic lake with tendency towards oligotrophy, see Mosello [1989)].
For the light attenuation, Jerlov Type IIIb water (Jerlov [1968]) should be
principally a good approximation. The original coefficients (a = 0.78,n; = 1.4
m~! and 7o = 7.9 m~!, see equation (7.1)) do however not describe the
attenuation near the surface well. Especially the predicted relative irradiance
between 1.0 m depth and the surface is much higher than the clear water

5 The northern end of the lake is situated in Switzerland.
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Fig. 7.30. Map of Lago Maggiore and surroundings in northern Italy and Switzer-
land. The cross marks the measurement site near Ispra. The bold circles in the
north and the west are major inflows from rivers, the thin circle in the south is the
outflow of the lake.

values from Hasse [1971]. This is unrealistic such that the simulations would
result in wrong near-surface temperatures. The coefficients were recalculated
in order to fit the observed temperature distribution as a = 0.7, 5, = 0.4
m~! and 7o =8.0m™1.

The measurements were made during three days in winter 1995 (December
18-21) at the shore of Ispra (45° 49,244’N, 8° 36,377’E), see figure 7.30. The
measurements were carried out with an uprising profiler located 150 m from
the shore at a water depth of 42 m. Such the sampled depth interval ranged
from 30 m up to the surface. On the profiler, an MST shear probe, a fast
temperature sensor and temperature and conductivity probes were mounted
such that profiles of turbulent dissipation rate e, temperature variance er,
mean temperature 7 and mean salinity S could be derived. For a detailed
description of the data analysis, see Stips et al. [2001].

Wind speed was measured from a small buoy about 30 m away from the
probe location with an anemometer at a height of 95 cm above the water
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Fig. 7.31. Observed sea surface temperature (upper panel), calculated surface
stress (middle panel) and solar radiation and surface heat fluxes Qqurf = Qs + Qi+
Qv (lower panel) during three winter days over Lago Maggiore, northern Italy.

surface. The accuracy is £0.1 ms~!. Air temperature and relative humidity
were recorded at the measurement location on shore at a height of 10 m
above lake surface. The cloud cover has been estimated every hour. Incident
solar radiation was measured at the meteorological station in Pallanza, in a
distance of about 10 km from the measuring site. An analysis of heat fluxes
obtained by various bulk formulae showed however a significant deviation
between the heat content of the water column and accumulation of these heat
fluxes. This could be due to the fact that these bulk formulae are designed
for oceanic conditions such that they are not valid for a lake with weak wind
conditions. Thus, instead of using the calculated surface heat fluxes from bulk
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formulae, they were calculated from the heat gain of the water column under
consideration of the solar radiation®.

The surface forcing derived from these measurements is shown in figure
7.31, for a detailed discussion of the derivation see Stips et al. [2001]. During
these three days, the surface temperature has been sinking by 0.2 K with
local maxima in the afternoons of December 19 and 20 and local minima
during increased night time convection, when cold water was mixed up. The
wind was mainly weak with only one small peak with a speed of about 4
ms ! during the night from December 19 to 20. The solar radiation during
the day with maxima up to 400 Wm~2 could not compensate the surface
heat loss due to latent and sensible heat flux such that the overall heat loss
was about 3.1- 107 Jm~—2 which corresponds to an average heat loss for the
water of about 115 Wm™2.

Lago Maggiore, observed temperature Lago Maggiore, simulated temperature
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Fig. 7.32. Observed and simulated temperature 7 in Lago Maggiore during three
days in December 1995.

For the simulation of these observations in Lago Maggiore, the same nu-
merical model is used as for the Liverpool Bay simulation discussed in section
7.4.2, i.e. a k-¢ model in combination with the second-moment closure by
Canuto et al. [2001] with a steady-state Richardson number of R$* = 0.25.
Figure 7.32 shows that the temperature evolution during the three days of
campaign is basically well reproduced by the model. During the afternoons
of December 19 and 20, a near-surface stable stratification is built up due to
solar radiation. This warmer water is however quickly mixed down after sun-
set due to surface cooling. Despite of these two heating events, temperature
is generally decreasing. One significant difference between observed and sim-
ulated temperature evolution is visible: The observed isotherms are mostly
vertically oriented below 3 m whereas the simulations predict unstable strat-
ification almost everywhere. This phenomenon has already been discussed in

6 The reason for this discrepancy could of course also be due to lateral advection
caused by differential cooling. For a detailed discussion, see Stips et al. [2001].
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Fig. 7.33. Observed and simulated turbulent dissipation rate ¢ in Lago Maggiore
during three days in December 1995.

section 6.3 when an idealised free convection scenario was simulated. All mod-
els based on the eddy viscosity assumption (as the model used here) can only
transport heat upwards by means of turbulent transport when the vertical
temperature gradient is unstable, i.e. temperature is decreasing with height.
However, as seen in figure 6.10, the turbulent transport can also be against the
gradient in the bulk of the convective boundary layer. Such counter-gradient
transport processes seem to act also here in Lago Maggiore and cause effi-
cient vertical mixing. Stable stratification under convective conditions can
also be seen in figure 7.34, where temperature profiles have been averaged
over periods of 12 hours. For obtaining better agreement between these ob-
servations and model results, parameterisation of non-local transports would
be necessary.

It is interesting to see now, how good the observed turbulence is repro-
duced for this convective scenario. Figure 7.33 compares observed and sim-
ulated turbulent dissipation rates. The first impression is of course again
that the observations are noisy and the model results are not. This is due
to the statistical character of turbulence which is always calculated from too
small samples when in-situ measurements are made. Undersampling’ is a
problem in field studies of turbulence even under relatively calm conditions
like in Lago Maggiore. Apart from the noise level of the observations, some
agreement can be seen between observations and model results in figure 7.33.
During the two short heating periods, turbulent dissipation is decreasing by
several orders of magnitude below the stratified region. During nighttime,
in contrast, high dissipation rates penetrate down. However, similarly to the
simulated temperature, a time lag can be detected in the model results which
has not been observed. Moreover, vertical gradients of dissipation rate seem

" The number of casts per time is limited in calm regions with little lateral advec-
tion since the profiler itself generates turbulence which needs to be dissipated
until the next cast at the same location.
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to be overestimated by the numerical model. Again, this phenomenon has al-
ready been discussed for simulations of the free convection laboratory study,
see figure 6.10. A closer inspection of turbulent dissipation rate profiles as
obtained from 12 hour averaging shows that the shape of observed profiles is
much more variable than the shape of simulated profiles, see figure 7.35. A
consistent conclusion is difficult to draw from this figure. One significant fea-
ture is that the best agreement is obtained during the night from December
19 to 20, a phase of wind forcing with wind speeds up to 4 ms~'. The good
agreement between observations and model simulations of dissipation rate
for boundary layer shear flow has already been demonstrated in sections 7.3
and 7.4 for tidal bottom boundary layers. Apart from the significantly better
agreement during this wind event, it is impossible for the other periods to
determine which of the deviations are due to model deficiencies and which
are due to general model simplifications such as neglect of lateral advection.
The comparative idealised free convection study in section 6.3 has clearly
shown the shortcomings of the model. It is one satisfying result of this field
study simulation that the basic turbulence dynamics under free convection
are basically well reproduced. This is also true for a quantity which is even
more difficult to simulate, the dissipation rate er of temperature variance
(T2) (see equation (2.28)), which is shown in figure 7.36. As the turbulent
dissipation rate ¢, the temperature dissipation er can be detected from in-
stantaneous vertical gradients (of temperature) measured by means of a fast
temperature sensor. As for €, the basic shape and size of e is quantified by
the model simulations, although the slopes seem to be overestimated. This
could also be due to some near-bed processes such as slope convection which
are not reproduced by this one-dimensional model. It should be kept in mind
that the model parameterisation for the temperature dissipation 7, see equa-
tion (2.41), is based on highly simplifying assumptions, just as the transport
equation (3.67) for €.
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Fig. 7.34. Observed and simulated profiles of temperature T in Lago Maggiore
during three days in December 1995. The Observations and the model results have

been averaged over periods of 12 hours.
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Fig. 7.35. Observed and simulated profiles of turbulent dissipation rate ¢ in Lago
Maggiore during three days in December 1995. The Observations and the model
results have been averaged over periods of 12 hours.
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Fig. 7.36. Observed and simulated profiles of temperature variance dissipation
rate er in Lago Maggiore during three days in December 1995. The Observations
and the model results have been averaged over periods of 12 hours.






8 Future Perspectives

The present study probably rises more questions than it answers. Rather
than summarising the achievements discussed in the previous chapters, ten
of these open problems are listed and briefly discussed below. They can be
used as a guideline for further research. First of all, this list is far from
being complete, there are many other problems to be solved as well in the
field of marine turbulence modelling. But these future tasks discussed below
seem to be — seen from the perspective of the author — the major fields in
which further research is needed. However, these open problems have not been
intuitively formulated by the author alone. This view is strongly influenced
by the discussion with colleagues, mainly during meetings of the CARTUM
project, a concerted action on advanced turbulence modelling funded by the
European Community.

The first four points are closely related to each other and can probably not
be dealt with separately: parameterisations of third-order fluxes, non-local
features, internal waves and Langmuir circulation. For these four research
fields, substantial contributions from Large Eddy Simulation and Direct Nu-
merical Simulation studies have been made and and can be expected in the
future. The determination of surface roughness is a unsolved problem which
got more attention during recent years in connection with the parameterisa-
tions of the effect of breaking surface waves on near-surface turbulence. The
recently presented generic model is based on an old idea which might have a
much stronger potential than all other two-equation models. The numerical
stability of turbulence models would deserve some more strict mathematical
analysis. Due to increasing computer resources, advanced turbulence closure
schemes could be more and more used within three-dimensional circulation
models. This coupling needs further attention as well. Finally, two observa-
tional challenges are mentioned: Improved observations of turbulent kinetic
energy by high resolution acoustic profilers and the design of refined field
campaigns for better investigating the interaction between turbulence and
density gradients in regions of freshwater inflow.

1. Third-order fluxes: Third-order fluxes occur in two types of Reynold’s
averaged equations for second-order fluxes, in the equations for Reynolds
stresses, temperature fluxes and salt fluxes and in the equations for tur-
bulent kinetic energy and its dissipation rate. They are of different im-
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portance for two-equation models with algebraic second-moment closure,
since for the latter quantities, transport equations are solved and for the
former not. In the applications discussed in this study, the down-gradient
approximation for the vertical turbulent fluxes of turbulent kinetic en-
ergy and its dissipation rate has been used, which has been shown to
significantly underestimate the physical values, see also figure 6.11. Vari-
ous physically more sound parameterisations for these third-order fluxes
have been suggested in the literature, ranging from non-local relations to
complex algebraic closures as the one suggested by Canuto et al. [1994]
and Canuto et al. [2001]. What is missing up to now is a comprehensive
comparative study of these different formulations on the basis of which
their quality in terms of accuracy and computational costs can be esti-
mated.

Non-locality: The most striking consequence of neglecting non-local
features in the algebraic second-moment closures is the failure in repro-
ducing counter-gradient fluxes which are clearly evident in free convection
studies, see figure 6.10 and also the simulations in Lago Maggiore, sec-
tion 7.5. But also in basic tidal flow, counter-gradient fluxes occur during
the flow reversal when the shear production can be negative. The neglect
of non-locality by most differential turbulence closure models has given
rise to empirical non-local models such as the K-Profile Parameterisa-
tion (KPP) model by Large et al. [1994]. The non-locality of differential
turbulence closure models is a direct consequence of applying the local
equilibrium assumption for second-moments and thus neglecting third-
order moments. For consideration of non-local features in such models,
see e.g. Zilitinkevich et al. [1999].

Internal waves: As discussed in section 3.3.3 of this study, the treat-
ment of internal wave dynamics in turbulence closure models is generally
treated on a low level of sophistication, and the present study is no ex-
ception to this rule. The reason is the yet poor understanding of these
processes due to their complexity. Furthermore, the internal waves and
turbulence are difficult to separate, the wave-turbulence transition has
only recently been investigated in detail, see D’Asaro and Lien [2000]. It
is postulated by recent studies that internal waves are the major mecha-
nism for causing third-order transports in stably stratified flows, see Zil-
itinkevich [2002]. The key for explaining why differential models do often
underestimate mixing in stably stratified flow might be found here. The
recently suggested model modifications by Azell [2002] and by Baumert
and Peters [2002] might be guidelines to solve this problem.

Langmuir circulation: This mechanism in the surface mixing layer
in the ocean caused by the interaction between breaking surface waves
and Stokes drift is often treated as a niche in oceanography. Only re-
cent Large Eddy Simulation studies by Skyllingstad and Denbo [1995]
and McWilliams et al. [1997] revealed the important role of Langmuir
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circulation for transport and mixing in the mixed layer. The difficulty
in understanding Langmuir circulation is that it significantly deviates
from the idealistic view of counter-rotating vortices in the ocean mixed
layer leaving the characteristic streaky patterns at the surface as evi-
dence. Like internal waves, Langmuir circulation overlaps with turbulent
motions which led to the expression Langmuir turbulence (pers. comm.
Eric Skyllingstad). Further LES and DNS studies are expected to help
better understanding the role of this Langmuir turbulence for non-local
transports in the oceanic mixed layer.

. Surface roughness: Breaking of surface waves is a complicated physical
mechanism which can not even be fully reproduced by the Navier-Stokes
equations due to the neglect of surface tension. Thus, parameterisations
are needed on any level of modelling, even in DNS studies. In models,
which use bulk formulations for the fluxes of momentum, heat, freshwa-
ter and gases through the sea surface (most models do that), a surface
roughness length has to be specified for reproducing near surface statis-
tical properties of the flow. It is evident that this is much more compli-
cated than estimating the bed roughness with the aid of velocity profile
observations. In the literature, no agreement is found whether and how
the surface roughness scales with the significant wave height. Craig [1996]
concludes his study of extending the theory of interaction between break-
ing surface waves and turbulence with the remark that the theory cannot
be considered as a functional predictive tool without solving the problem
of determinating the surface roughness length.

. Generic Model: The expression Generic Model is here taken from
Baumert et al. [2000] who used it for introducing a general notation for
the length scale equation. When structurally comparing the k-¢, the k-kL
and the k-w? model, Launder and Spalding [1974] concluded that the k-&
model is the only physically sound model, since only for this model the
turbulent Schmidt number resulting after fitting to the law of the wall is
of the order of unity. The first results of the Generic Model as recently
published by Umlauf and Burchard [2001] show however, that certain re-
alisations are more convincing than any of the conventional models. This
is possible due to the fact that the Generic Model can be adapted to a
greater variety of problems. Still, the full potential of this model is not
yet exploited, a task which should be investigated in the near future.

. Numerical stability: Various types of turbulence models tend to show
numerical instabilities at even relatively short time steps. Examples for
this are usually fully algebraic models which need to be non-linearly it-
erated in order to stabilise them, see e.g. Frey [1991]. But also higher-
order turbulence closures like the k-¢ model or the k-kL model tend to
generate instabilities when they are used in combination with certain sta-
bility functions, see Deleersnijder and Luyten [1994] and Burchard and
Deleersnijder [2001] and also section section 6.2.3. Although a physical
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explanation for the latter problem has been found, a strict mathematical
analysis of such instabilities is missing so far.

Three-dimensional models: The integration of complex turbulence
closure models into three-dimensional circulation models is becoming
more and more realistic with increasing computer resources. Suitable tur-
bulence models must be numerically robust (i.e. providing good approxi-
mations for large time steps and coarse spatial resolution) and computa-
tionally efficient. Numerical problems do often occur near the bed with
geopotential coordinates and in horizontally staggered grids due to nec-
essary spatial averaging of shear production terms. Often, water column
models are directly implemented into three-dimensional models without
consideration of turbulence advection. For the ocean, this might be justi-
fied (see Delhez et al. [1999]), but for tidal estuaries with fronts this might
be an inaccuracy with significant consequences. This problem of turbu-
lence advection and also the general numerical problems occurring when
implementing a water column turbulence model into three-dimensional
models surely deserve further attention in the future.

Observations of TKE: Technically, observations of small-scale shear
and small scale temperature gradients and thus dissipation of turbulent
kinetic energy and temperature variance are easier to observe than the
variances of velocity (turbulent kinetic energy) and temperature itself.
Acoustic profiling techniques generally have too coarse resolution for ob-
serving all energy-containing scales relevant for the determination of tur-
bulent kinetic energy. However, with the aid of high-resolution Acoustic-
Doppler Current Profilers (ADCP) Reynolds stresses, shear production
and to a certain degree also turbulent kinetic energy can be estimated, see
Stacey et al. [1999]. There are currently several research activities evalu-
ating the quality of such measurements when applied to resolve near bed
turbulence in tidal boundary layers (pers. comm. Tom Rippeth, Ralph
Cheng) and for the surface mixed layer (pers. comm. Uli Lass). Joint
observations of turbulent dissipation rate as micro-scale parameter and
turbulent kinetic energy as integral scale parameter could help to better
understanding marine turbulence and its simulation by means of turbu-
lence models.

New SIPS field study: The one-dimensional model simulation of
strain-induced periodic stratification in Liverpool Bay (see section 7.4.2)
clearly demonstrates that the characteristic asymmetries of velocity,
stratification and turbulence can in principle be reproduced with tur-
bulence models. However, the assumption of constant temperature and
salinity gradients seem to be a serious simplification which leads to time
lags between observed and simulated profiles. Also, the neglect of momen-
tum advection could have serious consequences. Thus, there is a need for
further field studies in regions of freshwater run-off near the coast or
also inside estuaries. Such a study should account for the spring-neap
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cycle and a variable freshwater source in order to observe the sensi-
tivity of the system of variations of forcing. Time and space variations
of horizontal momentum, temperature and salinity gradients should be
measured. It should be attempted to simulated these observations with
one-dimensional, but also with three-dimensional models in order to ex-
plain these variations. Such a comprehensive study could help to better
understand estuarine circulation and the transport phenomena (such as
estuarine turbidity maxima) associated with it.






9 Appendix

9.1 Notation

9.1.1 General comments

Since many complex partial differential equations are contained in this book,
a compact way of denoting partial derivatives has been chosen here:

0 0
d=g, =7 o)
and
0
0; = r (9.2)

For simplicity, the summation convention of Einstein is extensively used in
this manuscript. This means that summation is applied to repeated indices:

8]-1)]- = 01v1 + 0209 + O303. (93)
Furthermore, the following symbols are used:
_ [ 1fori=y,
0ij = {0 for i # j, (9-4)

and
1 for cyclic order of indices,

gyt = § —1 for anticyclic order of indices, (9.5)
0 for two or more identical indices

which are the Kronecker symbol and the alternating tensor, respectively.
9.1.2 Turbulence models
Different notations have always been a major threshold for comparing differ-

ent turbulence parameterisations. For calculating the eddy viscosity v; and
eddy diffusivity »;, we use the following form (see section 3.1.2):
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V=G v, =c¢,—, (9.6)

which automatically results from the algebraic Reynolds stress closure. In
other models such as Mellor and Yamada [1974] and Mellor and Yamada
[1982], an alternative formulation is used:

with ¢> = 2k and Kj; and Kg being other notations for the eddy viscosity
and diffusivity v and v}, respectively. Sy and Sy correspond to the stability
functions ¢, and ¢, with the conversion

/

Cu
V2cr,

Sy =—E_ Sy =

V2er’

(9.8)

with ¢r, from (3.25).
The non-dimensional shear and buoyancy numbers on which the stability
functions depend are here consequently expressed as

ay = —M?, ay = 6—N2. (9.9)

With the Mellor and Yamada [1974] and Mellor and Yamada [1982] no-
tation for these non-dimensional parameters,

L? L?
Gu = q—zMZ, Gy = q—zN"’, (9.10)
the conversion between a s, any and Gy and G is of the following form:
c? c?
GM = ELOZM, GH = 7LOZN. (9.11)

By means of (9.8) and (9.11), the sets of stability functions presented in
section 3.1.3 may be transformed to the other notation.

It should be noted that further definitions of stability functions are often
used such as v; = ¢, VkL (see Burchard et al. [1998]) and v; = 2c,k?/e (see
Canuto et al. [2001]).

Another reason for confusion is often the different use of the parameter
c3e in the dissipation rate equation (3.67). In this paper, the right hand
side of that equation reads as (£/k)(c1c P + ¢3¢ B — ¢2:€), but often the form
(e/k)(c1e(P + ¢3¢ B) — c2:€) (Rodi [1980], Burchard and Baumert [1995)]) is
used. This, of course will lead to different values for cs..
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Param. Physical meaning Unit/Value Ref.
«a aspect ratio - p- 30
oo parameter in Charnok formula 1400 (3.44)
ay, spatial decay rate of k - (3.116)
O exponent - (3.119)
aM shear parameter - (3.26)
an buoyancy parameter - (3.26)
Bs haline expansion coefficient kgm~3psu~! (2.8)
Br thermal expansion coefficient kgm 3K! (2.8)
Vi relative vertical coordinate - (4.1)
dij Kronecker symbol - (9.4)
At time step S (4.6)
Az vertical grid size m p. 152
€ dissipation of TKE Wkg ! (2.31)
£o initial values for dissipation m?s 3 (3.91)
€e dissipation of dissipation m?s~* (2.33)
€ij dissipation of (@) m?s~3 (2.25)
Eijl alternating tensor - (9.5)
i dissipation of heat flux mKs2 (2.26)
Emin limiting value for dissipation Wkg ! (3.133)
er dissipation of T' variance K21 (2.28)
ETs dissipation of T-S correlator Kpsus™! (2.29)
¢ sea surface elevation m (3.4)
M attenuation coefficient m~! (7.1)

K von Kérmdan constant 04 (3.37)
I slope of L for S =N =0 ~ 0.2 (3.116)
A Kolmogorov micro scale m (3.40)
1 dynamic viscosity 1.3-1073 kgm~1s71 (2.1)

v kinematic viscosity 1.3-107¢ m?s~! (2.2)
v thermal diffusivity 1.38-10 " m?s ! (2.5)
v haline diffusivity 1.1-10 % m2s! (2.6)
v eddy viscosity for momentum m2s 1 (3.24)
(v4)™  backgr. viscosity, internal waves m?2s~! (3.132)
(14)5T  backgr viscosity, shear instability m2s~! (3.131)
vy eddy difusivity for tracers m?Zs~! (3.24)
()W backgr diffusivity, internal waves m2s~? (3.132)
(v1)31  backgr diffusivity, shear instability m?s~! (3.131)
i3 non-dim distance from surface - (3.38)
IT;; pressure-strain corr. of (@) m?2s—3 (2.25)
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Param. Physical meaning

Unit/Value Ref.

II;
p

Po
o

O¢
0<0
O—OJ
Oel
O—TL m
T

71

Te

Tk

pressure-strain corr. of heat flux
potential density

reference density

Crank-Nicolson parameter
Schmidt no. for e

Schmidt no. for €, wave breaking
Schmidt no. for w

Schmidt no. for €, log-law
Schmidt no. for generic equation
turbulent time scale

time scale for analytical solution
turbulent time scale for e-equation
turbulent time scale for k-equation
time scale for analytical solution
absolute value of bottom stress
bottom stress in x-direction
bottom stress in y-direction
relaxation time scale

absolute value of surface stress
surface stress in z-direction
surface stress in y-direction
asymptotic turbulent time scale
latitude

Monin-Obukhov param. (heat)
Monin-Obukhov param. (mom.)
turbulence frequency

comp. of total vorticity

earth angular vel.

comp. of earth rotation vector
redistribution of (@;;)
redistribution of heat flux
parameter being between 0 and 1
buoyancy

buoyancy production of TKE
surface buoyancy flux

emp. parameter for k-kL model
buoyancy production of €
buoyancy production of (@;a;)
buoyancy production of heat flux
speed of sound

mKs 2 (2.26)
kgm—3 (2.4)
kgm—3 (2.4)

_ (4.6)

- (3.66)
- (3.123)
- (3.78)
- (3.70)
- (3.111)
s (3.79)
s (3.89)
s (3.80)
s (3.79)
s (3.90)
Nm—2 (4.33)
Nm—2 (4.33)
Nm 2 (4.34)
8 p. 155
Nm—2 fig. 7.21
Nm2 (3.59)
Nm2 (3.59)
s (3.84)
- (2.4)

- (3.37)
- (3.37)
st (3.78)
51 (3.138)
7.3-107% 57! (2.4)
s1 (2.4)
m?s—3 (2.25)
mKs2 (2.26)
- (3.126)
ms 2 (3.4)
m?s~? (2.31)
m2s 3 (6.5)

- (3.71)
m?2s—* (2.33)
m?2s~3 (2.25)
mKs2 (2.26)
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Param. Physical meaning Unit/Value Ref.
Cly---5C5 emp. coefficients for IT;; - (2.34)
ar,...,car  emp. coefficients for IT;r - (2.37)
Cley .-+ ,C3e emp. coefficients for e-equation - (3.67)
Clw,---,C3,  emp. coefficients for w-equation - (3.78)
Clnms - - - » C3nm €mp. coefficients for generic eq. - (3.111)
cr emp. coefficient for er - (2.41)
Cu stab. funct. for mom. - (3.19)
o neutral stab. funct. for mom. - p. 37
cy stab. funct. for tracers - (3.21)
crL parameter for macro length scale  — (3.25)
ckc coeff. for Langmuir downwelling vel. — (3.141)
cp specific heat capacity of water 3980 Jkg 1K1 (2.5)
Cw coeff. for TKE flux, wave-breaking 100 (3.117)
C param. in anal. sol. of k-¢ system  — (3.89)
Cy parameter for Thorpe scale 14 (3.103)
D water depth m (3.46)
D;; anisotropic shear prod. of (i;@;)  m?s~3 (2.34)
D, mixed layer depth m (3.142)
dy distance from bottom m (3.76)
d bottom grid zooming parameter - (4.2)
ds distance from surface m (3.76)
dy surface grid zooming parameter - (4.2)
€ly...,€4 emp. parameters for variances - (3.30)
e mean kinetic energy m2s 2 (2.23)
E(ky) energy spectrum m3s™?2 (2.9)
E,...,E;5 emp. parameters for kL equation  — (3.71)
f Coriolis parameter st (3.4)
Fi frictional force kgm~—2s~2 (2.1)
g gravitational acceleration 9.81 ms—2 (2.4)
gi comp. of grav. acc. vector ms~2 (2.4)
Gu buoyancy parameter - (9.10)
Gu shear parameter - (9.10)
hé height of bott. roughness elements m (3.43)
H vertical length scale in the occan m (3.1
h; discrete layer depth m (4.1)
H mean water depth m (3.46)
H, significant wave height m p. 88
i index or exponent - (2.4)
I solar radiation in water column Wm—2 (2.5)
Iy solar radiation at surface W m—2 (7.1)
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Param. Physical meaning

Unit/Value Ref.

B~
S

22288

S
S

SEER

2

5

e
H

index or exponent

turbulent kinetic energy (TKE)
initial value for TKE
background value for TKE
wave no.

index or exponent
integral-scale macro length
surface value of macro length
length scale

buoyancy length scale

Ellison length scale

limit for macro length scale
Monin-Obukhov length
Ozmidov length

Thorpe scale

surface wave length

progn. length scale for kL eq.
index or exponent

shear frequency

index

Brunt-Vaiisila frequency
initial Brunt-Viisila frequency
no. of discrete layers

pressure

hydrostatic reference pressure
shear production of TKE
shear prod. of dissipation
shear prod. of (@i ;)
turbulent Prandtl no.

neutral turbulent Prandtl no.
mean gradient prod. of heat flux

mean gradient prod. of T variance

mean gradient prod. of T-S corr.
rms vel. fluctuations
Heat content

long-wave back radiation at surface

evaporation

latent surface heat flux
precipitation

sensitive surface heat flux

Jkg™!
Jkg™!
Jkg!

m—l

BBEBBEERBEBESE

2,—3

0.74
mKs
K%s~1!
Kpsus™

ms!

Jm
Wm2

kgm~—2s71
Wm—2
2.1

kgm™=s
Wm 2

-2

1

—2

(2.4)
(2.30)
(3.90)
(3.134)
(2.9)
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Unit/Value Ref.

Qtot
R.

R;
R#t
R
R,
S
So
Su
Sy
Su
Sq
t

T

total surface heat flux
integral-scale Reynolds no.
gradient Richardson no.
critical gradient Richardson no.

steady-state gradient Richardson no.

R; for Miles-Howard theory
turbulent Rossby no.

salinity

reference salinity

shear tensor

stab. funct. for tracers

stab. funct. for kL

stab. funct. for momentum
stab. funct. for k£ in k-kL model
time

potential temperature
Deardorff temperature scale
reference temperature

time scale

vel. comp. in z direction
friction vel.

bottom friction vel.

z-comp. of bottom friction vel.
y-comp. of bottom friction vel.
surface friction vel.

z-comp. of surface friction vel.
y-comp. of surface friction vel.
vel. scale

turbulent vel. scale

z-comp. of 10 m wind speed vector
z-comp. near-bed discrete vel.
z-comp. of Stokes drift vel.
vel. comp. in z;-direction

vel. comp. in y direction
y-comp. of 10 m wind speed vector
y-comp. near-bed discrete vel.
vorticity tensor

y-comp. of Stokes drift vel.
vel. comp. in z direction
Deardorff vel. scale

Wm—2 fig. 7.21
- (2.10)
- p- 45
- p- 46
- (3.96)
0.25 (3.109)
- p.- 36
psu (2.6)
psu (2.8)
st (2.34)
- (9-8)
- (3.71)
- (9-8)
- (3.72)
s (2.4)
K (2.5)
K (6.6)
K (2.8)
s (2.2)
ms~! (3.1)
ms~! (3.35)
ms~! (3.43)
ms! (4.33)
ms ! (4.34)
ms~! (3.44)
ms~! (3.59)
ms~! (3.59)
ms~? (2.2)
ms~? (3.1)
ms~? (3.137)
ms~! (4.35)
ms~! (3.137)
ms ! (2.3)
ms ! (3.1)
ms! (3.137)
ms! (4.36)
st (2.38)

(

(

(
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192 9 Appendix

Param. Physical meaning Unit/Value Ref.
wE®  Langmuir circulation downwelling vel. ms™? (3.141)
z northward coordinate m (2.4)

Y eastward coordinate m (24)

z upward coordinate m (24)
z distance from surface or bottom m (3.3)
P14 bottom roughness length m (3.43)
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