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In this release, including the title B is used to represent the descriptavdinary water
substance The equation of state forJ@ ice Ih provided in this release is a fundamental
equation for the Gibbs energy as a function of temafure and pressure; details of the
equation can be found in the article “A New Equatas State for HO Ice Ih” by R. Feistel
and W. Wagner [1]. This equation of state provithes most accurate representation of the
thermodynamic properties of the solid-phase iceflh2O over the entire existence range of
ice Ih. As a result of a minor adjustment of theftioient goo given in Table2, the revised
equation improves numerical consistency [2] wite tAPWS-95 formulation for the fluid
phase of water. Further information about thisaséeand other releases issued by IAPWS
can be obtained from the Executive Secretary oM/i&or from http://www.iapws.org.
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1 Nomenclature

Symbol Physical quantity Unit
Co Specific isobaric heat capacity of ice Jkg™
dpmer/dT Clausius-Clapeyron slope of the melting curve Pa K
f Specific Helmholtz energy of ice JRg
g Specific Gibbs energy of ice JRg
g Specific Gibbs energy of liquid water on meltinggli J kg*
g’ Specific Gibbs energy of water vapor on sublimatioa J kgt
Jo Residual Gibbs energy, Table 4 Jkg
Joo---Qo4 Real constants, Table 2 Jkg
h Specific enthalpy of ice J kY
ANmelt Specific melting enthalpy J kY
Ahgypi Specific sublimation enthalpy J Ky
k Uncertainty coverage factor
p Pressure Pa
Po Normal pressurgy = 101 325 Pa Pa
Prmelt Melting pressure Pa
Psubl Sublimation pressure Pa
Pt Experimental triple-point pressumg,= 611.657 Pa Pa
P Numerical triple-point pressure, Pa

pi"" =611.654771007894Pa
r Complex constant, Table 2 Jkec™
r Complex function, Table 4 J KoK
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Symbol Physical quantity Unit

r0 ... 22 Complex constants, Table 2 Jke™

s Specific entropy of ice J kK™

s Specific entropy of liquid water J Ko™

S Residual entropy, Table 2 JRa<H

T Absolute temperature (ITS-90) K

Timelt Melting temperature of ice K

Tovett p, Normal-pressure melting temperature, K
Tep, = 273.152 519 K

T Triple-point temperaturdl; = 273.16 K K

ty, & Complex constants, Table 2

u Specific internal energy of ice JKg

u- Specific internal energy of liquid water Jkg

U Expanded uncertainty

Uc Combined standard uncertainty

v Specific volume of ice kg™
Any complex number

a Cubic expansion coefficient of ice K

p Pressure coefficient of ice Pa'K

Ks Isentropic compressibility of ice Pa

KT Isothermal compressibility of ice Pa
Pi,n = 3.141 592 65...

T Reduced pressurer= p/ p,

o Reduced normal pressur,= po/ pt

p Density of ice kg m

T Reduced temperature,=T /T,

2 Introductory Remark and Special Constants

The numerical values of special constants usellaretjuation of state for ice Ih of,@ are
listed in Table 1. The term “Ih” means ice of thediiication Ih with hexagonal crystals

TABLE 1 Special constants and values used in this mleas

Quantity Symbol Value Unit  Reference
Experimental triple-point pressure  p; 611.657 Pa [3]
Numerical triple-point pressure pi"  611.654 771007 894 Pa [2]
Normal pressure Po 101 325 Pa [4]

Triple-point temperature T 273.16 K [5]




corresponding to the naturally abundant form of k@ simplification, in the following the
supplement “Ih” will be omitted at most places; wtibe term “ice” is used, “ice Ih” is
always meant.

3 The Equation of State

The equation of state presented here is in the fufrthe Gibbs energy as a function of
temperature and pressutgl,p), corresponding to a Gibbs potential function.sTégquation
of state for ice is given by Eq. (1) as a functainemperature, with two of its coefficients
being polynomial functions of pressure,

9T P=o(A- s T+ TR{ZZZ k{( k=) In( k=7)+( 1+ 7) In( k+7) - 2¢In &—ﬁn

k=1 &

go(p)=igok(”‘”o)k 1)
r2(p) :Zrzk(”‘”o)k,
k=0

with the reduced temperature= T/T;, the reduced pressure= p/p;, and the reduced normal
pressurerg = po/p;, WhereT,, p;, andpy are given in Table 1. The real constagts to g,
and s, as well as the complex constantsr,, t,, andr,, to r,, are listed in Table 2.

TABLE 2 Coefficients of the equation of state (Gibbsgptial function) as given by Eq. (1)

Coefficient Real part Imaginary part Unit
oo —0.632 020 233 335 88610° Jkg?
ot 0.655 022 213 658 955 JRg
o2 —0.189 369 929 326 13110’ Jkg?
o3 0.339 746 123 271 05310 4 Jkg?
Joa —0.556 464 869 058 99410 2 Jkg?t

s (absolute)  0.189 18 10° Jkgtk™?

s (IAPWS-95) —0.332 733 756 492 1681(" Jkgtk™?
t 0.368017 11285505410 >  0.510878114 959 53210 *
r 0.44705071628538810°  0.656 876 847 46348410 Jkg K
t 0.337 315 741 065 416 0.335 449 415 919 309
20 —0.72597457432923010°  —0.781008427 11287010° J kg K™
21 ~0.557 107698030 12310%  0.46457863458080610% J kg K™

22 0.234 801 40921592310 ° —0.285 651 142 904 97210 % J kg 1 K+




This list of 18 parameters contains two redundardgsothat formally appeared during the
transformation of six real parameters describingf lsapacity into four complex numbers, see
Feistel and Wagner [6].

The complex Iogarithrrhn(z) is meant as the principal value, i.e. it evaluabeisnaginary

parts in the intervatn <Im [In(z)] <+n (the number Pig = 3.1415..., in this inequality is

not to be confused with the symbol of reduced pnegs The complex notation used here has
no direct physical basis but serves for conveniesfcanalytical partial derivatives and for
compactness of the resulting formulae, especiallprogram code. Complex data types are
supported by scientific computer languages liketgar (as COMPLEX*16)or C++ (as
complex <double>), thus allowing an immediate impdatation of the formulae given,
without the need for prior conversion to much mamnplicated real functions, or for
experience in complex calculus

The residual entropy coefficiesi is given in Table 2 in the form of two alternativalues.
The ‘IAPWS-95’ value is required for phase equibbstudies between ice and fluid water in
the IAPWS-95 formulation [2, 7], or seawater (FeligB]), while its ‘absolute’ alternative
represents the true physical zero-point entropge{Pauling [9], Nagle [10]).

‘IAPWS-95’ reference state [2, 7]:

uL (Tt! pnum) = O

(2)
SL (—I—t , pnum) = O
‘Absolute’ reference state:
g(T =0K, |q)) =-0.632 020 233335886 10 J%
(3)

s(T=0K, p)=0.18913 18 Jkg K

The superscript ‘L’ indicates the liquid phase. Tiepertyu is the specific internal energy,
see Table 3, Eq. (8). The theoretical absoluteevédu the internal energy is given by the
relativistic rest energy, a very large number o thrder of 107 Jkg™, which is too
impractical to be adopted here. Thus, to convelyiamecify gy, the second free constant of
the reference state defined by Eq. (3), the vafugai zero absolute temperature and normal
pressure is chosen here for simplicity to be tmeestor both reference states.



TABLE 3 Relations of the thermodynamic properties togbeation for the Gibbs energy of
ice, Eq. (1), and its derivatives

Property Relation Unit Eq.
Density

- - - k
p(T.p)=vi=(grop)  o(T.p)=g; 2@

Specific entropy

S.p)=-(0g/0T), oT.p)= - oK ©
Specific isobaric heat capacity

oT.p)=T0s/T),  c(T.p)=-To, oK ©
Specific enthalpy

h(T,p)=g+Ts h(T,p)=g-Tg, kig (7)
Specific internal energy

u(T,p)=g+Ts-pv u(T,p)=g-Tg, - pg, kig ®)
Specific Helmholtz energy

t(T.p)=g-pv f(T,p)=g-pg, kig ©)
Cubic expansion coefficient

afT,p)=v*(ov/aT), a(T,p)=0,/9, % (10)
Pressure coefficient

A(T.p)=(op/aT), BT p)=-8r,/ 9y, %‘ (11)
Isothermal compressibility

(T, p) = ~v*(ov/9p); k(T p)=-9,/9, F}E (12)
Isentropic compressibility

x,(T.p)=~v(ov/0p), (T0)=(Fo- o o /(9p0r) o @3

ag =| 99 29 _|9% g 0%g
9 = {GT} % = {OpT'gTT_ ot ) " 9= aTap| ™ | ap? |



TABLE 4 Equations for the Gibbs energy of ice, Eq. &by its derivatives

Equation for the Gibbs energyT, p) and its derivatives

2

o(T. )= g 8Tre TRd 3 (-7}l 1-r)+(10) 1) 24 ) |
with 7=T/T,, m=plp,, T, = 27¢16K, p, = 611657 Pa, g,(p). r,(p)

Or =S+ R{Zzlrk["”(tk -7)+In(t, + r)_thD

k=1 K

~N

—+

9y = oy *T Re(rzy{(tz “2)inft, - 1)+, + 2)inl + 1) - 2, In(y)- D

2
1 2 1 1 2
O =—R Zr{ + ‘—D
T, k=L

Orp = R{rzy{— In(t, —7)+In(t, +7)- 2éD

2
Opp = o+ Ty R{rzvpp{(tZ - T)In(tz - T)+ (tz + T)In(tz + T)_ 2, In(tz)_:_D

2

go(p) equation and its derivativ%s Unit rz(p) equation and its derivativ%s
4 J 2
go(p):ZQOk(n_no)k k_g rz(p):Zrzk(ﬂ_Hb)k
k=0 k=0
with 77, = Po = 222525 P8 with 77 = Po - 101325 Pe
p, 611.657 P p, 611.657 P:
g :ig L(n’—n’)k_l E r :ir L(ﬂ_n)k_l
oP k=1 o Py ° kg op k=1 2 Py °
z kik -1 ; 3 2
gOpp _; 0k ( t2 )(ﬂ_ O)k ’ krgnpa r2pp :rzzp_tz




4 Relations of the Thermodynamic Properties
to the Specific Gibbs Energy

Thermodynamic properties can be derived from Ep.§¥ using the appropriate
combinations of the specific Gibbs energy and itsrivéitives. Relations between
thermodynamic properties arg{T,p) and its derivatives are summarized in Table 3. Al
required derivatives of the specific Gibbs enengyexplicitly given in Table 4.

5 Range of Validity and Brief Discussion

The equation of state, Eq. (1), is valid in therengxistence region of naturally abundant,
hexagonal ice Ih of kD, covering the temperature and pressure range

0K<sT=<27316 K and 8p<210 MPa,

see Fig. 1. The temperatures are based on the tatugescale ITS-90. The evaluation of the
phase-equilibrium condition between ice and liquiater ¢ =g~ with g calculated from Eq.
(1) andg" calculated from IAPWS-95 [7]) and between ice aater vapor ¢ = g* with g
calculated from Eq. (1) ang” calculated from IAPWS-95 [7]) allows a thermodyrieafy
consistent computation of the melting-pressure anbfllimation-pressure curves, being
improved especially near the triple point, and dv@lown to 130 K sublimation temperature.
In this way, for example, a value for the meltiegnperature at the normal presspgecould

be determined, namely,., , = 273.152519 K with an estimated uncertainty ofychpK

[1], see the footnote of Table 5. IAPWS-95 onlylgtereliable vapor heat capacities down to
130 K; the calculation of the sublimation-pressoueve to temperatures below this limit is
possible with a suitable extension [11, 12].

Information on the experimental data of ice Ih useddevelop the equation of state,
Eqg. (), is given in [1].

The theoretical formalism of classical thermodynasms, in the strict sense, only valid for
equilibrium states. For the case of ice, this mehas the potential function is designed to
describe the ideal structure of a single, undistbrerystal at a state where all possible
spontaneous aging processes have passed. Thes@éoosndhay not always be fulfilled
exactly for the experimental data used. Especialiyne temperature range below 100 K, the
related theoretical and experimental problems arapticated and still subject to ongoing
research. Excessive scatter is observed in measuterof heat capacity and density in the
range between 60 K and 100 K. Results of differenrtks deviate from each other more (up
to 0.3% in density) than their particular precisisuggest, so that systematic problems in
sample preparations or experimental procedures beustferred [13-16]. The Gibbs function
presented in this paper ignores the various opestouns in the low-temperature region and
treats ice lh like a stable equilibrium phase dotwn0O K. The majority of the various
measured thermodynamic equilibrium properties @ascdbed by the equation of state, Eq.
(1), within their experimental uncertainties [1].

Close to zero temperature, Eq. (1) obeys the thieatecubic limiting law of Debye for
heat capacity and the Third Law by Pauling’s pressadependent residual entropy.
Note: Consistent with this Release, IAPWS has isshiedrevised Release on tReessure along the

Melting and Sublimation Curves of Ordinary WaterbS&ance[12] containing a set of simple
correlation equations which yield values for thdtmg and the sublimation pressure of ice Ih.



6 Estimatesof Uncertainty

Combined standard uncertainties reported in the following, estimated directly or
indirectly from experimental data, were obtainedirmy the numerical construction of the
equation of state and exploiting its inherent cstesicy. Here, estimated combined standard
uncertaintiess; [17] are reported, from which expanded uncertestiii = k u; can be obtained
by multiplying with the coverage factér= 2, corresponding to a 95% level of confidence.
The term ‘uncertainty’ used in the following reféoscombined standard uncertainties or to
relative combined standard uncertainties.

TABLES5 Summary of estimated combined standard uncédaiof selected quantities in
certain regions of th&-p space, derived from corresponding experiments

Quantity T interval p interval Uncertainty
TA()) T<273K p<0.1 MPa 2Jkg K™ x[T =T,
2Jkg™* K™ x[T =T+
ue(9) 238 K< T<273K p< 200 MPa e
2x107°Jkg™ Pa’ x|p-p||
ue(h) T<273K p<0.1 MPa 600 J kg*
Uc(ADmer) T=273.15K p=0.1 MPa 200 J k¢
u(Ahsuy) 130 K< T< 273 K 100 nPa p 4Jkg*KtxT
U(dPpmedT)  T=273.15K p=0.1 MPa 3x 10 Pa K™
Ue(Tmet) 273.15K<T p< 0.1 MPa 2x10°K?
Ue(Tmet) 273.11K<T p< 0.6 MPa 40x 10°K
U(Tme) 266 K< T<273 K p< 100 MPa 2x10°K Pa*xp
UTmer) 259 K< T<266 K 100 MPa< p< 150 MPa 0.K
Ue( Pmeld) / Pmett 266 K< T< 273 K p< 100 MPa 2 %
Upsun) 257 K< T<273 K 100 Pa< p 0.4 Pa
Ue(Psub) / Psunt 130 K< T<257 K 100 nPa p< 100 Pa 0.6 %
uc(9) T<273K p<0.1 MPa 2JkgK?
Ue(Cp) / G T<273K p<0.1 MPa 2%
up)/p 268 K<T<273K p<0.1 MPa 0.02 %
u(p) / p T<268K p<0.1 MPa 0.1%
udp)/p  238K<T<273K p< 200 MPa 0.2 %
o) 243 K< T<273K p<0.1 MPa 2x10°K™
o) 100 K< T<243 K p<0.1 MPa 5x 10° K™
Us(ks), Uc(kr) 60 K< T<273K p<0.1 MPa 1x 102 pat
Uc(ks), Us(rer) 238 K< T<273 K p <200 MPa 1x 102 pa?

& This value is based on an exact triple-point temjpee. If isotopic fractionation is accounted fone
additional uncertainty of the triple-point temperrat of 14 uK must be included [2].
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The fundamental information about the uncertaintyagarticular quantity in a certain
region of theT-p space is adopted from the uncertainties reportegsttmated for the most
accurate related experimental data. If such unio¢éig¢a were unavailable or inappropriate,
our estimates were based on the quantitative agmterand consistency of the data
considered, with respect to the present formulatiéor cases without any corresponding
measurements, attempts were made to derive th@edguincertainties from other, measured
parameters using thermodynamic rules. Especially theese quantities, more detailed
derivations are given in the article by Feistel &vagner [1].

A summary of estimated combined standard unceraimf selected quantities in certain
regions of thel-p space is given in Table 5. The uncertainty of dgms different regions of
theT-p space is shown in Fig. 1.

-100 MPa

-1 MPa

,po
-10 kPa

-100 Pa

-1Pa

Pressurep

-10 mPa
-100 pPa

-1 pPa

10 nPa

0 50 100 150 200 250 300
TemperaturT / K
Fig.1 Relative combined standard uncertainty of ice tgns.(0)/p, Table 5, estimated

for different regions of th&-p space. No experimental high-pressure data aréablaat low
temperatures. This figure also illustrates the eamigvalidity of the equation of state, Eq. (1).
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7 Computer-Program Verification

To assist the user in computer-program verificgtibable 6 with test values is given. It
contains values for the specific Gibbs energyT,p), together with the corresponding
derivatives and some thermodynamic properties.

[1]
[2]

[3]
[4]

[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]

[16]
[17]

8 References

Feistel, R. and W. Wagner, J. Phys. Chem. Rafa35, 1021 (2006).

Feistel, R.D. G. Wright, K. Miyagawa, A. H. Harvey, J. Hrully, R. Jackett, T. J. McDougall,
and W. Wagner, Ocean S4i.275 (2008). Available atww.ocean-sci.net/4/275/2008/
Guildner, L. A, D. P. Johnson, and F. E. Jre Res. Natl. Bur. Star8DA, 505 (1976).

ISO, ISO Standards Handbook: Quantities and Uijitgernational Organization for Standard-
ization, Geneva, 1993).

Preston-Thomas, H., Metrologgd, 3 (1990).

Feistel, R. and W. Wagner, J. Mar. Ré%.95 (2005).

Wagner, W. and A. Pruf3, J. Phys. Chem. ReafaB1, 387 (2002).
Feistel, R., Deep-Sea Re&5, 1639 (2008).

Pauling, L., J. Amer. Chem. Sds¥, 2680 (1935).

Nagle, J. F., J. Math. Phy4.1484 (1966).

Feistel, R. and W. Wagner, Geochim. Cosmochkiota71, 36 (2007).

IAPWS, Revised Release on the Pressure aloegMRlting and Sublimation Curves of
Ordinary Water Substance (September 2008). Avalabbww.iapws.org

Dantl, G. and |. Gregora, Naturwigs, 176 (1968).

Dantl, G. Elastische Moduln und mechanische Dampfung in Eikfistallen (Dissertation, TH
Stuttgart, 1967).

Dantl, G., inPhysics of Iceedited by N. Riehl, B. Bullemer, H. Engelhardtegffim Press, New
York, 1969) p.223.

Roéttger, K., A. Endriss, J. lhringer, S. Doyéand W. F. Kuhs, Acta CrystaB50, 644 (1994).

ISO, Guide to the Expression of Uncertainty in Measunangternational Organization for
Standardization, Geneva, 1993).




-12 -

TABLE 6 Properties at the triple point, the normal puessnelting point, and at = 100 K,p = 100 MPa, usable as
numerical check values. The numerical functionduatad here at given point$, (p) are defined in Eq. (1) and Tables 3
and 4 computed with the "JAPWS-95" value &f from Table 2. The digits given in this table caasonably be expected

to be reproduced by rounded results from doubleigien code [2]

Value at Value at Value at
Quantity T=T,=273.16 K T =Treit,p, = 273.152519 K T=100K Unit
p=p =611.657 Pa p=po=101325 Pa p =100 MPa
9 0.611784 135 0.101 342 740 %20° ~0.222 296 513 088 10° J kgt
(69/0p)t 0.109 085 812 73% 102 0.109 084 388 214 10 2 0.106 193 389 26810 ° m® kg™
(69/8T), 0.122 069 433 948 10* 0.122 076 932 558 10" 0.261 195 122 589 10* Jkg'K?
(Pgopd)r —0.128495941574102  —0.12848536492810 2 —0.941807 981 762102  mkg*Pa’
o°glopdT 0.174 387 964 708 10°° 0.174 362219972 10°° 0.274 505 162 48810 ' m® kgt K™
(6°9loT %), —0.76760298587510 —0.767 598 233 36510 —0.866 333 195 51710 Jkg' K™
h —0.333444 253968 10° ~0.333354 87363710 —0.483 491 635 676 10° Jkg*
f —0.554 468 75% 10 * ~0.918 701 56% 10 ~0.328 489 902 3471C° J kgt
u ~0.333444 921197 10 —0.333 465 403 398 1¢° ~0.589 685 024 936 1¢° J kg*
s ~0.122 069 433 948 1¢* ~0.122076 932 550 1¢" ~0.261 195 122 589 10* Jkg'k?
Co 0.209 678 431 622 10* 0.209 671 391 024 10* 0.866 333 195 517 10° Jkg'k?
p 0.916 709 492 208 10° 0.916 721 463 418 10° 0.941 678 203 29% 10° kg 3
a 0.159 863 102 568 10> 0.159 841 589 458 10> 0.258 495 528 207 10* K
B 0.135 714 764 658 10’ 0.135 705 899 321 10 0.291 466 166 994 10° PaK?!
KT 0.117 793 449 348 10°° 0.117 785291 768 10> 0.886 880 048 11810 *° Pa’
Ks 0.114 161597 779 10° 0.114 154 442 558 10°° 0.886 060 982 687 10 *° Pa’




