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  In this release, including the title, H2O is used to represent the description ordinary water 
substance. The equation of state for H2O ice Ih provided in this release is a fundamental 
equation for the Gibbs energy as a function of temperature and pressure; details of the 
equation can be found in the article “A New Equation of State for H2O Ice Ih” by R. Feistel 
and W. Wagner [1]. This equation of state provides the most accurate representation of the 
thermodynamic properties of the solid-phase ice Ih of H2O over the entire existence range of 
ice Ih. As a result of a minor adjustment of the coefficient g00 given in Table 2, the revised 
equation improves numerical consistency [2] with the IAPWS-95 formulation for the fluid 
phase of water. Further information about this release and other releases issued by IAPWS 
can be obtained from the Executive Secretary of IAPWS or from http://www.iapws.org. 
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1 Nomenclature 

Symbol Physical quantity Unit 

cp Specific isobaric heat capacity of ice J kg–1 K–1 

dpmelt /dT Clausius-Clapeyron slope of the melting curve Pa K–1 

f Specific Helmholtz energy of ice J kg–1 

g Specific Gibbs energy of ice J kg–1 

gL Specific Gibbs energy of liquid water on melting line J kg–1 

gV Specific Gibbs energy of water vapor on sublimation line J kg–1 

g0 Residual Gibbs energy, Table 4 J kg–1 

g00…g04 Real constants, Table 2 J kg–1 

h Specific enthalpy of ice J kg–1 

∆hmelt Specific melting enthalpy J kg–1 

∆hsubl Specific sublimation enthalpy J kg–1 

k Uncertainty coverage factor  

p Pressure Pa 

p0 Normal pressure, p0 = 101 325 Pa Pa 

pmelt Melting pressure Pa 

psubl Sublimation pressure Pa 

pt Experimental triple-point pressure, pt = 611.657 Pa Pa 

 num
tp  Numerical triple-point pressure, 

Pa894 007 771 611.654num
t =p  

Pa 

r1 Complex constant, Table 2 J kg–1 K–1 

r2 Complex function, Table 4 J kg–1 K–1 
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Symbol Physical quantity Unit 

r20 … r22 Complex constants, Table 2 J kg–1 K–1 

s Specific entropy of ice J kg–1 K–1 

sL Specific entropy of liquid water J kg–1 K–1 

s0 Residual entropy, Table 2 J kg–1 K–1 

T Absolute temperature (ITS-90) K 

Tmelt Melting temperature of ice K 

  
0,melt pT  Normal-pressure melting temperature, 

0,melt pT  = 273.152 519 K 
K 

Tt Triple-point temperature, Tt = 273.16 K K 

t1, t2 Complex constants, Table 2  

u Specific internal energy of ice J kg–1 

uL Specific internal energy of liquid water J kg–1 

U Expanded uncertainty  

uc Combined standard uncertainty  

v Specific volume of ice m3 kg–1 

z Any complex number  

α Cubic expansion coefficient of ice K–1 

β Pressure coefficient of ice Pa K–1 

κs Isentropic compressibility of ice Pa–1 

κT Isothermal compressibility of ice Pa–1 

π Pi, π = 3.141 592 65…  

π Reduced pressure, t/ pp=π   

π0 Reduced normal pressure, π0 = p0 / pt  

ρ Density of ice kg m–3 

τ Reduced temperature, t/ TT=τ   

 

2 Introductory Remark and Special Constants 

The numerical values of special constants used in the equation of state for ice Ih of H2O are 
listed in Table 1. The term “Ih” means ice of the modification Ih with hexagonal crystals  

TABLE 1   Special constants and values used in this release 
  

Quantity Symbol Value Unit Reference 

Experimental triple-point pressure   pt 611.657 Pa [3] 
Numerical triple-point pressure num

tp  611.654 771 007 894 Pa [2] 
Normal pressure p0 101 325 Pa [4] 
Triple-point temperature Tt 273.16 K [5] 
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corresponding to the naturally abundant form of ice. For simplification, in the following the 

supplement “Ih” will be omitted at most places; when the term “ice” is used, “ice Ih” is 

always meant. 

 

3 The Equation of State 

The equation of state presented here is in the form of the Gibbs energy as a function of 
temperature and pressure, g(T,p), corresponding to a Gibbs potential function. This equation 
of state for ice is given by Eq. (1) as a function of temperature, with two of its coefficients 
being polynomial functions of pressure, 
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with the reduced temperature τ = T/Tt, the reduced pressure π = p/pt, and the reduced normal 
pressure π0 = p0/pt, where Tt, pt, and p0 are given in Table 1. The real constants 00g  to 04g  
and 0s  as well as the complex constants 1t , 1r , 2t , and 20r  to 22r  are listed in Table 2.  

TABLE 2   Coefficients of the equation of state (Gibbs potential function) as given by Eq. (1) 
  

Coefficient Real part Imaginary part Unit 

g00 – 0.632 020 233 335 886 × 106  J kg–1 

g01  0.655 022 213 658 955  J kg–1 

g02 – 0.189 369 929 326 131 × 10−7  J kg–1 

g03  0.339 746 123 271 053 × 10−14  J kg–1 

g04 – 0.556 464 869 058 991 × 10−21  J kg–1 

s0 (absolute)  0.189 13 × 103  J kg–1 K–1 

s0 (IAPWS-95) – 0.332 733 756 492 168 × 104  J kg–1 K–1 

t1  0.368 017 112 855 051 × 10−1  0.510 878 114 959 572 × 10−1  

r1  0.447 050 716 285 388 × 102  0.656 876 847 463 481 × 102 J kg–1 K–1 

t2  0.337 315 741 065 416  0.335 449 415 919 309  

r20 – 0.725 974 574 329 220 × 102 – 0.781 008 427 112 870 × 102 J kg–1 K–1 

r21 – 0.557 107 698 030 123 × 10−4  0.464 578 634 580 806 × 10−4 J kg–1 K–1 

r22  0.234 801 409 215 913 × 10−10 – 0.285 651 142 904 972 × 10−10 J kg–1 K–1 
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This list of 18 parameters contains two redundant ones that formally appeared during the 
transformation of six real parameters describing heat capacity into four complex numbers, see 
Feistel and Wagner [6]. 

The complex logarithm ( )ln z  is meant as the principal value, i.e. it evaluates to imaginary 

parts in the interval ( )π Im ln πz − < ≤ +   (the number Pi, π = 3.1415…, in this inequality is 

not to be confused with the symbol of reduced pressure). The complex notation used here has 
no direct physical basis but serves for convenience of analytical partial derivatives and for 
compactness of the resulting formulae, especially in program code. Complex data types are 
supported by scientific computer languages like Fortran (as COMPLEX*16) or C++ (as 
complex <double>), thus allowing an immediate implementation of the formulae given, 
without the need for prior conversion to much more complicated real functions, or for 
experience in complex calculus. 

The residual entropy coefficient s0 is given in Table 2 in the form of two alternative values. 
The ‘IAPWS-95’ value is required for phase equilibria studies between ice and fluid water in 
the IAPWS-95 formulation [2, 7], or seawater (Feistel [8]), while its ‘absolute’ alternative 
represents the true physical zero-point entropy of ice (Pauling [9], Nagle [10]).  

‘IAPWS-95’ reference state [2, 7]:  

 

( )

( ) 0,

0,
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tt
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=
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pTu

 (2) 

‘Absolute’ reference state:  

 

( )

( )

6 1
0

3 1 1
0

0 K, 0.632 020 233 335 886 10 J kg

0 K, 0.189 13 10 J kg K

g T p
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−

− −
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= = ×

 (3) 

The superscript ‘L’ indicates the liquid phase. The property u is the specific internal energy, 
see Table 3, Eq. (8). The theoretical absolute value for the internal energy is given by the 
relativistic rest energy, a very large number of the order of 117 kgJ10 − , which is too 
impractical to be adopted here. Thus, to conveniently specify g00, the second free constant of 
the reference state defined by Eq. (3), the value of g at zero absolute temperature and normal 
pressure is chosen here for simplicity to be the same for both reference states. 
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TABLE 3   Relations of the thermodynamic properties to the equation for the Gibbs energy of 
ice, Eq. (1), and its derivativesa 

  
Property Relation Unit Eq. 

Density    

( ) ( ) 11 /, −− ∂∂== TpgvpTρ  ( ) 1, −= pgpTρ  
3m

kg
 (4)  

Specific entropy    

( ) ( )pTgpTs ∂∂−= /,
  

( ) TgpTs −=,  
J

kg K
 (5)  

Specific isobaric heat capacity    

( ) ( )pp TsTpTc ∂∂= /,
  

( ) TTp gTpTc −=,
 

J

kg K
 (6)  

Specific enthalpy    

( ) sTgpTh +=,   ( ) TgTgpTh −=,  kg

J

 
(7)  

Specific internal energy    

( ) vpsTgpTu −+=,   
( ) pT gpgTgpTu −−=,

 kg

J

 
(8)  

Specific Helmholtz energy    

( ) vpgpTf −=,   
( ) pgpgpTf −=,

 kg

J

 
(9)  

Cubic expansion coefficient    

( ) ( )pTvvpT ∂∂= − /, 1α   ( ) pTp ggpT /, =α  
K

1
 (10)  

Pressure coefficient    

( ) ( )vTppT ∂∂= /,β   ( ) ppTp ggpT /, −=β  
K

Pa
 (11)  

Isothermal compressibility    

( ) ( )TT pvvpT ∂∂−= − /, 1κ   ( ) pppT ggpT /, −=κ  
Pa

1
 (12)  

Isentropic compressibility    

( ) ( )ss pvvpT ∂∂−= − /, 1κ  ( ) ( ) ( )2,s Tp TT pp p TTT p g g g g gκ = −  
Pa

1
 (13) 

a

p

T T

g
g 









∂
∂≡ , 

T

p p

g
g 









∂
∂≡ , 

p

TT T

g
g 









∂
∂≡

2

2

, 
2

Tp

g
g

T p

 ∂≡  ∂ ∂ 
, 

T

pp p

g
g 









∂
∂≡ 2

2

 



- 7 - 

 

TABLE 4   Equations for the Gibbs energy of ice, Eq. (1), and its derivativesa 

 
Equation for the Gibbs energy g(T, p) and its derivativesa  Unit 
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4 Relations of the Thermodynamic Properties 
to the Specific Gibbs Energy 

Thermodynamic properties can be derived from Eq. (1) by using the appropriate 
combinations of the specific Gibbs energy and its derivatives. Relations between 
thermodynamic properties and g(T,p) and its derivatives are summarized in Table 3. All 
required derivatives of the specific Gibbs energy are explicitly given in Table 4.  

 

5 Range of Validity and Brief Discussion 

The equation of state, Eq. (1), is valid in the entire existence region of naturally abundant, 
hexagonal ice Ih of H2O, covering the temperature and pressure range 

0 K ≤ T ≤ 273.16 K     and     0 ≤ p ≤ 210 MPa, 

see Fig. 1. The temperatures are based on the temperature scale ITS-90. The evaluation of the 
phase-equilibrium condition between ice and liquid water (g = gL with g calculated from Eq. 
(1) and gL calculated from IAPWS-95 [7]) and between ice and water vapor (g = gV with g 
calculated from Eq. (1) and gV calculated from IAPWS-95 [7]) allows a thermodynamically 
consistent computation of the melting-pressure and sublimation-pressure curves, being 
improved especially near the triple point, and valid down to 130 K sublimation temperature. 
In this way, for example, a value for the melting temperature at the normal pressure p0 could 

be determined, namely 
0,melt pT  = 273.152519 K with an estimated uncertainty of only 2 µK 

[1], see the footnote of Table 5. IAPWS-95 only yields reliable vapor heat capacities down to 
130 K; the calculation of the sublimation-pressure curve to temperatures below this limit is 
possible with a suitable extension [11, 12]. 

Information on the experimental data of ice Ih used to develop the equation of state, 
Eq. (1), is given in [1]. 

The theoretical formalism of classical thermodynamics is, in the strict sense, only valid for 
equilibrium states. For the case of ice, this means that the potential function is designed to 
describe the ideal structure of a single, undistorted crystal at a state where all possible 
spontaneous aging processes have passed. These conditions may not always be fulfilled 
exactly for the experimental data used. Especially in the temperature range below 100 K, the 
related theoretical and experimental problems are complicated and still subject to ongoing 
research. Excessive scatter is observed in measurements of heat capacity and density in the 
range between 60 K and 100 K. Results of different works deviate from each other more (up 
to 0.3% in density) than their particular precisions suggest, so that systematic problems in 
sample preparations or experimental procedures must be inferred [13-16]. The Gibbs function 
presented in this paper ignores the various open questions in the low-temperature region and 
treats ice Ih like a stable equilibrium phase down to 0 K. The majority of the various 
measured thermodynamic equilibrium properties are described by the equation of state, Eq. 
(1), within their experimental uncertainties [1]. 

Close to zero temperature, Eq. (1) obeys the theoretical cubic limiting law of Debye for 
heat capacity and the Third Law by Pauling’s pressure-independent residual entropy. 

Note: Consistent with this Release, IAPWS has issued the Revised Release on the Pressure along the 
Melting and Sublimation Curves of Ordinary Water Substance [12] containing a set of simple 
correlation equations which yield values for the melting and the sublimation pressure of ice Ih. 
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6 Estimates of Uncertainty 

Combined standard uncertainties uc reported in the following, estimated directly or 
indirectly from experimental data, were obtained during the numerical construction of the 
equation of state and exploiting its inherent consistency. Here, estimated combined standard 
uncertainties uc [17] are reported, from which expanded uncertainties U = k uc can be obtained 
by multiplying with the coverage factor k = 2, corresponding to a 95% level of confidence. 
The term ‘uncertainty’ used in the following refers to combined standard uncertainties or to 
relative combined standard uncertainties. 

 

TABLE 5   Summary of estimated combined standard uncertainties of selected quantities in 
certain regions of the T-p space, derived from corresponding experiments 

    
Quantity T interval p interval Uncertainty 

uc(g) T ≤ 273 K p ≤ 0.1 MPa t
11 KkgJ2 TT −×−−  

uc(g) 238 K ≤ T ≤ 273 K p ≤ 200 MPa 
t

116

t
11

PakgJ102

KkgJ2

pp

TT

−××

+−×
−−−

−−

 

uc(h) T ≤ 273 K p ≤ 0.1 MPa 600 J kg–1 
uc(∆hmelt) T = 273.15 K p = 0.1 MPa 200 J kg–1 
uc(∆hsubl) 130 K ≤ T ≤ 273 K 100 nPa ≤ p 4 J kg–1 K–1 × T 

uc(dpmelt/dT) T = 273.15 K p = 0.1 MPa 3 × 103 Pa K–1 
uc(Tmelt) 273.15 K ≤ T p ≤ 0.1 MPa 2 × 10–6 Ka 
uc(Tmelt) 273.11 K ≤ T p ≤ 0.6 MPa 40 × 10–6 K 
uc(Tmelt) 266 K ≤ T ≤ 273 K p ≤ 100 MPa 2 × 10–9 K Pa–1 × p 
uc(Tmelt) 259 K ≤ T ≤ 266 K 100 MPa ≤ p ≤ 150 MPa 0.5 K 

uc(pmelt) / pmelt 266 K ≤ T ≤ 273 K p ≤ 100 MPa 2 % 
uc(psubl) 257 K ≤ T ≤ 273 K 100 Pa ≤ p 0.4 Pa 

uc(psubl) / psubl 130 K ≤ T ≤ 257 K 100 nPa ≤ p ≤ 100 Pa 0.6 % 
uc(s) T ≤ 273 K p ≤ 0.1 MPa 2 J kg–1 K–1 

uc(cp) / cp T ≤ 273 K p ≤ 0.1 MPa 2 % 
uc(ρ) / ρ 268 K ≤ T ≤ 273 K p ≤ 0.1 MPa 0.02 % 
uc(ρ) / ρ T ≤ 268 K p ≤ 0.1 MPa 0.1 % 
uc(ρ) / ρ 238 K ≤ T ≤ 273 K p ≤ 200 MPa 0.2 % 

uc(α) 243 K ≤ T ≤ 273 K p ≤ 0.1 MPa 2 × 10–6 K–1 
uc(α) 100 K ≤ T ≤ 243 K p ≤ 0.1 MPa 5 × 10–6 K–1 

uc(κs), uc(κT) 60 K ≤ T ≤ 273 K p ≤ 0.1 MPa 1 × 10–12 Pa–1 
uc(κs), uc(κT) 238 K ≤ T ≤ 273 K p ≤ 200 MPa 1 × 10–12 Pa–1 

a This value is based on an exact triple-point temperature. If isotopic fractionation is accounted for, the 
additional uncertainty of the triple-point temperature of 14 µK must be included [2]. 

 

 



- 10 - 

 

The fundamental information about the uncertainty of a particular quantity in a certain 
region of the T-p space is adopted from the uncertainties reported or estimated for the most 
accurate related experimental data. If such uncertainties were unavailable or inappropriate, 
our estimates were based on the quantitative agreement and consistency of the data 
considered, with respect to the present formulation. For cases without any corresponding 
measurements, attempts were made to derive the required uncertainties from other, measured 
parameters using thermodynamic rules. Especially for these quantities, more detailed 
derivations are given in the article by Feistel and Wagner [1]. 

A summary of estimated combined standard uncertainties of selected quantities in certain 
regions of the T-p space is given in Table 5. The uncertainty of density in different regions of 
the T-p space is shown in Fig. 1. 
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Fig. 1 Relative combined standard uncertainty of ice density, uc(ρ)/ρ, Table 5, estimated 
for different regions of the T-p space. No experimental high-pressure data are available at low 
temperatures. This figure also illustrates the range of validity of the equation of state, Eq. (1). 
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7 Computer-Program Verification 

To assist the user in computer-program verification, Table 6 with test values is given. It 
contains values for the specific Gibbs energy, g(T,p), together with the corresponding 
derivatives and some thermodynamic properties.  
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TABLE 6   Properties at the triple point, the normal pressure melting point, and at T = 100 K, p = 100 MPa, usable as 
numerical check values. The numerical functions evaluated here at given points (T, p) are defined in Eq. (1) and Tables 3 
and 4, computed with the "IAPWS-95" value of s0 from Table 2. The digits given in this table can reasonably be expected 
to be reproduced by rounded results from double-precision code [2] 

  

Quantity 

Value at 

T = Tt = 273.16 K 

p = pt = 611.657 Pa 

Value at 
T = Tmelt, p0

 = 273.152519 K 

p = p0 = 101325 Pa 

Value at 

T = 100 K 

p = 100 MPa 

Unit 

g  0.611 784 135  0.101 342 740 69 × 103 –0.222 296 513 088 × 106 J kg–1 

(∂g/∂p)T  0.109 085 812 737 × 10−2  0.109 084 388 214 × 10−2   0.106 193 389 260 × 10−2 m3 kg–1 

(∂g/∂T)p  0.122 069 433 940 × 104  0.122 076 932 550 × 104   0.261 195 122 589 × 104 J kg–1 K–1 

(∂2g/∂p2)T – 0.128 495 941 571 × 10−12 – 0.128 485 364 928 × 10−12 –0.941 807 981 761 × 10−13 m3 kg–1 Pa–1 

∂
2g/∂p∂T  0.174 387 964 700 × 10−6  0.174 362 219 972 × 10−6   0.274 505 162 488 × 10−7 m3 kg–1 K–1 

(∂2g/∂T 2)p – 0.767 602 985 875 × 10 – 0.767 598 233 365 × 10 –0.866 333 195 517 × 10 J kg–1 K–2 
h – 0.333 444 253 966 × 106 – 0.333 354 873 637 × 106 –0.483 491 635 676 × 106 J kg–1 

f – 0.554 468 75 × 10−1 – 0.918 701 567 × 10 –0.328 489 902 347 × 106 J kg–1 

u – 0.333 444 921 197 × 106 – 0.333 465 403 393 × 106 –0.589 685 024 936 × 106 J kg–1 

s – 0.122 069 433 940 × 104 – 0.122 076 932 550 × 104 –0.261 195 122 589 × 104 J kg–1 K–1 

cp  0.209 678 431 622 × 104  0.209 671 391 024 × 104   0.866 333 195 517 × 103 J kg–1 K–1 

ρ  0.916 709 492 200 × 103  0.916 721 463 419 × 103   0.941 678 203 297 × 103 kg m–3 

α  0.159 863 102 566 × 10−3  0.159 841 589 458 × 10−3   0.258 495 528 207 × 10−4 K–1 

β  0.135 714 764 659 × 107  0.135 705 899 321 × 107   0.291 466 166 994 × 106 Pa K–1 

κT  0.117 793 449 348 × 10−9  0.117 785 291 765 × 10−9   0.886 880 048 115 × 10−10 Pa–1 

κs  0.114 161 597 779 × 10−9  0.114 154 442 556 × 10−9   0.886 060 982 687 × 10−10 Pa–1 

 


