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ABSTRACT


Large-scale geophysical flows often exhibit layers with negligible vertical shear and infinite gradient


Richardson number Ri. It is well known that these layers may be regions of active mixing, even in the absence


of local shear production of turbulence because, among other processes, turbulence may be supplied by


vertical turbulent transport from neighboring regions. This observation is contrasted by the behavior of most


turbulence parameterizations used in ocean climate modeling, predicting the collapse of mixing of mass and


matter if the Richardson number exceeds a critical threshold. Here, the performance of a simple model


without critical Richardson number is evaluated, taking into account the diffusion of turbulence into layers


without shear production and therefore avoiding the suppression of mixing at large values of Ri. The model is


based on the framework of second-moment turbulence closures, focusing on the consistent modeling of the


turbulent length scale for strongly stratified turbulence. Results are compared to eddy-resolving simulations


of stratified shear flows that have recently become available. The model is simple enough for inclusion in


ocean climate models.


1. Introduction


Turbulence closure models used in ocean climate


modeling often compute the turbulent diffusivity as a


function of the gradient Richardson number, Ri 5 N2/S2,


where N and S denote the buoyancy frequency and the


total vertical shear, respectively. Except for some recent


suggestions discussed later, models of this type predict


the collapse of turbulent transport in stratified regions


with negligible shear, although there is clear observa-


tional evidence that layers with Ri / ‘ may be turbulent.


This property is shared among a variety of mixing models


that are based on rather different physical concepts (e.g.,


Pacanowsci and Philander 1981; Large et al. 1994; Canuto


et al. 2001). A consistent description of mixing for large


values of Ri is, however, of considerable practical interest


because stratified mixing layers with negligible shear are


frequently observed in large-scale flows relevant to ocean


climate modeling, with well-known examples being the


velocity maximum observed in dense bottom gravity


currents (overflows) and intrusions, and in the core of


the jet-like equatorial undercurrent.


The shear production of turbulent kinetic energy


(TKE) in layers with Ri / ‘ is, by definition, negligible.


In such a situation, two important alternative energy


sources have been identified in geophysical flows: the


first is the vertical transport of TKE from neighboring


regions by turbulent motions, often referred to as self-


advection of turbulence, and the second, which will not


be discussed here, relates to the presence of internal


waves. The importance of turbulence self advection was


also emphasized in a recent numerical study by Jackson


et al. (2008, hereafter JHL), who investigated a turbu-


lent stratified jet with Ri / ‘ that can be considered as a


prototype for many geophysical applications. Based on


their results, JHL have also suggested a simple turbu-


lence model that is explicitly designed for applications in


large-scale ocean modeling and predicts nonvanishing


mixing for infinite Richardson numbers, as discussed in


more detail later.


The critical role of the model behavior for large val-


ues of Ri has also been recognized in second-moment


turbulence modeling, which will be the focus of this in-


vestigation. The pioneering models of the Mellor–


Yamada type (Mellor and Yamada 1974, 1982; Kantha
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and Clayson 1994) predict a collapse of turbulence


above a critical Richardson number of Ric ’ 0.2, a value


that is now considered too low to be consistent with


available data. A more consistent threshold of Ric ’ 1 was


obtained with more advanced second-moment closures


(Canuto et al. 2001; Cheng et al. 2002). However, even


these models are now challenged by a growing body of


experimental and observational data indicating that


stratified turbulence may exist even for Ri � 1, which


has motivated the development of some recent turbu-


lence models without a finite Ric (Canuto et al. 2008;


Zilitinkevich et al. 2007; Galperin et al. 2007). In


contrast to these investigations, emphasizing the role


of the return-to-isotropy time scales in the second-


moment equations, it will be shown here that a simple,


consistent modeling of the turbulent length scale for


strongly stratified flows also yields a model without Ric.


In the following, it will be demonstrated that a model


with structure, complexity, and properties comparable


to that of JHL can be derived from the second-moment


closure framework, avoiding many of the ad-hoc mod-


eling assumptions of JHL. This model is tested against


the eddy-resolving simulations of JHL, which provide


rather unique estimates for the transport terms in the


TKE budget (pressure transport and triple velocity cor-


relations) that are notoriously difficult to measure in situ


with available instrumentation.


2. Modeling approaches


The starting point of virtually all geophysical turbu-


lence models is the transport equation for the turbulent


kinetic energy,


Dk


Dt
5D


k
1 P 1 G� «, (1)


where D/Dt is the material derivative, D
k


is the sum of


the turbulent and viscous transport terms, and « is the


dissipation rate. The terms P and G correspond to the


shear and buoyancy production of TKE, respectively,


which, for flows with large aspect ratio, may be modeled


according to


P 5 n
t
S2 and G 5�nu


t N2, (2)


with nt and nt
u denoting the vertical diffusivities of mo-


mentum and heat. For the transport term Dk, models of


different complexity have been suggested, but the most


commonly used model for stratified shear flows corre-


sponds to a simple down-gradient formulation,


D
k


5
›


›z
n


k


›k


›z


� �
, (3)


where z is the vertical coordinate and nk denotes the


turbulent diffusivity of TKE. For the stably stratified


flows discussed here, the applicability of this simple


model will be justified later by direct comparison with


the transport of TKE diagnosed from the eddy-resolving


simulations of JHL. In other applications, in particular


those involving unstable stratification, more complex


models are required, a fact that does, however, not affect


the main conclusions derived here.


Additional model assumptions are required in order


to close (1), in particular a model for the dissipation rate


« and the turbulent diffusivities nt, nt
u, and nk. Although


there is general agreement about the form of (1), nu-


merous suggestions have been formulated for these ad-


ditional closure assumptions that will be discussed in the


following.


3. Second-moment models


An important class of geophysical turbulence models is


based on the transport equations for the second moments


of fluctuating quantities. After introducing appropri-


ate closure assumptions, and after a number suitable


simplifications (see Umlauf and Burchard 2005), these


models can be expressed in the surprisingly simple form


n
t
5 c


m
(S, N)n


0
and nu


t 5 cu
m(S, N)n


0
, where (4)


n05
k2


«
, (5)


and cm and cm
u are so-called stability functions depending


on the nondimensional shear and buoyancy numbers,


S 5 Sk/« and N 5 Nk/«, respectively. If the so-called


quasi-equilibrium assumption (Galperin et al. 1988) is


applied, (4) may be simplified to a functional depen-


dency on a single parameter: N. This may be inter-


preted as a dependency on the turbulence Froude


number, Frt } N
�1/2


, which has physical support (Ivey


and Imberger 1991), and leads to a simple and attractive


model as shown later. All results presented here will be


based on the stability functions originally presented by


Canuto et al. (2001); shape and properties of these and


other types of stability functions are discussed, for ex-


ample, in Burchard and Bolding (2001) and Umlauf and


Burchard (2005).


The dissipation rate « required in (1) and (4) may be


computed from different types of transport equations


(see e.g., Umlauf and Burchard 2003; Umlauf et al. 2003).


Here, the ‘‘classical’’ form


D«
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k
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is used, where c1 5 1.44, c2 5 1.92, and c3 5 20.63 are


model parameters and D
«


is a transport term similar to


(3), as discussed in detail by Umlauf et al. (2003) and


Umlauf and Burchard (2005). The form of (6) is moti-


vated by the observation of JHL that a model consisting


of (1), (4), and (6) could, without any recalibration, ac-


curately reproduce the turbulent fluxes from their eddy-


resolving simulations. Beyond this, it is known from


numerous studies that this model has a broad range of


applicability, including different oceanic entrainment


situations and surface and bottom boundary layer tur-


bulence (Burchard and Baumert 1995; Burchard and


Bolding 2001; Umlauf and Burchard 2005). Because of


the relative complexity of this model, referred to as the


full model, the incorporation into a large-scale ocean


climate model was judged to be inefficient by JHL.


Two alternatives with reduced complexity are therefore


suggested here, both based on the quasi-equilibrium


forms of the stability functions already mentioned. In


the first, referred to as the quasi-stationary model, the


rate term in the « equation, (6), is neglected. This model


has a structure comparable to JHL: both models use


(i) essentially identical equations for the TKE balance,


(ii) diffusion-type equations determining the turbulence


length scale, and (iii) algebraic expressions describing


the effect of stratification on turbulence through a single


parameter. However, because of the dependency of (4)


on the turbulence quantities k and « via the parameter


N, stronger nonlinearities compared to JHL are intro-


duced, which may conflict with the general goal of


finding a robust and numerically efficient solution with


fully implicit methods.


As a second and structurally simpler alternative, it is


suggested here to compute the dissipation rate from the


equilibrium form of (6):


« 5
c


1
P 1 c


3
G


c
2


, (7)


which is obviously a good approximation in situations


where rate and transport terms are small. The turbu-


lent length scale of this model is constrained by the


limiter


l , c
lim


L
b
, (8)


which is suggested by Galperin et al. (1988), where Lb is


the buoyancy scale defined later in (10). The computa-


tion of a consistent value for the parameter clim is dis-


cussed by Umlauf and Burchard (2005). Otherwise, there


are no differences with respect to the quasi-stationary


model. This model will be referred to as the algebraic


model.


Because the production terms P and G are already


precomputed for insertion into (1), the solution of (7)


requires only little computational overhead. It is worth


noting that, in spite of its simple form, (7) inherits some


important key properties from the full equation, (6);


models using (6) and (7) will predict identical entrain-


ment rates in shear-driven situations, because this pro-


perty is governed by the model behavior in stationary,


homogeneous turbulence, where the diffusion terms are


negligible by definition (see Burchard and Baumert


1995; Umlauf and Burchard 2005). Note that the same is


not true for turbulence near a ‘‘wall,’’ where, similar to


the model of JHL, an additional wall function has to


be supplied. A wall function is also important for the


model’s behavior in unstratified situations; although


easily derived, wall functions will not be discussed here


for brevity.


4. The JHL model


JHL suggest a TKE balance corresponding to (1) and


(3). They argue, however, that in ocean climate models


the left-hand side of (1) may be ignored because the time


scales associated with the evolution of turbulence are


much smaller than the numerical advection time scales.


They further assume that the turbulent diffusivities ap-


pearing in (2) and (3) are identical (i.e., nk 5 nt 5 nt
u),


implying a restriction of their model to weakly stratified


flows where the turbulent Prandtl number is close to unity.


The dissipation rate required to close (1) is computed


according to


« 5 k(c
N


N 1 c
S
S), (9)


where cN and cS are model constants. As noted by JHL,


this model is equivalent to assuming that the dissipative


length scale, l } k3/2/«, is a reciprocal average of the


buoyancy and shear length scales:


1


l
}


c
N


L
b


1
c


S


L
S


, where L
b


5
k1/2


N
, and L


S
5


k1/2


S
.


(10)


Therefore, (9) implies that the dissipative length scale


is dominated by the minimum of Lb and LS, which is a


simple but physically justifiable modeling assumption


(see Schumann and Gerz 1995).


Finally, the turbulent diffusivity in JHL follows from a


differential equation that can be written as


nu
t 5 L2


b G
›2nu


t


›z2
1 SR


� �
, (11)
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where G is a constant and R denotes a monotonically


decreasing function of the gradient Richardson number


Ri. The functional form of R(Ri) was motivated by


the bulk parameterization for entraining gravity cur-


rents suggested by Turner (1986), which is known to


predict a collapse of turbulence (R 5 0) for Ri exceeding


a prescribed threshold Ric. Exactly this model property


motivated JHL to include the diffusive term on the


right-hand side of (11), hence creating the possibility for


nonzero mixing resulting from the ‘‘diffusion of diffu-


sivity’’ from neighboring regions even if Ri . Ric locally.


It should be noted that the form of (11) and R(Ri) en-


tirely follow from ad-hoc assumptions and involve in-


ternal variables that cannot be measured.


5. Model evaluation


a. Model behavior for strong stratification


Interesting insight into the performance of the alge-


braic model is gained from inserting the production


terms defined in (2) and the expression for the diffu-


sivities, (4), into the equilibrium form of the dissipation


rate equation, (7). This results in


«2 5 k2(c2
NN2 1 c2


SS2), where (12)


c2
N 5�


c
3


c
2


cu
m and c2


S 5
c


1


c
2


c
m


(13)


are functions of N, as described above. Equation (12) is


recognized as a nonlinear relationship between N and S


or, because Ri 5 N
2
/S


2
, between N and Ri. Thus, sta-


bility functions of the form cm(Ri), cm
u (Ri) can be derived


with a pure dependency on the Richardson number.


Note that this procedure is completely analogous to


the well-known approach of deriving stability functions


from the equilibrium assumption P 1 G 5 « (see Mellor


and Yamada 1974; Canuto et al. 2001). The important


difference is that no equilibrium in the TKE budget is


assumed here, which is consistent with and required by


the possibility of diffusive transport of TKE into layers


without shear production.


The two forms of the stability functions are compared


in Fig. 1, where the focus is on cm
u (Ri), controlling the


transport of heat, salt, and passive tracers. The traditional


form, based on equilibrium in the TKE budget, illustrates


some well-known properties, such as the monotonic de-


crease from the neutral value toward zero at the critical


value Ric ’ 0.85, as discussed in great detail by Canuto


et al. (2001). This behavior is contrasted by the form


of cm
u (Ri) derived from (12), which, although exhibiting


a similar monotonic decrease, never falls below the


asymptotic value cm
u ’ 0.018 for Ri / ‘. It is evident that


with this model the turbulent fluxes of mass and matter


across layers with Ri / ‘ do not vanish, provided a


sufficient energy source for the TKE is available.


This interesting behavior can be explained by the


observation that (12) reduces to « 5 cN(Ri)kN in the


limit of very strong stratification, which, using the defi-


nition of the buoyancy scale (10) and the relation l } k3/2/«,


can be rewritten as l 5 c
lim


(Ri)L
b
. This result is partic-


ularly revealing because, as easily shown, the new


function clim(Ri) converges to a finite value for large Ri,


implying a proportionality between the scale of turbu-


lence l and the buoyancy scale Lb. This behavior is


consistent with turbulence scaling in strongly stratified


flows (see Schumann and Gerz 1995) and with the limit


for the turbulent length scale (8).


In this context, the following remark is interesting:


experience from laboratory and numerical investiga-


tions has consistently shown that stratified turbulence is


in full equilibrium only for a single so-called stationary


Richardson number, Rist ’ 0.15–0.25, if energy sources


other than shear production are negligible (see Shih et al.


2000, and references therein). This clearly implies that,


for Ri . Rist, stationary turbulence may only be ob-


served if additional energy sources resulting from


transport of turbulence, internal wave effects, and dou-


ble diffusion contribute to the TKE budget. Some caution


is therefore required for the interpretation of stability


functions that are based on the equilibrium assumption


P 1 G 5 «, as illustrated by Fig. 1. Only for Ri 5 Rist,


where Rist 5 0.25 results from the model parameters


chosen here, both stability functions coincide, but for


larger values of Ri the equilibrium assumption becomes


less and less accurate. In particular, the appearance of


a critical Richardson number, above which turbulence


collapses, is seen to be an artifact of the equilibrium


FIG. 1. Stability function for heat, salt, and passive tracers


cm
u derived from P 1 G 5 « (full line) and from (12) (dashed–dotted


line). The dashed line denotes the asymptotic value of the latter for


Ri / ‘.
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assumption rather than an intrinsic property of the sec-


ond moment closure model, as frequently argued.


For the discussion that follows, it is helpful to combine


the equilibrium forms of (1) and (6) to derive an ex-


pression for the mixing efficiency


g 5�G


«
5


c
2
� c


1


c
1
� c


3


, (14)


with g 5 0.23 for the parameters used here (i.e., well


inside the range of accepted values; Osborn 1980; Shih


et al. 2005).


b. Comparison with the model of JHL


For the limiting cases N / 0 and S / 0, (12) becomes


in form identical to the model of JHL, (9), with the dif-


ference, however, that the parameters cN and cS are


functions of Ri. Similar to (9), (12) can thus be interpreted


as an expression relating the dissipative length scale,


l } k3/2/«, to some reciprocal average of the buoyancy and


shear length scales defined in (10), with the respective


weighting factors depending on Ri. This is in accordance


with a suggestion by Schumann and Gerz (1995), who find


that for increasing values of Ri buoyancy controls the


turbulent length scale rather than shear (see earlier).


Another interesting similarity may be identified by


rewriting (4) and (5) with the help of (10), yielding


nu
t 5 L2


bSR, R 5 cu
mNRi1/2, (15)


and a similar equation for nt. Comparing (15) with the


analogous expression of JHL, (11), reveals a formal


similarity only for homogeneous flows, because an equiv-


alent of the ad-hoc term describing the diffusion of dif-


fusivity in (11) is missing in (15). However, the progress


made with (15) is that such a term is not at all required:


even for Ri / ‘, the diffusivity predicted by (15) re-


mains nonzero, provided turbulent diffusion or any


other source of TKE is available.


c. A simple test case


To investigate the relative performance of the full and


equilibrium models, a short comparative model study


was performed. Similar to JHL, a turbulent stratified jet


was initialized with a Gaussian velocity profile:


u 5 u
0


exp � z


h
u


� �2
" #


, (16)


where N2 5 1026 s22, u0 5 0.2 m s21, and hu 5 10 m


denote the initial values of the buoyancy frequency,


speed, and width of the jet chosen here, respectively. In


contrast to JHL, who forced their simulations to statio-


narity by nudging toward the initial conditions, the


mean-flow and turbulence parameters here were freely


evolving in time.


For the one-dimensional (vertical) simulations con-


sidered here, the full transport equation for the TKE,


(1), with production terms computed according to


(2) and the down-gradient transport model, (3), was


solved. All other model components of the full and


algebraic models were specified as described above,


and all coefficients correspond to those suggested by


Umlauf and Burchard (2005) and used by JHL. The


evolution of the velocity and temperature fields was


computed from the corresponding one-dimensional


diffusion equations for momentum and heat. The do-


main was large enough to exclude any boundary effects,


and the numerical resolution and time step corresponded


to fully converged runs (except for one run used to test


the model performance for very coarse resolution, as dis-


cussed later).


The temporal evolution of the jet, for brevity not dis-


cussed here in full detail, is initiated by a rapid increase of


turbulence in two quickly spreading shear layers, leading


to symmetric entrainment at the upper and lower flanks


and a supply of energy toward the center. Different than


the continuous, self-similar spreading in the unstratified


case extensively discussed in the engineering literature


(e.g., Pope 2000), entrainment is interrupted here as soon


as the shear production becomes too weak to overcome


the damping effect of stratification, and turbulence slowly


decays. The computed velocities depicted in Fig. 2 illus-


trate that, as expected, the largest differences in model


performance are observed during the initial phase, where


rapid changes in width and vertical structure of the jet


occur. The final width and vertical velocity structure


predicted by both models are of remarkable similarity;


therefore, the following parts of the model intercompar-


ison will be restricted to the late stage, where turbulent


quantities show a gradual decay. The different durations


of the initial stages induce, however, a relative time shift


between the two models, thus making it difficult to


compare model results at a given time. To overcome this


problem, time series of the cross-jet-averaged TKE were


computed for both runs, and model results were only


compared at the times where the averaged TKE coin-


cided (see Fig. 2).


One of the key parameters predicted by the turbu-


lence models is the turbulent diffusivity nt
u, which is


displayed in Fig. 3. Both models reproduce the charac-


teristic structure of the diffusivity profile, with a local


minimum at the center of the jet also found in the eddy-


resolving computations of JHL (see later). Diffusivities


predicted by the full model are slightly larger, but the
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overall agreement is surprisingly good, given the strongly


reduced complexity of the algebraic model. To check the


robustness of the model for coarse-resolution climate


modeling applications, results were recomputed with a


resolution of 10 m (i.e., resolving the jet with a few grid


points only). Figure 3 illustrates that the computed dif-


fusivity is only marginally different from that of the fully


converged run (again, the relative time shift was cor-


rected as already described).


The physical processes generating the diffusivity profiles


described above are illustrated in Fig. 4. In a qualitatively


similar way, both models suggest that turbulence is pro-


duced by shear production in the flanks of the jet and is


transported by turbulent diffusion toward the center and


the boundaries. In the center of the jet, the transported


TKE is used to generate a buoyancy flux G, even in the


absence of shear production. The scaled buoyancy pro-


duction shown in Fig. 4 corresponds to the well-known


mixing efficiency g, with values varying around g ’ 0.2


[i.e., close to the equilibrium value predicted by (14) and


in agreement with commonly observed values; Osborn


1980; Shih et al. 2005]. Quantitatively, different predic-


tions between both models are observable mainly in the


profiles for the scaled buoyancy production and the rate


term. In summary, the TKE budgets predicted by both


models are also of acceptable similarity, indicating that


the algebraic model is a simple but useful alternative to


the full model, even in this relatively complex flow.


d. Comparison with eddy-resolving simulations


As an independent benchmark, model results were


compared to the eddy-resolving simulations of the strat-


ified jet described in detail by JHL. Briefly, JHL obtained


reference profiles for turbulence quantities by directly


solving the Navier–Stokes equations with a relaxation in


order to obtain a stationary velocity profile, similar to


(16), and a stationary stratification profile. The vertical


shear S and stratification N from these eddy-resolving


simulations were used to drive the second-moment


models in the following analysis. The stationary velocity


FIG. 2. Evolution of the velocity u(z, t) in the stratified jet ini-


tialized according to (16) for the (a) full and (b) algebraic models.


Velocity contours are shown at intervals of 0.01 m s21. Thick


vertical lines correspond to times used for the model intercom-


parison shown in Figs. 3 and 4.


FIG. 3. Turbulent diffusivity computed using the full and alge-


braic models, as indicated. Times for plotting correspond to those


marked in Fig. 2. The thin line with markers at grid points corre-


sponds to the algebraic model with coarse resolution.


FIG. 4. Terms in the TKE budget, (1), normalized by the dissi-


pation rate «. Shown are results from the (a) full and (b) algebraic


models, evaluated at the times marked in Fig. 2.
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profile and the corresponding diffusivity from JHL are


displayed in Fig. 5, along with the diffusivities computed


from the quasi-stationary and algebraic models. The


quasi-stationary model is in excellent agreement with


the results of JHL, which is impressive because model


parameters have been calibrated in no way for this flow.


The algebraic model, which is also shown in Fig. 5,


qualitatively reproduces the structure of the diffusivity


profile but underestimates the observed mixing. Also,


the TKE budgets from the simulations of JHL and the


quasi-stationary model, illustrated in Fig. 6, exhibit a


remarkable similarity. The dominant physical mecha-


nisms identified here are again the production of tur-


bulence by the strong shear in the flanks of the jet and


the transport of TKE toward the center and the edges,


where it is available for mixing.


6. Discussion and conclusions


In large-scale ocean models relying on the stability


function approach, a collapse of mixing of heat, salt,


and matter across layers with Ri / ‘ is observed, even


if a sufficient energy supply for mixing would be avail-


able. This blocking of transport across layers without


shear becomes a problem, especially in isopycnal ocean


models with very low artificial (numerical) mixing that


may otherwise, at least partly, mask this undesirable


model property.


It has been shown here that, in the context of second-


moment modeling, this behavior is a simple consequence


of the equilibrium assumption P 1 G 5 « that is not valid


for Ri� Rist, where Rist ’ 0.25 denotes the Richardson


number for stationary homogenous turbulence in equi-


librium. If, as in the case investigated here, the vertical


diffusion of TKE is the major energy source in layers


without shear production, then this problem may be


overcome with two obvious changes in the model struc-


ture: (i) a model for the turbulent transport of TKE has


to be included and (ii) the equilibrium assumption has to


be discarded when deriving expressions for the stability


functions. Interestingly, the latter condition was shown to


immediately lead to stability functions without critical


Richardson number, thus revealing the existence of a fi-


nite Ric as an artifact of the equilibrium assumption. This


conclusion is consistent with the simple argument that


mixing may occur at any Richardson number if a sufficient


energy supply other than shear production is available.


It is interesting to compare these findings with a recent


suggestion by Canuto et al. (2008), who introduced sta-


bility functions without critical Richardson number by


modifying the relaxation time scales for the second


moments, which is a rather different approach. Assum-


ing equilibrium in the TKE budget, Canuto et al. (2008)


have shown that this results in stability functions pre-


dicting finite mixing of momentum for all values of Ri;


however, the predicted mixing of heat, salt, and passive


tracers vanishes for Ri / ‘. This behavior is consistent


with the dominance of internal waves at large values of Ri


but clearly not with the data investigated here, where


diffusion of turbulence energizes the mixing across layers


with Ri / ‘. Because the present approach focuses on


FIG. 5. Shown are (a) the prescribed velocity profile and (b) the


turbulent diffusivity corresponding to the eddy-resolving simula-


tions of JHL, and different models as indicated.


FIG. 6. Normalized TKE budget as in Fig. 4, but now for (a) the


eddy-resolving simulations of JHL, and (b) for the quasi-stationary


model. Line coding as in Fig. 4 (the rate term is missing in these


stationary runs).
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the consequences and limitations of the equilibrium as-


sumption, leaving the modeling of the second-moment


equations untouched, no contradiction arises here and


both approaches are easily combined.
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