Assignment Nr. 3

due November 22th

Problem 1

Consider a shear flow between two tangentially moving plates (Couette flow) with velocity given by

$$u_1 = \frac{U}{h} x_2 , \quad u_2 = u_3 = 0 ,$$

where U is the constant velocity difference between the moving plates, and h their constant distance.

- (a) Compute the components of the velocity gradient, $\partial u_i/\partial x_j$, in Cartesian coordinates. Use the result to compute the symmetric and anti-symmetric parts, S_{ij} and W_{ij} , of the velocity gradient. Here and in the following, it is sufficient to write down all expressions in two dimensions (x_1, x_2) only.
- (b) Compute the rate of strain of the two line elements, $d\boldsymbol{x}$ and $d\boldsymbol{x}'$, oriented in the x_2 and x_1 directions, respectively.
- (c) Compute the rate at which the angle between the two line elements changes (shear rate).
- (d) Compute the average angular velocity of the two line elements (rotation rate).
- (e) Compute the eigenvalues and eigenvectors of the rate of deformation tensor, S_{ij} . What is the angle between these eigenvectors and the x-axis? (Hint: it is sufficient to consider only the 2 by 2 matrix of the plane problem in the x_1 and x_2 directions. Since S_{ij} is real and symmetric, the two eigenvectors are orthogonal.)
- (f) What is the significance of the two directions given by the two eigenvectors? How do you think two infinitesimal line elements pointing in these directions are deformed?

Problem 2

The figure shows an estuary (like the Elbe river mouth) with idealized geometry. It consists of a channel of length L that is closed by a vertical wall at $x_1 = 0$ and has an open boundary with the ocean at $x_1 = L$. The flat bottom of the estuary is located at $x_2 = 0$ and the free surface at $x_2 = h$. Due to tidal motions, the position of the horizontal free surface, h(t), is a function of time, t. It is assumed to be described by the formula

$$h(t) = h_0 + a \sin \frac{2\pi t}{T} , \qquad (1)$$

where h_0 is the mean water level, *a* the amplitude of the tide, and *T* the tidal period. Assume that at $x_1 = L$, the profile of the horizontal velocity is given by

$$u_1(x_2) = U(t) \ln\left(\frac{x_2 + z_0}{z_0}\right)$$
, (2)

with U(t) defining an unknown function of time. This is a typical profile for a turbulent channel flow, where the so-called "bottom roughness", z_0 , is assumed to be known.

(a) Show that for homogeneous, constant density, $\rho = \rho_0$, the integral form of the balance of mass can be written as

$$\int_{A} \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}A = 0 \;, \tag{3}$$

where the surface, A, consists of the bottom, the left closed boundary, the right open boundary, and the free surface.

- (b) Evaluate (3) formally, taking into account all four surfaces.
- (c) From the solution of (3), derive an expression for the function U(t) in (2).
- (d) Use this result to plot profiles of the velocity $u_1(x_2)$ at $x_1 = L$ for t = T/4, T/2, 3T/4, and T, using the following numerical values: L = 100 km, $h_0 = 50$ m, a = 5 m, $z_0 = 0.01$ m, and T = 12.42 h. This corresponds to a typical semi-diurnal tide in some estuaries in the North Sea.

Problem 3

Consider a cylindrical tube with constant cross-sectional area, A, that is filled with a compressible gas. The tube is closed at the left end, x = 0, such that the gas can be compressed by a moving piston located at x = L(t). The position of the piston is a function of time, t, and assumed to be given by

$$L(t) = \frac{L_0}{2 - \cos \omega t} , \qquad (4)$$

where the constant angular velocity, ω , and the constant reference position, L_0 , are known.

(a) Assuming that the density ρ only depends on t and x, show that the integral balance of mass for the material volume of gas inside the tube is given by

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^{L(t)} \rho \,\mathrm{d}x = 0 \quad . \tag{5}$$

(b) Show that one possible solution of (5) corresponds to

$$\rho = \rho_0 (2 - \cos \omega t) , \qquad (6)$$

where ρ_0 is an arbitrary, but constant reference density (hint: use Leibniz' integration rule). This solution is valid only if the speed of the piston, \dot{L} , is small compared to the speed of sound. In this case, no sound waves are generated by the piston, and ρ can be assumed to be homogeneous.

(c) Show that for one-dimensional problems, like the one at hand, the general form of the local balance of mass adopts the simple form

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0 \quad . \tag{7}$$

- (d) Insert (6) into (7) to obtain an expression for the divergence of the velocity, which is $\partial u/\partial x$ in one-dimensional flows. Integrate the expression for $\partial u/\partial x$ to obtain the spatial distribution of the velocity, u(x,t), inside the tube. Note that at the closed end u(0,t) = 0.
- (e) Plot L, ρ , and the divergence of the velocity, $\partial u/\partial x$, for $0 \leq t \leq 2\pi$ for $L_0 = \rho_0 = 1$, and $\omega = 2$. Mark periods of positive divergence and periods of decreasing density. Do these periods coincide? Should they?