Assignment Nr. 2

due 08 November

Problem 1

Consider a straight river of infinite length flowing with a constant velocity, v, in the direction x. At time $t=0$, a pollutant is released at $x=0$. For $t>0$, the concentration of the pollutant, $c(x, t)$, is determined by the advection of the pollutant with the river water and by diffusive spreading. Assume that $c(x, t)$ is given by

$$
\begin{equation*}
c(x, t)=t^{-\frac{1}{2}} e^{-(x-v t)^{2} t^{-1}} \tag{1}
\end{equation*}
$$

which is a simple description of the effects of advection and diffusion.
(a) Plot $c(x, t)$ for $-5<x<20$ at times $t=1,3$, and 10 with $v=1$ for the velocity of the river water (non-dimensional variables are used throughout this problem). Briefly explain how the effects of diffusion and advection become evident in your plots.
(b) Consider three swimmers moving with constant absolute velocities w_{1}, w_{2}, and w_{3} in the river. Assume that the first swimmer moves with $w_{1}=v$, and thus passively drifts with the current, the second swims with $w_{2}=-v$ against the current, and the third always stays at the same point, $x=x_{A}$. Assume now that at time $t=t_{A}$ all swimmers meet at the point $x=x_{A}$.
(i) Compute the partial derivatives

$$
\frac{\partial c(x, t)}{\partial x} \quad \text { and } \quad \frac{\partial c(x, t)}{\partial t}
$$

for $c(x, t)$ given by (1).
(ii) Derive expressions for the time rates of concentration change each of the three swimmers "feels" while passing the point $x=x_{A}$ at time $t=t_{A}$. (hint: apply the total derivative, using the results derived in part (i).)
(iii) For $v=1, x_{A}=5$, and $t_{A}=3$, obtain numerical values for these time rates. Which of the swimmers feels the strongest rate of change in concentration? Which the weakest?

Problem 2

Consider a function, $\boldsymbol{\chi}$, describing the three-dimensional motion of material points in a fluid:

$$
\begin{align*}
& x_{1}=\chi_{1}(\boldsymbol{X}, t)=X_{1} e^{a t}, \\
& x_{2}=\chi_{2}(\boldsymbol{X}, t)=X_{2} e^{a t}, \tag{2}\\
& x_{3}=\chi_{3}(\boldsymbol{X}, t)=X_{3} e^{-2 a t},
\end{align*}
$$

where a is a constant, t is time, and \boldsymbol{X} the reference position at $t=0$. All components are given with reference to a fixed orthonormal basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3}.
(a) Compute the Lagrangian velocity, $\boldsymbol{u}^{L}(\boldsymbol{X}, t)$, and acceleration, $\boldsymbol{a}^{L}(\boldsymbol{X}, t)$, from the time derivatives of $\boldsymbol{\chi}$.
(b) Compute the inverse of the equations of motion,

$$
\begin{equation*}
\boldsymbol{X}=\chi^{-1}(\boldsymbol{x}, t), \tag{3}
\end{equation*}
$$

from (2), and use the result to eliminate \boldsymbol{X} from $\boldsymbol{u}^{L}(\boldsymbol{X}, t)$ and $\boldsymbol{a}^{L}(\boldsymbol{X}, t)$ computed in part (a). Derive expressions for the Eulerian descriptions of the velocity, $\boldsymbol{u}^{E}(\boldsymbol{x}, t)$, and acceleration, $\boldsymbol{a}^{E}(\boldsymbol{x}, t)$, respectively.
(c) Compute the acceleration, $\boldsymbol{a}^{E}(\boldsymbol{x}, t)$, from the material derivative of $\boldsymbol{u}^{E}(\boldsymbol{x}, t)$. Explicitely show that it corresponds to $\boldsymbol{a}^{L}(\boldsymbol{X}, t)$ derived in part (b).
(d) Compute $\nabla \cdot \boldsymbol{u}$ and $\nabla \times \boldsymbol{u}$. Is this a potential flow? Why?

Problem 3

Let the velocity field describing the stationary motion of a fluid be given by

$$
\begin{equation*}
u_{1}(\boldsymbol{x}, t)=-a x_{2}, \quad u_{2}(\boldsymbol{x}, t)=a x_{1}, \quad u_{3}(\boldsymbol{x}, t)=0 \tag{4}
\end{equation*}
$$

where a is a positive constant, and all components are given with reference to a fixed orthonormal basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$, and \boldsymbol{e}_{3}.
(a) Show that $\nabla \cdot \boldsymbol{u}=0$.
(b) Obtain the differential equations defining the streamlines for this flow. Show that in this particular case

$$
\begin{equation*}
x_{1} \mathrm{~d} x_{1}=-x_{2} \mathrm{~d} x_{2} \tag{5}
\end{equation*}
$$

Integrate (5) to obtain an implicit equation in x_{1} and x_{2} determining the streamlines. To which geometrical form do they correspond?
(c) Obtain the differential equations for $\mathrm{d} \boldsymbol{x} / \mathrm{d} t$, defining the path lines of the flow. Solve these equations for the path line passing through $\boldsymbol{x}=(1,0,0)$ at $t=0$ (hint: obtain an equation for $\mathrm{d}^{2} x_{1} / \mathrm{d} t^{2}$, and substitute $\mathrm{d} x_{2} / \mathrm{d} t$ appearing on the right hand side of this equation.) Do streamlines and path lines coincide in this case? Should they?

