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Thesen

• Im Rahmen des BMBF ”Verbundprojektes” SOPRAN (Surface Ocean Processes in
the Anthropocene), in das diese Arbeit eingegliedert ist, werden neben Feld-Studien
in den Kap-Verden und der Ostsee auch biogeochemische Modelle (Anfangswert-
probleme) benutzt, um biologische und chemische Schlüsselprozesse zu untersuchen.
Diese Modelle müssen numerisch gelöst werden.

• Die numerischen Schemata müssen die Eigenschaften der Modelle - Positivität und
Konservativität - berücksichtigen und widerspiegeln.

• Bisher nutzte man dafür unter anderem die expliziten Runge-Kutta und die quasi-
impliziten modifizierten Patankar-Verfahren, die aber nur teilweise den gestellten
Anforderungen genügen. Die Runge-Kutta-Methoden sind nicht positiv und eignen
sich nicht zum Lösen von biogeochemischen Prozessen, die auf unterschiedlichen
Zeitskalen ablaufen (steife Differentialgleichungen). Die quasi-impliziten Verfahren
sind für einfache Probleme ungenau und grundsätzlich rechenaufwendig.

• Besonders für die Aufgabenstellung des SOPRAN, die in der Sektion
Physikalischen Ozeanographie und Messtechnik des Leibniz Instituts für
Ostseeforschung Warnemünde (IOW) bearbeitet wird, ist es wichtig genauere und
schnelle Verfahren zu finden, die zudem auch noch steife Systeme lösen können.
Gegenstand dieser Arbeit ist zu testen, ob die semi-impliziten Rosenbrock-Methoden
eine geeignete Alternative darstellen.

• Die genannten Verfahren wurden auf drei unterschiedlich komplexe
Modellprobleme angewendet und ihr Verhalten hinsichtlich Genauigkeit und
Rechenaufwand miteinander verglichen.

• Die Rosenbrock-Methoden können alle Modellprobleme lösen und sind positiv, wenn
die entsprechenden Parameter hinreichend klein gewählt werden.

• Zum Lösen von einfachen biogeochemischen Problemen eigenen sich die Runge-Kutta
Verfahren auf Grund ihres geringeren Rechenaufwands besser, als die Rosenbrock-
Methoden.

• Im Vergleich zu den Patankar-Verfahren stellen die Rosenbrock-Methoden eine gute
Alternative zum Lösen biogeochemischer Probleme dar; besonders für solche, die auf
unterschiedlichen Zeitskalen ablaufen.

• Um zu testen, wie gut sich die Rosenbrock-Methoden zum Lösen realistischer
Ökosystemmodellprobleme eignen, die im Ozean auftreten, werden sie als nächstes
in das General Ocean Turbulence Modell (GOTM) (www.gotm.net) eingebaut und
ihr Verhalten untersucht.
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1 Introduction

Marine biogeochemical modelling is a branch of earth system science, in which processes
that govern the fluxes or cycling of energy or matter in the ocean are realised with computer
models. Often, biogeochemical models are used as predictive instruments to simulate
the behaviour of complex (three-dimensional and time-varying) systems and to compute
scenarios of the system’s behaviour under varying environmental conditions. Examples are
studies addressing the changes in the discharge of river nutrients or the effect of climate
change on the ocean carbon cycle.
Modelling related to climate change is conducted within a number of different national,
European and international projects. One of them is the German BMBF ”Verbundprojekt”
SOPRAN (Surface Ocean Processes in the Anthropocene), a part of the international
SOLAS (Surface Ocean - Lower Atmosphere Study) programme. SOPRAN addresses
the interactions between atmosphere, climate and ecosystems focusing on processes within
and close to the surface ocean and their potential changes over the next years. Besides
field studies at the Cape Verde site and the Baltic Sea, a number of biogeochemical models
are developed and used to study biological and chemical key processes in the surface layer.
This study has been carried out within the framework of SOPRAN.

In general biogeochemical models describe the growth and decay processes by mathe-
matical systems, so-called ordinary differential equations. For most of them there are no
analytical solutions and hence numerical integration schemes are applied to approximate
the solution. Current schemes applied to biogeochemical models are for example the
following numerical methods, which are implemented in the General Ocean Turbulence
Model (GOTM), developed by Burchard et al. [1999], in order to simulate ecosystem
processes: the Euler forward method, developed by Euler in 1768, the Runge Kutta
schemes, first constructed by Runge 1895 and Heun 1900 and finally formulated by Kutta
1901, the Patankar methods of first and second order, developed by Patankar [1980] and
Burchard et al. [2003], respectively, as well as the modified and extended modified Patankar
schemes of first and second order, proposed by Burchard et al. [2003] and Bruggeman et al.
[2007], respectively.
Due to their low computational effort the Runge Kutta methods are still used for modelling
the so-called Nutrient - Phytoplankton - Zooplankton - Detritus - type models, see e.g.
Fasham et al. [1990]. The NPZD-models describe biological processes on daily scales.
Recent biogeochemical models consider also processes, which run on significantly shorter
time scales, e.g. the iron speciation, which are more in detail explained by Weber et al.
[2007]. In general, biogeochemical models consider processes running on different time
scales. For solving these kind of models advanced numerical schemes (modified Patankar
schemes) are applied.
From a numerical point of view, two characteristics are crucial for biogeochemical models.
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1 Introduction

First, the state variables represent non-negative quantities, such as concentrations of
chemical compounds and second, they conserve mass as well as energy. Both features
have to be respected by the numerical methods. The Euler forward as well as the
Runge Kutta methods fulfil both characteristics, if the step size is chosen sufficiently
small. Unfortunately, that leads to higher computational effort and hence they loose their
advantage of computational efficiency. If larger time steps are used, they might compute
negative concentrations also for positive initial values. The problem of non-negativity first
was addressed by Patankar [1980] for numerical turbulence models. Based on the forward
Euler method he proposed the Patankar Euler method - a numerical scheme of first order,
which was extended to second order by Burchard et al. [2003]. Both schemes are not
conservative, due to the fact that they have been developed for turbulence modelling,
where conservativity is not essential. The further development of this so-called Patankar
schemes resulted in the modified Patankar schemes of first and second order, proposed by
Burchard et al. [2003]. These new schemes satisfy the underlying demands of positivity and
conservativity, whereas the second order version is additionally suitable for solving stiff
ordinary differential equations. Such equations are characterised e.g. by the involvement
of significantly different time scales. However, the modified Patankar schemes have two
important disadvantages: high computational effort, due to the necessity of solving a linear
equation system on the one hand and on the other hand, they imply conservation on state
variable level only. That means the conservativity does not hold in biochemical sense,
where it refers to the conservation of atoms as well as of energy, as shown by Bruggeman
et al. [2007]. The authors addressed this problem and developed the extended modified
Patankar schemes of first and second order, inspired by the work of Patankar [1980] and
Burchard et al. [2003]. Both methods satisfy the underlying main characteristics too, but
also have two important disadvantages: first, they have high computational effort, due
to solving a root problem, and second, they are not suitable for solving stiff ordinary
differential equations.
While for biogeochemical modelling numerical methods, which are designed for solving
stiff problems are seldom in use, in atmospheric chemistry such schemes are often applied.
Sandu et al. [1997a] and Sandu et al. [1997b] searched for appropriate numerical schemes
to solve chemical transport reaction equations, described by stiff ordinary differential
equations. The authors benchmarked the Rosenbrock solvers - ROS3 and ROS4 - as the
most accurate and most cost-effective numerical methods of all tested schemes for all
tested models. The systems, describing these chemical transport reactions, are similar to
those describing the processes in biogeochemistry and hence the Rosenbrock methods are
also applicable to biogeochemical modelling.
The goal of my thesis is to compare currently used numerical schemes with the Rosenbrock
methods and to investigate, whether the Rosenbrock solvers are suitable for application to
biogeochemical models. Therefore, the two Rosenbrock solvers ROS3 and ROS4, the Euler
forward, the Runge Kutta method of second and fourth order as well as the modified and
extended modified Patankar schemes of second order are applied to three test cases and
their performance in terms of accuracy and computational efficiency is compared.

The thesis is structured in the following way: In the second chapter the mathematical
foundation and the most important mathematical definitions are given. The third
chapter introduces the Rosenbrock methods. After a short introduction in biogeochemical
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modelling, the test cases are presented in chapter 4 and subsequently, the seven numerical
methods used for comparison are specified in detail. In chapter 5 all tested results are
compared with each other and the dependence on the two tolerance parameters of the
Rosenbrock solvers is explained. The thesis ends with discussion and conclusions and with
an outlook of the future work.
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2 Mathematical foundations

To provide a consistent basis for the following study some essential information about
ordinary differential equations (ODEs), their solution and solution properties is given in
this chapter as well as an overview about numerical methods for solving them.

Definition 2.0.1.
Let G be a subset of R × RN and let f : G → RN be a continuous function such that
(t, c(t)) 7→ f(t, c(t)). Then

c′(t) =
dc

dt
(t) = f(t, c(t)) (2.1)

is called a system of N explicit ordinary differential equations of first order.
It is called implicit, if the right hand side additionally depends on c′(t) and furthermore
the ODE (2.1) is called autonomous, if the right hand side of equation (2.1) does not
explicitly depend on t, otherwise it is called non-autonomous.

Remark 2.0.1.
There is only a closed solution theory for (systems of) explicit ODEs.

The solution of equation (2.1) is a function φ: I 7→ RN fulfilling the following
characteristics:

1. I ⊂ R is an interval and G contains the graph of φ, i.e.

Γφ := {(t, c(t)) ∈ I × R : c(t) = φ(t)} ⊂ G (2.2)

2.

φ′(t) =
dφ

dt
(t) = f(t, φ(t)) ∀t ∈ I. (2.3)

In general the solution set of an ODE is not uniquely constrained by the equation but
needs further initial or boundary values. The latter are not further discussed here for the
present study.

Definition 2.0.2.
Let G be a subset of I ⊂ R× RN and f : G→ RN a continuous function such that
(t, c(t)) 7→ f(t, c(t)). An initial value problem (also called Cauchy Problem) is given in the
following form: 

dc
dt (t) = f(t, c(t)), t ∈ I

c(t0) = c0, t0 ∈ I fixed.

(2.4)
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2 Mathematical foundations

In practise initial values mostly are measured and not given, which leads to inexact initial
values and hence to not accurate solutions. Thus the notation of stability is important
because it determines to what extent the solution is sensitive towards a perturbation of
the initial values. An assumption for stability is the Lipschitz condition of the right hand
side of equation (2.1), which is defined in the following way:

Definition 2.0.3.
Let G be a subset of R× RN and let f : G→ RN be a function. While f fulfils a
Lipschitz condition in G, in case all (t, c(t)), (t, c̃(t)) ∈ G apply

‖f(t, c(t))− f(t, c̃(t))‖ ≤ L · ‖c(t)− c̃(t)‖ (2.5)

where L ∈ R≥0 is the Lipschitz constant and ‖· ‖ is an arbitrary vector norm.

Theorem 2.0.1.
Let c, y : [t0, te]→ RN be the solutions of the following two initial value problems

dc
dt (t) = f(t, c(t))

c(t0) = c0


dy
dt (t) = f(t, y(t))

y(t0) = y0,

(2.6)

and L ∈ R≥0. If f applies the Lipschitz condition for all t ∈ [t0, te] and all c(t), y(t) ∈ G,
then:

‖c(t)− y(t)‖ ≤ eL·(t−t0)‖c0 − y0‖ (2.7)

follows. That means, the solutions depend Lipschitz continuously on the initial values.

More details and the proof of this theorem can be found e.g. in Heuser [1989].

2.1 Existence and uniqueness of solutions

In general, the solution of the initial value problem (2.4) is not unique, as can be seen in
the next example.

Example 2.1.1.
The initial value problem 

dc
dt (t) = c2/3(t)

c(to) = 0

(2.8)

has two solutions

c1(t) =
1
27

(t− t0)3 and

c2(t) = 0
(2.9)

and thus cannot uniquely be solved.
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2.2 Numerical methods

Addressing the initial value problem the question raises, whether there is a local solution
of equation (2.1) by given initial values. Before giving sufficient criteria, which respond to
that, the notation of the local Lipschitz condition is formulated.

Definition 2.1.1.
Again let G be a subset of R × RN and let f : G → RN be a function. f applies a local
Lipschitz condition, if every point (t, c(t)) ∈ G has a neighbourhood U , such that f fulfils
a Lipschitz condition in G ∩ U with a U depending constant L ∈ R>0, i.e.

‖f(t, c(t))− f(t, c̃(t))‖ ≤ L · ‖c(t)− c̃(t)‖ (2.10)

∀(t, c(t)), (t, c̃(t)) ∈ U.

Theorem 2.1.1. Theorem of uniqueness
Let G be a subset of R × RN and let f : G → RN be a continuous function, fulfilling the
local Lipschitz condition. Furthermore let φ, ψ: I→ RN be two solutions of the ODE (2.1).
In case that

φ(t0) = ψ(t0) for one t0 ∈ I (2.11)

then
φ(t) = ψ(t) for all t ∈ I (2.12)

becomes essential.

Theorem 2.1.2. Theorem of existence from Picard and Lindelöf
There is an ε > 0 and a solution

φ : [t0 − ε, t0 + ε]→ RN (2.13)

of the ODE (2.1) with the initial value

φ(t0) = g ∀(t0, g) ∈ G, (2.14)

if G ⊂ R×RN is an open set and f : G→ RN is a continuous function, fulfilling the local
Lipschitz condition.

Detailed proofs of both theorems can be found in Forster [1999].

Remark 2.1.1.
φ is uniquely determined by the initial value φ(t0) = g and theorem (2.1.1).

2.2 Numerical methods

Unfortunately, not all initial value problems have analytical solutions and hence it is
necessary to use numerical methods in order to solve them.

Remark 2.2.1.
In the following, the variable t denotes the time.
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2 Mathematical foundations

Definition 2.2.1.
A numerical method is a procedure that computes an approximated solution cn(tn) of the
analytical solution c(t) on a discrete grid Ih of the interval I for every t ∈ I and every
tn ∈ Ih.

Remark 2.2.2.
For all observed numerical schemes and test cases, which will be introduced in chapter 4,
the following notations are taken:

1. cn is the abbreviation of cn(tn)

2. cn+1 is the abbreviation of cn+1(tn+1)

3. cni is the i-th component of the approximation cn, i = 1, . . . , N

4. cn+1
i is the i-th component of the approximation cn+1, i = 1, . . . , N

5. c(k) is an intermediate step, k = 1, 2, . . ., at the old time step tn

6. c(k)i is the i-th component of the intermediate step, i = 1, . . . , N

7. h = tn+1 − tn is the step size, h ∈ R≥0

Generally, in mathematics two kinds of numerical methods are distinguished, explicit
and implicit ones. These are defined as follows:

Definition 2.2.2.
A numerical method is called explicit, if the approximated solution cn+1 at the new time
step tn+1 is given as function of the approximated solutions
cn, cn−1, . . . , c0 at the old time steps tn, tn−1,, . . . , t0. Otherwise it is called implicit, i.e.
cn+1 is given as the solution of a (non-) linear equation system.

2.2.1 One step methods

In order to solve the initial value problem (2.4) two kinds of methods are used: one step
methods (OSMs) and multi step methods. In the following the focus is on the OSMs. In
contrast to the multi step methods, the approximated solution cn+1 of an OSM does only
depend on cn, and not on the previous solution-approximations cn−1(t), cn−2(t), . . . , c0(t).
From definition 2.2.2 the following definition of an explicit OSM can be derived:

Definition 2.2.3.
The explicit OSM is of the form:

cn+1 = cn + hn·ϕ(tn, cn, hn) (2.15)

where ϕ : [t0, te]× RN × R+ → R denotes the increment function, determining the OSM.
Such methods give approximations cn of the exact solution c(tn) at each grid point in
[t0, tn].

8



2.2 Numerical methods

In general, error estimations play an important role because as mentioned above,
numerical schemes give only approximations of the solution and hence discretisation errors
evolve in each step. The following definitions for OSMs are made, to quantify the occurring
errors:

Definition 2.2.4.
An OSM has the order p ≥ 1 of convergence, if the global discretisation error ε, also called
global method error

ε = max
l=0,...,n

‖cl(t)− c(tl)‖2, (2.16)

fulfils the following inequality:
ε ≤ C·hpmax, (2.17)

where
hmax = max

l=0,...,n
{tl+1 − tl}, (2.18)

C ∈ R≥0 is a grid independent constant and ‖· ‖2 denotes the Euclidean norm, which is
defined as follows

‖c‖2 :=

√√√√ N∑
i=1

c2i , (2.19)

for each vector c ∈ RN .

Definition 2.2.5.
The truncation error of a OSM is defined as

τ(t, h) :=
c(t+ h)− c(t)

h
− ϕ(t, c(t), h). (2.20)

The OSM with increment function ϕ is called consistent, if

lim
h→0

τ(t, h) = 0 ∀ t ∈ I (2.21)

and furthermore the method has order p ≥ 1 of consistency, if

τ(t, h) = O(hp), h→ 0 (2.22)

where O(· ) is the Landau symbol, see Strehmel and Weiner [1995].

Euler forward and Runge Kutta method

Two well known examples of OSMs are the explicit Euler method (EM) and the Runge
Kutta method (RKM).
The EM, developed by Euler in 1768, is the oldest and easiest numerical method for solving
initial value problems. It locally replaces the unknown solution by the well known tangent
- the right hand side of the equation.
The increment function of the EM is given by:

ϕ(t, c(t), h) = f(t, c(t)). (2.23)

9



2 Mathematical foundations

Generally, the evaluation of the order of consistency is derived by comparing the Taylor
series of the solution with the Taylor series of the increment function. For the EM that
means:

c(t+ h) = c(t) + h· dc
dt

(t) +O(h2)

= c(t) + h· f(t, c(t)) +O(h2)
(2.24)

Rearranging equation (2.24) to the following

O(h) =
c(t+ h)− c(t)

h
− f(t, c(t)) =

c(t+ h)− c(t)
h

− ϕ(t, c(t), h) (2.25)

the order of consistency equals 1.
The Runge Kutta methods have been constructed by Runge (1895) and Heun (1900) and
finally formulated by Kutta (1901) as in the following definition.

Definition 2.2.6.
An s-stage Runge Kutta method has the following increment function:

ϕ(t, c(t), h) =
s∑
i=1

bi· ki (2.26)

where

k1 = f(t, c(t))
k2 = f(t+ d2·h, c(t) + h· a21· k1)
k3 = f(t+ d3·h, c(t) + h· (a31· k1 + a32· k2)

...

ks = f(t+ ds·h, c(t) + h·
s−1∑
i=1

asi· ki)

(2.27)

and di, aij and bi are scalar variables, generally tabulated in so-called Butcher Tableaus,
see Hairer et al. [1991] and table 2.2.1.
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2.3 Stiffness and stability

0

d2 a21

d3 a31 a32

...

ds as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 2.1: Butcher tableau of an s-stage RKM.

Remark 2.2.3.

1. The Euler forward method is a 1-stage RKM with b1 = 1.

2. The RKM of 2nd order (RK2) is also called Heun method and has the increment
function

ϕ(t, c(t), h) =
1
2
k1 +

1
2
k2 (2.28)

where

k1 = f(t, c(t))
k2 = f(t+ h, c(t) + h· k1).

(2.29)

3. The classical RKM (RK4) is a four-stage OSM. It has the increment function

ϕ(t, c(t), h) =
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4 (2.30)

where

k1 = f(t, c(t))

k2 = f(t+
1
2
·h, c(t) + h· 1

2
· k1)

k3 = f(t+
1
2
·h, c(t) + h· 1

2
· k2)

k4 = f(t+ h, c(t) + h· k3)

(2.31)

and the order of consistency equals 4, as well as the number of steps, see Hairer
et al. [1991].

2.3 Stiffness and stability

In general, ODEs are distinguished in stiff and non-stiff. Unfortunately, there is no
comprehensive and mathematical definition of stiffness so far, however a good argument

11



2 Mathematical foundations

for calling an ODE stiff is the better performance of implicit numerical methods in contrast
to explicit ones, as mentioned in the historically first opinion of Curtiss and Hirschfelder
1952.
A well known example for that is given by the comparison of the performance of the
explicit and implicit EM applied to the simple stiff ODE

dc

dt
(t) = λ· c(t) λ < 0, (2.32)

see Figure 2.1 and 2.2. The analytical solution of equation (2.32)

c(t) = eλt· c0 (2.33)

is also depicted in this Figure. The order of stiffness of equation (2.32) strongly depends
on the coefficient λ.

Figure 2.1: explicit EM applied to equation (2.32) with λ = −10 and step size h = 0.1 in the upper
plot, h = 0.2 in the middle plot and h = 1 in the lower plot. The x -axis shows the dimensionless
time and the y-axis the co-domain. The solid line shows the analytical solution and the star line
gives the approximated solution, cp. Simeon.
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2.3 Stiffness and stability

Figure 2.2: implicit EM applied to equation (2.32) with λ = −10 and step size h = 0.1 in the upper
plot, h = 0.2 in the middle plot and h = 1 in the lower plot. The x -axis shows the dimensionless
time and the y-axis the co-domain. The solid line shows the analytical solution and the star line
gives the approximated solution, cp. Simeon.

Figure 2.1 shows the results of the explicit EM with λ = −10 and the effect of too large
step sizes. The plots make clear that this method only gives accurate results, if the step
size h is chosen small enough (h = 0.1). For h = 0.2 the approximated solution strongly
oscillates and for h = 1 it even blows up. In contrast to that the implicit EM gives accurate
results for all time steps, which can be seen in the three plots of Figure 2.2.
An analyse of the discretisation of equation (2.32) confirms the step size restriction for
the explicit in contrast to the implicit EM.

• First, the attention is on the explicit EM. Applying the discretisation formula to
equation (2.32) results in:

cn+1 = cn + h·λ· cn

= (1 + h·λ)· cn.
(2.34)

In order to get the decreasing approximation of the analytical solution in case 1, the
following inequality has to be fulfilled:

|1 + h·λ| ≤ 1. (2.35)

That means, if the step size does not fulfil this restriction for any given λ, the
approximation will increase and that implies divergence.

• Second, the implicit EM is applied to equation (2.32) leading to:

cn+1 = cn + h·λ· cn+1

=
1

1− h·λ
· cn.

(2.36)
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The consequential inequality ∣∣∣∣ 1
1− h·λ

∣∣∣∣ ≤ 1 (2.37)

is fulfilled for any h > 0, because of the condition λ < 0. That means the
approximation always decreases.

The advantage of implicit versus explicit methods is not the only property of stiff ODEs.
Important factors are also the Jacobian matrix, such as the dimension of the system or
the integration interval. More details to this topic can be found in Hairer and Wanner
[1991].
In order to benchmark and analyse numerical methods for solving stiff problems they are
applied to the Dahlquist test equation

dc

dt
(t) = λ· c(t) λ ∈ C, <(λ) ≤ 0, (2.38)

where <(λ)denotes the real part of λ.
Solving equation (2.38) for cn+1 with the initial value c0 = 1 results in

cn+1 = R(z)cn(t) (2.39)

for any OSM, where R(z) denotes the stability function with z = hλ.
The set

S = {z ∈ C : |R(z)| ≤ 1} (2.40)

is called the stability domain of the method and with that notation a new definition of
stability has been suggested, see e.g. Hairer and Wanner [1991] or Strehmel and Weiner
[1995].

Definition 2.3.1.
A numerical method with step size h > 0 is called

1. A-stable, if there are no restrictions for Dahlquist’s model problem, i.e. the applica-
tion to

dc

dt
(t) = λc(t), <(λ) ≤ 0 (2.41)

results in a sequence of approximated solutions that is restricted by ‖c0‖.

2. L-stable, if it is A-stable and if in addition the following equation is valid

lim
z→∞

R(z) = 0. (2.42)

Remark 2.3.1.

1. If the left half-plane is part of stability domain S, than the numerical method is
A-stable.

2. All explicit Runge Kutta methods are not A-stable, because their stability domains
are only subsets of the left half-plane, as can be seen in Figure 2.3.

3. All explicit methods are not appropriated for solving stiff problems, cp. Strehmel
and Weiner [1995].
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2.3 Stiffness and stability

Examples of the stability functions and domains are presented in Table 2.2 and plotted
in Figure 2.3. The Table shows the stability functions of the EM, the RK2 and RK4, as
well as their stability domains. In Figure 2.3 the stability domains of the explicit RKMs
of 1st to 4th order are depicted.

method stability function R(z) stability domain S

EM 1 + z {z ∈ C : |1 + z| ≤ 1}

RK2 1 + z + z2

2

{
z ∈ C : |1 + z + z2

2 | ≤ 1
}

RK4 1 + z + z2

2 + z3

6 + z4

24

{
z ∈ C : |1 + z + z2

2 + z3

6 + z4

24 | ≤ 1
}

Table 2.2: Stability functions and domains of the EM, RK2 and RK4.

Figure 2.3: Stability domain of the explicit RK methods of order p: p=1 EM, p=2 RK2, p=3
3-stage RKM and p=4 RK4 . The coordinate system shows the complex plane where the x -axis
denotes the real part of z and the y-axis the imaginary part of z. All stability domains are subsets
of the left half-plane, cp. Seiler [2006].
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In order to determine the approximated solution of stiff problems numerical schemes
generally use some implicit discretisation formula for reason of numerical stability, cp.
Janelli and Fazio [2006]. Consequently, a system of non-linear equations has to be solved
and the most reliable approach for that is to apply Newton’s method

tn+1 = tn −
f(tn)
f ′(tn)

, (3.1)

which unfortunately demands an evaluation of the user specified Jacobian matrix at
each iteration, see Janelli and Fazio [2006]. In order to get around this time consuming
procedure Rosenbrock [1963] implemented the Jacobian matrix directly into the numerical
integration formula. This idea results in a generally accepted integration formula - the
so-called Rosenbrock method (RBM), see Hairer and Wanner [1991]. The RBMs are also
called linear implicit or semi-implicit Runge Kutta methods, due to the fact that they are
derived from the fully implicit RKMs.

3.1 Derivation

An s-stage diagonal implicit Runge Kutta scheme is given by

kl = h· f

cn +
l−1∑
j=1

aljkj + allkl

 l = 1, .., s

cn+1 = cn +
s∑
l=1

blkl,

(3.2)

with the coefficients alj , bl identical to the explicit scheme.
If equation (3.2) is regarded as a root problem of a function g : RN → RN defined as

g(kl) = kl − h· f

cn +
l−1∑
j=1

aljkj + allkl

 (3.3)

the root can be computed with the iteration formula of Newton’s method:

k
(n+1)
l = k

(n)
l − g

′
(
k

(n)
l

)−1
· g
(
k

(n)
l

)
n = 0, 1, . . . . (3.4)

The evaluation of g′
(
k

(n)
l

)−1
gives:I− h· all· f ′

cn +
l−1∑
j=1

aljkj + allk
(n)
l

−1

(3.5)
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3 Rosenbrock methods

where I is the n dimensional identity matrix. Rearranging equation (3.4), where

J := f ′(cn) (3.6)

is the abbreviation of the approximation of the Jacobian matrix

f ′

cn +
l−1∑
j=1

aljkj + allk
(n)
l

 , (3.7)

ends in a linear equation system of the form

(I− h· all·J)· k(n+1)
l = h· f

cn +
l−1∑
j=1

aljkj + allk
(n)
l

− h· all·J· k(n)
l (3.8)

that can be uniquely resolved for small values of h. This linearisation presents the main
idea of the RBMs.
It is not necessary to make more than one step of Newton’s iteration to obtain good
accuracy and hence together with the initial value

k
(0)
l = − 1

all
·
l−1∑
j=1

γljkj , (3.9)

which is chosen as linear combination of the known k−values, and the following notations

kl := k
(1)
l , αlj := alj − γlj , γll := all, (3.10)

equation (3.2) can be converted into

(I− h· γll·J)· kl = h· f

cn +
l−1∑
j=1

αljkj

− h·J· l−1∑
j=1

γljkj

cn+1 = cn +
s∑
l=1

blkl.

(3.11)

System 3.11 consists of a sequence of s linear equations, which have to be solved to compute
the kl. Thus, the formula of the RBMs is derived and the following definition is valid:

Definition 3.1.1.
An s-stage Rosenbrock method is given as

kl = h

f
cn +

l−1∑
j=1

αljkj

+ J
l∑

j=1

γljkj

 , l = 1, .., s

cn+1 = cn +
s∑
l=1

blkl

(3.12)

where αlj , γlj , bl are the determining coefficients.
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3.2 Reducing computational effort

Remark 3.1.1.
RBMs are applicable to non-autonomous ODEs, because they can be put in autonomous
form by augmenting

dt

dt
= 1, (3.13)

i.e. treating t as a dependent variable.

3.2 Reducing computational effort

The most expensive procedures of the RBM are on the one hand the LU decomposition
of (I−hγJ), though it possibly is sparsely populated. However, assuming γll = γ for all l,
only one LU -factorisation per step is needed, because the same matrix (I − hγJ) is used
to evaluate all kl. On the other hand the matrix-vector multiplication takes a lot of the
computing time. In order to avoid it, the following notation is introduced

ul =
l∑

j=1

γljkj , (3.14)

which leads to a new formula for computing kl:

kl =
1
γ
·ul −

l−1∑
j=1

gljuj , l = 1, . . . , s. (3.15)

The substitution of (3.15) into (3.14) yields

(I− hγJ)ul = h

f
cn +

l−1∑
j=1

aljuj

+ J
l−1∑
j=1

gljuj

 , l = 1, . . . , s

cn+1 = cn +
s∑
j=1

mjuj ,

(3.16)

with

G = diag
{
γ−1, . . . , γ−1

}
− Γ−1

Γ = (γlj)

alj = (αlj)Γ−1 and

(m1, . . . ,ms) = (b1, . . . , bs)Γ−1.

(3.17)

Formula (3.16) also avoids n2 multiplications for hγJ, cp. Hairer and Wanner [1991].

3.3 Consistency and stability

The order of consistency as well as the stability properties are the main points character-
ising the performance of an integration scheme and hence they are defined here for RBMs.
The RBMs are OSMs and thus the error definitions 2.2.4 and 2.2.5 from page 9 are still
valid. Further statements about the consistency behaviour of the RBMs can be made:

19



3 Rosenbrock methods

p number order conditions

1 1
∑

l bl = 1

2 2
∑

k βjk = 1
2 − γ

3 3
∑

k,l αjkαjl = 1
3

4
∑

k,l βjkβkl = 1
6 − γ + γ2

4 5
∑

klm αjkαjlαjm = 1
4

6
∑

klm αjkβklαjm = 1
8 −

γ
3

7
∑

klm βjkαklαkm = 1
12 −

γ
3

8
∑

klm βjkβjkβlm = 1
24 −

γ
2 + 3γ2

2 − γ
3

Table 3.1: Order conditions for RBMs up to order 4.

Remark 3.3.1.

• The truncation error of the RBM is only of size

O
(
h2

z

)
, (3.18)

if the coefficients of a RBM satisfy

αsi + γis = bi and
αs = 1,

(3.19)

for i = 1, . . . , s. This implies that the RBMs asymptotically reach the exact solution
for z →∞. For more details see Hairer and Wanner [1991].

• For obtaining the order p of consistency, the coefficients of a RBM have to fulfil
special conditions up to the desired order, see table 3.1 and compare e.g. Hairer and
Wanner [1991], with the following abbreviations:

αl =
l−1∑
j=1

αlj

βlj =
l−1∑
j=1

αlj + γlj .

(3.20)

The RBMs are derived from implicit RKMs, as shown above, and hence they are also
suitable for solving stiff problems. The stability function can be obtained by applying the
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3.4 Step size strategy

RBMs to Dahlquist’s model problem (see page 14), which yields a rational function of the
form

R(z) =
P (z)

(1− γz)s′
, (3.21)

where P (z) is a polynomial of degree s′, s′ ≤ s, cp. Sandu et al. [1997b]. In case of
L-stability that is focused here, the degree is less than or equal to s′ − 1.

3.4 Step size strategy

The achievement of numerical methods to solve stiff problems depends on the use of
adaptive step size mechanisms controlling the truncation error. For the RBMs the following
strategy is applied, cp. Hairer and Wanner [1991]:
Let c̃n+1 be the solution of the embedded Rosenbrock formula that is given by

kl = h

f
cn +

l−1∑
j=1

αljkj

+ J
l∑

j=1

γljkj

 , l = 1, .., s

c̃n+1 = cn +
s̃∑
l=1

b̃lkl s̃ ≤ s.

(3.22)

Note, the only difference from formula (3.12) is the choice of the weights b̃i. These are
chosen to achieve p̃ = p− 1 as order of consistency, where p is the order of cn+1, i.e.:

cn+1 = cn(tn + h) +O(hp+1)

c̃n+1 = c̃n(tn + h) +O(hp̃+1).
(3.23)

Taking the difference of cn+1 and c̃n+1, the local error estimator

Est := c̃n+1 − cn+1 (3.24)

is defined. This value is an estimation of the main part of the local discretisation error of
the method with order q= min (p, p̃). The order of a pair of equations for cn+1 and c̃n+1,
described in the formulas (3.12) and (3.22), is denoted by p(p̃), as done in Sandu et al.
[1997b].
Additionally, let n be the dimension of the ODE system, see in chapter 2, and atol and
rtol the user-specified absolute and relative error tolerances. The tolerances occurring in
each step are denoted by

Toli = atol + rtol· |cn+1
i |, i = 1, . . . , N. (3.25)

Taking

err =

√√√√ 1
N

N∑
i=1

(
Est

Toli

)2

(3.26)
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3 Rosenbrock methods

as a measure we find an optimal step size hopt by comparing err to 1 and using the relations
err ≈ Chq+1 and 1 ≈ Chq+1

opt . Thus we obtain the optimal step size as

hopt = h·
(

1
err

) 1
q+1

. (3.27)

The new step size proposal

hnew = h ·min

{
facmax,max

{
facmin, fac·

(
1
err

) 1
q+1

}}
(3.28)

is obtained by using err with q as order of consistency instead of p. The integration of the
growth factors facmax and facmin to equation (3.27) prevents for too large step increase
and contribute to the safety of the code. Additionally, using the safety factor fac makes
sure that err will be accepted in the next step with high probability. The step is accepted,
in case that err ≤ 1 otherwise it is rejected and then the procedure is redone. In both
cases the new solution is computed with hnew as step size, decreased by a factor of ten, if
there are two consecutive rejection steps. Generally, the new step size is constrained by a
user-specific maximum hmax. According to Hairer et al. [1991] and the references therein,
the maximal growth factor facmax should be set to 1 right after a rejection step.
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4 Application of numerical methods in
biogeochemical models

Marine biogeochemical modelling is a section of earth system science in which processes
that govern the fluxes or cycling of energy or matter in the ocean are simulated with
computer models. In contrast to physical oceanography there are no fundamental equations
and thus, depending on the system under study, biogeochemical models differ significantly
with respect to the type and number of state variables, processes and functions. A widely
used model is the so called NPZD-type model, see e.g. Evans and Parslow [1985] or Fasham
et al. [1990], where N denotes the pool of nutrients, P phytoplankton, Z zooplankton and
D detritus. The fluxes between these state variables are biogeochemical processes including
nutrient uptake by phytoplankton, grazing of herbivorous zooplankton and mortality,
excretion of zooplankton and remineralisation of dead organic matter into nutrients.
In order to describe the processes occurring in biogeochemical models partial differential
equations (PDEs) are used. By applying the operational split methods the PDEs can simply
be subdivided into integrable pieces, which are successively solved, see Hairer et al. [2006].
Furthermore, this method has good accuracy properties by numerically approximating the
solution.

Example 4.0.1.
Let c be the vector of concentrations, t the time and x the location. The linear advection
equation with constant velocity u is given by

∂c

∂t
(t) + u

∂c

∂x
(t) = −ac(t). (4.1)

Applying the split method to equation (4.1) results in

c
n+ 1

2
i − cni

∆t
+ u

cni + cni−1

∆x
= 0 (4.2)

cn+1
i − cn+ 1

2
i

∆t
= −acn+1

i , i = 1, . . . , N (4.3)

where the first equation denotes the so-called advection step and the second equation
denotes the process step. Taken the sum of both leads to the discretisation of the whole
advection equation.

Remark 4.0.1. In the following the index i ranges from 1 to N .
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4 Application of numerical methods in biogeochemical models

4.1 Production-destruction equation systems

The ODE calculated in an operational split method for the complete biogeochemical model
is of high numerical relevance. It remains

dci(t)
dt

= Pi(c(t))−Di(c(t)), (4.4)

where c(t) = (c1(t), . . . , cN (t))T denotes the vector of concentrations. The right hand
side describes the fluxes, where Pi(c(t)) and Di(c(t)) represent the production (source)
and destruction (sink) rates of the i-th constituent. Both may depend either linearly or
non-linearly on c(t) and can be rewritten as

Pi(c(t)) =
N∑
j=1

pij(c(t))

Di(c(t)) =
N∑
j=1

dij(c(t)),

(4.5)

with pij(c(t)) ≥ 0 representing the rate at which the j-th constituent transforms into the
i-th, while dij(c(t)) ≥ 0 denotes the rate at which the i-th constituent transforms into the
j-th, cp. Burchard et al. [2003].
In simple NPZD-type models all state variables are based on the same measurable unit,
e.g. carbon, and the reactive terms do only exchange mass between state variables fulfilling

pij(c(t)) = dji(c(t)), for i 6= j and
pii(c(t)) = dii(c(t)) = 0.

(4.6)

Theorem 4.1.1.
Equation (4.4) guarantees the conservation of mass.

Proof.

d

dt

(
N∑
i=1

ci(t)

)
=

N∑
i=1

(Pi(c(t))−Di(c(t))

=
N∑
i=1

N∑
j=1

pij(c(t))− dij(c(t))

=
N∑
i=1

pii(c(t))− dii(c(t))

= 0.

(4.7)
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4.2 Test cases

The model is positive, if the following condition holds for non-negative initial values,
i.e. the solution ci(t) is greater than zero for all times t and i = 1, . . . , N , see Burchard
et al. [2003]:

dj,i(c(t))→ 0 for ci(t)→ 0. (4.8)

From a numerical point of view

1. positivity and

2. conservativity

are the two main characteristics of the model system. These have to be respected by the
numerical schemes.

4.2 Test cases

The comparison of the numerical schemes applied to marine biogeochemical models is
conducted on the basis of three test cases. These are now presented.

1 - A simple linear model

This test case, taken from Burchard et al. [2003] describes the mass exchange between two
constituents and is given by:

dc1(t)
dt

= c2(t)− ac1(t)

dc2(t)
dt

= ac1(t)− c2(t)
(4.9)

All components of the vector of initial values c(0) are positive as well as the dimensionless
constant a. Writing system (4.9) in production-destruction notation, the terms are given
as:

P =

 0 c2(t)

ac1(t) 0

 D =

 0 ac1(t)

c2(t) 0

 ,

and the Jacobian matrix of the system has the following form

J =

−a 1

a −1

 .

The analytical solution of system (4.9) is

c(t) =
1
6
·
(

1
5

)
+

11
15
· e−6·t·

(
1
−1

)
, (4.10)

where a = 5 and the vector of initial values is chosen as c(0) = (0.9, 0.1). The graphical
presentation of the analytical solution can be seen in Figure 4.1.
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4 Application of numerical methods in biogeochemical models

Figure 4.1: The analytical solution of the linear test case versus non-dimensional time. The vector
of initial values is chosen as c(0) = (0.9, 0.1). The red line shows c1(t) and the blue line shows c2(t).

2 - A non-linear model

This test case, also taken from Burchard et al. [2003], describes mass exchange between
three constituents and is given in the following way:

dc1(t)
dt

= − c1(t)
c1(t) + 1

c2(t)

dc2(t)
dt

=
c1(t)

c1(t) + 1
c2(t)− ec2(t)

dc3(t)
dt

= ec2(t).

(4.11)

The production and destruction terms are:

P =


0 0 0

c1(t)
c1(t)+1c2(t) 0 0

0 ec2(t) 0

 D =


0 c1(t)

c1(t)+1c2(t) 0

0 0 ec2(t)

0 0 0

 .

and the Jacobian matrix of system (4.11) is given as follows:

J =


−c2(t)

(c1(t)+1)2
−c1(t)
c1(t)+1 0

c2(t)
(c1(t)+1)2

c1(t)
c1(t)+1 − e 0

0 e 0

 .

The constituents c1(t), c2(t), c3(t) may be interpreted as nutrient, phytoplankton and
detritus and the system as a biogeochemical model for the upper oceanic layer in spring,
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4.2 Test cases

Figure 4.2: High order reference solution (RK4) of the non-linear test case, versus non-dimensional
time, with step size h = 0.5. The red line shows cn1 (nutrients), the blue line cn2 (phytoplankton)
and the green line cn3 (detritus).

when nutrient rich surface water is captured in the euphotic zone, where the mineralisation
of detritus is not included, cp. Burchard et al. [2003].
For this test case no analytical solution can be obtained and hence the RK4, see 4.15 on
page 30, is used as a reference solution with c(0) = (9.98, 0.01, 0.01) as the vector of initial
values. The parameter e has been chosen as 0.3 and the dimensionless step size has been
set to h = 0.1, see Figure 4.2.

3 - The Robertson test problem

The stiff Robertson test case for chemical reactions

dc1
dt

(t) = Ac2(t)c3(t)−Bc1(t)

dc2
dt

(t) = Bc1(t)−Ac2(t)c3(t)− Cc2(t)2

dc3
dt

(t) = Cc2(t)2

(4.12)

describes the kinetics of an auto-catalytic reaction given by Robertson [1966]. The
production and destruction terms are:

P =


0 Ac1(t)c2(t) 0

Bc1(t) 0 0

0 Cc2(t)2 0

 D =


0 Bc1(t) 0

Ac1(t)c2(t) 0 Cc2(t)2

0 0 0
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4 Application of numerical methods in biogeochemical models

Figure 4.3: High order reference solution of the Robertson test case computed with the MP2
at a number of 241795 exponentially increasing time steps hn = 2· 10−14· 1.0002n versus a non-
dimensional time. For clarity cn2 (blue line) is multiplied with a factor of 104. The red line shows
cn1 and the green line cn3 .

and the Jacobian matrix of the Robertson test problem is given by

J =


−B Ac3(t) Ac2(t)

B −Ac3(t)2Cc2(t) −Ac2(t)

0 2Cc2(t) 0

 .

The reference solution for this test case, see Figure 4.3, is computed with the MP2 method
at very short time steps. The concentrations of the chemical constituents are taken as:

A = 104s−1, B = 0.04s−1, and C = 3 · 107s−1,

and the vector c(0) of initial values is chosen as (1, 0, 0), as done by Burchard et al. [2003].

4.3 Application of numerical methods

As mentioned above, mostly the ODEs that occur in biogeochemical models cannot be
solved analytically, but the solutions are numerically approximated. In order to obtain
satisfying results for the whole biogeochemical problem it is important and necessary to
achieve accurate approximated solutions for the ODE part.
Taking into account the two characteristics mentioned on page 25, three criteria for
comparing numerical schemes in biogeochemical models can be taken. These refer to the
ability of the schemes:
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4.3 Application of numerical methods

1. to be unconditionally positive

Definition 4.3.1. An integration scheme Φ is called unconditionally positive if
cn+1 > 0 for any arbitrary time step h > 0 and cn > 0.

2. to be conservative

Definition 4.3.2. An integration scheme Φ is called conservative if

n∑
i=1

(
cn+1
i − cni

)
= 0,

for all fully conservative ODEs in form of equation (4.4), and pii(c(t)) = dii(c(t)).

3. to have a high order of accuracy for low computational effort

The former two properties are considered when comparing numerical schemes. In this
study however, the main focus is on the accuracy and the computing time.

4.3.1 Explicit schemes with fixed time steps

The well known OSMs -
the EM

cn+1
i = cni + h· (Pi(cn)−Di(cn)) (4.13)

and RK2

c
(1)
i = cni + h· (Pi(cn)−Di(cn))

cn+1
i = cni +

h

2
·
(
Pi(cn) + Pi(c(1))−Di(cn)−Di(c(1))

) (4.14)

are often used for biogeochemical modelling, because they are conservative and have low
computational effort. However, they may compute negative values for sufficiently large
time steps. In order to avoid that, the use of smaller time steps is necessary, but the
smaller the time step the higher the computational effort and hence the costs increase
significantly.
Applying the EM to test case 1 and 2, see Figure 4.4 and 4.7, the effect of non-positivity
for too long time steps can be seen. For test case 1 the scheme strongly oscillates, see
Figure 4.4, and in test case 2 negative nutrient concentrations occur, which lead to mass
exchange from phytoplankton to nutrient and give a artificial increase of nutrient (t = 13),
see Figure 4.7. For test case 3 the simulation aborts after a few seconds, because negative
concentrations and subsequent instabilities occur, cp. Burchard et al. [2003].
The RK2 uses the EM as predictor step and the disadvantages of non-positivity and non-
stability can be seen in Figure 4.5 and 4.8. The numerical solution of test case 1 has low
accuracy though the scheme is of order 2. The approximated solution of the non-linear
model is little accurate in the region, where the predictor step is negative, that is the
moment of nutrient depletion (t ≈ 11). However, in contrast to the EM the RKM has high
accuracy in reproducing the initial phase of nutrient uptake.
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4 Application of numerical methods in biogeochemical models

For the stiff Robertson test problem the simulation also aborts, as well as it happens for
the EM, due to the fact that negative concentrations and instabilities occur.
The RK4:

c
(1)
i = cni +

h

2
(
Pi(cn)−Di(cn)

)
c
(2)
i = cni +

h

2

(
Pi(c(1))−Di(c(1))

)
c
(3)
i = cni + h

(
Pi(c(2)(t))−Di(c(2))

)
cn+1
i = cni +

h

6

(
Pi(cn)−Di(cn) + 2c(1) + 2c(2) + c(3)

)
(4.15)

gives more accurate results for test case 1 and 2 than the RK2, and of course it is
conservative. However, applied to test case 1, see Figure 4.6 the initial phase (t < 0.6) has
low accuracy though the scheme is of order four. The approximated solution of test case 2,
see Figure 4.9, shows high accuracy properties, notwithstanding the little variations at the
top of the phytoplankton bloom on the one hand and at the moment of nutrient depletion
(t ≈ 11) on the other hand. These also occur, due to the non-positivity of the schemes.
Similar to the RK2, the RK4 is not suitable for solving stiff problems, because negative
concentrations and instabilities occur, too.

Figure 4.4: The EM with step size h = 0.25 is applied to test case 1 and gives the two angular
lines (pink for cn1 and cyan for cn2 ). The analytical solution is also plotted, in red (c1(t)) and blue
(c2(t)) lines. Please note that negative values appear for the approximated solution at t = 0.25.

30



4.3 Application of numerical methods

Figure 4.5: The RK2 applied to test case 1 with step size h = 0.25 can be seen as the two angular
lines, the pink one shows cn1 and the green one shows cn2 , where no negative values appear. The
analytical solution is simulated in red (c1(t)) and blue (c2(t)) lines.

Figure 4.6: The RK4 applied to test case 1 with step size h = 0.25 can be seen as the two angular
lines in pink (cn1 ) and green (cn2 ). The analytical solution is simulated in red (c1(t)) and blue (c2(t))
lines.

4.3.2 Quasi-implicit schemes with fixed time steps

As mentioned above it is necessary that numerical schemes retain the non-negativity of
a model problem. This was first addressed by Patankar [1980] for numerical turbulence
models.

Example 4.3.1. A typical model problem motivated by turbulence modelling has the
following form

dc(t)
dt

= P (t, c(t))−Q(t, c(t))c(t) (4.16)
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4 Application of numerical methods in biogeochemical models

Figure 4.7: The EM with step size h = 0.5 applied to test case 2 gives the shifted lines (pink for
cn1 , cyan for cn2 and yellow for cn3 ). Negative values appear for the approximated solution at e.g.
t = 13, 15. The reference solution (RK4) is plotted in red (cn1 ), blue (cn2 ) and green (cn3 ) lines.

Figure 4.8: The RK2 with step size h = 0.5 applied to test case 2 is plotted together with
the reference solution (RK4). The red, blue and green lines show the reference solution of
c1(t), c2(t), c3(t) and in pink, cyan and yellow lines the approximated solutions of c1(t), c2(t), c3(t)
are presented.

where c denotes an arbitrary non-negative quantity, P and Qc the non-negative source and
sink terms, respectively and t denotes the time. As in Burchard [2002] the straight-forward
in time discretisation of equation (4.16) is given by

cn+1 − cn

h
= Pn(t, c(t))−Qn(t, c(t))cn (4.17)

with h denoting the time step.

32



4.3 Application of numerical methods

Figure 4.9: The RK4 with step size h = 0.5 applied to test case 2. The pink line shows the
concentration of cn1 , the cyan lines the one of cn2 and the yellow line the one of cn3 . The reference
solution (RK4) of c1(t), c2(t) and c3(t) is depicted in red, blue and green, respectively.

Rearranging equation (4.17) gives the solution at the new time step

cn+1
i = cni

(
1− hQni (t, c(t))

)
+ hPni (t, c(t)), (4.18)

which is negative if the right hand side of equation (4.17) is negative and the time step is
large with

h >
cn

Qn(t, c(t))cn − Pn(t, c(t))
. (4.19)

Restricting h to avoid equation (4.19) is computational unreasonable and hence the
following quasi-implicit numerical scheme is generally used (e.g. in turbulence modelling):

cn+1 − cn

h
= Pn(t, c(t))−Qn(t, c(t))cn· c

n+1

cn
(4.20)

This results in an always non-negative solution

cn+1 =
cn + hPn(t, c(t))
1 + hQn(t, c(t))

. (4.21)

Motivated by this the Patankar Euler method (P1) of order one

cn+1
i = cni + h

(
Pi(cn)−Di(cn)

cn+1
i

cni

)
(4.22)

for production-destruction equation systems was proposed by Patankar (1980), see
Patankar [1980].
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4 Application of numerical methods in biogeochemical models

The P1, as well as its extended version of order two, the Patankar Runge Kutta method
(P2), developed by Burchard et al. [2003],

c
(1)
i = cni + h

(
Pi(cn)−Di(cn)

c
(1)
i

cni

)

cn+1
i = cni +

h

2

(
Pi(cn) + Pi(c(1))−Di(cn)−Di(c(1))

cn+1
i

c
(1)
i

) (4.23)

is not conservative, due to the fact that they are developed for turbulence modelling, where
conservation is not essential and hence source and sinks terms are numerically treated in
different ways. The equal numerical treatment of source and sink terms was introduced
by Burchard et al. [2003]. The authors developed the modified Patankar scheme of first
order, the so-called modified Patankar Euler method (MP1)

cn+1
i = cni + h

 N∑
j=1

(
pij(cn)

cn+1
j

cnj

)
−

N∑
j=1

(
dij(cn)

cn+1
i

cni

) (4.24)

and of second order, the so-called modified Patankar Runge Kutta method (MP2)

c
(1)
i = cni + h

 N∑
j=1

pij(cn)
c
(1)
j

cnj
−

N∑
j=1

dij(cn)
c
(1)
i

cni


cn+1
i = cni +

h

2

 N∑
j=1

(
pij(cn) + pij(c(1))

cn+1
j

c
(1)
j

)
− h

2

 N∑
j=1

(
dij(cn) + dij(c(1))

cn+1
i

c
(1)
i

) .
(4.25)

The MP1 is based on the traditional EM and the MP2 on the RK2. The MP2 gives accurate
results for test cases 1 and 2, see Figure 4.10 and 4.12 and additionally is suitable for solving
stiff problems as can be seen in Figure 4.14. There the results of the MP2 applied to test
case 3 are depicted.
Additionally, Figure 4.10 depicts the advantages of the MP2 - the numerical stability as
well as the positivity and conservativity. For test case 2, see Figure 4.12 the numerical
solution is also positive and conservative, but the results of the RK2 shows an overall
higher accuracy. The drawbacks of the MP2 are on the one hand the comparatively high
computational effort due to the necessity of solving a linear equation system and on the
other hand that conservativity does not hold in biochemical sense, because conservation in
biochemical context refers to the conservation of atoms as well as of energy, cp. Bruggeman
et al. [2007]. The authors addressed the problem of conservativity and developed the
extended modified Patankar Euler method (EMP1) of first order

cn+1
i = cni + h

(
Pi(cn)−Di(cn)

) ∏
j∈Ln

cn+1
j

cnj
, (4.26)
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4.3 Application of numerical methods

Figure 4.10: The MP2 applied to test case 1 in pink (cn1 ) and cyan (cn2 ) lines, together with the
analytical solution of c1(t) (red) and c2(t) (blue). The step size h is chosen as 0.25.

where Ln = {i : Pi(cn)−Di(cn) < 0, i ∈ {1, ..., N}} and the
extended modified Patankar Runge Kutta method (EMP2) of second order

c
(1)
i = cni + h

(
Pi(cn)−Di(cn)

) ∏
j∈Ln

c
(1)
j

cnj
,

cn+1
i = cni +

h

2

(
Pi(cn) + Pi(c(1))

) ∏
k∈Kn

cn+1
k (t)

c
(1)
k (t)

−
(
Di(cn)−Di(c(1))

) ∏
k∈Kn

cn+1
k (t)

c
(1)
k (t)

,

(4.27)

where Ln = {i : Pi(cn)−Di(cn) < 0, i ∈ {1, ..., N}} and
Kn = {i : Pi(cn) + Pi(c(1))−Di(cn)−Di(c(1)) < 0, i ∈ {1, ..., N}}.
Though the EMP1 and the EMP2 seem to be schemes in which n non-linear implicit
equations have to be solved, they can be reduced to a polynomial equation in one single
variable as it is shown in Bruggeman et al. [2007]. Thus the problem to be solved is just
a polynomial one. The EMP2 is a conservative and unconditionally positive numerical
scheme and hence no negative concentrations appear for any time step. The results are
more accurate for test case 1 and 2, see Figure 4.11 and 4.13, compared to those given
by the MP2. Furthermore, the EMP2 is not suitable for solving stiff problems, because a
very large negative relative derivative occurs.
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Figure 4.11: The EMP2 applied to test case 1 together with the analytical solution. The pink and
cyan lines show the approximated solutions of c1(t) and c2(t) and the red and blue lines show the
corresponding analytical solutions. The step size h equals 0.25.

Figure 4.12: The MP2 applied to test case 2 in pink (cn1 ), cyan (cn2 ) and yellow (cn3 ) together with
the reference solution (RK4) for c1(t)n (red), c2(t) (blue) and c3(t) (green). The step size h is
chosen as 0.5.

4.3.3 Semi-implicit schemes with adapted time steps

Given that the RBMs are derived from diagonal implicit RKMs, see chapter 3, they
preserve exact conservation properties and furthermore, they are suitable for solving stiff
problems. Additionally, the positivity can be achieved by choosing the tolerance values atol
and rtol sufficient small, but the smaller the tolerances, the more time steps are needed
and hence the computing time increases. The maximum values for atol and rtol have been
prescribed at 10−2 and through trial and error the best results have been achieved by the
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4.3 Application of numerical methods

Figure 4.13: The EMP2 applied to test case 2 together with the reference solution (RK4). The
pink, cyan and yellow lines show the approximated solutions of c1(t), c2(t) and c3(t). The red, blue
and green lines show the corresponding reference solutions (RK4). The step size h is chosen as 0.5.

Figure 4.14: The MP2 applied to test case 3 in pink (cn1 ), cyan (cn2 ) and yellow (cn3 ) lines together
with the reference solution (MP2) of c1(t) (red), c2(t) (blue) and c3(t) (green). As in Burchard
et al. [2003] an exponential growing step size hn = 10−6· 1.8n is used to compute the approximated
solution, resulting in 63 time steps. The reference solution is also computed with exponentially
increasing time steps hn = 2· 10−14· 1.0002n. For clarity, the results of cn2 have been multiplied by
a factor of 104.
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4 Application of numerical methods in biogeochemical models

denoted values, see Table 4.3.3. In this Table also the starting step size h and the number
of accepted and rejected steps are listed.
The two Rosenbrock solvers ROS3 and ROS4 that are used for comparison, are presented
in an rearranged form of equation (3.16) and for this derivation the starting point is the
general form of the 4-stage RBM, defined on page 18

k1 =
h

I− hγJi
f(cn)

k2 =
h

I− hγJi
(f(cn + α21k1) + Jiγ21k1)

k3 =
h

I− hγJi
(f(cn + α31k1 + α32k2 + Ji(γ31k1 + γ32k2)

k4 =
h

I− hγJi
(f(cn + α41k1 + α42k2 + α43k3)+

+
h

I− hγJi
(Ji(γ41k1 + γ42k2 + γ43k3))

cn+1 = cn + b1k1 + b2k2 + b3k3 + b4k4

(4.28)

where Ji denotes the i-th component of the Jacobian matrix

Ji :=
N∑
j=1

∂fi(cn)
∂cnj

(4.29)

and γij and αi,j are the determining coefficients identical to that of the defined RBM on
page 18.
Inserting kl, l = 1, . . . , 4 into the equation for cn+1, given in system 4.3.3, and using the
following substitution

c
(1)
i := cni + h̃·α21fi(cn)

c
(2)
i := cni + h̃·

[
α31fi(cn) + α32(f(c(1)) + Jiγ21fi(cn))

]
c
(3)
i := cni + h̃·

[
α41fi(cn) + α42(fi(c(1)) + Jiγ21f(cn))

]
+

+ h̃·
[
α43(fi(c(2)) + Jih̃(γ31fi(cn) + γ32(fi(c(1)) + Jiγ21f(cn))))

]
(4.30)

where
h̃ :=

h

I− hγJi
(4.31)

results in

cn+1 = cn + h̃·
[
b1fi(cn) + b2

{
fi(c(1)) + Jiγ21fi(cn)

}
+ b3fi(c(2))

]
+

+ h̃2b3Ji

{
γ31fi(cn) + γ32(fi(c(1)) + Jiγ21fi(cn))

}
+ h̃b4fi(c(3))+

+ h̃2b4Ji

{
γ41fi(cn) + γ42(fi(c(1)) + Jiγ21fi(cn))

}
+

+ h̃2b4Jiγ43f(c(3))+

+ h̃2b4Jiγ43

{
Ji(γ31fi(cn) + γ32(fi(c(1)) + Jiγ21fi(cn))

}
.

(4.32)
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For further simplification the following two abbreviations are used

p1(t) := fi(c(1)) + Jiγ21fi(cn)

p2(t) := fi(c(3)) + Ji(γ31fi(cn) + γ32(fi(c(1)) + Jiγ21fi(cn))
(4.33)

which convert equation (4.32) into

cn+1 = cn + h̃· [b1fi(cn) + b2p1] +

+ h̃· b3
{
f(c(2)) + Jih̃(γ31fi(cn) + γ32p1)

}
+

+ h̃· b4
{
f(c(3)) + Jih̃ [γ41f(cn) + γ42p1 + γ43p2]

}
.

(4.34)

Additionally, using the notations

γ1 = h̃(γ31fi(cn) + γ32p1)

γ2 = h̃(γ41fi(cn) + γ42p1 + γ43p2)
(4.35)

and finally applying the equations (4.33) and (4.35) to equation (4.30) and substitute

fi(cn) = Pi(cn)−Di(cn), (4.36)

the rearranged Rosenbrock formula for the ROS4 solver of fourth order is obtained:

c
(1)
i = cni + h̃·α21(Pi(cn)−Di(cn))

c
(2)
i = cni + h̃· [α31(Pi(cn)−Di(cn)) + α32p1]

c
(3)
i = cni + h̃· [α41(Pi(cn)−Di(cn)) + α42p1 + α43p2]

cn+1
i = cni + h̃b1· [Pi(cn)−Di(cn)] + h̃b2p1+

+ h̃b3

[
Pi(c(2))−Di(c(2)) + Jiγ1

]
+

+ h̃b4

[
Pi(c(3))−Di(c(3)) + Jiγ2

]
.

(4.37)

In addition, the formula for the third order Rosenbrock solver ROS3 is obtained, if the
equation for c(3)

i is let out and b4 is set to zero.

Remark 4.3.1.
In this study

1. the L-stable versions of both solvers are used, see Table 7.2 in Hairer and Wanner
[1991], where the values of the coefficients αlj , bl and γlj are taken from Hairer and
Wanner [1991] and Sandu et al. [1997b].

2. a modified version of ROS3 is used, according to the origin one, which has been
developed by Sandu et al. [1997b].
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ROS3 ROS4

test cases 1 2 3 1 2 3

rtol 10−4 10−6 10−2 10−4 10−5 10−2

atol 10−3 10−4 10−7 10−3 10−5 10−7

h 0.25 0.5 10−3 0.25 0.5 10−3

accepted steps 9 (9) 50 (60) 38 (63) 9 (9) 57 (60) 43 (63)

rejected steps 1 10 2 0 7 0

Table 4.1: The tolerance values atol and rtol, starting step size h and the number of accepted and
rejected steps for ROS3 and ROS4, respectively. In brackets: the number of steps needed by the
fixed step methods.

Applying ROS3 and ROS4 without any step size restriction to test case 1, see 4.15
and 4.16, results in 9 time steps with positive values. Both schemes show highly accurate
results even for the initial phase of the problem. For test case 2, see the Figures 4.17 and
4.18, both methods give unconditional positive and conservative results in all phases of the
model problem, too. Nevertheless, ROS4 shows more accurate results than ROS3, due to
the fact that it makes seven more steps and hence it can higher resolve the approximated
solution. Also the approximated solutions of test case 3, depicted in the Figures 4.19 and
4.20, are positive, conservative and accurate for both Rosenbrock solvers. However, both
RBMs have some problems in accurately approximating the initial phase (up to t = 104)
of c2(t), though they rapidly adapt the step size.

From a mathematical point of view numerical methods with a fixed step size and with
adaptive step size cannot be compared, because the underlying criteria - computing time
and global method error - are not comparable. Similar accurate results can be obtained
for fixed step methods compared to schemes with adaptive step size by choosing the step
size small enough. However, this leads to an increase of computing time, due to the fact
that they have to solve a higher number of equations, than the adaptive size methods.
Thus, in order to directly compare all numerical schemes, the step size of the RBMs is
set to 0.25 for the 1st and 0.5 for the 2nd test case (similar to the schemes with the fixed
step size), by restricting the maximum step size. Furthermore the tolerances values rtol
and atol have been chosen to be large (10−1). Thus, each step is accepted and the next
time step size is set to the maximum. This restriction is only possible for the first two test
cases, because in test case 3 an exponential growing step size is used, which has not been
transfered to the RBMs in this study. Please note, that an alternative could be to include
adaptive step size mechanisms in the fixed step methods (using e.g. the embedded RKM).
As expected, ROS3 and ROS4 are less accurate in representing the initial phase, see
Figure 4.21 and 4.22, compared to the model run with the RBMs using an adaptive step
size for integration, see Figure 4.15 and 4.16. After t = 0.5, where the reaction between the
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Figure 4.15: ROS3 applied to test case 1 together with the analytical solution that is shown in
the red (c1(t)) and blue (c2(t)) lines. The approximated solutions are plotted in pink (cn1 )and cyan
(cn2 ) lines. The starting step size is chosen as 0.25, the relative error tolerance rtol as 10−4 and the
absolute error tolerance atol as 10−3.

Figure 4.16: ROS4 applied to test case 1 together with the analytical solution that is shown in
the red (c1(t)) and blue (c2(t)) lines. The approximated solutions are plotted in pink (cn1 )and cyan
(cn2 ) lines. The starting step size is chosen as 0.25, the relative error tolerance rtol as 10−4 and the
absolute error tolerance atol as 10−3.

temporal changes of the two constituents cease, the approximations are highly accurate.
For test case 2, similar accurate results are obtained for the whole integration interval, as
shown in the Figures 4.23 and 4.24 with RBMs and fixed time step compared to RBMs
with adapted time step. Overall, the differences between ROS3 and ROS4 are marginal
and their approximations are positive and conservative for both test cases.
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4 Application of numerical methods in biogeochemical models

Figure 4.17: ROS3 applied to test case 2 together with the reference solution (RK4) that is shown in
the red (cn1 ), blue (cn2 ) and green (cn3 ) lines. The pink, cyan and yellow lines show the approximated
solutions of c1(t), c2(t) and c3(t). The starting step size is chosen as 0.5, the relative error tolerance
rtol as 10−6 and the absolute error tolerance atol as 10−4.

Figure 4.18: ROS4 applied to test case 2 together with the reference solution (RK4) that is shown in
the red (cn1 ), blue (cn2 ) and green (cn3 ) lines. The pink, cyan and yellow lines show the approximated
solutions of c1(t), c2(t) and c3(t). The starting step size is chosen as 0.5, the relative error tolerance
rtol as 10−5 and the absolute error tolerance atol as 10−5.
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4.3 Application of numerical methods

Figure 4.19: ROS3 applied to test case 3 together with the reference solution (MP2), computed
with exponentially increasing time steps hn = 2· 10−14· 1.0002n, shown in the red (cn1 ), blue (cn2 )
and green (cn3 ) lines. The pink, cyan and yellow lines show the approximated solutions of c1(t), c2(t)
and c3(t). The starting step size h is chosen as 10−3, the relative error tolerance rtol as 10−2 and
the absolute error tolerance atol as 10−7. For clarity the results of c2n again have been multiplied
by a factor of 104.

Figure 4.20: ROS4 applied to test case 3 together with the reference solution (MP2), computed
with exponentially increasing time steps hn = 2· 10−14· 1.0002n, shown in the red (cn1 ), blue (cn2 )
and green (cn3 ) lines. The pink, cyan and yellow lines show the approximated solutions of c1(t), c2(t)
and c3(t). The starting step size h is chosen as 10−3, the relative error tolerance rtol as 10−2 and
the absolute error tolerance atol as 10−7. For clarity the results of cn2 again have been multiplied
by a factor of 104.
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4 Application of numerical methods in biogeochemical models

Figure 4.21: Step size restricted ROS3 applied to test case 1 together with the analytical solution
that is shown in the red (c1(t)) and blue (c2(t)) lines. The approximated solutions are plotted in
pink (cn1 )and cyan (cn2 ) lines. The step size h = 0.25 is fixed for each step, the relative and absolute
error tolerances rtol and atol are set to 10−1.

Figure 4.22: Step size restricted ROS4 applied to test case 1 together with the analytical solution
that is shown in the red (c1(t)) and blue (c2(t)) lines. The approximated solutions are plotted in
pink (cn1 )and cyan (cn2 ) lines. The step size h = 0.25 is fixed for each step, the relative and absolute
error tolerances rtol and atol are set to 10−1.
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4.3 Application of numerical methods

Figure 4.23: Step size restricted ROS3 applied to test case 2 together with the reference solution
(RK4) that is shown in the red (cn1 ), blue (cn2 ) and green (cn3 ) lines. The pink, cyan and yellow
lines show the approximated solutions of c1(t), c2(t) and c3(t). The step size h = 0.5 is fixed for
each step, the relative and absolute error tolerances rtol and atol are set to 10−1.

Figure 4.24: ROS4 applied to test case 2 together with the reference solution (RK4) that is shown in
the red (cn1 ), blue (cn2 ) and green (cn3 ) lines. The pink, cyan and yellow lines show the approximated
solutions of c1(t), c2(t) and c3(t). The step size h = 0.5 is fixed for each step, the relative and
absolute error tolerances rtol and atol are set to 10−1.
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4 Application of numerical methods in biogeochemical models
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5 Comparison of the schemes

In this chapter the RBMs are compared with traditional (Euler and Runge Kutta) and
advanced numerical schemes (modified and extended modified Patankar methods) used in
ecosystem modelling.
In order to evaluate the schemes and to define whether a numerical method is suitable for
applications to biogeochemical models

1. the global method error
ε = max

l=0,...,n
‖cl(t)− c(tl)‖2 (5.1)

and

2. the computational cost

are determined for each scheme and compared.
Each numerical method was computed four times for 100000 times and the average of
these four results was taken for evaluation to get significant results of the computing time.
For obtaining the global method error of the schemes for test case 1, the results are
compared to the analytical solution. For test case 2 and 3 there is no analytical solution
and hence reference solutions (RK4 for test case 2 and MP2 for test case 3 with very small
step size) have been taken for computing the error. This requires, that the computed data
of all applied methods have to be interpolated to 300 steps of size h = 0.1 for test case 2 and
to 241795 steps of size h = hn = 2· 10−14· 1.002n for test case 3, respectively. Afterwards,
the global method error and the computational cost of the schemes are determined for each
method and the results are plotted. As mentioned above, the explicit and quasi-implicit
schemes use fixed time steps. Thus, to compare the schemes with the RBMs, the step
size of the latter has been restricted, as mentioned in chapter 4. Due to the fact that the
explicit schemes as well as the EMP2 are not suitable for solving stiff ordinary differential
equations, the results of the MP2 and the RBMs are compared.
In the first section all explicit, quasi-implicit and semi-implicit methods are compared using
a fixed time step. Additionally, experiments are performed with RBMs using adaptive step
size. The last section gives an overview of the influence of the tolerance values on the
performance of the RBMs.

5.1 Comparison between explicit, quasi- and semi-implicit
methods with fixed step size

First, the results of all numerical schemes with fixed step size are compared. Note however,
an essential feature of the RBMs is eliminated.
The results of test case 1 show that the better the performance of the methods, in terms of
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5 Comparison of the schemes

(a) Global method error (b) Execution time

Figure 5.1: Global method error (left) and execution time (right) of all seven numerical schemes
with fixed steps of size 0.25 applied to test case 1 in the following order: EM, RK2, RK4, MP2,
EMP2, ROS3, ROS4.

(a) Global method error (b) Execution time

Figure 5.2: Global method error (left) and execution time (right) of all seven numerical schemes
with fixed steps of size 0.5 applied to test case 2 in the following order: EM, RK2, RK4, MP2,
EMP2, ROS3, ROS4.

accuracy (see Figure 5.1(a)) the more cost expensive are the schemes (see Figure 5.1(b)).
However, the trend is not as such visible for the RBMs. Both solvers - ROS3 and ROS4 -
give accurate results similar to the RK4, MP2 and EMP2. However, their computing time
is higher as that of the MP2 but less than that of the EMP2. In contrast, the RKMs have
the lowest computational effort (six times less than the other tested schemes).
For test case 2 the general trend in the relationship of the global method error and
the computing time cannot be found. The RBMs give the most accurate results of all
tested schemes, see Figure 5.2(a), because the fixed step size forces the solvers to compute
solutions even at times where the temporal changes of the constituents are relatively small.
Thus, their global method error is about ten times smaller than that of the RK4 and even
100 times smaller than that of the MP2 and EMP2. The RBMs need similar computing
time as the latter two. That means, the RBMs are about six times more expensive than
the RK4, see Figure 5.2(b)

48



5.2 Comparative analysis between the fixed step and original Rosenbrock methods

(a) Global method error (b) Execution time

Figure 5.3: Global method error (left) and execution time (right) of all seven numerical schemes
applied to test case 1 in the following order: EM, RK2, RK4, MP2, EMP2, ROS3, ROS4.

5.2 Comparative analysis between the fixed step methods and
the Rosenbrock methods with adapted step size

While for the former experiments a fixed time step for the RBMs is used for a direct
comparison with the explicit and quasi-implicit schemes, in these experiments the RBMs
with adaptive time stepping (in their original form) are applied. As expected, the
performance of the RBMs is influenced when this feature is included. The results for
the first test case are more accurate and less expensive (Figure 5.3) and again, the better
the performance in terms of accuracy (Figure 5.3(a)), the higher is the computing time,
except the EMP2 (Figure 5.3(b)). The RBMs give the most accurate results of all schemes.
The global error of the other tested schemes is about one order of magnitude higher than
that of the RBMs. The EMP2 requires the highest computational effort, while the RBMs
have similar execution times as the MP2. The most effective schemes are the explicit RKM
(five times less computing time than RBMs).
For test case 2 again the RBMs are the most accurate schemes of all tested numerical
methods, see Figure 5.4(a). In contrast to the other explicit and quasi-implicit schemes,
the global error of the RK4 has the same order of magnitude as the RBMs. The quasi-
implicit schemes are about ten times less accurate than the RBM, but they are as expensive
as both Rosenbrock solvers and hence about four times more expensive than the RKMs,
as can be seen in Figure 5.4.
Similar to test case 2, there is no correlation between the global method error and the
execution time of MP2 and the Rosenbrock solvers in test case 3. The ranges of global
method error and the computational cost are smaller for test case 3, than for test case 1
and 2. Compared to the MP2, the RBMs give better results, with respect to error and
computational effort. ROS3 is two times more accurate and requires a computing time
that is 40% less than that of the MP2.
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5 Comparison of the schemes

(a) Global method error (b) Execution time

Figure 5.4: Global method error (left) and execution time (right) of all seven numerical schemes
applied to test case 2 in the following order: EM, RK2, RK4, MP2, EMP2, ROS3, ROS4.

(a) Global method error (b) Execution time

Figure 5.5: Global method error (left) and execution time (right) for test case 3 of the three
numerical schemes in the following order: MP2, ROS3, ROS4.

5.2.1 Comparison of the efficiency of the numerical schemes

In order to quantify the costs of the RBMs, all methods are implemented in such a way
that the global error ε is in the range of

1.1· 10−1 ≤ ε ≤ 1.4· 10−1, (5.2)

i.e. their step size is chosen sufficiently small, see Table 5.2.1. In the following, their
runtime was measured in the same way as described above on page 47. The Figures 5.6,
5.7 and 5.8 show the results of these simulations. Only the explicit methods, particularly
the second and fourth order RKMs, need less time than the RBMs for the first two test
cases. Both schemes require only half of the time to give results of the same order of
magnitude of accuracy. The MP2 is slightly more expensive, than the RBMs, for the same
order of magnitude of accuracy for test case 1, although it requires twice as many steps as
the RBMs. Both quasi-implicit schemes - MP2 and EMP2 - need more time for computing
test case 2 than the RBMs, while the EMP2 is the most expensive method.
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5.2 Comparative analysis between the fixed step and original Rosenbrock methods

test case method step size number of steps

1 EM 0.025 80

RK2 0.08 25

RK4 0.1 20

MP2 0.9 20

EMP2 0.1 20

2 EM 0.01 3000

RK2 0.2 150

RK4 0.4 75

MP2 0.08 375

EMP2 0.06 500

3 MP2 10−14· 1.2j 168

Table 5.1: required step size of the fixed step methods to give an global error in the range of
equation 5.2.1; j = 1, . . . , 168.

Figure 5.6: Execution time of the seven numerical schemes EM, RK2, RK4, MP2, EMP2, ROS3
and ROS4 applied to test case 1 by the similar dimension of the global method error.

A highly accurate result has already been obtained for the MP2 applied to test case 3 before
in the experiment without error restriction. After introducing the limits the computational
effort increases about four times.
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5 Comparison of the schemes

Figure 5.7: Execution time of the seven numerical schemes EM, RK2, RK4, MP2, EMP2, ROS3
and ROS4 applied to test case 2 by the similar dimension of the global method error.

Figure 5.8: Execution time of the three numerical schemes MP2, ROS3 and ROS4 applied to test
case 3 by the similar dimension of the global method error.

5.3 Effect of the tolerance values

The performance of the RBMs strongly depends on the choice of the tolerance values rtol
and atol, because they determine the error value err that controls the step size of the
scheme by regulating the size of the difference between the solution and its embedded
solution, as described in chapter 3.4. For test case 1 and 2 the values for the absolute
tolerance atol has been set to 10−2 and 10−4 while the relative tolerance rtol has been set
to 10−2 and 10−4, respectively, for each value of atol. Furthermore atol has been set to
10−6 while the relative tolerance rtol has been set to 10−2, 10−4 and 10−6, respectively.
This yields seven pairs of tolerances rtol and atol. For test case 3 rtol equals 10−2, while
atol was set to 10−4, 10−6 and 10−8. It was not necessary to downscale the absolute and
relative tolerances, because highly accurate results are achieved by using these values and
hence three pairs of tolerances are obtained.
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5.3 Effect of the tolerance values

Figure 5.9: ROS4 applied to test case 1 with large tolerance values rtol = atol = 10−2. The red
(c1(t)) and blue (c2(t)) lines depict the analytical solution, where the pink and cyan lines show the
approximated solution of c1(t) and c2(t).

In the Figures 5.9, 5.10, 5.12, 5.13, 5.15 and 5.16 the influence of the tolerance values on
the performance only of the ROS4 in terms of accuracy is shown, because the results of
ROS4 and ROS3 are similar. The Figures 5.9, 5.12 and 5.15 present the approximated
solution of all test cases with the pair of large tolerance values, while the Figures 5.10,
5.13 and 5.16 present those with pairs of small tolerance values on the right. A higher
accuracy is obtained by choosing rtol and atol sufficiently small (Figures 5.10, 5.13 and
5.16). The Figures 5.11, 5.14 and 5.17 present the tolerances against the global method
error for ROS4 for all test cases.
The global method error decreases rapidly in all test cases (see Figures 5.11, 5.14 and 5.17),
if the tolerance values have been chosen small enough. For test case 1 and 2 that means,
even if the values of the pair (atol,rtol) are smaller than (10−2, 10−4) and (10−4, 10−4),
the error is below 0.03 and 0.01, respectively and thus more accurate results are obtained.
In order to achieve a global error below 0.015 for test case 3, the pair of tolerances must
be smaller than (10−6, 10−2). Overall, the experiments with ROS3 and ROS4 show that
with decreasing tolerance values the execution time is prolonged. However, this increase
is rather marginal and still less time is needed compared to the MP2.
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5 Comparison of the schemes

Figure 5.10: ROS4 applied to test case 1 with small tolerance values rtol = atol = 10−6 . The red
(c1(t)) and blue (c2(t)) lines depict the analytical solution, where the pink and cyan lines show the
approximated solution of c1(t) and c2(t).

Figure 5.11: Effect of different values for rtol and atol on the global method error of ROS4 applied
to test case 1. The x -axis shows the tolerances written below each other and the y-axis shows the
computed error of the ROS4 solver for test case 1.
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5.3 Effect of the tolerance values

Figure 5.12: ROS4 applied to test case 2 with large tolerance values rtol = atol = 10−2. The red
(c1(t)), blue (c2(t)) and green (c3(t)) lines depict the analytical solution, where the pink, cyan and
yellow lines show the approximated solution of c1(t), c2(t) and c3(t).

Figure 5.13: ROS4 applied to test case 2 with small tolerance values rtol = atol = 10−6 . The red
(c1(t)), blue (c2(t)) and green (c3(t)) lines depict the analytical solution, where the pink, cyan and
yellow lines show the approximated solution of c1(t), c2(t) and c3(t).
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5 Comparison of the schemes

Figure 5.14: Effect of different values for rtol and atol on the global method error of ROS4 applied
to test case 2. The x -axis shows the tolerances written below each other and the y-axis shows the
computed error of the ROS4 solver for test case 2.

Figure 5.15: ROS4 applied to test case 3 with large tolerance values rtol = 10−2 and atol = 10−4.
The red (c1(t)), blue (c2(t)) and green (c3(t)) lines depict the analytical solution, where the pink,
cyan and yellow lines show the approximated solution of c1(t), c2(t) and c3(t).
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5.3 Effect of the tolerance values

Figure 5.16: ROS4 applied to test case 3 with small tolerance values rtol = 10−2 and atol = 10−8.
The red (c1(t)), blue (c2(t)) and green (c3(t)) lines depict the analytical solution, where the pink,
cyan and yellow lines show the approximated solution of c1(t), c2(t) and c3(t).

Figure 5.17: Effect of different values for rtol and atol on the global method error of ROS4 applied
to test case 3. The x -axis shows the tolerances written below each other and the y-axis shows the
computed error of the ROS4 solver for test case 3.
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6 Discussion and conclusions

In this study traditional (explicit Euler and Runge Kutta) and advanced (modified and
extended modified Patankar) numerical methods used in biogeochemical modelling are
compared with methods commonly applied in numerical models for chemical reactions
(Rosenbrock methods).
The comparison is based on three simple test cases:

1. a linear model, describing a one-time reaction between two constituents, for which
an analytical solution is available

2. a non-linear model, describing mass exchanges between three constituents

3. a stiff ODE system, describing chemical reactions, running on different time scales,
between three constituents.

The traditional numerical schemes are conservative (in sense of definition 4.3.2), where
the advanced schemes are positive (in sense of definition 4.3.1) and conservative. These
two properties are considered when comparing the numerical schemes. The main focus
however, has been put on the accuracy and the computational effort of the numerical
methods in this study.

The first test case - a two dimensional model - is taken from Burchard et al. [2003].
An example from the field of biogeochemistry is the transformation of iron-III-oxide to
iron-II-oxide under anoxic conditions. Biogeochemical models, which address the role of
iron chemistry parameterise this process, as e.g. done by Weber et al. [2007] (note, that
ultimately a number of processes are involved in iron chemistry and hence more than just
two variables have been included in the model by Weber et al. [2007]).
The second test case - a three dimensional model - is also taken from Burchard et al.
[2003]. Such a system can be regarded as a simple marine biogeochemical Nutrient-
Phytoplankton-Detritus (NPD) model, where fluxes of elements (generally nitrogen)
between the microalgae and dead organic and inorganic elemental (nitrogen) pool are
computed. These rather simple NPD or NPZD (including zooplankton) - type models, see
e.g. Fasham et al. [1990], are still the basis for current complex marine biogeochemical
models, e.g. Neumann et al. [2002], Weber et al. [2007] and Siddorn et al. [2007].
The third test case is the so-called stiff Robertson test problem. It describes the kinetics
of an auto-catalytic reaction given by Robertson [1966] and presents a typical example for
chemical reactions that take place on significantly different time scales. As mentioned
before, reactions running on different time scales are also included in biogeochemical
models, e.g. in the iron model presented by Weber et al. [2007].
Hence, the results of the comparison of the three numerical methods, which are applied
to all test cases are relevant and important for biogeochemical modelling.
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6 Discussion and conclusions

For a direct comparison of the seven numerical schemes the step size of the RBMs has
been restricted for test case 1 and 2. While comparing the performance of the methods
differences occur depending on the test cases:
The restricted RBMs are as accurate as the other schemes, but more expensive than the
explicit methods and the MP2 for test case 1. For test case 2 the RBMs give the most
accurate results. Their computing time is similar to those of the Patankar schemes, but
twice as high as that of the RK4.
Applying the RBMs in their original form (with adaptive step size), their results are more
accurate for test case 1, because they can highly resolve the reactive phase of the problem.
In contrast, their results are slightly less accurate for test case 2, due to the chosen tolerance
values, which lead to larger steps in phases, where the temporal changes of the constituents
are relatively small. For both test cases the adaptive step size mechanism does not decrease
the execution time (in comparison to RBMs and fixed time step).
The explicit schemes as well as the EMP2 are not suitable for solving stiff problems, as
shown e.g. by Hairer and Wanner [1991] and Bruggeman et al. [2007], and thus only
the modified Patankar scheme of second order, as well as the Rosenbrock solvers with
adaptive time stepping are applied to test case 3. The performance of the RBMs clearly
shows the advantage of adaptive time stepping. They are significantly more accurate and
faster compared to the MP2. The latter uses an exponential growing step size in order to
adequately resolve the short term reactions.

The goal of this study was to compare currently used numerical schemes with the
Rosenbrock methods and to investigate, whether the Rosenbrock solvers are suitable for
application to biogeochemical models. In a case where the underlying problem is a chemical
conversion process between two substances (as given in test case 1), the traditional explicit
Runge Kutta methods of 2nd and 4th order are the most convenient. The same applies for
more sophisticated model problems like the test case 2 presented here. The high computing
time of the RBMs in general is caused by the necessity of solving n linear equations in
each step of the calculation, although the effort for this computation has been minimised
due to the fact that only one LU-decomposition is needed per step.
Even if the RBMs use the adaptive step size mechanism their computing time is higher
than that of the explicit RKMs (by the same order of accuracy, see chapter 5) for the first
two test cases, because there the reactions run on similar time scales. Thus, the RBMs
can only choose larger time steps in the initial and final phase of the process, before the
actual reactions start and almost no changes occur, respectively. However, these periods
are too short to substantially save computing time.
Applying the RBMs to stiff ordinary differential equations, like the presented test case 3,
the demand for computing time and accuracy is different from test case 1 and 2. On the
one hand the RBMs save time by choosing the step size large in phases where reactions
are slow (small temporal changes). On the other hand, they can highly resolve the short
term reactions (large temporal changes), by choosing a small time step. Thus, the RBMs
are more appropriate than the MP2 for these kinds of model problems.
Assuming, however, that in the underlying stiff problem short term processes react
continuously and simultaneously together with long term processes, the advantage of an
adaptive step size is lost. In this case, a small step size is also needed for the RBMs for
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the whole integration period.

In summary, compared to the Patankar schemes the Rosenbrock solvers present an
alternative for application to biogeochemical models, particularly in those, where the
processes run on significantly different time scales. Finally, this study has shown that
the differences between ROS4 and ROS3 are marginal; both are suitable for solving
biogeochemical model problems.
After considering all results, advantages and disadvantages of the test cases and compared
numerical schemes, the outcome of this study can be recapitulated as follows:
The tested Rosenbrock methods

1. give accurate results for all test cases,

2. give unconditional positive results, if the tolerance values are chosen sufficiently
small,

3. give more accurate results than the modified Patankar schemes,

4. have higher computational effort than the explicit schemes, but similar to the
modified Patankar schemes.

As a next step both tested Rosenbrock solvers will be included into the General Ocean
Turbulence Model (GOTM) to test the schemes within complex ecosystem models, which
are coupled to a physical model. GOTM is a one-dimensional model of the water column,
where the latter is split into boxes (not necessarily equidistant). Generally, the challenge
of this envisaged work is to match the user specified model time step with the adaptive
Rosenbrock time step. The former is taken for all reactions (biogeochemical and physical)
in the whole water column, whereas the latter is used to compute the biogeochemical part.
This will be done in the following way:

• if the model time step is smaller than the recommended Rosenbrock step, the former
shall be taken

• vice versa, if the recommended Rosenbrock step is smaller than the model time step,
this step size shall be taken, under the restriction that the last Rosenbrock step has
to be cut off, if the model step size is overshot in order to ensure that all reactions
end at the same time.

A possible solution could be, to split the whole integration interval in subintervals with
length equal to the model step size and to solve the problem for each subinterval.
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Symbol Index

αlj coefficient of Rosenbrock methods, Seite 29

γ coefficient of Rosenbrock methods, Seite 29

γlj coefficient of Rosenbrock methods, Seite 29

O(· ) Landau symbol, Seite 19

J Jacobian matrix, Seite 28

ε global method error, Seite 19

aij scalar variables of the Runge Kutta method, Seite 20

b, b̃ weighting coefficients, Seite 31

cn abbreviation of cn(tn), Seite 18

cn(tn) approximation of the ODE solution c at the new time step tn, Seite 18

c(k) intermediate step, k = 1, 2, . . ., at the old time step tn, Seite 18

cn+1 abbreviation of cn+1(tn+1), Seite 18

cn+1(tn+1) approximation of the ODE solution c at the new time step tn+1, Seite 18

cni i-th component of the approximation cn, Seite 18

c
(1)
i i-th component of the intermediate step, Seite 18

Di destruction terms, Seite 34

dij rate at which i-th constitution transforms into the j-th, Seite 34

di scalar variables of the Runge Kutta method, Seite 20

EM Euler forward method, Seite 19

EMP1 extended modified Patankar Euler method, Seite 44

EMP2 extended modified Patankar Runge Kutta method, Seite 45

Est local error estimator of the Rosenbrock method, Seite 31

h step size, h ∈ R≥0, Seite 18
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6 Discussion and conclusions

Ji i-th component of the Jacobian matrix, Seite 48

MP1 modified Patankar Euler method, Seite 44

MP2 modified Patankar Runge Kutta method, Seite 44

ODE ordinary differential equation, Seite 15

p order of consistency of a numerical method, Seite 19

P1 Patankar Euler method, Seite 43

P2 Patankar Runge Kutta method, Seite 44

Pi production terms, Seite 34

pij rate at which j-th constitution transforms into the i-th, Seite 34

RBM Rosenbrock method, Seite 29

RK2 2-stage RKM, Seite 21

RK4 classical RKM, Seite 21

RKM Runge Kutta method, Seite 19

ROS3 Rosenbrock solver of third order, Seite 48

ROS4 Rosenbrock solver of fourth order, Seite 48

s stage number of numerical method, Seite 20

atol absolute user-specified error tolerance for Rosenbrock method, Seite 31

NPD Nutrient - Phytoplankton - Detritus, Seite 69

NPZD Nutrient-Phytoplankton-Zooplankton-Detritus, Seite 33

rtol relative user-specified error tolerance for Rosenbrock method, Seite 31

Tol tolerance occurring in each step of the Rosenbrock method, Seite 32
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