Assignment Nr. 2

due 08 November

Problem 1

Consider a straight river of infinite length flowing with a constant velocity, v, in the direction x. At time t = 0, a pollutant is released at x = 0. For t > 0, the concentration of the pollutant, c(x,t), is determined by the advection of the pollutant with the river water and by diffusive spreading. Assume that c(x,t) is given by

$$c(x,t) = t^{-\frac{1}{2}} e^{-(x-vt)^2 t^{-1}} , \qquad (1)$$

which is a simple description of the effects of advection and diffusion.

- (a) Plot c(x,t) for -5 < x < 20 at times t = 1, 3, and 10 with v = 1 for the velocity of the river water (non-dimensional variables are used throughout this problem). Briefly explain how the effects of diffusion and advection become evident in your plots.
- (b) Consider three swimmers moving with constant absolute velocities w_1 , w_2 , and w_3 in the river. Assume that the first swimmer moves with $w_1 = v$, and thus passively drifts with the current, the second swims with $w_2 = -v$ against the current, and the third always stays at the same point, $x = x_A$. Assume now that at time $t = t_A$ all swimmers meet at the point $x = x_A$.
 - (i) Compute the partial derivatives

$$rac{\partial c(x,t)}{\partial x}$$
 and $rac{\partial c(x,t)}{\partial t}$

for c(x,t) given by (1).

- (ii) Derive expressions for the time rates of concentration change each of the three swimmers "feels" while passing the point $x = x_A$ at time $t = t_A$. (hint: apply the total derivative, using the results derived in part (i).)
- (iii) For v = 1, $x_A = 5$, and $t_A = 3$, obtain numerical values for these time rates. Which of the swimmers feels the strongest rate of change in concentration? Which the weakest?

Problem 2

Consider a function, $\boldsymbol{\chi}$, describing the three-dimensional motion of material points in a fluid:

$$\begin{aligned}
x_1 &= \chi_1(\mathbf{X}, t) = X_1 e^{at}, \\
x_2 &= \chi_2(\mathbf{X}, t) = X_2 e^{at}, \\
x_3 &= \chi_3(\mathbf{X}, t) = X_3 e^{-2at},
\end{aligned}$$
(2)

where a is a constant, t is time, and X the reference position at t = 0. All components are given with reference to a fixed orthonormal basis e_1 , e_2 , and e_3 .

- (a) Compute the Lagrangian velocity, $\boldsymbol{u}^{L}(\boldsymbol{X},t)$, and acceleration, $\boldsymbol{a}^{L}(\boldsymbol{X},t)$, from the time derivatives of $\boldsymbol{\chi}$.
- (b) Compute the inverse of the equations of motion,

$$\boldsymbol{X} = \boldsymbol{\chi}^{-1}(\boldsymbol{x}, t) , \qquad (3)$$

from (2), and use the result to eliminate \boldsymbol{X} from $\boldsymbol{u}^{L}(\boldsymbol{X},t)$ and $\boldsymbol{a}^{L}(\boldsymbol{X},t)$ computed in part (a). Derive expressions for the Eulerian descriptions of the velocity, $\boldsymbol{u}^{E}(\boldsymbol{x},t)$, and acceleration, $\boldsymbol{a}^{E}(\boldsymbol{x},t)$, respectively.

- (c) Compute the acceleration, $\boldsymbol{a}^{E}(\boldsymbol{x},t)$, from the material derivative of $\boldsymbol{u}^{E}(\boldsymbol{x},t)$. Explicitly show that it corresponds to $\boldsymbol{a}^{L}(\boldsymbol{X},t)$ derived in part (b).
- (d) Compute $\nabla \cdot \boldsymbol{u}$ and $\nabla \times \boldsymbol{u}$. Is this a potential flow? Why?

Problem 3

Let the velocity field describing the stationary motion of a fluid be given by

$$u_1(\boldsymbol{x},t) = -ax_2 , \quad u_2(\boldsymbol{x},t) = ax_1 , \quad u_3(\boldsymbol{x},t) = 0 ,$$
 (4)

where a is a positive constant, and all components are given with reference to a fixed orthonormal basis e_1 , e_2 , and e_3 .

- (a) Show that $\nabla \cdot \boldsymbol{u} = 0$.
- (b) Obtain the differential equations defining the *streamlines* for this flow. Show that in this particular case

$$x_1 \mathrm{d} x_1 = -x_2 \mathrm{d} x_2 \quad . \tag{5}$$

Integrate (5) to obtain an implicit equation in x_1 and x_2 determining the streamlines. To which geometrical form do they correspond?

(c) Obtain the differential equations for $d\mathbf{x}/dt$, defining the *path lines* of the flow. Solve these equations for the path line passing through $\mathbf{x} = (1, 0, 0)$ at t = 0 (hint: obtain an equation for d^2x_1/dt^2 , and substitute dx_2/dt appearing on the right hand side of this equation.) Do streamlines and path lines coincide in this case? Should they?