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Consider a cylindrical island, I, located in a stationary velocity field, u(x), with
constant density, ρ = ρ0. For simplicity, it is assumed that the island is symmetric
about the y-axis and has no dependence on the z-direction (pointing out of the
page). At x = xa, upstream of the island, the velocity field is given by u(x) = Ue1,
where the reference velocity, U , is constant. At x = xb, far enough downstream of
the island, it can be assumed with good accuracy that the velocity is again parallel
to the x-axis, u(x) = u1(xb, y)e1, where u1(xb, y) ≤ U .

(a) Design a control volume bounded by the surface of the island, AI , the surfaces
at x = xa and x = xb, the surfaces at y = ∞ and y = −∞, and an infinitely
narrow slit connecting the surface at y =∞ and the surface of the island, AI .
(Obviously, the surfaces at y = ±∞ should be drawn symbolically at some
value y = ±h.)

(b) Show that, for this problem, the integral version of the balance of mass reduces
to ∫

A

u · n dA = 0 (1)

where A denotes the total surface of the control volume, and n the local out-
ward unit normal vector on that surface.
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(c) Show that evaluating (1) on all surfaces of the control volume yields∫ ∞
−∞

[U − u1(xb, y)] dy = 2

∫ xb

xa

u2(x,∞)dx , (2)

where the symmetry of velocity distribution about the y-axis has been ex-
ploited. What is the physical meaning of this result?

Problem 2

Consider again the current arround the cylindrical island discussed in problem
2. The same simplifications (stationarity, constant density, symmetry about y-axis)
apply, and all physical quantities are identical to those in problem 2. The goal is
now to derive an expression for the drag force, F , exerted by the fluid on the island.

(a) Start by showing that, for this problem (assuming that body forces are negli-
gible), the integral balance of momentum can be written as∫

A

ρ0u(u · n) dA =

∫
A

t dA , (3)

where t is the stress vector, and A the total surface of the control volume,
which is identical to that designed in problem 2a.

(b) Assume that at the surfaces x = xa, x = xb, and y = ±∞, the stress vector
is of the form t = −p0n, where p0 is the constant pressure far away from the
island. Show that the contributions of all surfaces to the integral on the right
hand side of (3) cancel, except for the term∫

AI

t dA , (4)

where AI denotes the surface of the island. Argue that this integral is just the
negative of the drag force, F , exerted by the fluid on the island. Thus, the
right hand side of (3) can be written as −F .

(c) Evaluate the left hand side of (3) on all surfaces of the control volume. Take
the scalar product of the result with e1 to show that the x-component of the
drag force, F , is given by

F1 = ρ0U
2

∫ ∞
−∞

(
1− u1(xb, y)2

U2

)
dy − 2ρ0U

∫ xb

xa

u2(x,∞) dx , (5)

where again the symmetry of the velocity field about the x-axis has been
exploited. Hint: use the fact the at y = ±∞, the velocity is of the form
u = Ue1 + u2(x,±∞)e2.
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(d) Use the balance of mass, (2), to show that (5) can be re-expressed as

F1 = ρ0U
2

∫ ∞
−∞

u1(xb, y)

U

(
1− u1(xb, y)

U

)
dy . (6)

Problem 3

Assume that the origins of a fixed reference system, E (with fixed base vectors, ei),
and a rotating reference system, E∗ (with rotating base vectors, e∗i ), are located at
the center of a rotating spherical planet. At the time considered, the base vectors
of both coordinate systems coincide, and the base vectors e3 and e∗3 point into
the direction of the planet’s rotation axis indicated by Ω. The reference system
E∗ rotates with the planet around the same axis with constant angular velocity
|Ω| = 2π/T , where T is the time for one complete revolution of the planet.

Let x denote the position vector (with respect to the rotating reference system)
of a point located at the planet’s surface at the latitude φ. Ω can be split into two
components, one inside and one perpendicular to the planet’s tangent plane at x,
such that Ω = Ω̃ + Ω̂.

(a) Argue that for the geometry discussed above, the only accelerations result-
ing from the motion of the reference system are the centrifugal acceleration,
−Ω× (Ω× x), and the Coriolis acceleration, −2Ω× u. Explicitly discuss for
which reason(s) the other system acceleration terms vanish.

(b) Let’s first consider only the Coriolis acceleration due to Ω̂, perpendicular to
the tangent plane. Which of the following statements are correct for a point
with position vector x?
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(i) A point moving in the tangent plane always feels a Coriolis acceleration
towards the center of the planet, except at the poles.

(ii) A point moving in the tangent plane always feels a Coriolis acceleration
towards the right on the northern hemisphere and towards the left on the
southern hemisphere. At the equator, it feels no Coriolis acceleration at
all.

(iii) A point moving towards the center of the planet always feels a Coriolis
acceleration towards the center of the planet, except at the equator.

(c) Next, consider only the Coriolis acceleration due to Ω̃, pointing towards north.
Which of the following statements are correct?

(i) A point moving in the tangent plane always feels a Coriolis acceleration
away from the center, except at the poles, or if it moves exactly towards
the North.

(ii) A point moving towards the center of the planet always feels a Coriolis
acceleration towards the East (i.e. into the paper), except at the poles.

(iii) At the equator, a point moving towards the East always feels a Coriolis
acceleration towards the North.

(d) In what directions point the components of the Coriolis acceleration resulting
from Ω̂ and Ω̃, respectively, for a point moving on the northern hemisphere in
the tangent plane towards the East, i.e. into the paper?

(e) If an air particle is moving in the atmosphere of the planet Earth at the latitude
of Rostock (about 54◦ N) and moves on a windy day with a speed of 10 m s−1,
what are the magnitudes of the Coriolis accelerations computed in (d)? A
typical value for the pressure gradient between a high and a low pressure area
in the atmosphere is 1/ρ ∂p/∂x = 10−3 m s−2. How does this value compare
to the Coriolis acceleration in the tangent plane?
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