Assignment Nr. 1

due 25 October

Problem 1

Expand the following equations for an index range of three, i.e. i, j = 1, 2, 3:

- (a) $A_{ij}x_j + b_i = 0$,
- (b) $\Phi = C_{ij}x_ix_j$,
- (c) $\Psi = T_{ii}S_{ii}$.

Problem 2

Verify the following identities:

- (a) $\delta_{ii} = 3$,
- (b) $A_{ij}\delta_{ij} = A_{ii}$,
- (c) $\delta_{ij}\varepsilon_{ijk} = 0$,
- (d) $\varepsilon_{ijk}\varepsilon_{ijk} = 6$,
- (e) $\varepsilon_{ijk}\varepsilon_{ijm} = 2\delta_{km}$,
- (f) $\varepsilon_{ijk}\varepsilon_{ilm} = \delta_{jl}\delta_{km} \delta_{jm}\delta_{kl}$ ('\varepsilon\cdot\delta\ identity') .

Problem 3

- (a) Expand and simplify the expression $A_{ij}x_ix_j$, where i, j = 1, 2, 3 and
 - (i) A_{ij} is symmetric,
 - (ii) A_{ij} is skew-symmetric.
- (b) Let A_{ij} be symmetric and B_{ij} skew-symmetric. Show that $A_{ij}B_{ij}=0$.

assignment 01.tex WS 2019/2020

Problem 4

Recall that the vector product of two vectors $\mathbf{u} = u_i \mathbf{e}_i$ and $\mathbf{v} = v_i \mathbf{e}_i$ is a quantity $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ with components

$$w_1 = u_2v_3 - u_3v_2$$
, $w_2 = u_3v_1 - u_1v_3$, $w_3 = u_1v_2 - u_2v_1$,

with reference to the right-hand orthonormal basis $\{e_1, e_2, e_3\}$.

- (a) Verify that $w_i = \varepsilon_{ijk} u_j v_k$.
- (b) Show that for any three vectors \boldsymbol{u} , \boldsymbol{v} , and \boldsymbol{w}

$$u \times (v \times w) = (u \cdot w)v - (v \cdot u)w$$
.

(hint: use the ε - δ identity.)

Problem 5

Use indical notation to verify the following identities:

- (a) $\nabla(\phi \mathbf{v}) = \phi \nabla \mathbf{v} + \nabla \phi \otimes \mathbf{v}$
- (b) $\nabla (\boldsymbol{v} \cdot \boldsymbol{v}) = 2\boldsymbol{v} \cdot (\nabla \boldsymbol{v})^T = 2(\nabla \boldsymbol{v}) \cdot \boldsymbol{v}$,
- (c) $\nabla \times \nabla \phi = \mathbf{0}$,
- (d) $\nabla \cdot \nabla \times \boldsymbol{v} = 0$,

(e)
$$\nabla \times (\nabla \times \boldsymbol{v}) = \nabla(\nabla \cdot \boldsymbol{v}) - \nabla \cdot (\nabla \boldsymbol{v})$$
,

where ϕ denotes a scalar field and \boldsymbol{v} a vector field in E^3 . (hint: for the last relation, use the ε - δ identity.) For each case, indicate if the result is a scalar, a vector, or a second-order tensor.

Problem 6

For arbitrary ω_k , let the components of a tensor **W** be given by

$$W_{ij} = -\frac{1}{2}\varepsilon_{ijk}\omega_k \quad . \tag{1}$$

- (a) Show that W is a skew-symmetric tensor.
- (b) Using the relation $\varepsilon_{ijk}\varepsilon_{ijl}=2\delta_{kl}$ (see above), show that (1) can be inverted to yield

$$\omega_i = \varepsilon_{ijk} W_{kj} \quad . \tag{2}$$

assignment01.tex WS 2019/2020