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Problem 1

Consider the stationary motion of an incompressible Newtonian fluid with constant
density, ρ = ρ0, and constant diffusivity of momentum, ν0, between two parallel,
infinite plates of distance h. The upper plate moves parallel to the lower plate with
constant velocity, U , in the e1 direction, the lower plate is at rest. The flow is
homogeneous in the x1 and x3 directions. The only non-zero velocity component is
u1(x2). The pressure gradient is negligible.

(a) Show that for this flow the Navier-Stokes equations reduce to

ν0
d2u1
dx22

= 0 . (1)

Discuss, term by term, for what reason individual terms have been neglected
in deriving this equation.

(b) Integrate (1) with the help of the boundary conditions u1(0) = 0 and u1(h) =
U . Show that the velocity distribution between the plates is linear,

u1 =
U

h
x2 , (2)

and independent of the diffusivity. This is the velocity distribution of the
Couette flow, which is a famous, prototypical solution of the Navier-Stokes
equations (we have encountered this flow already in Problem 1 of the 3rd
assignment sheet).
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(c) Show that, for the flow considered here, the dissipation function, Φ = TijSij,
is given by

1

ρ0
Φ = ν0

U2

h2
, (3)

independent of the spatial position.

(d) Now assume that the initial temperature distribution is uniform, that there
is no heat flux into or out of the plates, and that there is no external energy
supply to the fluid. Argue that, under these conditions, the divergence of the
heat flux vanishes, and the energy equation can be written as

cv
dθ

dt
=

1

ρ0
Φ = ν0

U2

h2
, (4)

where cv is heat capacity of the fluid (assumed to be constant here).

(e) For an engineering application of these results, consider a slide bearing, where
friction between two surfaces moving relative to each other is reduced by press-
ing lubricating oil in the gap between them. Typical thermodynamical param-
eters for lubricating oil are cv = 2000 J kg−1 K−1, and ν0 = 10−5 m2 s−1. Solve
(4) for these parameters, and compute the temperature increase of the oil after
t = 60 s for a gap of h = 1 mm and U = 10 m s−1.

Problem 2

Consider the stationary flow of an inviscid fluid of constant density in a channel with
flat bottom, consisting of two straight sections of different width. At x = xA, located
inside the first section, the width of the channel is WA, the local water depth is DA,
and the velocity, assumed to be vertically homogeneous, is uA = uAe1. Further
downstream, in the second section, at x = xB, the width of the channel is WB < WA,
the local water depth is DB, and the velocity, again vertically homogeneous, is
uB = uBe1. Assume that the pressure at the free surface is equal to the constant
ambient pressure, p0.

(a) Construct a control volume including the planes x = xA and x = xB, and show
that the balance of mass requires that

uAWADA = uBWBDB . (5)
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(b) Assume that z = 0 corresponds to the flat bottom of the channel. Apply the
Bernoulli equation between x = xA and x = xB along a streamline located at
the free surface, and show that

u2A
2

+ gDA =
u2B
2

+ gDB , (6)

where g is the acceleration of gravity.

(c) Combine (5) and (6) to eliminate uB from the problem. Show that the resulting
equation is a cubic polynomial for DB of the from

2gD3
B − (2gDA + u2A)D2

B +

(
WA

WB

DAuA

)2

= 0 . (7)

(d) Solve (7) either numerically or analytically for DB. Plot DB as a function of
uA for 0 ≤ uA ≤ 2 m s−1, using the parameters g = 9.81 m s−2, DA = 5 m, and
WA/WB = 2. (Hint: better don’t try this without a mathematical software
like Mathematica or Maple. Note that there are three possibly different roots
of (7). Only one yields physically reasonable results.)

Problem 3

Consider a cylindrical vessel of radius R, filled with an inviscid fluid of constant
density, ρ0. At the bottom of the vessel is a rounded cylindrical orifice of radius
r, through which the water leaves the vessel in form of a non-contracting jet with
pressure equal to the ambient pressure, p0.

(a) Construct a control volume and show that the balance of mass requires that
the change of the water level, h, is given by

dh

dt
= −

( r
R

)2
uB , (8)

where uB denotes the velocity of the jet leaving the orifice.
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(b) Assume that the flow is quasi-stationary and r/R � 1. By applying the
Bernoulli equation along a streameline between the water surface and the bot-
tom of the orifice, show that the velocity of the jet leaving the orifice is given
by

uB =
√

2gh , (9)

where g is the acceleration of gravity. This is the famous Toricelli formula.
Inserting (9) into (8), show that change of the water level is governed by the
differential equation

dh

dt
= Ch

1
2 , (10)

where C = −
√

2g(r/R)2 is constant.

(c) Solve (10), and show that the evolution of the water level is given by

h(t) =

(
h

1
2
0 +

C

2
(t− t0)

)2

, (11)

where h = h0 is the initial water level at t = t0.

(d) For g = 9.81 m s−2, R = 0.5 m, and r = 0.01 m, compute the time required for
the water level to descend from h0 = 0.5 m to h1 = 0.2 m. Plot the evolution
of h(t) for this range of levels.
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