
Surface Wave Modelling
in the Wadden Sea

Diploma Thesis

Alger Werft

Institut für Chemie und Biologie des Meeres
der

Carl-von-Ossietzky Universität Oldenburg

Diplom-Studiengang Marine Umweltwissenschaften

Hamburg im Februar 2003
Betreuender Gutachter: Prof. Dr. Jörg-Olaf Wol�

Zweiter Gutachter: Prof. Dr. Hans Burchard



Contents

1 Introduction 6
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory of Spectral Wave Modelling 8
2.1 The Wave Spectrum . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Linear Wave Theory and the Wave Spectrum . . . . 9
2.1.1.1 The Linearised Equations of Motion and

their Solutions . . . . . . . . . . . . . . . . 9
2.1.1.2 The Wave Spectrum . . . . . . . . . . . . . 13

2.1.2 Statistical Theory of Linear Random Waves . . . . . 14
2.2 Extension to Inhomogeneous Systems . . . . . . . . . . . . . 16
2.3 The Wave Action Balance Equation . . . . . . . . . . . . . . 17
2.4 Integrated Parameters of the Spectrum . . . . . . . . . . . . 19

3 Description of the Wave Model 22
3.1 The Wave Action Balance Equation . . . . . . . . . . . . . . 22
3.2 Source Functions . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Energy Input by Wind . . . . . . . . . . . . . . . . . 23
3.2.1.1 Phillips Wind Input . . . . . . . . . . . . . 24
3.2.1.2 Snyder Wind Input . . . . . . . . . . . . . . 25

3.2.2 Dissipation of Energy . . . . . . . . . . . . . . . . . . 28
3.2.2.1 Wave-Bottom Interactions . . . . . . . . . . 29
3.2.2.2 Wave-Turbulence Interactions . . . . . . . . 31

3.2.3 Other Source Terms . . . . . . . . . . . . . . . . . . 32

1



CONTENTS 2

3.3 Some Remarks on Nonlinear Interactions . . . . . . . . . . . 33
3.4 Propagation and Refraction . . . . . . . . . . . . . . . . . . 35
3.5 Numerical Treatment . . . . . . . . . . . . . . . . . . . . . . 37
3.6 The In�uence of External Fields . . . . . . . . . . . . . . . . 38

4 GETM 40
4.1 Hydrodynamic equations . . . . . . . . . . . . . . . . . . . . 40
4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Vertically Integrated Mode . . . . . . . . . . . . . . . . . . . 43
4.4 Numerical Treatment . . . . . . . . . . . . . . . . . . . . . . 44

5 Model Setup 46
5.1 Coupling of the Two Models . . . . . . . . . . . . . . . . . . 46
5.2 Model Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 The Tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Wind Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Boundary Spectra . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Results 58
6.1 Directional Spectra . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Integrated Wave Parameter and Current Fields . . . . . . . 68

7 Conclusions 72

8 References 73

A Wave Spectra 77
A.1 Wavenumber-directional Spectrum . . . . . . . . . . . . . . 77
A.2 Frequency-directional Spectrum . . . . . . . . . . . . . . . . 77
A.3 Frequency Spectrum . . . . . . . . . . . . . . . . . . . . . . 78
A.4 Parametric Spectra . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.1 Pierson-Moskowitz Spectrum . . . . . . . . . . . . . 79



CONTENTS 3

A.4.2 JONSWAP Spectrum . . . . . . . . . . . . . . . . . . 79
A.4.3 TMA Spectrum . . . . . . . . . . . . . . . . . . . . . 80



List of Figures

3.1 The gustiness parameter of the Synder wind input . . . . . . 28
3.2 The bottom dissipation rate . . . . . . . . . . . . . . . . . . 30
3.3 The dissipation parameter γ of the nonlinear dissipation

source function . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Model grid of GETM . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Interpolation of current and water level data . . . . . . . . . 47
5.2 Map of the North Sea and the German Bight . . . . . . . . . 48
5.3 The topography of the model area . . . . . . . . . . . . . . . 50
5.4 Timeseries of sea level data . . . . . . . . . . . . . . . . . . 51
5.5 Wind velocity bins . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Directional spectra of the inlet position . . . . . . . . . . . . 60
6.2 Directional spectra for positions of di�erent depth . . . . . . 61
6.3 Time series of wind scenario S2 and location P4 . . . . . . . 64
6.4 Time series of wind scenario S1 and location P2 . . . . . . . 65
6.5 Time series of wind scenario S3 and location P1 . . . . . . . 66
6.6 Time series of wind scenario S4 and location P3 . . . . . . . 67
6.7 Fields of the current velocity and the signi�cant wave height

for S1 and S2 . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.8 Fields of the current velocity and the signi�cant wave heigth

for S3 and S4 . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.1 Comparison of the PM and JONSWAP spectra . . . . . . . 81

4



List of Tables

5.1 Frequencies of data-sets in the direction-speed bins. . . . . . 55
5.2 Wind velocities used for scenarios . . . . . . . . . . . . . . . 56
5.3 Representative fetches and water depths chosen for the

boundary spectra. . . . . . . . . . . . . . . . . . . . . . . . . 56

5



Chapter 1

Introduction

On the grounds of the insight that waves are closely connected to the
complete dynamics of coastal systems, a great interest is taken in the
understanding of the major processes. Surface waves greatly a�ect the
morphology by mobilizing sediment. Furthermore, they enhance �uxes of
energy and momentum between the atmosphere and the ocean. Therefore,
a detailed knowledge of waves is essential for the design of coastal projects
since they are the major factor that determines the geometry of beaches,
shore protection measures, o�shore structures and other coastal works.

In this diploma thesis two models are introduced, a wave model called
K-model which is based on the well known WAM (WAMDI, 1988), and the
General Estuarine Transport Model (GETM), a circulation model especially
developed for shallow water areas subjected to the in�uence of the tides. A
one-sided coupling between GETM and the K-model has been implemented
in such a way that current and sea surface elevation �elds obtained with
GETM are processed to input data for the wave model.

As an idealised application of the coupled model the in�uence of the
currents on surface waves is studied. Simulations have been carried out to
evaluate the impact of time varying current velocity �elds on surface gravity
waves. In addition, in this thesis di�erent wind scenarios are examined with
regard to the modulation of surface wave parameters like the signi�cant
wave height and the mean period.

6



CHAPTER 1. INTRODUCTION 7

This thesis is structured as follows: In the �rst chapter, the basic theory
of spectral wave modelling is laid out and terms are explained. In the
second and third chapter the wave and current models used for this thesis
are introduced. The fourth chapter covers the model setup. Firstly, an
explanation is given how the wave model has been coupled with the current
model. Then the model domain and model forcing are described. In this
context wave scenarios are presented to which the coupled model has been
applied. The �fth chapter is concerned with the results of the case studies
based on the wind scenarios followed by a discussion of these in the next
chapter. Finally some conclusions are given.

1.1 Notation
Here, a few remarks on the notation used in the text are made.

Vectors are denoted in bold face. The three-dimensional space vector is given
by x or as components by (x, y, z), the three-dimensional velocity vector by
u or v or as components by (v, w, z), and the two-dimensional wave number
vector by k or as components by (kx, ky). The scalar product of vectors is
indicated by a central dot. t denotes time. Di�erentiation with respect to
the space vector is indicated by ∇x, and with respect to the wavenumber
vector by ∇k. Partial derivatives are given by ∂, e.g. ∂t with respect to time
t or ∂y with respect to the spatial coordinate y. ∂xx stands for ∂x∂x.
If an equation is refered to in the text, its number is given in parentheses.



Chapter 2

Theory of Spectral Wave
Modelling

In this section the basic theory of spectral wave modelling is summarized.
It is based on the summary given by Schneggenburger (1998a) and has
been extendend by some of the theory given in Komen et al. (1994) where a
complex derivation of the theory can be looked up. The following concepts
are given in order to introduce terminology and formulae used in this work.

In general, spectral wave models predict the evolution of the sea state in a
certain area. This prediction depends on the initial sea state, on boundary
conditions and on external �elds like wind, currents, and water depths.
The objective is to describe the sea state on space and time scales which
are large compared to typical wave lengths and wave periods. Hence the
detailed evolution of the sea surface in time and space is not resolved.

The mathematical means of describing the state of the sea surface is the
wave spectrum. A central role plays the wave action balance equation which
gives the dynamics of wave spectra on large space and time scales. This
equation is solved numerically by spectral wave models.

In the following, de�nitions of the wave spectrum are given. Additionally,
the wave action balance equation is introduced. At the end of this chapter,
integrated parameters of the spectrum are presented.

8



CHAPTER 2. THEORY OF SPECTRAL WAVE MODELLING 9

2.1 The Wave Spectrum
There are two di�erent ways of de�ning wave spectra.

1. Either one with linear wave theory and uses an expression for the
energy to de�ne the wave spectrum afterwards, or,

2. �rstly, the statistical theory of linear random waves is regarded, and
then the wave number spectrum is de�ned by the Fourier transform of
the two-point covariance function.

If the sea state is quasi-stationary and quasi-homogeneous, these two ap-
proaches will be equivalent and can be approximated by a superposition of
slowly varying linear waves.

2.1.1 Linear Wave Theory and the Wave Spectrum

2.1.1.1 The Linearised Equations of Motion and their Solutions

Our system of interest is composed of two �uids, air and water. Its dynamics
are su�ciently described by the Navier-Stokes equation for a two-layer
�uid. To reduce the complexity of this equation we consider the linearized
Navier-Stokes equation for one-layer �uids in a gravitational �eld. This
can be done because the density of air is much smaller than the density
of water. The linearized Navier-Stokes equation describes waves in good
approximation.

Further approximations can be made. Ocean waves can be considered to be
free. Therefore forcing by the environment can be neglected. With regard to
longer waves (with wavelengths λ > 1 m) viscosity and surface tension can
also be ignored. Furthermore, the Coriolis force is not taken into account
because of the inverse Coriolis parameter being much larger than a typical
wave period. With these assumptions, the Navier-Stokes equation reduces
to the Euler equation for a one-layer �uid.
Moreover, water is hard to compress, and for our purpose, we will assume
water to be incompressible. In an incompressible �uid, the velocity v =
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(u, v, w) at each point will satisfy the equation of continuity

∂xu + ∂yv + ∂zw = 0. (2.1)

In additon, given the irrotationality of the surface wave motion (Komen
et al., 1994), gravity waves on the surface can be descibed by a velocity
potential φ(x, z, t) for the wave �ow �eld with the property

u = ∂xφ, v = ∂yφ, w = ∂zφ (2.2)

and a surface elevation �eld η(x, t). η gives the deviation of the water-air
boundary from its mean (equilibrium) value. The vector x has two compo-
nents (x,y), the horizontal location coordinates, z denotes the vertical space
coordinate.

According to these assumptions one may introduce the velocity potential in
the continuity equation (2.1)

∂xxφ + ∂yyφ + ∂zzφ = 0, z < η(x, y, t) (2.3)

resulting in Laplace's equation.
On the free water surface boundary, this equation is speci�ed by the kine-
matic and the dynamical boundary conditions.
The physical condition that a �uid particle at the surface should remain
there at all times is called the kinematic boundary condition, given by

∂tη + ∂xφ∂xη + ∂yφ∂yη = ∂zφ, z = η(x, y, t) . (2.4)

The other condition to be satis�ed at the surface is based upon the fact
that the pressure at the surface must be equal to the atmospheric pressure.
This boundary condition makes use of Bernoulli's relation. With regard to
the simpli�cation to a one-layer �uid, the pressure is zero in the vaccum just
above the sea surface. Therefore, it should be zero just below the sea surface.
This condition, dealing with the force on the surface, is usually called the
dynamic boundary condition, given by

∂tφ +
1

2

[
(∂xφ)2 + (∂yφ)2

]
+ g η = 0, z = η(x, y, t) . (2.5)

In (2.5), g is the gravitational acceleration.
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Since the nonlinear equations cannot be solved, they are simpli�ed by lin-
earisation, that is by expanding arguments depending on η and by retaining
only terms linear in the wave steepness. This wave steepness, considered to
be a small parameter, can be de�ned in a general way by assuming that η is
characterised by both a vertical and a horizontal length scale, in such a way
that their ratio is small. This ratio is then taken as the expansion parame-
ter ε = kh. To obtain the linearised equations one makes formal expansion
around ε = 0 (Phillips, 1977).
The potential �ow equations then read

∂xxφ + ∂yyφ + ∂zzφ = 0, z < 0 (2.6)

∂tη = ∂zφ,

∂tφ + g η = 0,



 z = 0. (2.7)

Only for waves with in�nitisemal amplitudes the linearised equations yield
exact solutions. If the solutions of the nonlinear equations are developed
as a power series in terms of ε (Stokes expansion), it can be seen that the
solutions of the linearized equations are equal to the �rst terms of this
expansion (Whitham, 1974). In spectral wave modelling only the linear
solutions are considered.

The solutions of the linearized system can be given as normal mode solutions
for the surface elevation �eld η and the velocity potential φ. In the solutions
the wavenumber vektor k occurs. The wave number in direction of x is given
by kx = 2π/λx where λx is the wavelength, de�ned in (2.13), in direction of
x. ky is de�ned analogously. For each k, two solutions (±) exist

η(x, t) = a exp [i (k · x − ω± t )] + c.c. (2.8)

φ(x, z, t) = −iω± a
exp(kz)

k
exp(i (k · x − ω± t)) + c.c.

where c.c. denotes the complex conjugate of the right-hand side term, and
k the modulus of the wavenumber vector k.

In shallow water with a �at bottom at depth z = −h the boundary conditions
at the bottom are

∂zφ = 0, z = -h. (2.9)
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The solutions of the linearized equations (2.8) become

η(x, t) = a exp [i (k · x− ω± t)] + c.c. (2.10)

φ(x, z, t) = − iω± a
cosh [k (z + h)]

k sinh kh
exp [i (k · x− ω± t)] + c.c.

with the circular frequencies

ω± = ±σ(k) + k · uc (2.11)

and the dispersion relation

σ2(k) = gk tanh kh. (2.12)

The second term on the right-hand side of (2.11) is the Doppler shift due
to the current with the velocity uc. The dispersion relation giving the
relationship between the wavenumber vector and the circular frequency
implies that the wave period depends not only on the wavelength, de�ned
in (2.13), but also on the water depth.

The normal mode solutions (2.8) relate to plane waves represented by the
phase Θ and the amplitude a. The phase of the waves is Θ = (k ·x− ω±t).
It varies between 0 and 2π. The amplitude a of plane waves is complex.
The wavelength λ is the horizontal distance between two identical points on
two successive wave crests or two successive wave troughs. The time interval
between the passage of two successive wave crests or troughs at a given point
is the wave period T .
The wavelength λ and wave period T are de�ned as

λ =
2π

k
, T =

2π

ω+

. (2.13)

In shallow water, the general solution of η is obtained by a superposition of
the normal mode solutions from (2.10). This superposition corresponds to
a Fourier representation of the sea surface with the solution for η in (2.10)
giving a Fourier mode. Since the surface elevation is real, the ω− mode can
be replaced by the complex conjugate of the ω+ mode. The general solution
sympli�es to

η(x, t) =

∫ ∞

−∞
a(k) exp[i(k · x− ωt)] dk + c.c. (2.14)
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where the subscript + of ω has been dropped.

2.1.1.2 The Wave Spectrum

The expression for the energy density of waves will now be introduced which
leads directly to the de�nition of the wave spectrum. The energy contained
in waves is described by the energy density per unit horizontal area of the sea
surface. Its unit is Jm−2. A wave has potential energy because water parcels
move up and down in the gravity �eld. It also has kinetic energy associated
with the velocities of the water parcels. To obtain the energy density the
sum of the potential and the kinetic energy per unit volume is integrated
with respect to the vertical coordinate z.

E =
1

2
ρg η2 +

1

2
ρ

∫ η

−∞

[
(∂xφ)2 + (∂yφ)2 + (∂zφ)2

]
dz (2.15)

ρ denotes the density of water and g the gravitational acceleration.

The �rst term is the potential energy density, and the second the kinematic
energy density, which is expressed in terms of the velocity potential.
Note, that the total energy is given by

Etot =

∫ ∫
E dxdy. (2.16)

If one wants to consider only waves in a limited area given by the total
surface A, an expression of the energy density per unit area with regard to
the region under consideration is derived by

Ē =
1

A

∫ ∫
E dxdy. (2.17)

The spatially mean energy per unit area of a normal mode is then derived
by substituting (2.8) in (2.17) with the result

Ē = 2 ρ g |a|2. (2.18)

| · | de�nes the modulus.
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Using the Fourier representation in equation (2.14), an expression for the
spatial average energy per unit area of the wave �eld described by the su-
perposition of normal modes is obtained as

Ē = 2ρg

∫
|a(k)|2 dk . (2.19)

Considering an ensemble of several possible representations of the surface
elevation �eld in a given situation, a speci�cation of Ē is derived by giving the
ensemble mean energy density. The wave energy spectral density or simply
the wave spectrum F used in spectral wave models is then de�ned by this
ensemble average energy density 〈Ē〉

〈Ē〉 = ρg

∫
F (k) dk (2.20)

as

F (k) = 2〈|a(k)|2〉 . (2.21)

Here, 〈...〉 denotes the ensemble average.
The wave (energy) spectrum F (k) is of central importance in the descrip-
tion of ocean waves. It speci�es the energy content of waves characterised
by k. Therefore, we know which waves contain the most energy and are
subsequently dominating the wave �eld.

2.1.2 Statistical Theory of Linear Random Waves

In practice it is impossible to specify the initial sea state completely because
the Fourier modes cannot be determined with the correct phases. With a
statistical description of the sea surface this obstacle can be overcome.

The probability of �nding a particular sea state with η(x, t) as a �eld
of random waves is now considered. Like in the previous section η(x, t)

describes the deviation of the sea surface from its mean level at di�erent
locations and times. In order to get an image of a random wave �eld one
regards the surface elevation ηi at a point (xi, ti) as a random variable.
Thus, ηi has a certain probability distribution. The following statistical
concepts are presented as found in Bauer (1991).
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The joint probability distribution function of the random variables η1, ..., ηn

Wη1,η2,...,ηn(ξ1, ..., ξn) = P (η1 ≤ ξ1, η2 ≤ ξ2, ..., ηn ≤ ξn) (2.22)

gives the probability that the surface displacements ηi, i = 1, ..., n, at the
points (xi, ti) have values below ξi . P is some probability messure.

If the joint probability density wη1,...,ηn of equation (2.22) is known, the
moments can be computed, e.g. the �rst moment as

〈η(x1, t1)〉 =

∫ +∞

−∞
ξ1wη1(ξ1) dξ1 (2.23)

and the second moment as

〈η(x1, t1)η(x2, t2)〉 =

∫ +∞

−∞

∫ +∞

−∞
ξ1ξ2wη1,η2(ξ1, ξ2) dξ1dξ2 . (2.24)

The probability density of the random variable η1 and the joint probability
density of the random variables η1 and η2 are given by

wη1(ξ1) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
wη1,...,ηn(ξ1, ..., ξn)dξ2...dξn (2.25)

wη1,η2(ξ1, ξ2) =

∫ +∞

−∞
· · ·

∫ +∞

−∞
wη1,...,ηn(ξ1, ..., ξn)dξ3...dξn .

Note, that the density wη1 has the unit m−1, and the joint density wη1,η2

the unit m−2.

To be able to compute the moments of this random surface one has to make
the assumption that the surface is Gaussian. Then the probability density
wη1,...,ηn is known and the integrals of the equations (2.23) and (2.24) can
be evaluated. This is not an arbitrary assumption due to the fact that real
ocean surfaces have turned out to be very closely Gaussian (Komen et al.,
1994). There are slight deviations, the most notable is that the wave crests
are a little higher than the wave troughs are low. This gives the surface a
certain asymmetry which is not re�ected in the normal distribution.
Since the distribution is Gaussian the statistical information is basically
contained in the �rst two moments. But as η(x, t) describes the deviation
of the sea surface from its mean level, the �rst moment 〈η(x, t)〉 is zero.



CHAPTER 2. THEORY OF SPECTRAL WAVE MODELLING 16

Therefore, the statistical information for the η �eld is entirely given by the
second moment, the two-point covariance function F = 〈η(x1, t1)η(x2, t2)〉.

Assuming statistical stationarity and homogeneity, which can be de�ned as
the invariance of all ensemble averages under space and time translations
x → x′ = x + ξ, t → t′ = t + τ , the two-point covariance function F only
depends on the di�erence of locations ξ and di�erence of times τ and is
independent of x and t

F(ξ, τ) = 〈η(x + ξ, t + τ) η(x, t)〉. (2.26)

One can de�ne the wave spectrum by determining the three-dimensional
Fourier transform F (k, ω) of the covariance function F with respect to ξ and
τ . Integrating the Fourier transform F (k, ω) over the positive frequencies ω

one obtains the wave spectrum

F (k) ≡
∫ ∞

0

F (k, ω) dω . (2.27)

With the help of the dispersion relation and (2.14) taken to be valid for η

in (2.26), the dynamics of the sea surface can be reintroduced. Then (2.21)
and (2.27) as de�nitions of F (k) are equivalent (Komen et al., 1994).

2.2 Extension to Inhomogeneous Systems
In the previous section free, linearized water wave equations were analysed.
Now an analysis of more general situations is given. A generalisation of (2.8)
is considered in which the amplitude, the frequency and the wavelength are
allowed to vary slowly. An example of such a situation is swell on currents
varying slowly in space and time in a shallow sea whose bottom depth also
varies slowly.

If waves are allowed to change slowly with time and space, equation (2.8)
becomes

η(x, t) = a(x, t) exp(i θ(x, t)), (2.28)
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where both the amplitude a(x, t) and the phase function Θ(x, t) vary slowly
with x and t. The phase function is given by

Θ(x, t) = Θ(0, 0) + x · ∇xΘ + t∂tΘ (2.29)

where Θ(0, 0) is the initial phase.
Equation (2.28) describes so called wave trains. A wave train is a regional
wave created by a superposition of an in�nite number of waves having
di�erent phases and amplitudes.

The wavenumber vector and the local circular frequency of wave trains can
be de�ned with the help of derivatives of the phase function

k(x, t) = ∇xΘ(x, t), (2.30)

ω(x, t) = −∂tΘ(x, t). (2.31)

The dispersion function Ω de�nes the dispersion relation between the circular
frequency and the wave vector. For linear gravity wave trains it is given by

ω(x, t) = Ω[k(x, t),uc] = σ[k(x, t), h(x)] + k(x, t) · uc (2.32)

with the current uc(x, t) and the depth h(x).

In slowly varying media the local intrinsic frequency σ as de�ned in (2.12)
becomes

σ(k(x, t), x, t)2 = gk(x, t) tanh[k(x, t)h(x)]. (2.33)

When confusion is unlikely, we will drop the arguments x and t.

2.3 The Wave Action Balance Equation
We now introduce the wave action balance equation giving the dynamics
of wave spectra. This equation is solved numerically by spectral wave models.
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If depth and currents are varying, i.e. in the case of an inhomogeneous
medium, the following equation gives the time evolution of the amplitude a

of the wave trains

∂tN + ∇x(∇kΩ N) = ∂tN + ∇x(vDN) = 0 (2.34)

with

N(x, t) =
2|a(x, t)|2

σ
. (2.35)

N is called the action density of a wave train.
The group velocity vD of a wave train is de�ned by ∇kΩ. It is the sum of
the intrinsic wave group velocity cg = ∇kσ and the current velocity uc

vD = ∇kΩ = ∇kσ(k) + uc = cg + uc. (2.36)

vD is the velocity with which the energy of the wave train propagates.

Note that equation (2.34) has the general form of a conservation law. The
local rate of change of a density is determined by a �ux of that density.
The detailed derivaton of (2.34) will not be given here. It can be found in
Bretherton and Garrett (1968).

Equation (2.14) gives a generalized solution for the linearized water waves
in homogeneous environmental conditions. To account for perturbations, we
considered wave trains in order to give a better approximation of reality.
But as the sea surface is not realistically described by one wave train (2.28),
we use a superposition of wave trains. Its spatially mean energy density is

Ē = 2ρg

∫
|a(k,x, t)|2 dk . (2.37)

Ē is now a function of x and t on the slow space and time scale.
The de�nition of the wave spectrum in (2.21) generalizes to

F (k,x, t) = 2〈|a(k,x, t)|2〉 . (2.38)

Willebrand (1975) noted that the conservation of wave action expressed in
(2.34) holds for every wave component separately, so that a spectral wave
action density (depending on k) can be considered

N(k,x, t) =
F (k,x, t)

σ
=

2〈|a(k, x, t)|2〉
σ

. (2.39)
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The resultant wave action balance equation is

∂tN + ∇x · (ẋN) + ∇k · (k̇N) = 0. (2.40)

The 'dot terms' ẋ and k̇ in (2.40) are determined by

ẋ = ∇kΩ (2.41)

k̇ = −∇xΩ. (2.42)

Equation (2.40) is a generalisation of (2.34). It implies that the total wave
action de�ned by

Atot = ρg

∫ ∫
N(k, x, t) dxdk (2.43)

is conserved. In deep water and without currents, equation (2.40) reduces to
the simpler form

∂tF + ∇x · (cg F ) = 0. (2.44)

As the wave spectrum is closely related to the energy density E (see equation
(2.20)), (2.44) expresses the conservation of energy. As stated above, the
group velocity vD can be interpreted as the propagation velocity of energy.
The total energy in an area only changes because of energy �owing in and
out through the boundaries. Energy conservation only holds in the absence
of currents and energy changing processes. Generally speaking, the total
energy content in an area may change because waves may lose or gain
energy as a result of interaction with currents. For this reason, equation
(2.40) is the more general conservation law expressing the conservation of
wave action.

2.4 Integrated Parameters of the Spectrum
Related to the wave spectrum is a series of characteristic numbers called the
spectral moments. These are integrated parameters of the wave spectrum
which can be indenti�ed with observed parameters of the sea state. Conse-
quently, it is possible to compare wave model results with measurements.
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The moments of a spectrum are de�ned by

mn =

∫
F (f, θ)fn dfdθ, n = 0, 1, 2... . (2.45)

F (f, θ) is the frequency-directional spectrum exlained in appendix (see A.2).
The spectral moment m0 represents the total energy or the variance of the
surface. The square root of the variance of the sea surface is its standard
deviation. The standard deviation is a common measure for the variations
about the mean and is thus a reasonable scale for the surface height vari-
ations. Therefore, the moment m0 can be used to give a de�nition of the
signi�cant wave height Hs

Hs ≡ 3.8
√

mo ≈ 4.0
√

mo. (2.46)

Hs is related to the observable signi�cant wave height H1/3 which gives the
height of the highest 1/3 of oberved waves. It is traditionally estimated by
means of visual observation of the sea state.

Based on the moments of the spectrum di�erent integrated periods can also
be derived as

〈T 〉 ≡ m−1

m0

, Tm1 ≡ m0

m1

, Tm2 ≡
√

m0

m2

. (2.47)

Here, 〈T 〉 is the mean period of the waves. The period Tm2 can be indenti�ed
as the zero-crossing period Tz derived from observations. The zero-crossing
technique is applied to an irregular wave record. According to this technique,
a wave is de�ned when the surface elevation crosses the zero-line, i.e. the
mean water level, either upwards or downwards, and continues until the
next crossing point in the same direction. The period of waves de�ned this
way is the zero-crossing period Tz (Demirbilek et al., 2002).

The mean direction of the wave vector giving the mean wave direction is
de�ned as

〈θ〉 ≡ arctan

(∫
F (f, θ) sin θ dfdθ∫
F (f, θ) cos θ dfdθ

)
. (2.48)

An explanation for the term peak frequency fp is added here. It is not an
integrated parameter of the spectrum. But it is often used to discuss the
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form of spectra. The peak frequency is the frequency for which the F (f)

attains its maximum

F (fp) = max
f

F (f) (2.49)

where F (f) is the frequency spectrum de�ned in appendix (A.3).



Chapter 3

Description of the Wave Model

3.1 The Wave Action Balance Equation
The K-model is a spectral discrete wave model. It numerically solves
the wave action balance equation (2.40) in a generalised version. In
order to more completely describe the processes of wave generation
sources and sinks of wave action have to be taken into account. These
terms are introduced in the balance equation on the right-hand side as S(N).

Equation (3.1) is solved in k-space using the polar coordinates (k, θ).
k is the modulus of the wavenumber vector, and θ the direction of the
wavenumber vector.

In these coordinates the wave action balance equation is given by

∂tN + ∂x · (ẋN) + ∂k · (k̇N) + ∂θ · (θ̇N) = S(N). (3.1)

It describes the evolution of the wave action density N for a wave �eld
consisting of a superposition of slowly varying inhomogeneous wave trains
(cf. section 2.3).
The wave action density N has been de�ned as N = F/σ in (2.39), with F

and σ as the spectral wave energy density and the wave intrinsic frequency,
respectively. As stated before, N , F , and σ are functions of the polar wave
vector coordinates (k, θ), and of location x and time t. For brevity the
arguments have been dropped in the notation.

22
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The �rst term on the left-hand side of (3.1) describes the local rate
of change of spectral wave action with time. The second term speci�es
the propagation in the x-space including bottom- and current-induced
straining. Bottom-induced straining is commonly known as shoaling. The
third and fourth terms describe the redistribution of wave action density
over the spectrum. In the wave number space (third term) it corresponds to
a change of wave number due to straining of the wave �eld. In the direction
space (fourth term) this corresponds to a change of direction of a spectral
component known as refraction (Tolman, 1990).

The right-hand side of (3.1) represents the sum of external in�uences result-
ing in sources and sinks of wave action

S(N) = Sin + Sphil + Sdis + Sbot. (3.2)

In the case of the K-model these in�uences consist of a modi�ed Synder
wind input Sin, a modi�ed Phillips wind input Sphil, dissipation due to wave
turbulence interactions Sdis, and dissipation by bottom interactions Sbot. The
di�erent source terms are explained below.

3.2 Source Functions
In the following, the individual source functions of the K-model are dis-
cussed. Firstly, a description is given of the source terms that represent the
input of energy by the wind into the water. Secondly, dissipative processes
involved in the wave generation are speci�ed. At the end of this section,
other possible source terms are shortly listed.

3.2.1 Energy Input by Wind

The wind input source terms represent the work done by the wind on
the ocean surface to produce waves. The generation of waves by wind is
commonly explained by Phillips' and Miles' mechanisms (Phillips, 1957,
and Miles, 1957) which represent two successive physical processes during
the generation of waves by wind. These two mechanisms and their resultant
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source functions are described in the following.

The source functions used in the K-model are given here in terms of the
friction velocity u∗. It is de�ned as the square root of the kinematic wind
stress τ = CD u2

10

u∗ =
√

CD u2
10. (3.3)

The friction velocity depends on the wind speed at a heigth of 10m u10, and
on the drag coe�cient CD. In spectral wave modelling, the energy input by
wind is commonly given in terms of u∗. In the K-model itself, the friction
velocity u∗ is replaced by the wind speed in 10 m height using the �xed
relation 28u∗ → 1.2u10.

3.2.1.1 Phillips Wind Input

The initial wave growth is due to turbulent pressure �uctuations in the air
�ow. As these �uctuations in the wind travel across the ocean, they gener-
ate small waves on the initially calm sea. Phillips (1957) showed that waves
which travel at the same speed as the atmospheric pressure disturbances
grow most rapidly through resonance with the advected pressure �eld. It
should be noted that the resonant forcing does not occur continuously, be-
cause the atmospheric pressure pattern is turbulent. The resonance rather
takes place in a random series of short impulses (LeBlond & Mysak, 1978).
Wave growth during this phase depends only on the wind speed and is
independent of the wave height, and hence of the wave spectrum. Therefore,
Phillips' mechanism results in a growth of waves linear in time given by

∂tN = Sphil = α, (3.4)

where the constant α quanti�es the amount of energy transferred from the
wind to the sea. α is also called Phillips' parameter.

In the K-model, the version of the Phillips input source function described
by Cavaleri et al. (1981) is used. Two extensions were added to this source
function.
The �lter of Tolman (1992) prevents an increase of energy for frequencies less
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than the Pierson-Moskowitz frequency fPM (Pierson et al., 1964, cf. section
A.4.1).
To include a decreasing energy input for increasing frequencies, another �lter
was added by Schneggenburger et al. (1998). This accounts for the e�ect
described by Phillips (1977). He stated that energy input due to atmospheric
pressure disturbances only occurs for waves that approximately obey the
relation u10/c < 1.5.
The modi�ed Phillips input is given by

Sphil = 0.1 · 2 80ρ2
a

g2ρ2
w

cg

σ
[u∗ cos(θ − θw)]4 (3.5)

· exp [−
(

f

fPM

)−4

]

︸ ︷︷ ︸
Tolmanfilter

exp [−
(

f

fPM

)
]

︸ ︷︷ ︸
Schneggenburgerfilter

,

where θ − θw is the relative angle of the wind direction θw and the wave
vector direction θ. ρa and ρw are the densities of air and water, respectively.

This source function is needed to allow for a model startup from initial
conditions of a completely calm sea, i.e. initially no energy is contained
in the wave �eld. Furthermore, it is necessary after periods of zero winds,
so that the wave energy can recover (Schneggenburger et al., 1998b). It is
especially important in small scale applications to enclosed systems because
in such cases the propagation of swell into the model area is hampered and
it is unlikely to �nd residual swell after calm periods.

The source function was lowered to one-tenth of its original magnitude in or-
der to reduce the input for short waves in small-scale applications. Otherwise
this source function would contribute too much energy to the spectra.

3.2.1.2 Snyder Wind Input

After a period of initial wave growth the waves are of su�cient height so
that they interfere with the wind �ow across the sea surface. This leads
to the generation of regions of high and low pressure on either side of the
crests. These pressure gradients reinforce the process of wave growth. The



CHAPTER 3. DESCRIPTION OF THE WAVE MODEL 26

waves now grow more rapidly, i.e. exponentially, due to this feedback process
(Miles, 1957).
The exponential growth of the wave action is given by

∂tN = Sin = βN, (3.6)

where the constant β controls the energy input to the sea.

The growth parameter β is used in wave models in a parametric form. Sny-
der et al. (1981) carried out measurements of the growth parameter β and
proposed the following empirical �t.

β = β0 ω max
[
28

u∗
c

cos(θ − θw)− 1, 0
]
, (3.7)

β0 = 0.25
ρa

ρw

≈ 0.0003.

In (3.7), c denotes the phase velocity.

The Snyder wind input was used in WAM in a modi�ed form (WAMDI,
1988). It was further altered by Schneggenburger et al. (1997) to take into
account the e�ect of wind gustiness. This modi�cation was adopted from
Komen et al. (1994). They considered �uctuations in the wind �eld with a
time scale longer than 1/ω, where ω is a typical frequency of the surface
gravity waves. This part of the turbulent wind spectrum is called gustiness.
To investigate the e�ect of gustiness on the wave growth, the friction
velocity u∗ is assumed to be a Gaussian distributed stochastic variable
with a steady and a �uctuating part, so that the growth parameter as well
comprises a steady and a varying part. By taking the average, Komen et al.
(1994) obtained the growth parameter β = β0 ω G.

Taking this into consideration, the modi�ed Snyder source function is

Sin = β0 σ G N(k). (3.8)

Note, that only the intrinsic frequency σ is used and not the circular
frequency ω given in (2.11). Schneggenburger (1998) argues that the e�ect
of time varying currents on the source functions has not been su�ciently
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quanti�ed, and is therefore neglected.

For cos(θ − θw) > 0, the gustiness parameter G is given by

G =
σu∗√
2πc∗

exp

[
−(c∗ − u∗)2

2σ2
u∗

]
+

1

2

[
u∗
c∗
− 1

] [
1− Φ

(
c∗ − u∗

σu∗

)]

(3.9)

with

c∗ =
σ

28 k cos(θ − θw)
. (3.10)

If cos(θ − θw) ≤ 0, the gustiness parameter equals zero.

The function Φ in equation (3.9) is the probability distribution function of
the standard normal distribution. It is given by

Φ (x) =
2√
2π

∫ x

0

exp

(
−t2

2

)
dt. (3.11)

In (3.9), σu∗ denotes the standard deviation of the assumed Gaussian
distribution for the friction velocity u∗.

The ratio of the standard deviation of the friction velocity to the friction
velocity itself σu∗/u∗ describes the gustiness level. It is a tuning parameter of
the K-model. In this work, it is chosen analogous to Schneggenburger (1998)
as

σu∗

u∗
= 0.4 . (3.12)

Figure (3.1) illustrates the growth rate for this gustiness level. In the case
of normal dispersion, waves with a lower frequency travel faster than waves
with a higher frequency. In order to get an understanding of the �gure,
take u∗ to be constant. Then the ratio u∗/c is bigger for high-frequency
waves and smaller for low-frequency waves. Therefore, the further left part
of Figure (3.1) represents the growth of lower-frequency waves, and the
further right part the growth of higher-frequency waves. From this, it can
be concluded that gustiness has an impact on especially later stages of wave
growth when low-frequency waves are dominant.
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Figure 3.1: Growth rate for a gustiness level of
σu∗/u∗ = 0.4. The straight dashed line represents the
wave growth in absence of wind gusts (Figure adapted
from Komen et al., 1994).

3.2.2 Dissipation of Energy

Usually wave models take into account the dissipation of energy at the
boundaries of the water body. On the one hand, energy is dissipated at
the sea surface by whitecapping, and on the other hand, dissipation takes
place at the bottom boundary, e.g. by bottom friction. As an alternative,
Schneggenburger et al. (1997) incorporated the dissipation of wave energy
due to interaction of the waves with turbulence into the K-model.
Below, a description is given of the source functions for dissipation by
wave-bottom interactions and by wave-turbulence interactions.
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3.2.2.1 Wave-Bottom Interactions

Next, we have to consider the bottom in�uence. In shallow water surface
waves interact with the sea �oor, because their orbital motion extends down
to the bottom. Therefore, energy is dissipated at the bottom boundary.
The interaction can occur in di�erent ways, i.e. scattering, bottom friction,
percolation, and bottom elasticity. What kind of interaction takes place
depends on the bottom conditions. Scattering of wave components occurs on
bottom irregularities, e.g. mesoscale sand ripples. Bottom friction increases
with the height of the roughness elements on the sea bed. Percolation
is enhanced by a high permeability of the bed material. If the bottom
consists of mud, bottom elasticity plays a role. Scattering leads to a local
redistribution of energy. The other three processes are dissipative. Shemdin
et al. (1978) and Weber (1994) give an overview on this subject.

The bottom dissipation source function is not obtained by an interpretation
of the physical mechanisms such as percolation or bottom friction. Instead,
the bottom in�uence is represented on empirical grounds (Bouws & Komen,
1983) by

Sbot = −Γσ−2k2(1− tanh2kh)N(k) (3.13)

where Γ is the interaction coe�cent. It is given by the chosen bottom
interaction model (Komen et al. 1994).

Examples of bottom interaction models are the one-layer drag law by
Hasselmann & Collins (1968) which relates the total bottom stress to
the total velocity at a reference height, e.g. the top of the wave bound-
ary layer, and the two layer eddy-viscosity model by Christo�ersen &
Jonsson (1985) in which the combined current-wave motion is split up
into a wave component and a current component. Solving the boundary
layer equation for the wave part yields a drag law for the wave bottom stress.

In the K-model, the interaction parameter is Γ = 0.038 m2s−3. This value is
the JONSWAP result for swell dissipation (Hasselmann et al., 1973).
Figure (3.2) depicts the bottom dissipation rate−Sbot/N divided by the wave
number k as a function of nondimensional water depth kh for the applied
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interaction parameter. Keeping in mind the classi�cation of surface gravity
waves as deep water waves with khÀ1 and shallow water waves with kh¿1,
it can be seen from Figure (3.2) that the bottom dissipation function a�ects
the waves as intended, i.e. shallow water waves are more exposed to bottom
dissipation.
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Figure 3.2: The bottom dissipation rate −Sbot/N divided by the
wavenumber k as a function of nondimensional water depth kh for
the interaction coe�cient Γ = 0.038 m2s−3 (Figure adapted from
Komen et al., 1994).

Note, that the above source function has a general form. Theoretically,
equation (3.13) follows for either percolation or turbulent bottom friction
(Shemdin et al., 1978). Which mechanism actually dominates depends on
the sediment mean grain size.
In fact, Shemdin et al. (1978) have shown that the actual friction may vary
by as much as an order of magnitude, depending on the precise bottom con-
ditions. Since it is often di�cult to fully describe the sediment conditions in
a model area, the di�erent bottom interaction processes cannot be distin-
guished. Therefore, the above general form of the bottom source function is
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used in wave modelling and an average interaction parameter is applied.

3.2.2.2 Wave-Turbulence Interactions

It is common in wave modelling to attribute the dissipation of wave energy
at the surface boundary to whitecapping. Of all processes involved in the
generation of surface gravity waves, dissipation by whitecapping is the last
known. A spectral representation of the energy transfer rate associated with
whitecapping is commonly given as a parameterization in the quasilinear
form Swc = −γwcN with the interaction parameter γwc being a functional
of the wave spectrum (Hasselmann, 1974). The basic assumption of this
parameterisation is that the white caps are preferentially situated on the
forward face of the waves. Thereby, they exert a downward pressure on the
upward moving water and hence do negative work on the wave (Donelan,
1994).

A di�erent approach is to ascribe the dissipation of wave energy to the
interaction of the waves with upper-oceanic turbulence (Schneggenburger,
1997). From such a point of view, wave breaking is not the only cause for
a loss of wave energy. Other sources of turbulence are for example direct
wind stirring, and negative buoyancy �uxes (Phillips, 1977).

Hence, the loss of wave energy is not solely due to whitecapping, but the
general level of turbulence in the surface layer of the ocean has an impact
on the waves.

The source function describing the wave turbulence interaction in the K-
model was derived from turbulent di�usion in the hydrodynamic equations
for the wave �ow �eld (Rosenthal, 1989) as

Sdis = − γ g k5

(
coth 2kh +

kh

sinh2 kh

)
N2(k) . (3.14)

The symbols g, k, and h denote the gravitational acceleration, the modulus
of the wave vector, and the local water depth, respectively. It is nonlinear
to the order two in N .



CHAPTER 3. DESCRIPTION OF THE WAVE MODEL 32

The dissipation parameter γ is given by

γ(N) = γ0

p1

(
p2

k
〈k〉

)q

+ 1
(
p2

k
〈k〉

)q

+ 1
. (3.15)

It is a function of the spectral mean wave number 〈k〉 which is determined
from the spectral action density N . Hence, γ is a functional of N . Since
γ depends on the mean wave number, a coupling between di�erent action
'bins' is introduced in the model through γ.

The parameters γ0, p1, p2, and q determine the shape of γ. They were chosen
in accordance with Schneggenburger et al. (2000) as

γ0 = 0.09485, p1 = 10.0, p2 = 1.6, and q = 6.0. (3.16)

In �gure (3.3), the dissipation parameter γ is displayed for this set of pa-
rameters. Its minimum and maximum are γ0 and p1γ0, respectively. The
parameter p2 determines where γ ascends relative to the mean wave number
〈k〉. The steepness of γ in k is regulated by p2 and q.
Since γ(N) increases with k/〈k〉, it parameterises the more intense dissi-
pation of short waves in a wave spectrum (Schneggenburger et al., 2000).

3.2.3 Other Source Terms

It should be noted that more mechanisms than the ones described above
contribute to the generation of wind waves and that other wave models
include additional source terms.
For example, Booij et al. (1999) developed a model called SWAN for
short-crested waves in coastal regions with shallow water. In deep water,
quadruplet wave-wave interactions dominate the evolution of the spectrum
(Komen et al., 1994). They transfer wave energy from the spectral peak
to lower frequencies, thus moving the peak frequency to lower values. In
contrast to this, in very shallow water, triad wave-wave interactions transfer
energy from lower frequencies to higher frequencies (Beji & Battjes, 1993).
Booij et al. (1999) included source functions for these triad wave-wave in-
teractions in their model. Furthermore, a source function for depth-induced
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Figure 3.3: The dissipation parameter γ of the nonlinear
dissipation source function for the values given in the
text (Figure adapted from Schneggenburger, 1998).

wave breaking is used in SWAN.

3.3 Some Remarks on Nonlinear Interactions
Nonlinear wave-wave interactions cause the redistribution of energy within
the wave spectrum. If wind input and frictional dissipation were the only
processes that were acting to change the energy spectrum, ocean waves
would consist only of short surface waves. Apparently, long swells can
also be found in the ocean which could not be generated by the wind
directly. The short waves generated by Miles' mechanism begin to interact
among themselves to produce longer waves (Hasselmann et al., 1973). The
interactions, which are known as quadruplet or four wave interactions,
transfer wave energy from short waves to waves with frequencies slightly
lower than the peak frequency of the spectrum. Eventually, this leads to
waves going faster than the wind, as noted by Pierson & Moskowitz (1957).

The basic principle behind the interactions is this: When the amplitude of
the short waves becomes large, three waves with di�erent wavelengths may
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interact. The energy transfer is then brought about by mechanical resonance
by which a fourth wavelength is created. This works only for a limited com-
bination of waves. The resonance conditions that have to be ful�lled to make
the interaction possible are

k1 + k2 − k3 = k4 (3.17)

ω1 + ω2 − ω3 = ω4. (3.18)

In shallow water, also triad (three wave) interactions play an important
role. An example of the e�ect of such interactions is found when waves pass
over a shallow water bank with steep lee side (see e.g. Battjes and Beji,
1993). High frequency bound waves are formed on the top of the bank and
are subsequently released when the waves propagate into deeper water.
These released waves then propagate independently of the main wave �eld.
In general, the e�ect of the triad interactions is to make the wave frequency
spectrum broader and �atter, increasing both the high frequency and the
low frequency energy at the expense of the peak. Triad wave interactions
are e.g. implemented in the wave model SWAN (Booij et al., 1999).

In a wave model, a full computation of the quadruplet wave-wave inter-
actions is extremely time consuming and not convenient. A number of
techniques have been proposed to improve computational speed, e.g. the
discrete interaction approximation (DIA) of Hasselmann et al. (1985). The
DIA has been found quite successful in describing the essential features of
a developing wave spectrum in deep water (Komen et al., 1994). For the
application of wave models to shallow water, a depth scaling is used for
these approximations.

With regard to the K-model, Schneggenburger (1998a) accepts the signi�-
cance of the four wave interactions, but he argues that the depth scaling
procedure is not appropriate in very shallow water because we lack the
basic understanding of how four wave interactions work in coastal seas.
Therefore, we cannot give an explicit source term, and quadruplet wave
interactions are neglected in the K-model.
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3.4 Propagation and Refraction
Varying water depths and currents have an impact on the �ux of wave
action. As the waves propagate in a region of shallow water depths, they
interact with the bottom. Thereby, properties of the waves like direction
or amplitude are changed by wave propagation depending on water depths
and currents.

The propagation e�ects can be divided into refraction, di�raction, and
shoaling. Wave refraction tends to align wave crests parallel to o�shore
depth contours and eventually the shoreline. Wave di�raction tends to
spread wave energy as a wave passes a structure or a shoal. This e�ect is
most evident behind shore parallel breakwaters. As waves propagate past
a breakwater, they bend towards the shadow zone behind the structure.
Due to shoaling, the amplitude of the wave is changed (Vincent et al., 2001).

In addition to refraction due to changing water depths, waves are refracted
by varying currents. Shear �ows cause the waves to change their direction
into the direction of the current (LeBlond & Mysak, 1978). (In section (3.6),
other in�uences of time varying current and water level �elds are described.)

In the K-model, these processes are described by the dot terms on the
left-hand side of (3.1). The x gradient term represents propagation, and
the k and θ gradient terms refraction.

The dot terms can be derived using the dispersion function Ω for linear
water waves which was given in equation (2.11) and is repeated here for
convenience.

Ω(k) = σ(k) + k · uc (3.19)

and the kinematical relations

ẋ = ∂kΩ, k̇ = −∂xΩ (3.20)

linked to Ω.
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The location dot terms are given by the components of the wave group
velocity

ẋ = vg sin θ (3.21)

ẏ = vg cos θ. (3.22)

Since the group velocity is the sum of the intrinsic wave group velocity
∂σ/∂k and the superimposed current velocity uc, the current velocity enters
the wave action balance equation through the location dot terms (3.21) and
(3.22).

The k and θ dot terms indicate an additional in�uence of the external �elds
on the wave dynamics. They are

k̇ = −(sin θ ∂x Ω + cos θ ∂y Ω) (3.23)

θ̇ = −(cos θ ∂x Ω + sin θ ∂y Ω) k−1. (3.24)

Water levels and currents are explicitly contained in the dispersion function.
Thus, derivatives of the external �elds enter the balance equation.

In the equations (3.23) and (3.24) only spatial derivatives of the dispersion
function can be found. This is due to the fact that the K-model uses (k, θ)

as independent k-space variables. If frequency and direction (f, θ) are used
instead, partial time derivatives of the disperion function appear in addition
to the spatial derivatives.
In such cases, a quasi-stationary approximation can be chosen where the time
dependent external �elds are considered, but their partial time derivatives
are neglected. However, Tolman (1990) pointed out that unsteady current
and depth �elds have a signi�cant impact on surface waves. Therefore, the
K-model formulation of the wave action balance equation is well suited for
tidal systems as it is possible to take the non-stationarity of the external
�elds into account.
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3.5 Numerical Treatment
In accordance with WAM cy. 4 (WAMDI, 1988), the K-model uses di�erent
numerical schemes for propagation and refraction terms on the one hand
and for the source terms on the other hand. A time-centered implicit scheme
is used for the numerical implementation of the source functions. An explicit
�rst-order upwind scheme is used for both propagation and refraction. The
upwind scheme has the disadvantage of numerical di�usion (see Komen
et al., 1994). Considering swell propagation over large distances, this
results in numerical dispersion. Tolman (1992) showed that in fetch-limited
situations the model behaviour is hardly in�uenced by numerical errors in
wave propagation. As fetch limitation is likely in small-scale coastal areas,
Schneggenburger (1998a) concluded that the upwind scheme is suitable for
the K-model.

The numerical upwind scheme is conditionally stable, i.e. the maximum al-
lowed time step is restricted by the Courant-Friedrich-Lewy (CFL) stability
criterion. The CFL criterion for combined propagation and refraction is

1 ≥
∣∣∣∣ẋ

∆t

∆x

∣∣∣∣ +

∣∣∣∣ẏ
∆t

∆y

∣∣∣∣ +

∣∣∣∣k̇
∆t

∆k

∣∣∣∣ +

∣∣∣∣θ̇
∆t

∆θ

∣∣∣∣ (3.25)

where ∆t is the time step, ∆x and ∆y are the grid spacing, ∆k is the step
of the modulus of the wavenumber vector, and ∆θ is the direction step.

The model grid looks as follows: A spatial discretisation of 400 m is
used in both horizontal directions. To discretise the k-space, a loga-
rithmic distribution of the discrete values is applied to the modulus of
the wavenumber vector k with ki+1 = γki, γ = 1.21, i = 1, ..., 25, and
k1 = 0.04000 rad m−1, k25 = 3.88069 rad m−1. The reason for this is to
obtain a better resolution of smaller values of k because in the higher k-bins
less energy is contained. For convenience, the wave lengths corresponding
to the �rst and last k values are given here, too. They are λ1 = 157.08 m

and λ25 = 1.62 m. The direction of the wavenumber vector θ has been
resolved by twelve di�erent directions, starting from 15◦ with a step of
∆θ = 30◦. In the K-model, both the k and θ values can be chosen arbitrarily.
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As water level and current �elds are contained in di�erent terms of equation
(3.1), propagation and refraction can be treated separately in di�erent
subroutines with individual time steps. For propagation and refraction the
time step is 2 s, for the source term integration 30 s.

3.6 The In�uence of External Fields
As pointed out in section (3.4), surface gravity waves are in�uenced by
varying current and water level �elds. In the following, it is described in
what way water levels enter the source terms and why the in�uence of
currents on the source functions is neglected. Furthermore, some e�ects are
speci�ed the varying external �elds have on the surface waves.

The source functions used in the K-model are all dependent on the local
water depth which is explicitly contained in the source functions for bottom
dissipation and nonlinear interaction. In addition, it indirectly a�ects all
source functions via circular frequencies as well as via phase and group
velocities.

In contrast to this, possible impacts of currents on the source functions
are neglected in the version of the K-model used for this work. As can be
seen from the fact that the intrinsic frequency σ instead of the absolute
frequency ω (equation (2.11)) is used in the equations (3.5) and (3.8),
the source functions of the Phillips Sphil and the Synder Sin disregard the
relative speed of winds and currents. Schneggenburger et al. (1997) chose
this approach because the e�ects of currents on the source functions are not
quantitatively known.
Nevertheless, an impact of the currents on the di�erent processes described
by the source functions is likely. In all likelihood the currents in�uence
the wind input, and therefore also the turbulent eddy viscosity contained
entering the nonlinear dissipation. Moreover, they contribute to the overall
level of bottom stress and thus to the bottom interaction dissipation.
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The waves themselves are changed by the external �elds in di�erent ways.
Here, some examples are given. One phenomenon induced by varying cur-
rents is the Doppler shift. This leads to a change of integrated wave periods
(for de�nitions of these parameters, see section 2.4).
Another example is refraction. Time varying values of water levels and cur-
rents with spatial di�erences result in refraction of the surface waves due to
which energy is either focussed or scattered.
In addition, the signi�cant wave height might be modi�ed by the currents.
Since the energy propagation velocity is a function of current velocity, the
fetch is a�ected by the currents. If currents propagate in the opposing direc-
tion of the waves, the group velocity is reduced and the waves stay longer
in the same area. Hence the e�ective fetch is increased and higher waves
are generated. In contrast to this, the signi�cant wave height is reduced by
collinear currents.
Another e�ect of opposing currents is wave blocking. Waves propagating
on strong opposing currents can be blocked by the current, creating a re-
gion downwave of the blocking point which is free of wave activity. This
phenomenon can for example be encountered in tidal inlets.



Chapter 4

GETM

The General Estuarine Transport Model (GETM) has been used for this
study to simulate the evolution of the sea surface elevation and current
�elds under the in�uence of the driving forces of wind and tides. Data
yielded with GETM is used as input for the wave model. Preparation
of the current and water level �elds for the K-model is described in
section (5.1). Here, a short description of the circulation model is pre-
sented (for a detailed disquisition on GETM, see Burchard & Bolding, 2002).

GETM was developed to simulate the dynamics of estuaries. It is especially
suited for applications to shallow areas which periodically fall dry and get
�ooded again due to the tides. For example Stanev et al. (2002) applied
GETM successfully to the whole East Frisian wadden sea.

4.1 Hydrodynamic equations
The fundamental equations describing motions of the ocean are governed
by the incompressible Navier-Stokes equations on a rotating spherical earth
with two simpli�cations: the hydrostatic assumption and Boussinesq approx-
imation (see, e.g., Haidvogel & Beckmann (1999)). In the hydrostatic shallow
water approximation, pressure p depends only on the water depth

ρg = −∂zp. (4.1)

40
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This relation holds if the horizontal dimensions of the ocean volume under
consideration are much larger than the vertical dimension, hence the
label 'shallow water'. According to the Boussinesq approximation, density
di�erences are neglected unless the di�erences are multiplied by gravity.

In an orthogonal Cartesian coordinate system, in which x, y and z increase
respectively eastward, westward and upward, the governing equations can
be written as

∂tu + ∂z(uw)− ∂z ((νt + ν)∂zu)

+α

(
∂x(u

2) + ∂y(uv)− ∂x

(
2AM

H ∂xu
)− ∂y

(
AM

H (∂yu + ∂xv)
)

−fv −
∫ η

z

∂xb dz′
)

= −g∂xη,

(4.2)

∂tv + ∂z(vw)− ∂z ((νt + ν)∂zv)

+α

(
∂x(vu) + ∂y(v

2)− ∂y

(
2AM

H ∂yv
)− ∂x

(
AM

H (∂yu + ∂xv)
)

+fu−
∫ η

z

∂xb dz′
)

= −g∂yη.

(4.3)

The vertical velocity component is given by the equation of continuity

∂xu + ∂yv + ∂zw = 0. (4.4)

Equation (4.4) is the simpli�ed form of the mass conservation equation. It
has already been mentioned in chapter (2.1) and is repeated here for the
sake of completeness.

In the equations (4.2) and (4.3), f is the Coriolis parameter, ν the kinematic
viscosity describing the molecular di�usion of momentum, and νt the vertical
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eddy viscosity parameterizing e�ects of turbulent di�usion. The parameter
AM

H gives a general form of he horizontal eddy viscosity coe�cient. The
buoyancy b is known from Archimedes' principle as

b = −g
ρ− ρ0

ρ0

, (4.5)

where ρ is the density of water, and ρ0 a reference density.

The terms involving the buoyancy are the internal pressure gradient which
are the result of density gradients. The external pressure gradients are
described by the terms with the gravitational acceleration.

When the water becomes very shallow during ebb tide the model physics are
simpli�ed by the drying and �ooding parameter α. It is given by

α = min

{
1,

D −Dmin

Dcrit −Dmin

}
. (4.6)

In those regions of the model area where the current water depth is greater
than a critical value Dcrit α equals unity. Then, the full model physics are
allowed for. When the water depth D = h + η approaches a lower bound
Dmin α converges to zero. In such cases a simple balance between the
external pressure gradient and friction is left. In accordance with Stanev et
al. (2002) the minimum allowable water depth Dmin is 5 cm and the critical
value Dcrit is 20 cm.

4.2 Boundary conditions
The kinematic boundary condition for the surface was given in equation
(2.4) and is repeated here for convenience in terms of the velocity vector
v=(u,v,w)

w = ∂tη + u∂xη + v∂yη for z = η . (4.7)

At the bottom, the kinematic boundary condition reads

w = −u∂xh− v∂yh for z = −h . (4.8)
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At the bottom the horizontal velocity components follow the 'no slip' con-
dition

u = 0, v = 0, w = 0. (4.9)

The vanishing of the horizontal velocity components at the bottom implies
the existence of frictional boundary layers because the velocity is brought
to zero from the free stream values across a thin boundary layer where
friction is important.

At the surface, the dynamic boundary conditions are given by

(νt + ν)∂zu = ατx
s , (4.10)

(νt + ν)∂zv = ατ y
s , (4.11)

where τx
s and τ y

s indicate the surface stresses being for example dependent
on wind features. The surface stresses are multiplied by the factor α in
order to incorporate the �ooding and drying due to the tides.

4.3 Vertically Integrated Mode
Since only two-dimensional velocity and sea surface elevation �elds are
needed as input for the wave model, GETM has been used in the vertically
integrated mode.

Under consideration of the kinematic boundary conditions (4.7) and (4.8)
the vertical integration of the equation of continuity yields the sea surface
elevation equation

∂tη = −∂xU − ∂yV (4.12)

with

U =

∫ η

−h

u dz, V =

∫ η

−h

v dz . (4.13)
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After vertically integrating the horizontal equations of motion read

∂tU + τx
b + α

( ∫ η

−h

(
∂xu

2 + ∂y(uv)
)

dz

−τx
s −

∫ η

−h

(
∂x

(
2AM

H ∂xu
)− ∂y

(
AM

H (∂yu + ∂xv)
) )

dz

−fV −
∫ η

−h

∫ η

z

∂xb dz′ dz

)
= −gD∂xη

(4.14)

and

∂tV + τ y
b + α

( ∫ η

−h

(
∂x(uv) + ∂yv

2
)
) dz

−τ y
s −

∫ η

−H

(
∂y

(
2AM

H ∂yv
)− ∂x

(
AM

H (∂yu + ∂xv)
) )

dz

+fU −
∫ η

−h

∫ η

z

∂yb dz′ dz

)
= −gD∂yη.

(4.15)

The water depth D on the right-hand side of the equations equals η− (−h).

4.4 Numerical Treatment
The barotropic mode of GETM comprises the surface elevation equation
(4.12) and the transport equations (4.14) and (4.15). When discretising these
equations, the presence of the gravity waves and the sea surface leads to se-
vere time step limitations. As the vertically integrated equations are treated
explicitly, the time step has to obey the following stability criterium

∆t <

[
1

2

(
1

∆x
+

1

∆y

) √
2gD

]−1

. (4.16)

In this study a time step of 9 s has been used.

For the spatial discretisation a staggered Arakawa C-grid is used (Arakawa
& Lamb, 1977) with a grod box width of 200m. In the following, this
grid is described for the variables U , V (mass transports) and η (sea
surface elevation), the variables needed as an input for the wave model.
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The C-grid is composed of three subgrids. The �rst subgrid shows a mesh
for the variable η, the second shows a mesh for the variable U (West-East
transport), and the third shows a mesh for the variable V (North-South
Transport). The overlay comprises the staggered grid in such a way that η

is located at the center of the mesh boxes, and the mass transports U and
V are displaced half a grid box to the west of the center and half a grid box
to the south of the center, respectivly (see �gure (4.1)).
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ii-1 i+1
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η

Figure 4.1: The horizontal Arakawa C-grid of GETM (the
�gure has been adapted from Burchard & Bolding (2002))



Chapter 5

Model Setup

In the following chapter the model setup is laid out. Firstly, the one-sided
coupling of the K-model with the current model is described. Secondly, the
model domain is presented. The chapter concludes with a description of the
forcing for the two models composed of the wind data used for both models,
the tidal forcing for GETM, and the boundary spectra for the wave model.

5.1 Coupling of the Two Models
In order to couple the wave model with the current model, the current
velocity and sea surface elevation �elds were linearly interpolated from
the Arakawa C-grid of GETM to the non-staggered, simple grid of the
K-model. For the sea surface elevation four T-Points of the C-grid were
averaged yielding a value in the middle of the former four. To take into
account possible land and dry points, the involved dry points were counted.
If their number was greater than two the value in the middle was set to a
dry point. Otherwise, the average of the wet points was calculated.

For the interpolation of the current velocities only those values of the C-grid
were considered that are located directly above and below the K-model grid
points in the case of the velocity component u, and directly left and right
to the K-model grid point in the case of the velocity component v.

The interpolation procedure is depicted in �gure (5.1). The obtained in-
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terpolated values were converted into timeseries data �les of the new grids
which then were used as model forcing for the wave model.

Figure 5.1: Illustration of the interpolation from the
Arkawa C-grid of the current model to the non-staggered
grid of the wave model. The arrows indicate which val-
ues were taken into account.

The coupled model has been applied to the wind scenarios described in
section(5.4). Simulations have been carried out with and without taking
time varying currents into account. The model output comprises current
velocities, surface elevation �elds, integrated wave parameter �elds, and
frequency-direction spectra and time series of integrated wave parameter
for the positons depicted in (5.3).

5.2 Model Area
The wadden sea is a shallow sea extending along the North Sea coasts from
Den Helder, the Netherlands, and to Esbjerg, Denmark, with an overall
length of about 500 km. In the mean, the wadden sea is about 10 km wide and
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covers a total area of about 8 000 km2. The German part amounts to about
50% of this area. It comprises the coastal area of the German Bight and
ranges from the most western East Frisian barrier island Borkum to the is-
land Sylt in front of the western coast of Schleswig-Holstein (cf. �gure (5.2)).
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Figure 5.2: Map of the North Sea and the German Bight. The inset
depicts the North Sea with the German Bight margined by the square.
In the big map of the German Bight the square delimits the model area.
The dark shading marks approximately the part of the German Bight
that periodically falls dry. (The �gure has been adapted from Stanev et
al. (2002).)

The behaviour of water motion and geomorphology in the Wadden Sea is
strongly controlled by the tides. In the German part, the tidal range varies
between 2.2m in Borkum and 3.6m in Wilhelmshaven. During low tides
large parts of the wadden sea emerge. These so-called tidal �ats cover a
large portion of the tidal area and are one of its most characteristic features.



CHAPTER 5. MODEL SETUP 49

During high tides the �ats are inundated again.

The wadden sea has a complex bathymetry, consisting of tidal inlets with
the associated tidal deltas, tidal �ats, and a network of channels and shoals.
Typical tidal velocity amplitudes in the inlets are of the order of 1ms−1

(Wol�, 1983). The morphology in the wadden sea varies depending on the
wave and tidal conditions which constitute the hydrographic regime. Wave
driven littoral transport moves and redistributes sediment parallel to the
coast that has been carried perpendicular towards the coast by the tides.
The littoral drift is predominantly eastward directed. A classi�cation of the
relationship between the hydrographic regime and the coastal morphology
was given by Hayes (1979). It is assumed in this classi�cation that with
increasing tidal energy the importance of wave energy decreases. According
to Hayes (1979), the coast can be divided into microtidal, mesotidal, and
macrotidal areas. The German wadden sea is partly mesotidal and partly
macrotidal. Where the tidal range is greater than 2.90m, the conditions are
macrotidal. The littoral transport is minimal so that sandy barriers are few.
Therefore, the size of the barrier islands increases with a decreasing mean
tidal range towards the outer German Bight (Dijkema et al., 1980). Where
the tidal range exceeds 1.35m, the conditions are mesotidal. Tidal �ats
separate the coast from barrier islands which are intersected by tidal inlets.
Through the inlets a large amount of sediment is carried and deposited on
both the oceanward (ebb tidal delta) and shoreward (�ood tidal delta) side.

The coupled model has been applied to the part of the German wadden sea
around the two barrier islands Baltrum and Langeoog. Approximating the
inter-tidal basin connected to the North Sea via the tidal inlet called 'Acc-
umer Ee', the area of the wadden sea between the two islands and the East
Frisian coast, together with about 6.5 km of the open North Sea in front of
the islands has been considered as model area. Its topography is shown in
�gure (5.3). The model domain is 15.2 km long and 15.6 km wide. Morpho-
logical features consist of a tidal inlet, tidal channels, and tidal �ats. The
tidal range is about 2.5m (Niemeyer, 1994). According to the classi�cation
set forth above, this area is mesotidal.
The required topography was provided by Gerhard Gayer from the Institute
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for Coastal Research at the GKSS Forschungszentrum. He used measuring
data acquired by the Federal Waterways Engineering and Research Institute
(BAW) in the year 1995. The distance between the measuring points varied
between 250m on the seaward side of the area, and 20m near the deeper
tidal channels. Between theese points G. Gayer interpolated linearly and
obtained a topography with resultion of 100m in both horizontal directions.
For the simulations with the current model which uses an Arakawa C-grid
the topography data was interpolated to a 200 × 200m grid with 76 × 78

gridpoints. Calculations with the wave model have been conducted with a
400 × 400m grid with 76 × 78 gridpoints. The data was also obtained by
interpolating. The grid of the K-model is not staggered.
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Figure 5.3: The topography of the model area.

5.3 The Tides
At the open boundaries on the northern, western, and eastern edge of
the model area sea level data has been prescribed to account for the
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in�uence of the tides. The data was calculated by the German Federal
Maritime and Hydrographic Agency (Bundesamt für Seeschi�ahrt und
Hydrographie, BSH) with a three-dimensional prognostic model (Dick &
Sötje, 1990). Simulations are carried out of the North Sea and Baltic Sea
with a horizontal resolution of 10 km, and of the German Bight with a
higher resolution of 1.8 km.
The sea level data was calculated from 14 tidal constituents. In the
wadden sea, the semi-diurnal lunar tide M2 with a period of 12.42 h and
the semi-diurnal solar tide S2 with a period of 12.00 h are predominant.
Interaction between these solar and lunar tides results in spring tides and
neap tides depending on wether the Sun and Moon are in syzygy or in
quadrature.
The available time series of sea level data starts on the May 19th, 2000. The
temporal resolution is 15min. In �gure (5.4), the �rst seven days of the sea
level time series are shown. With these values simulations have been carried
out. The red dot approximately marks when the spring tide set in.
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Figure 5.4: Time series of sea level data.
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When prescribing the boundary values for the sea surface elevation, we
have to take the phase shift in the tidal rise and fall due to the amphidromy
in the southern North Sea into consideration. The tidal wave propagates
through the North Sea as a Kelvin wave, in this case in a counter-clockwise
circular motion. This leads to patterns of high and low tides rotating around
amphidromic points at which the tidal rise and fall is zero. The German
wadden sea is under the in�uence of the amphidromic system whose point
of zero tidal rise is located approximately at 55◦ 27'N - 5◦ 18'E (Tomczak
& Godfrey, 1994). The associated tidal wave propagates along the Belgian
and Dutch coast in a northerly direction towards Germany and Denmark.

Stanev et al. (2002) conducted simulations for the whole East Frisian wadden
sea. Their model domain has a total length of 65 km. The corresponding
phase shift is approximately 50min. The length of the model area under
investigation in this thesis is 15 km. For simplicity a linear relationship has
been assumed between the phase shift of the tidal wave along an area of the
wadden sea coast and the length of this area. Subsequently, the phase shift
for the Baltrum-Langeoog area is taken to be 11.5min.
In order to resolve this phase shift in the boundary values, two successive
sea level values in the data set have been interpolated in time yielding a
value that has a phase di�erence of 11.5min to the later original value.
These two values were allocated to the two northern corners of the model
area. Between these two values, an interpolation in space was carried out
to obtain the boundary values needed for the grid point along the northern
boundary. The boundary values on the western and eastern boundary have
been held constant, the western boundary equal to the northwestern sea level
value, and the eastern boundary equal to the northeastern sea level value.

5.4 Wind Input
As wind input a constant wind velocity for the whole model domain was
chosen. Case studies are carried out for four di�erent wind scenarios. These
were obtained from measured data that was acquired by the GKSS with
a hydrographic pile. The position of the pile is R 2596081.575 and H
5954395.026 in Gauss-Krüger coordinates and is marked in �gure (5.3).
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The period of measurement started at 15.03.2001, 18:50 and ended at
19.11.2001, 14:50.

The wind data given by wind speed and direction was evaluated in the
following way: The direction given by a 360◦ clockwise scale with 0◦ in
northern direction was divided into twelve direction 'bins' each 30◦ wide.
The wind speed data contained in each direction bin was subdivided into
four speed bins with an interval of 5.0 ms−1. The wind data in such a
combined direction-speed bin were averaged. From the averaged direction-
speed bins four di�erent wind velocities were chosen. The criteria of the
choice were that the speeds have a maximum magnitude and that the four
directions di�er su�ciently.

Figure (5.5) shows the wind velocities in the averaged bins. Please note that
180◦ were added to the wind direction to give an impression where the winds
were blowing to. The length of the arrows corresponds to the magnitude of
the wind speeds ranging from 2.98 ms−1 to 17.23 ms−1.

It is pointed out here that the wind velocities used in this thesis are not
representative of the East-Frisian wadden sea. The monthly averages of the
wind speeds do not exceed 8.0 ms−1 (C. Lefebvre, DWD, pers. comm.). In the
analysed time series, the chosen winds are not among the most frequent ones.
In table (5.1) the frequencies with which data sets occur in one direction-
speed bin are listed to give an impression of this.

In GETM, the constant winds were included by giving the corresponding
constant wind stresses which were computed using the bulk formular

τ = CDu2
10ρ (5.1)

together with the formula for the drag coe�cient suggested by Smith &
Banke (1975)

CD = (0.63 + 0.066u10)× 10−3. (5.2)

The K-model applies the wind velocities by calculating the source terms
described in (3.2.1.1) and (3.2.1.2).
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Figure 5.5: Average wind velocities in the direction-
speed bins. The velocities chosen for the case studies
are presented in red color.

Table(5.2) gives the wind velocities and corresponding stresses used for case
studies.

5.5 Boundary Spectra
For the simulations with the K-model boundary spectra were prescribed on
the open boundaries. The spectra were calculated in such a way that they
represent the chosen wind scenarios described in section (5.4). To this end,
representative fetch lengths and water depths were assumed for the di�erent
wind velocities (table (5.3)). These take into account the areas the winds
are coming from. The discrete wave numbers given in section (3.5) were con-
verted to the respective frequencies using the deep-water dispersion relation.
Using a simple directional distribution, two-dimensional TMA spectra were
calculated for these frequency, depth, and fetch values. The obtained energy
densities were converted to action densities depending on the wave number.
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Table 5.1: Frequencies of data-sets in the direction-speed bins.
0-5 ms−1 5-10 ms−1 10-15 ms−1 15-20 ms−1

0◦-30◦ 1291 960 299 25
30◦-60◦ 1068 804 33 0
60◦-90◦ 880 1352 537 0

90◦-120◦ 961 1636 129 0
120◦-150◦ 1130 629 132 0
150◦-180◦ 1251 676 62 0
180◦-210◦ 1431 1895 410 1
210◦-240◦ 977 2531 870 13
240◦-270◦ 682 1813 782 65
270◦-300◦ 815 2203 633 84
300◦-330◦ 672 1312 929 397
330◦-360◦ 994 1102 353 36

(for an explanation of TMA spectra, cf. A.4.3).
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Table 5.2: The wind velocities and corresponding stresses used for case stud-
ies. The wind velocities are given in polar and Cartesian coordinates, the
wind stresses in Cartesian coordinates.

|u10| [ms−1] Dir. [◦] u10 [ms−1] v10 [ms−1] τx [Nm−2] τy [Nm−2]

S1 15.09 21.0 5.4078 14.0877 0.1659 0.4321
S2 16.44 133.5 11.9252 -11.3165 0.4203 -0.3988
S3 16.24 72.7 15.5053 4.8294 0.5357 0.1668
S4 17.23 188.4 -2.5170 -17.0452 -0.0958 -0.6488

Table 5.3: Representative fetches and water depths chosen for the boundary
spectra.

Fetch X [km] Depth [m]
S1 20 5
S2 1 200 40
S3 500 20
S4 500 35
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It should be noted, that the used forcing data is not consistent. The starting
time of the boundary values for the sea surface elevation is 19th May 2000.
The analysed time series of the hydrographic pile starts on the 15th March
2001. Nevertheless, the di�erent data sets re�ect real processes. A tidal range
of about 2.5-3.0m is likely in the East Frisian wadden sea, and so are wind
speeds of about 15ms−1. The combination of these inconsistent data sets is
therefore justi�ed.



Chapter 6

Results

6.1 Directional Spectra
One objective of this thesis is to investigate the in�uence of the current
�elds on the waves. For this reason, a selection of frequency-direction
spectra are shown here.

Spectra are given here for the positions P2, P3 and P4. The tidal inlet repre-
sented by the position P3 is very well suited to point out the current e�ects
because the current speeds are the highest there. Therefore, the in�uence on
the waves, if there is any, should be obvious. Spectra of the positions P2 and
P4 are presented to show deviations in the spectra brought about by di�er-
ent depth. Figure (6.1 (a) and (b)) are good examples how the Doppler shift
due to the currents in�uences the waves and consequently the spectra. The
current induced Doppler shift is a term in the absolute frequency ω given in
equation (2.11). If the current and wave directions are nearly diametrical,
the scalar product k · uc converges to a negative minimum. Then, the abso-
lute frequency is reduced. This can be seen in �gure (6.1). Current and wave
directions are opposed. Therefore, the spectrum contains more energy in the
lower frequencies. The contrary is depicted in �gure (6.2) where current and
waves directions are about the same giving rise to wave frequncies being
shifted to higher values. Moreover, the spectrum is broadened in the former
case �gure (6.1), and narrow in the latter �gure (6.1).
The situation shown in �gure (6.1 a and b) describes the refraction by cur-
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rents. The current and wave directions are perpendicular to each other, and
the waves are diverted to the directions of the currents.
Comparing �gure (a and b) it is obvious that the energy content in the
spectrum at position P2 is less than in the spectrum at P4. As the position
P2 is located on the tidal �ats, more wave energy is dissipated by bottob
friction than at the sea and position P4.
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Figure 6.1: Selected frequency-direction spectra for the locations and times
given in the captions of each plot. The left panels show spectra for the simu-
lations with varying currents, and the right panels without currents. Contour
line intervals are logarithmic. Spectral Energy densities are given in m2Hz−1.
Dashed lines represent the wind directions, dot-dashed lines the current direc-
tions.
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Figure 6.2: Annotation as in �gure (6.1).
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6.2 Time Series
In this section, the e�ects on wave parameters brought about by currents
are illustrated by time series of these parameters and current parameters.
To this end, four di�erent time series are discussed, each of them put out
at a di�erent location and for a di�erent wind scenario. The locations are
shown in �gure (5.3) The �rst panel shows the in�uence on the signi�cant
wave height Hs, the second panel on the Tm1 wave period. The dashed lines
indicate the changes in time without currents, the solid lines with currents.
The third and fourth panel demonstrate how current directions and current
velocities change with the tides. The dotted lines in the third panels give
the directions of the currents.

Figure (6.3) presents the time series for the wind scenrio S2 (north-western
direction) at the location P4. The two upper panels show the impact
of currents on the signi�cant wave height and the integrated parameter
Tm1. As both parameters stay nearly constant when current is not taken
into account for the simulation, the in�uence of tidal currents can clearly
be seen. The current velocities shown in the fouth panel have no severe
di�erence for ebb and �ood periods. The value of the current velocities
is around 0.25ms−1. The varitions of Tm1 are greater when the current
directions and the wave directions are anti-parallel. The parameter Tm1

reaches its minimum when wave directions and current directions are equal.

Figure (6.4) shows the time series at the location P2 and for the wind
scenario S1 with southern wind. As can be seen from the time series the
signi�cant wave height Hs and the integrated Tm1 equals zero during ebb
tide. This is not unlikely as the water depth at this position is shallow.
The current in�uence on these parameters is negligible, because the dashed
and solid lines do not di�er. Again, it can be pointed out that the opposite
current and wave directions have an e�ect on the integrated parameter Tm1.
A small bulge is notable at time points 20 and 08. For the current velocities
in the fouth panel can be said that the run of the curve is similar to the
modulus function due to the fact that current that the current directions
change to the opposite. During ebb tide no or little water is found at
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the position P2, hence no data has been computed, since the wave model
requires a minimum water depth of 0.5 m.

At the loction P3 for the wind scenario S4 (northern wind) a distinction of
the tides is evident (see �gure (6.6). The current in�uence on the signi�cant
wave height is completely negligible because the curves for both versions
can be regarded similar. The current directions change suddenly with the
changing of the tides. This is most obvious for the position P3. The tidal
in�uence on the current velocity is also visible in the last panel where the
values of the velocities vary from 0.27ms−1 to 0.0ms−1. Again, it can be
pointed out that opposite wave directions and current directions amplify
the range ot the parameter Tm1.

In �gure (6.5) the last time series at location P1 for the wind senario
S3 (south-western wind) is presented. As expected for this position the
signi�cant wave height Hs has no severe amplitude. It can be regarded
as constant. As the wave directions and the current directions are par-
allel most of the time the integrated parameter curve is as well nearly
constant. The di�erent simulations, one includes current input, the other
does not, can hardly be distinguished from each other. The current veloci-
ties are small like in the �rst �gure (6.3). Their maximum value is 0.25ms−1.

At the end of this time series representation, it is worth to mention that
current in�uences occur periodically with the tides. In all four cases the
e�ects are roughly identical.
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Figure 6.3: Time series of integrated wave parameters and the current velocities
for the the wind scenario S2 at the location P4. The solid lines represent the
simulations with currents included, and the dashed lines without currents. The
dotted line in the bottom panel gives the current direction.
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Figure 6.4: Time series of integrated wave parameters and the current velocities
for the the wind scenario S1 at the location P2. Line style as in �gure (6.3).
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Figure 6.5: Time series of integrated wave parameters and the current velocities
for the the wind scenario S3 at the location P1. Line style as in �gure (6.3).



CHAPTER 6. RESULTS 67

16 20 00 04 08 12 16 20
0.0

0.5

1.0

1.5

2.0

Time [h]

H
s [m

]

16 20 00 04 08 12 16 20
0

1

2

3

4

Time [h]

T
m

1 [s
]

16 20 00 04 08 12 16 20
  0

 90

180

270

360

Time [h]

di
re

ct
io

ns
 [°

]

16 20 00 04 08 12 16 20
0.00

0.25

0.50

0.75

1.00

Time [h]

u c [m
s−

1 ]

Figure 6.6: Time series of integrated wave parameters and the current velocities
for the the wind scenario S4 at the location P3. Line style as in �gure (6.3).
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6.3 Integrated Wave Parameter and Current
Fields

In order to get an impression of how the di�erences between the four sce-
narios, and, at the time, of how current �elds a�ect the wave �elds , here
the obtained model results are depicted as �eld plots. These show the model
area with the East Frisian coast and the two barrier islands Baltrum and
Langeoog. On the following two pages, each column of plots represents one
wind scenario. In each column the panel at the top shows the modulus of
the current velocities and the velocities as stream lines. The center panel
presents wave height �elds computed with current input. To allow an esti-
mation of the current in�uence the ave heights obtained without the currents
included in the ave model are shown in the bottom panel. All �rlds describe
the condition of the water shortly before high tide. The units of the scales
to the right of the plots are ms−1 in the case of the velocity �elds, and 0.1m
in the case of the water heights. The arrows indicate the wave directions.
Depending on where the wind is coming from it enhances or weakens the
current pattern induced by the tides. For example, in the current velocity
plot of scenario S1 the current velocities in the tidal basin are rather small,
and the currents are rather slowly propagating through the inlet (cf. top
left panel of �gure (6.7)). In comparison to this, under the in�uence of the
wind of scenario S2 the velocities are higher in the inlet and in the basin
(cf. top right panel of �gure (6.7)). Since the plots show the status of the
�elds shortly before high tide, the in�uence of the winds is probably stronger
than during full developed ebb or �ood currents. Therefore, this e�ect might
be overstated by the plots. The strong tidal currents are not likely to be
de�ected or hampered by the winds.
Concerning the in�uence of the currents on the waves only slight di�erences
are detectable for the cases S1 and S3. For the other two cases the two lower
panels vary. When currents are taken into consideration the wave heights
are generally higher. It seems that for the case S4 waves are advected by
the currents in front of the inlet on the seaward side, and that the waves are
caught there.
Besides the interaction of the waves with the currents, depth refraction can
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be seen in most wave height-directions plots. South of Langeoog this phe-
nomenon is visible in the middle and bottom panel of �gure (6.8). As the
waves turn towards the island in both plots, this cannot be due to the cur-
rents. Depth refraction is a likely explanation.
In addition to the impacts of changing depths and currents, the shadowing
e�ects of the islands are evident in plot of the wave height. Depending on
the direction of the wind, waves are smaller on the respective leeward side
of the islands.
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Figure 6.7: Fields of the current velocity and the signi�cant wave height for
the stated scenarios
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Figure 6.8: Fields of the current velocity and the signi�cant wave height for
the stated scenarios
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Conclusions

This study on the e�ects of tidal currents and di�erent wind scenarios on
wind waves in the East Frisian wadden sea give rise to the following conclu-
sions:
For the East Frisian wadden sea, modulations of mean wave parameter such
as the signi�cant wave height and the mean wave periods can be signi�cant
depending on the position and the tidal and meteorological conditions.
The simulations of the di�erent wind situations produced expected results.
The interesting part is the interplay of the wind induced waves with the
tidal currents.
Even though inconsistent forcing data has been used, realistic physical pro-
cesses could be successfully approximated.
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Appendix A

Wave Spectra

A.1 Wavenumber-directional Spectrum
O�shore Hydrodynamics: Spectrum Axis Transformation
Converting the wavenumber vector to polar coordinates the wave spectrum
can be given by

F (k, θ) = k F (k). (A.1)

It now depends on k, the modulus of the wavenumber vector, and θ denoting
the direction of the wavenumber vector. θ is measured clockwise from north.

This representation is called the wavenumber-direction spectrum. It has
numerical advantages for spectral wave modelling. Using the discrete
wavenumber-direction spectrum the directional resolution does not depend
on the wave number k. Hence, the same directional resolution is applied
when resolving wave energy in di�erent wavelength bins (Schneggenburger,
1998a).

A.2 Frequency-directional Spectrum
A common spectral representation of the three-dimensional sea surface is to
consider the frequency-directional spectrum F (f, θ), which represents how

77
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the variance is distributed in frequency f and direction θ.

F (f, θ) =
2πk

vD

F (k) (A.2)

Although F (f, θ) is actually a measurement of variance (cf. paragraph
2.1.2), F (f, θ) is called the 2-D or directional energy spectrum because it
can be multiplied by ρg to obtain wave energy (Komen et al., 1994). The
advantage of this representation is that it tells us in what direction the
wave energy is moving.

It is often convenient to express the directional spectrum F (f, θ) describing
the angular distribution of wave energy at respective frequencies by

F (f, θ) = F (f)D(f, θ) (A.3)

where the function D(f, θ) is a dimensionless quantity which is known as the
directional distribution or the directional spreading function (Demirbilek et
al., 2002). The one-dimensional frequency spectrum F (f) is explained below.

The functional form of the directional distribution D(f, θ) has no universal
shape. Proposals were made e.g. by Mitsuyasu et al. (1975) and Hasselmann
(1980). Mitsuyasu et al. (1975) proposed a form that varies with wave fre-
quency and is related to the stage of wave development.

A.3 Frequency Spectrum
If directional information is lacking, it is suitable to work with the one-
dimensional frequency spectrum. The frequency spectrum may be obtained
by integrating the associated directional spectra over θ

F (f) =

∫ 2π

0

F (f, θ) dθ. (A.4)

F is equal to the Fourier transform of the temporal correlation function

F (f) =

∫ ∞

0

e−2πifτ 〈η(x, t + τ) η(x, t)〉 dτ. (A.5)

Therefore, F (f) can be determined from a time series measurement in a
single point (Komen et al., 1994).
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F (f) is often called the one-dimensional or frequency energy spectrum
because the energy of the wave �eld may be estimated by multiplying F (f)

by ρg. Hence, a wave spectrum tells us what frequencies have signi�cant
energy content (Demirbilek et al., 2002).

A.4 Parametric Spectra
In general, the spectrum of the sea surface does not follow any speci�c math-
ematical form. However, under certain wind conditions the spectrum does
have a speci�c shape. A series of empirical expressions have been found
which can be �t to the spectrum of the sea surface elevation. These are
called parametric spectra.

A.4.1 Pierson-Moskowitz Spectrum

A well-known parametric spectrum is the single-parameter spectrum of
Pierson-Moskowitz PM (Pierson and Moskowitz 1964).
The equilibrium form of the PM spectrum for fully-developed seas may be
expressed in terms of wave frequency f and wind speed Uw as

FPM(f) =
0.0081g2

(2π)4 f 5
exp

[
−0.24

(
2πUwf

g

)−4
]

(A.6)

where Uw is the wind speed at 19.5 m above mean sea level. The PM
spectrum describes a fully-developed sea with one parameter, the wind
speed, and assumes that both the fetch and duration are in�nite. This
idealization is justi�ed when wind blows over a large area at a constant
speed without substantial change in its direction for tens of hours.

An important value in wave modelling is the Pierson-Moskowitz frequency
which gives the peak frequency of the PM spectrum.

A.4.2 JONSWAP Spectrum

An extension of the PM spectrum is the JONSWAP spectrum. The JON-
SWAP spectrum for fetch-limited seas was obtained from the Joint North
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Sea Wave Project (JONSWAP) (Hasselmann et al. 1973) and may be ex-
pressed as

FJ(f) =
ag2

(2π)4 f 5
exp

[
−5

4

(
f

fm

)−4
]

γ
exp

�
−(f−fm)2

2σ2fm2

�

(A.7)

with

fm = 3.5

(
g2F

U3
10

)−0.33

, αJ = 0.076

(
gX

U2
10

)−0.22

, 1 ≤ γJ ≤ 7.

(A.8)

In this equation, the Phillips constant αJ is a scaling parameter, fm the
frequency at the spectral peak, U10 the wind speed at the elevation 10 m
above the sea surface and X the fetch length. The peak enhancement factor
γJ gives the ratio of spectral peak energy to the Pierson-Moskowitz peak
energy. The parameter σJ de�nes the peak width. Commonly, σJ is split
up into two values: σa for the forward face and σb for the rear face of the
spectrum

σJ =

{
σa for f ≤ fm

σb for f > fm .
(A.9)

Figure (A.1) qualitatively illustrates the relationship between PM and JON-
SWAP spectra.

A.4.3 TMA Spectrum

Bouws et al. (1985) proposed a parametric for water wave spectra in �nite
depth water, the TMA spectrum. They analysed spectra from di�erent data
sets (T = Texel, M = Marsen = Marine Remote Sensing Experiment and A
= Arsloe = Atlantic Ocean Remote Sensing Land-Ocean Experiment). The
TMA Spectrum was developed to incorporate �nite depth e�ects into the
JONSWAP spectrum.

FTMA(f) = ψ(f, h) FJ(f) (A.10)

with ψ being a factor that incoporates the depth dependence.
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Figure A.1: Comparison of the PM and JONSWAP spec-
tra (Figure adapted from Hasselmann et al., 1973)

This spectrum accounts for shallow water e�ects such as wave-wave inter-
action, wave breaking and dissipation of wave energy due to the existence
of a bottom boundary layer. The TMA spectrum may be interpreted as
providing an upper bound on the energy at any particular frequency.
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