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Darmstädter Dissertationen D 17







Copyright by Lars Umlauf 2001
Herstellung: Books on Demand Schweiz GmbH
ISBN: 3-8311-2627-0

Adresse:

Lars Umlauf
Laboratoire des Recheres Hydrauliques
Dept. de Génie Civil
Ecole Polytechnique de Lausanne
CH-1015 Lausanne



vii

Zusammenfassung

In dieser Arbeit werden verschiedene Turbulenzmodelle auf ihre Anwendbarkeit in ozea-

nographischen und limnologischen Problemen untersucht. Der Schwerpunkt liegt dabei

auf Zweigleichungsmodellen für rotierende, dichtegeschichtete Strömungen. Nach einer

kurzen Einführung in Kapitel 1 werden in Kapitel 2 die Transportgleichungen für die

turbulenten Flüsse von Impuls, Wärme und der Varianz der Temperaturfluktuationen

in rotierenden, dichtegeschichteten Flüssigkeiten hergeleitet. Zur Schließung dieser Glei-

chungen werden mehrere Parametrisierungen für die Druck-Streckungs-Korrelation und

die Druck-Temperaturgradienten-Korrelation vorgestellt. Die geschlossenen Transport-

gleichungen werden anschließend algebraisiert und in der sogenannten Grenzschichtap-

proximation angeschrieben. In dieser Approximation lassen sich die essentiellen Eigen-

schaften der Turbulenzmodelle in Form sogenannter Stabilitätsfunktionen darstellen. Das

Kapitel schließt mit der Präsentation einiger aus der Literatur bekannter oder neu herge-

leiteter Stabilitätsfunktionen.

In Kapitel 3 werden zunächst kurz die Eigenschaften von integrierten und differentiellen

Turbulenzmodellen für geophysikalische Anwendungen verglichen. Verschiedene Zweiglei-

chungsmodelle (insbesondere das k-ε Modell, das k-ω Modell von Wilcox [293, 294] und

das Modell von Mellor und Yamada [169]) werden anschließend formuliert und in

einigen Standardsituationen vergleichend getestet. Die Tests umfassen folgende Spezi-

alfälle: Das logarithmische Wandgesetz, das Abklingen homogener Turbulenz, homogen

geschichtete und gescherte homogene Turbulenz im vollen Gleichgewicht und im strukturel-

len Gleichgewicht und das Gleichgewicht zwischen turbulentem Transport von turbulenter

kinetischer Energie und ihrer Dissipationsrate. Folgende Resultate werden vorgestellt:

1. Erstmalig wird ein für dichtegeschichtete, rotierende Strömungen erweitertes k-ω

Modell vorgestellt.

2. Für das strukturelle Gleichgewicht werden die Stabilitätsfunktionen erstmalig als

Funktionen der Richardsonzahl allein dargestellt. Entsprechende Ausdrücke für die

turbulente Prandtlzahl und die Verhältnisse verschiedener turbulenter Längenskalen

werden abgeleitet. Obwohl die untersuchten Zweigleichungsmodelle im strukturellen

Gleichgewicht isomorph sind, reagieren sie sensibel in Bezug auf unterschiedliche

Werte der Modellparameter. Die besten Ergebnisse werden mit dem k-ω Modell

erzielt.
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3. Analytische Lösungen (in Übereinstimmung mit numerischen Berechnungen) für

die betrachteten Zweigleichungsmodelle im Gleichgewicht von turbulentem Trans-

port turbulenter kinetischer Energie und ihrer Dissipationsrate werden vorgestellt.

Es wird gezeigt, daß das k-ε Modell für verschiedene physikalisch sinnvolle Parame-

terkonstellationen eine Singularität aufweist und daß das Modell von Mellor und

Yamada [169] nur ohne seine obligatorische Wandfunktion im Einklang mit den

Messungen steht. Lediglich das k-ω Modell berechnet das experimentell gegebene

Abklingverhalten in allen Situationen zufriedenstellend.

Kapitel 4 beschäftigt sich mit Anwendungen verschiedener Zweigleichungsmodelle im Be-

reich der Limnologie und Ozeanographie. Hauptergebnisse sind die folgenden:

1. Die Mischungstiefe und damit die Temperatur der Mischungsschicht in Scherström-

ungen werden durch die stationäre Richardsonzahl der Modelle bestimmt. Diese

durch Modellparameter justierbare Grösse ist damit entscheidend für biologische

Modellkomponenten, die in der Regel sehr sensibel auf Temperaturunterschiede rea-

gieren.

2. Die durch interne Schwingungen induzierte turbulente Bodengrenzschicht im Alp-

nacher See (Schweiz) konnte in Übereinstimmung mit allen wesentlichen Messergeb-

nissen modelliert werden. Lediglich die Phasenverschiebung zwischen der turbulen-

ten Dissipationsrate und der Stromscherung wurde von den Modellen unterschätzt.

Dieser Teil der Arbeit entstammt einer Zusammenarbeit mit der schweizerischen

EAWAG und stellt den ersten Vergleich von kontinuierlichen Messungen turbulen-

ter Grössen und ihrer Modellierung in einer solchen Grenzschicht dar.

3. Mit einem gekoppelten Sauerstoff-Turbulenz Modell konnten gemessene Sauerstoff-

profile im Ammersee zufriedenstellend nachgebildet werden.

In Kapitel 5 wird das numerische Finite-Volumen Verfahren vorgestellt. Die Eigenschaf-

ten einer neuen Diskretisierungstechnik für die Randvolumina werden diskutiert. Dieses

Kapitel schließt mit einigen numerischen Tests bezüglich der Robustheit von Zweiglei-

chungsmodellen. Im Gegensatz zu traditionellen Computerprogrammen zur Berechnung

turbulenter Strömungen, beruht die in Kapitel 6 vorgestellte Programmarchitektur auf ei-

ner objektorientierten Technik. Es wird erstmalig gezeigt, wie sich Turbulenzmodelle im

abstrakten Vokabular einer objektorientierten Sprache ausdrücken lassen, die an Klarheit,

Zuverlässigkeit und Erweiterbarkeit strukturellen Sprachen überlegen ist.
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Abstract

In this thesis different turbulence models are tested with respect to their applicability to

oceanographical and limnological problems. Two-equation models for rotating stratified

flows are emphasized.

After a short introduction in Chapter 1, the transport equations for the turbulent fluxes of

momentum, heat and the variance of the temperature fluctuations are derived in Chapter

2. Several closure models for the pressure-strain correlation and the pressure-temperature-

gradient correlation are introduced. After their algebraization, the closed transport equa-

tions are presented in the so-called boundary layer approximation. With this approxi-

mation it is possible to describe the essential features of turbulence models in terms of

so-called stability functions. The chapter closes with the presentation of some stability

functions, new or already known in the literature.

In Chapter 3 the relative merits of integrated and differential turbulence models for geo-

physical applications are briefly discussed. Then, different two-equation models (in par-

ticular the k-ε model, the k-ω model of Wilcox [293, 294] and the model of Mellor

and Yamada [169]) are formulated and compared in some standard situations. Con-

sidered are: The logarithmic law-of-the-wall, the decay of homogeneous turbulence, ho-

mogeneously stratified and sheared homogeneous turbulence in full equilibrium and in

structural equilibrium, and the balance between turbulent transport of turbulent kinetic

energy and its rate of dissipation. The following results are presented:

1. For the first time, a k-ω model extended to rotating stratified flows is introduced.

2. Stability functions for the structural equilibrium, depending only on the Richardson

number, are introduced. Analogous expressions for the turbulent Prandtl number

and for the ratios of different length-scales are derived. Even though the two-

equation models investigated are isomorphic in structural equilibrium, they are sen-

sible with respect to different values of the model parameters. The best results are

achieved with the k-ω model.

3. Analytical solutions (in agreement with numerical computations) of two-equation

models for the balance between turbulent transport of turbulent kinetic energy

and its dissipation are derived. It is demonstrated that the k-ε model exhibits a

singularity for physically reasonable parameters and that the model ofMellor and
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Yamada [169] is in accordance with the measurements only without its compulsory

wall function. Only the k-ω model reproduces the experimental decay satisfactorily

in all situations.

Chapter 4 is concerned with applications of two-equation models to problems in limnology

and oceanography. The main results are as follows:

1. The mixed layer depth and hence the temperature of the mixed layer in shear-driven

entrainment situations is determined by the steady-state Richardson number, an

intrinsic property of the models. This quantity, which can be adjusted by parameter

calibration, is thus crucial for biological sub-models generally being very sensible

with respect to temperature differences.

2. The turbulent bottom boundary layer in Lake Alpnach (Switzerland), induced by

internal oscillations, could be modelled in agreement with all significant measure-

ments. However, the phase-lag between the rate of dissipation and the current shear

was underestimated by all models. This part of the work was based on a coopera-

tion with the EAWAG (Switzerland) and includes the first reported comparison of

continuous turbulence measurements and models in such a boundary layer.

3. A coupled oxygen-turbulence model is suggested that reproduces the measured oxy-

gen profiles in Lake Ammer (Germany) adequately.

In Chapter 5 the numerical Finite-Volume method is introduced. The properties of a new

discretization of the boundary volumes are discussed. This chapter closes with some tests

of the numerical robustness of two-equation models.

In contrast to traditional program codes for the computation of turbulent flows, the

program architecture suggested in Chapter 6 is based on an object-oriented technique.

It is illustrated how turbulence models can be expressed by the abstract vocabulary of

an object-oriented language, superior in terms of clarity, reliability, and extendibility

compared to structural languages.
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Chapter 1

Introduction

He looked into the water and saw that it was made up of a thousand thousand
thousand and one different currents, each one a different colour, weaving in
and out of one another like a liquid tapestry of breathtaking complexity; and
Iff explained that these were the Streams of Story, that each coloured strand
represented and contained a single tale. (. . . ) And because the stories were
held here in fluid form, they retained the ability to change, to become new
versions of themselves, to join up with other stories and so become yet other
stories; so that unlike a library of books, the Ocean of the Streams of Story
was much more than a storeroom of yarns. It was not dead but alive.

from: Salman Rushdie, “Haroun and the Sea of Stories”

On March, 22nd 2000, the UNESCO announced the “world day for water”. In an excellent

documentation of this event1, the UNESCO had to state that “it is already clear that in

the first half of the 21st century water issues will be the most important, even among other

global problems facing humankind such as adequate food and power production”. It is

evident that this problem, its roots being mainly political and educational grievances, will

not be solved with engineering tools alone. Nevertheless, the prediction of the distribution

and quality of water is vital for the correct political decision making in order to satisfy

the pressing needs for the “blue gold” in many regions. This fact is the link to the present

study, which addresses the aspects of water motion and water quality in natural waters.

Hydrobiological models, suited for the prediction of water quality, have to take into ac-

count numerous interactions between biogeochemical and physical factors. In some cases,

biological parameters may have an important influence on physical quantities, either di-

1see the internet location http://www.unesco.org/science/waterday2000/

1



2 CHAPTER 1. INTRODUCTION

rectly (as, e.g., in the case of bio-convection) or indirectly (e.g., in stabilizing the water

column by enhanced light absorption of algae). However, since biogeochemical variables

behave in most cases like passive tracers, many processes are dominated by the hydrody-

namical properties of the system. It is in particular the effect of turbulence, described so

beautifully by Salman Rushdie with the metaphor of a “liquid tapestry of breathtaking

complexity”, that makes the prediction of water quality such a puzzling problem. Since

turbulence directly affects the environment perceived by particles, including biota, de-

tritus and suspended sediment, in many cases the understanding of biological processes

presumes the understanding of turbulence2. For this reason, the major part of this study

is devoted to the problem of turbulence modelling in natural waters.

The cornerstones for modern second-order turbulence models, as those discussed in the

following chapters, were set more than half a century ago. Nevertheless, their properties

in buoyancy affected, rotating flows are still not completely understood. Even though

today one can dare to say, that these models did not fulfil their promise for a “general”

description of all turbulent flows (and probably never will), particularly in stably stratified

flows, a number of encouraging results were obtained during the last decade. Above all, the

question, to which situations of geophysical interest the simple and yet powerful so-called

Algebraic Stress Models can faithfully be applied, could be answered to some extent, and

this work will be in line with such earlier attempts to answer this question completely.

Due to the effect of gravity, both, physical and biological parameters are structured

predominantly in the vertical direction, and valuable insight can be gained with one-

dimensional models, and inspired by this idea only such models are considered here (apart

from a few exceptions). One-dimensional models may be regarded solely as test versions

for the implementation of turbulence schemes and water quality modules in existing three-

dimensional circulation models. They can, however, also be considered as a self-contained

class of models, resulting from the horizontal integration of transport equations in a closed

basin. Both points of view will be adopted in the following, depending on their suitability

to a particular situation.

Even though the largest part of this dissertation is devoted to turbulence and its descrip-

tion, biological parameterizations are also treated in detail. A whole section is concerned

with the interaction of a complex Algebraic Closure Model of turbulence with a biogeo-

chemical model of the oxygen budget in a lake. Also addressed in great detail is the

structure of the turbulent boundary layers at the surface and the bottom of natural wa-

2Also in oceanography, recent research projects focus on these interactions (see e.g. the European

Community’s joint project “PROVESS”, http://www.pol.ac.uk/provess/).
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ters, which is perceived as the “skin” of the water body, through which all exchange of

physical and chemical properties takes place.

One may object, that many physical processes in natural waters cannot be adequately

described by one-dimensional water-column models. In fact, a few Algebraic Stress Models

have been successfully implemented in existing three-dimensional circulation models of

lakes, some of them also including biological compartments. Soon, however, it became

apparent that atmospheric parameters, like the wind field over the lake, exert an influence

on the results that dominates the differences induced by different turbulence models by

far. As long as the wind field cannot be reasonably well resolved, one should not expect

much more information from a three-dimensional model than the correct prediction of

the principal internal and external wave modes. At present, it seems that neither the

spectrum of these internal waves nor their combined effect on the nutrient paths in the

water body can be predicted with any accuracy by such models.

Thus, even though a three-dimensional model was available, in this study only simple, but

fundamental, situations were emphasized, in which a one-dimensional representation of

both, physical and biological processes, could be faithfully applied. The good agreement

with laboratory and field measurements were an encouraging result and a little step

forward towards the development of a general water quality model of lakes and reservoirs.
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Chapter 2

Turbulence Models

Turbulence is ubiquitous in geophysical flows. There are hardly any situations in the

dynamics of natural waters and the atmosphere that do not involve turbulent effects at

some point, and only little insight can be gained in the dominant processes, if turbulence

is not taken into account. Thus, the modelling of this phenomenon has attracted a great

many researchers and more and more advanced models, suitable to the description of a

large variety of geophysical flows, evolved over the last decades.

The beauty of turbulence (Fig. 2.1), however, is alloyed with its outstanding complexity.

A general model embracing all aspects of turbulence is still out of reach. Nevertheless,

there has been an enormous progress in the understanding of turbulence in the past.

Particularly, the availability of powerful computers made it possible to apply and extend

the theories developed in the first half of the 20th century. More recently, Direct Numerical

Simulations (DNS) and Large Eddy Simulations (LES) provided data that were up to

then only available by high-precision laboratory setups (or not at all) and had a large

impact on the development of new turbulence models. It seems likely that, especially

in oceanography and meteorology, LES will take a position equitable to the ensemble

averaged methods in the near future. At present, however, LES is too expensive for

standard simulations of geophysical interest. Therefore, the models used in this work are

based on the Reynolds Averaged Navier-Stokes Equations (RANS) and closures for the

single-point correlations of different order. The most advanced models of this type (see,

e.g., Canuto et al. [38]) have been shown to reproduce many of the features observed

in sheared, buoyancy affected or convective turbulent flows. In this chapter a rational

derivation of the governing equations will be presented and some ideas developed in the

last years will be shortly discussed. Also, the simplifications leading to advanced Algebraic

5
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Figure 2.1: Atmospheric turbulence in Jupiter’s equatorial re-
gion. Image taken on December 17, 1996, at a range of 1.5 million
kilometres by the Galileo probe. (Source: NASA’s Jet Propulsion
Laboratory.)

Stress Models (ASMs) will be motivated. Finally, the concept of stability functions used

throughout this work will be established. The chapter closes with the introduction of

some recently suggested stability functions.

2.1 Reynolds Averaged Navier-Stokes Equations in

the Boussinesq Approximation

For a variable Φ̃ it is assumed that there exists a well-defined ensemble averaged mean

value. A Reynolds decomposition into a mean value, Φ, and a fluctuating part, Φ′, is
assumed to have the properties

Φ̃ = Φ + Φ′ , 〈Φ̃〉 = Φ and 〈Φ′〉 = 0 , (2.1)

where 〈(·)〉 denotes the averaging procedure.

The presence of different wave phenomena is frequently observed in geophysical situations.

Fluctuations in statistical quantities caused by a random wave field and by turbulence

are often hard to discern. However, statistical properties scale in fundamentally different

ways, depending whether waves or turbulence dominate and turbulence closures seldom

account for this fact. Moreover, it is well-known that waves can extract energy from the

mean flow or from turbulence at one point and dissipate it (again via turbulence) at other

points. This property is in serious contradiction to the assumption of locality used at

times below. It should be noted that extended decompositions of the flow into a mean
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part, an oscillating part due to waves, and a part attributed to turbulent fluctuations in

analogy to (2.1) have been suggested (Hussain and Reynolds [112, 113]). Einaudi

and Finnigan [67] applied such a decomposition to the atmospheric turbulent boundary

layer. They concluded that the coupling of turbulence and stratospheric internal waves

is an important factor. But they also pointed out, that for a reasonable decomposition of

the flow field very regular and long-lasting records are necessary that were only available

to them in a special situation.

Here, the classical Reynolds decomposition is used throughout and waves can be thought

as being absorbed in the fluctuating parts. This idea expresses the hope that the turbulent

closures include, at least partly, an appropriate model for the wave effects. In situations

in which this is not the case, an additional wave parameterization must be sought for.

The decomposition (2.1) is inserted in the standard statements of the balances of mass,

momentum, heat, and a passive tracer for a linearly viscous heat conducting fluid and the

equations are then averaged. The Boussinesq assumption is invoked, i.e. the density, ρ,

is assumed to be a constant, ρ0, except in the buoyancy term. This assumption reduces

the averaged local balance of mass to1

∂ui
∂xi

= 0 , (2.2)

ui being the components of the mean velocity vector in a Cartesian system. The Reynolds

Averaged Navier-Stokes Equations on the rotating Earth become (in the Boussinesq ap-

proximation)

∂ui
∂t

+ ul
∂ui
∂xl

+ filul = − 1

ρ0

∂p

∂xi
+

∂

∂xl

(
ν
∂ui
∂xl

− 〈u′
iu

′
l〉
)
− ρ

ρ0
gδi3 , (2.3)

where p is the mean pressure, ν the kinematic viscosity, g the gravity acceleration of the

Earth, and δij the Kronecker symbol. The matrix of the Coriolis parameters fij introduced

in (2.3) is defined as

fij =


 0 −f f̃

f 0 0

−f̃ 0 0


 . (2.4)

The components are defined as f = 2Ω sinφ and f̃ = 2Ω cosφ, where Ω stands for the

magnitude of the angular velocity of the Earth and φ for the angle of latitude.

1Cartesian tensor notation is used and Einstein’s summation convention is applied over repeated

indices.



8 CHAPTER 2. TURBULENCE MODELS

The averaged energy balance becomes

∂θ

∂t
+ ul

∂θ

∂xl
=

∂

∂xl

(
λ

ρ0cv

∂θ

∂xl
− 〈θ′u′

l〉
)
+

1

cv
R , (2.5)

where θ is the temperature, λ the molecular conductivity of water and R a radiative heat

production term. In the derivation of (2.5) the production of heat by dissipation has been

neglected and the specific heat, cv, was assumed to be a constant.

An equation of state of the form

ρ = ρ̂(θ, s, p) (2.6)

must be supplied. However, the dependence on salinity, s, and pressure, p, was found to

be very small and a pure dependence on the temperature, θ, as suggested by Chen and

Millero [43] suitable for relatively shallow waters was implemented instead.

Completely analogously to (2.5), an equation for the transport of a passive tracer, c, can

be derived:
∂c

∂t
+ ul

∂c

∂xl
=

∂

∂xl

(
Dc

∂c

∂xl
− 〈c′u′

l〉
)
+

1

ρ0
S , (2.7)

where Dc is the molecular diffusivity of the tracer, c, and S a general source term.
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2.2 Transport of Turbulent Quantities

The Reynolds Averaged Equations for the mean quantities contain the unknown correla-

tions 〈u′
iu

′
j〉, 〈θ′u′

i〉, and 〈c′u′
i〉. Numerous methods have been suggested to express these

correlations as functionals of known mean flow parameters and thus to close the system

(2.2)–(2.7). Formally, well-known equations for their transport can be derived in a purely

mathematical way (see, e.g., Tennekes and Lumley [258]).

2.2.1 Second-Order Equations

A transport equation for the Reynolds stress tensor, 〈u′
iu

′
j〉, can be derived by multiplying

(2.3) for ui with u′
j and (2.3) for uj with u′

i . If the resulting equations are averaged, added,

and re-arranged somewhat, the transport of the single-point correlations can be written

down as

∂〈u′
iu

′
j〉

∂t︸ ︷︷ ︸
local change

+ ul
∂〈u′

iu
′
j〉

∂xl︸ ︷︷ ︸
convective change

= −〈u′
ju

′
l〉
∂ui
∂xl

− 〈u′
iu

′
l〉
∂uj
∂xl︸ ︷︷ ︸

Pij

+ gδi3α 〈θ′u′
j〉+ gδj3α 〈θ′u′

i〉︸ ︷︷ ︸
Gij

−fil〈u′
ju

′
l〉 − fjl〈u′

iu
′
l〉︸ ︷︷ ︸

Fij

+
1

ρ0
〈p′
(

∂u′
i

∂xj
+

∂u′
j

∂xi

)
〉︸ ︷︷ ︸

φij

−∂〈u′
iu

′
ju

′
l〉

∂xl︸ ︷︷ ︸
turbulent diffusion

− 1

ρ0

(
∂〈u′

ip
′〉

∂xj
+

∂〈u′
jp

′〉
∂xi

)
︸ ︷︷ ︸

pressure diffusion

+ ν
∂2〈u′

iu
′
j〉

∂xl2︸ ︷︷ ︸
viscous diffusion

− 2ν〈∂u
′
i

∂xl

∂u′
j

∂xl
〉︸ ︷︷ ︸

εij

.

(2.8)

Here, the density fluctuations, ρ′, have been replaced by a linearized version of the equa-

tion of state ρ′/ρ0 = −αθ′ (suitable for fresh water) using the thermal expansion coeffi-

cient, α. Pij , Gij , and Fij are defined as the production of Reynolds stresses by mean shear,

buoyancy, and Coriolis forces, respectively. φij is usually referred to as the pressure-strain

correlations and εij stands for the rate of dissipation of the Reynolds stresses2.

2Note, that the true rate of dissipation is defined as ε̃ = 2νS′
ijS

′
ij , where S

′
ij is the fluctuating part

of the symmetric velocity gradient defined in (2.17)1. ε̃ is different from ε obtained by half the trace

of εij . Nevertheless, the difference between ε and ε̃ is known to be small and the form used here is in

agreement with most authors.
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Analogously, an equation for the turbulent heat flux, 〈θ′u′
i〉, appearing in (2.5) is derived:

∂〈θ′u′
i〉

∂t︸ ︷︷ ︸
local change

+ ul
∂〈θ′u′

i〉
∂xl︸ ︷︷ ︸

convective change

= −〈u′
iu

′
l〉

∂θ

∂xl︸ ︷︷ ︸
P θu1
i

−〈θ′u′
l〉
∂ui
∂xl︸ ︷︷ ︸

P θu2
i

+ gδi3 α〈θ′2〉︸ ︷︷ ︸
Gθu

i

−fil〈θ′u′
l〉︸ ︷︷ ︸

F θu
i

+
1

ρ0
〈p′ ∂θ

′

∂xi
〉︸ ︷︷ ︸

φθui

− ∂〈θ′u′
iu

′
l〉

∂xl︸ ︷︷ ︸
turbulent diffusion

− 1

ρ0

∂〈p′θ′〉
∂xi︸ ︷︷ ︸

pressure diffusion

+
∂

∂xl

(
λ

ρ0cv
〈u′
i

∂θ′

∂xl
〉+ ν〈θ′∂u

′
i

∂xl
〉
)

︸ ︷︷ ︸
viscous diffusion

−
(

λ

ρ0cv
+ ν

)
〈∂u

′
i

∂xl

∂θ′

∂xl
〉︸ ︷︷ ︸

εθui

.

(2.9)

P θu1
i , P θu2

i , and F θu
i are production terms due to the presence of gradients in the mean

temperature field, in the mean velocity field, and due to the Coriolis force, respectively.

Similarly to (2.8), a pressure redistribution term, φθui , and a dissipation term, εθui , ap-

pear. The buoyancy production term, Gθu
i , introduces the variance of the temperature

fluctuations, 〈θ′2〉, into the equations. A transport equation for this term is found by

multiplying the balance of heat (2.5) with θ′ and averaging. After re-arranging, the result

can be written as

∂〈θ′2〉
∂t︸ ︷︷ ︸

local change

+ ul
∂〈θ′2〉
∂xl︸ ︷︷ ︸

convective change

= −2〈u′
lθ

′〉 ∂θ

∂xl︸ ︷︷ ︸
P θ

− ∂〈u′
lθ

′2〉
∂xl︸ ︷︷ ︸

turbulent diffusion

+
∂

∂xl

(
λ

ρ0cv

∂〈θ′2〉
∂xl

)
︸ ︷︷ ︸

viscous diffusion

− 2
λ

ρ0cv
〈∂θ

′

∂xl

∂θ′

∂xl
〉︸ ︷︷ ︸

χ

.

(2.10)

Temperature variance can only be produced by mean temperature gradients through the

production term, P θ. The letter χ is conventionally used for the dissipation of temperature

variance.
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(2.8) can be contracted to yield an equation for the turbulent kinetic energy defined as

k := 1
2
〈u′
iu

′
i〉:

∂k

∂t︸︷︷︸
local change

+ ul
∂k

∂xl︸ ︷︷ ︸
convective change

= −〈u′
iu

′
l〉
∂ui
∂xl︸ ︷︷ ︸

P

− ∂〈u′
l
1
2
u′
iu

′
i〉

∂xl︸ ︷︷ ︸
turbulent diffusion

+ ν
∂2k

∂xl2︸ ︷︷ ︸
viscous diffusion

− 1

ρ0

∂〈u′
ip

′〉
∂xi︸ ︷︷ ︸

pressure diffusion

+gδi3 α〈θ′u′
i〉︸ ︷︷ ︸

G

− ν〈∂u
′
i

∂xl

∂u′
i

∂xl
〉︸ ︷︷ ︸

ε

.

(2.11)

The traces of the power of the Coriolis forces and the pressure-strain power are zero.

Only viscous and turbulent transport terms, a shear production term, P , a buoyancy

production term, G, and the dissipation, ε, are retained.

More equations describing the turbulent transport of different types of tracers can be

constructed by derivation from (2.7) (see Frey [79]). However, they introduce new un-

known correlations and the number of equations easily increases beyond a manageable

limit. Besides this, there are hardly any experimental data available for modelling the

new terms. Thus, in accordance with most other authors, similarity of the transport of a

passive tracer and of heat will be assumed.

2.2.2 Modelling the Turbulent Transport Equations

To arrive at a balance between the number of unknowns and the number of equations

describing the transport of the turbulent fluxes, approximations for the unknown cor-

relations in terms of known flow properties have to be devised. Chou [46], Prandtl

[193, 194], and Rotta [209, 210] were among the first who suggested closure assump-

tions for the most important terms in (2.8). Many of their pioneering suggestions have

been seized and extended in more recent references (see Lumley [154], Speziale [237],

Cambon and Scott [34]). The most advanced ideas with respect to geophysical and

astrophysical modeling are discussed, e.g., by Canuto and co-workers [35, 36, 37, 40, 38]

and in a carefully written review article by Sander [215], who classifies recent modelling

approaches with respect to geophysical applications.

All closure schemes presume the knowledge of a number of turbulent length-scales. There

are different ways to obtain estimates of these scales. Some authors (Canuto and
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Minotti [39] and Cheng and Canuto [45]) obtain them analytically as functions of

local flow parameters such as the turbulent Froude number, Fr, or the shear number,

Sh. This approach works particularly well for the sub-grid scale models used in advanced

LES, because the filter size, ∆, sets a convenient reference scale needed in these models.

In ensemble averaged models there is no obvious choice for such a reference scale3.

An alternative approach is to obtain the length-scales from the solution of differential

equations. In simple models of this type all scales are assumed to be proportional to a

so-called master length-scale, l. In that case, a differential equation can be formulated

either directly for l or indirectly for a related quantity such as the rate of dissipation, ε, or

a turbulent frequency ω, or for the product kl. The different possibilities will be discussed

in great detail below.

All closure models introduced in the following sections will be formulated in terms of the

turbulent kinetic energy, k, and the rate of dissipation, ε, as the variable that determines

the master length-scale. This choice was made since in all numerical codes, no matter

what length-scale related variable is actually used, ε has to be calculated at some point

for insertion into the budgets (2.8) or (2.11). Hence, there is no extra cost, if ε is also used

in the closure models. Without any loss of generality, of course, a conversion to other

pairs of variables is possible. Mellor and Yamada [169] formulated directly in terms

of k and l, and Wilcox [294] in terms of k and ω.

2.2.3 The Pressure Redistribution Terms

Because of their importance, the pressure-strain term, φij , and pressure-temperature-

gradient term, φθui , have received the greatest amount of attention by turbulence mod-

ellers. Guided by the ideas of Rotta [209], almost all authors distinguish between a

“slow” part describing the return to isotropy in the absence of mean velocity gradients

and buoyancy, and a complementary “rapid” part. For both contributions non-linear for-

mulations have been introduced. However, for reasons discussed below, in this chapter

only the most important linear parts are retained.

3Much simpler algebraic forms like the formulations of Blackadar [14] and Mellor and Yamada

[168] are also still in use. Their predictive power, however, is assumed to be small.
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The Pressure-Strain Term

Among the most popular linear models for the pressure-strain correlation is the model

of Launder, Reece and Rodi [147] that has been extended to include the effects of

buoyancy by Launder [146] and Gibson and Launder [87, 88]. This model is usually

formulated as

φij = − c1τ
−1
p

(
〈u′
iu

′
j〉 − δij

2

3
k

)
︸ ︷︷ ︸

slow pressure-strain

− c2

(
Pij − 2

3
δijP

)
− c3

(
Gij − 2

3
δijG

)
︸ ︷︷ ︸

rapid pressure-strain I

− c4

(
Dij − 2

3
δijD

)
− c5kSij︸ ︷︷ ︸

rapid pressure-strain II

,

(2.12)

where τp is the so-called return-to-isotropy time-scale. Quantities appearing in (2.12) that

have not been defined yet, are explained in the context of (2.15).

Recently, Shih and Shabbir [223] compared different closure schemes for the pressure-

strain term and suggested a more general shape also including non-linear terms. After

their ideas Canuto [37] and Canuto et al. [38] constructed a turbulent closure for

the pressure-strain term, of which the linear part can be written as

φij = −c1τ
−1
p

(
〈u′
iu

′
j〉 − δij

2

3
k

)
+

4

5
kSij

+ α1Σij + α2Zij − (1− β5)

(
Gij − 2

3
δijG

)
,

(2.13)

using the notation of these authors. The new tensors Σij and Zij are defined in (2.15).

In the presence of stratification, τp has been suggested to be of the form

τp =


τ if N2 ≤ 0,

τ
1+hN2τ2

if N2 > 0,
(2.14)

where N2 = −g
ρ

∂ρ

∂z
is the square of the buoyancy frequency, τ = k/ε a typical time-scale

of turbulence, and h an additional model constant (Weinstock [290, 291], Canuto [37],

and Canuto et al. [40]). The latter authors found that (2.14) considerably improves

the behaviour of all quantities near the inversion layer in a simulation of free convection
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of the atmospheric boundary layer. The effect of this paramerization will be studied in

detail below. For flows that are not affected by stable stratification, the slow part of the

pressure-strain correlation obviously reduces to the classical proposal of Rotta [209].

The “anisotropic production” tensors appearing in (2.12) and (2.13) are defined as

Dij = −〈u′
iu

′
l〉
∂ul
∂xj

− 〈u′
ju

′
l〉
∂ul
∂xi

,

Σij = Silblj + Sjlbli − 2

3
δijSlmblm

Zij = W ∗
ilblj +W ∗

jlbli and

D = P =
1

2
Dll =

1

2
Pll ,

(2.15)

where

bij = 〈u′
iu

′
j〉 −

2

3
δijk (2.16)

defines the anisotropic part of the Reynolds stress tensor. The symmetric and skew-

symmetric parts of the velocity gradient have been denoted by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

Wij =
1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
, and

W ∗
ij = Wij + εiljΩl = Wij +

1

2
fij .

(2.17)

The topics of frame dependence and form invariance of second-order models have been

addressed by several authors (cf. Lumley [155], Speziale [232, 233, 234, 236]). Some

of their results were recently extended by Sadiki and Hutter [213], who stated that

second-order turbulent closures are form invariant (i.e. all balance equations retain the

same functional form for different observers), but remain frame dependent through the

emergence of (in general frame dependent) body forces. Speziale [236] and Canuto et al.

[37, 38] pointed out that the implicit influence of the frame dependence can only appear via

the Coriolis forces in combination with the skew-symmetric part of the velocity gradient

according to (2.17)3. Thus, the form of the pressure-strain model in rotating flows is

completely determined by its non-rotating form (Speziale [236]).

It is demonstrated in Appendix A.3 that the new pressure-strain model (2.13) and the
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traditional model (2.12) are isomorphic for non-rotational flows 4. This somewhat surpris-

ing result contradicts Burchard and Bodling [28], who claimed that the tensor Zij

extends the classical model (2.12) in non-rotating flows. This fact leads to two important

conclusions:

• The different behaviour of the new Canuto et al. [37, 38] model in non-rotating flows

as compared to other models and as discussed in detail in the following sections,

cannot be attributed to the different form of the model, as suggested by the authors.

Largely different values of some model constants are likely the main reason for the

different model performance (see below).

• The pressure-strain model in the form (2.13) exhibits a very advantageous property

in rotating flows: It extracts the part of the pressure-strain model, which depends

explicitly on the skew-symmetric part of the velocity gradient, thus allowing for

a straightforward substitution of (2.17)3. In contrast, (2.12) does not distinguish

between the symmetric and skew-symmetric parts of the velocity gradient. Only if

the velocity gradient is split in symmetric and skew-symmetric parts it is obvious,

in which way rotational terms should enter in (2.12). In its original form suggested

by Gibson and Launder [87], however , this model cannot be expected to behave

correctly in rotating flows, even though it is consistent in non-rotating flows by its

isomorphism to (2.13).

c1 c2 c3 c4 c5

Mellor and Yamada [169] 3.0 0 0 0 −0.32

Kantha and Clayson [135] 3.0 0 0 0 −0.32

Launder et al. [147] 1.5 0.764 0 0.109 0.364

Gibson and Launder [87] 2.2 0.55 0.55 0 0

Gibson and Launder [88] 1.8 0.6 0.5 0 0

Luyten et al. [156] 1.5 0.777 0.5 0.218 0.527

Canuto [38] 2.5 0.776 0.4 0.2 0.512

Table 2.1: Model coefficients for the pressure-strain model (2.12) used by
different authors.

Remarkably, the rapid pressure-strain model of Launder et al. [147] for unstratified

4As shown in Appendix A.3, in rotational flows (2.12) and (2.13) are isomorphic only if the factor

α2Fij = (c2 − c4)Fij is added to the right hand side of (2.12).
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flows depends only on a single model coefficient, c:

c2 =
8 + c

11
, c4 =

8c− 2

11
and c5 = 2

30c− 2

55
. (2.18)

Model values used by these authors and others are compiled in Tab. 2.1.

cθ1 cθ2 cθ3 cθ4 cθ

Mellor and Yamada [169] 3.74 0 0 0 1.217

Kantha and Clayson [135] 3.74 0.7 0.7 0.2 1.217

Gibson and Launder [87] 3.2 0.5 0.5 0.5 1.6

Gibson and Launder [88] 3.0 0.33 0.33 0.33 1.6

Luyten et al. [156] 3.0 0.33 0.33 0.33 1.6

Canuto [38] 5.97 0.6 1 0.33 1.44

Table 2.2: Model coefficients for the pressure-temperature-gradient
model (2.19) used by different authors.

The Pressure-Temperature-Gradient Term

The pressure temperature gradient correlation is modelled in a way suggested by Gibson

and Launder [88]. However, following the recommendation of Canuto et al. [37, 38],

an extension of theGibson and Launder [88] model is introduced by splitting the mean

shear production in two parts, depending on the symmetric and the skew-symmetric part

of the velocity gradient (for the derivation, see Appendix A.3). Note, that in non-rotating

flows this splitting is the only structural difference between the Gibson and Launder

[88] and the Canuto et al. [37, 38] model families in the form presented here. The

pressure-temperature-gradient correlation can be expressed according to:

φθi = −cθ1τ
−1
p 〈θ′u′

i〉+ cθ2Sij〈θ′u′
j〉+ cθ3W

∗
ij〈θ′u′

j〉 − cθ4G
θu
i . (2.19)

Gibson and Launder [88] used in their model cθ2 = cθ3 and Wij instead of W ∗
ij . For this

fact it must be considered inconsistent in rotating flows. Tab. 2.2 displays coefficients used

in some well-known models. Tab. 2.1 and Tab. 2.2 also demonstrate that the different

behaviour of the Canuto et al. [37, 38] model is likely caused by the comparably high

values of c1, c
θ
1, and cθ3.
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Discussion of the Pressure Redistribution Model

Many derivations of the redistribution models introduced above have been used. The

most well-known models with respect to geophysical applications shall be very briefly

reviewed here.

A linear pressure-strain model identical to that of Launder et al. [147] for unstratified

flows has been adopted in the so-called Stress-ω model, recently published by Wilcox

[294]. The coefficients are given values very similar to those chosen by Launder et al.

[147]. However, to my knowledge, no generalization of the Stress-ω model for buoyancy

affected flows has been attempted until now. It will be an important part of this work to

discuss the relative merits of a new, buoyancy extended, Stress-ω model.

Some reduced redistribution models have already been applied to oceanographic situa-

tions. The term multiplied by the factor c2 in the rapid pressure-strain part of (2.12) was

found to be dominant in many situations (Launder et al. [147]). As an extension of

their suggestion, Rodi [206] recommended c2 = c3 and c4 = c5 = 0 as a good approxima-

tion. This simplified model with cθ2 = cθ3 = cθ4 (however, with an additional wall reflection

term) has been used by Burchard and Baumert [27] in their one-dimensional ocean

turbulence model.

The models of Mellor [163] and Mellor and Yamada [168, 169], which are up to

now very popular in geophysical applications, implement an even more reduced pressure-

strain relation: These authors retain only the slow pressure-strain term of Rotta [209]

and the term multiplied by the factor c5 in (2.12). Moreover, they set cθ2 = cθ3 = cθ4 = 0

in (2.19). Rodi [206] remarks that these simplifications are not entirely clear and doubts

that the model performs as well as the full pressure-strain model in free shear layers. A

slightly improved model has been introduced by Kantha and Clayson [135] allowing

cθ2 = cθ3 	= 0 and cθ4 	= 0.

Following a proposal of Shir [225], some authors (e.g., Gibson and Launder [88])

added to their pressure-strain models a so-called “wall reflection term” that involves a

surface damping function accounting for the anisotropy of the normal Reynolds stresses

close to a rigid wall . This procedure has been shown by Celik and Rodi [42] also to

simulate suitably the influence of a free surface. For the following reasons this approach

is not adopted here: First, Wilcox [294] pointed out that his Stress-ω model – despite

all its similarity to the model of Launder, Reece and Rodi [147] – does not require a

“wall reflection term” to achieve a satisfactory channel flow solution. He concludes that
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the large “wall reflection term” term is only needed to accommodate a deficiency of

the modelled ε equation. Second, Abid and Speziale [1] showed that models that

perform satisfactorily in homogeneous shear flows also compute a reasonable solution in

the logarithmic boundary layer, provided the coefficient c1 in Rotta’s model is not too

large. They demonstrated that, if this is not the case, a “wall reflection term” can be

used to remedy the model deficiency at the boundary. However, they also pointed out

that the most common “wall reflection terms” are not applicable for general geometries

and, moreover, may influence the flow even far from the wall. From a practical point

of view, the wall reflection term seems to be unimportant in oceanographic applications:

Burchard and Baumert [27] compared two versions of the k-ε model (one with and

one without a “wall reflection term”) for a stably stratified mixing layer setup in the

North Sea. They were not able to decide, which model is superior. The above arguments

indicate that there is no objective advantage gained by including a “wall reflection term”

for the modelling of flows considered here.

As remarked above, all pressure redistribution models discussed above are linear models5.

However, a wealth of experience has also been gained with non-linear formulations (see,

e.g., Shih and Shabbir [223], Canuto [35, 36, 37]). Craft et al. [50] summarize

the benefits of the non-linear type of models for buoyancy affected flows. Though the

authors themselves remark that the new models may seem ”intimidatingly bulky”, they

also claim a somewhat wider range of applicability. Interestingly, they also show that

the non-linear terms are, at least partly, capable of replacing the “wall reflection term”,

indicating once more that the physical importance of this term is questionable.

For the following reasons the non-linear approach was found to be inappropriate in the

context of this work. As shown below, the differential equations describing the evolu-

tion of turbulent correlations can be simplified to yield an Algebraic Stress Model. The

resulting set of equations can then be solved for the turbulent fluxes by simple matrix

inversion only, if the pressure-strain model (and hence the system) is linear. Second, in

the context of mixing in the atmosphere, in oceans or in lakes, there seem to be many

other effects (mixing by internal waves, boundary mixing) that still cannot sufficiently be

parameterized. It is likely, these effects (and the insecurity of their description) by far

out-weigh the relatively small non-linear contribution to the pressure-strain model.

5Linearity in this context denotes a linear dependence of the pressure-strain term and the pressure-

temperature-gradient term on (parts of) the velocity gradient and on the correlations of fluctuating

quantities.
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2.2.4 Rate of Dissipation

To model the tensor of viscous dissipation of the Reynolds stresses, εij , most authors

follow Kolmogorov [139] and assume local isotropy:

εij := 2ν〈∂u
′
i

∂xl

∂u′
j

∂xl
〉 !
=

2

3
δijε (2.20)

The idea of local isotropy can also be used for the dissipation of the turbulent heat fluxes

leading to

εθui := (ν + λ)〈∂u
′
i

∂xl

∂θ′

∂xl
〉 !
= 0 , (2.21)

since there is no isotropic vector function in three dimensions. (2.21) can also be viewed

as the statement that the spectra of the temperature and velocity gradient fluctuations

peak at different wave-numbers. The destruction of temperature variance is modelled by

assuming a balance with production in (2.10), i.e.

χ := 2
λ

ρ0cv
〈 ∂θ

′

∂xj

∂θ′

∂xj
〉 !
=

2

cθ
τ−1〈θ′2〉 , (2.22)

with dimensionless cθ. (2.20) is merely a statement of isotropy and does not specify how

ε should be derived. In contrast to that (2.22) is a more stringent, local statement. Some

authors relaxed it and formulated a differential equation also for χ (Zeman and Lumley

[301, 302]).

2.2.5 Turbulent Transport

The turbulent transport of the Reynolds stresses, the turbulent heat fluxes, and the tem-

perature variance are modelled by many authors as down-gradient diffusion processes. It

is clear that such a simple parameterization is one of the main drawbacks for an appro-

priate description of counter-gradient fluxes known to appear in free convection (Willis

and Deardorff [295], Deardorff and Willis [57]). They have also been observed

in stably stratified shear flows (Komori et al. [140]). Some authors (Zeman and

Lumley [301], Canuto et al. [40], d’Alessio et al. [56]) emphasized that for an

appropriate description of this phenomenon transport equations for the third-order mo-

ments have to be solved, at least to some degree. (However, see discussion in Schumann

[218]).

Since the turbulent transport terms will be neglected by the simplifications that lead to

an Algebraic Stress Model (ASM), there will definitely be model deficiencies in describing
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situations in which counter-gradient terms are important. Turbulent transport terms are

only retained in the transport equation of the turbulent kinetic energy:

−〈u′
l

1

2
u′
iu

′
i〉 −

1

ρ0
〈u′
lp

′〉 = νk
∂k

∂xl
, (2.23)

where the turbulent diffusivity of k, νk, can be related to the turbulent diffusivity of

momentum via a turbulent Schmidt number as in (3.7)3 and (3.14)2 below.
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2.2.6 The Full Model

With all model assumptions inserted into (2.8), (2.9) and (2.10), the complete transport

equations read

∂〈u′
iu

′
j〉

∂t
+ ul

∂〈u′
iu

′
j〉

∂xl
= Dij + Pij +Gij + (1− c2 + c4)Fij

− c1τ
−1
p

(
〈u′
iu

′
j〉 −

2

3
δijk

)

− c2

(
Pij − 2

3
δijP

)
− c3

(
Gij − 2

3
δijG

)

− c4

(
Dij − 2

3
δijP

)
− c5kSij − 2

3
δijε ,

(2.24)

∂〈θ′u′
i〉

∂t
+ ul

∂〈θ′u′
i〉

∂xl
= Dθu

i + P θu1
i − cθ1τ

−1
p 〈θ′u′

i〉

− (1− cθ2)Sil〈θu′
l〉 − (1− cθ3)W il〈θu′

l〉+ (1− cθ4)G
θu
i .

(2.25)

and
∂〈θ′2〉
∂t

+ ul
∂〈θ′2〉
∂xl

= Dθ + P θ − 2

cθ
τ−1〈θ′2〉 . (2.26)

The tensor W ij appearing in (2.25) is defined in (A.44) (as derived in Appendix A.3).

In non-rotating flows it reduces to the skew-symmetric part of the velocity gradient,

Wij . The terms Dij, Dθu
i and Dθ summarize the turbulent and viscous transport of the

Reynolds stresses, the turbulent heat fluxes and the temperature variance, respectively.

These terms are defined implicitly in (2.8), (2.9), and (2.10), respectively.

The terms involving the implicit and explicit Coriolis effect require extra comments:

Galperin et al. [81] used a model of the Rotta type with an extension for rotational

flows suggested by Zeman and Tennekes [303]. This model yields implicit Coriolis

terms of the form −cFFij , hence reducing the effect of the explicit terms Fij by the factor

(1 − cF ). Unfortunately, the model of Zeman and Tennekes [303] is in-objective and

therefore inconsistent in rotating flows. Nevertheless, the reduction of the explicit Coriolis

terms is analogous to the present model, where the term (−c2+c4)Fij reduces the explicit

terms, Fij , since (−c2 + c4) is positive for all models. Galperin et al. [81] showed

that, if rotation does not enter the model equations at any other place (see discussion

below), then their effect in stably stratified fluids is small. With the above analogy, their

arguments apply equally well to the present case.



22 CHAPTER 2. TURBULENCE MODELS

The modelled transport equation for the turbulent kinetic energy, k, must be the contrac-

tion of (2.24); with the use of (2.23) this yields

∂k

∂t
+ ul

∂k

∂xl
=

∂

∂xl

(
νk

∂k

∂xl

)
+ P +G− ε . (2.27)

The system (2.24)–(2.26) can only be solved if the time-scales τ and τp are prescribed.

2.3 Algebraic Stress Models

Simple models based on the so-called Boussinesq hypothesis represent a tensorial equiva-

lent to Prandtl’s mixing-length model. They can be formulated as

〈u′
iu

′
j〉 =

2

3
δijk − νt

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.28)

(2.28) provides a good description of many flows of engineering and geophysical interest,

especially for thin boundary layers, where it reduces to the scalar form of the mixing-

length model. Nevertheless, there are numerous applications for which the predicted flow

properties differ greatly from corresponding measurements. Among the most noteworthy

types of applications in physical limnology and oceanography, where (2.28) is questionable

are:

• primarily flows, where buoyancy effects induce differences among the longitudinal

Reynolds stresses (referred to as anisotropies),

• flows with sudden changes in the mean strain rate,

• flows over irregular topography,

• flows in rotating fluids.

Explicit Models

One approach to achieve a more appropriate description of the Reynolds stress tensor

without introducing any additional differential equations is to assume that the Boussinesq

approximation 6 is simply the leading term in a series expansion of functionals in terms

6Here (2.28) is meant to be the Boussinesq approximation.
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of the rate of strain and vorticity tensors. According to this idea, Speziale [235] derived

an explicit quadratic model that improved predictions for the secondary motions induced

by the anisotropy of the longitudinal Reynolds stresses in a rectangular duct. However,

the model still fails to improve predictions for flows with sudden changes in the mean

strain rate and flows with curved streamlines. Even cubic models of this type have been

published (see Craft et al. [51]). A critical evaluation of the existing explicit models

(also including models for buoyancy affected flows) with respect to their conformance

with the second law of thermodynamics has been recently presented by Sadiki et al.

[212, 214].

Implicit Models

A second, at first glance very different method to derive algebraic equations for the

Reynolds stresses was given by Rodi [205]. He assumed that the convective and turbu-

lent transport can be taken approximately proportional to the Reynolds stress component

considered, i.e.

∂〈u′
iu

′
j〉

∂t
+ ul

∂〈u′
iu

′
j〉

∂xl
−Dij

=
〈u′
iu

′
j〉

k

(
∂k

∂t
+ ul

∂k

∂xl
−Dk

)
=

〈u′
iu

′
j〉

k
(P +G− ε) .

(2.29)

An impression of the applicability of Rodi’s [205] assumption can be gained, if the mate-

rial derivative, denoted as ˙( ), of the Reynolds stress tensor is expressed in terms of the

non-dimensional anisotropy tensor aij, defined via the equation

〈u′
iu

′
j〉 =

(
2

3
δij + aij

)
k . (2.30)

The chain rule then yields

˙〈u′
iu

′
j〉 = k̇

〈u′
iu

′
j〉

k
+ ȧijk . (2.31)

If the turbulent diffusion terms, Dij and Dk, are neglected, comparison with (2.29) reveals

that Rodi’s [205] assumption amounts to the statement

ȧij = 0 . (2.32)

An important case where the turbulent diffusion terms are negligible and where (2.32)

agrees very well with measurements are homogeneously sheared (and possibly stratified)

flows (see Jacobitz et al. [126]). In this case the results of an algebraic model according

to (2.29) and a full Reynolds stress closure coincide (see discussion in Section 3.4.5).
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Gibson and Launder [87] generalized the method of Rodi [205] later in a completely

analogous way for the convective and turbulent transport terms in (2.25) that simplify

according to
∂〈u′

iθ
′〉

∂t
+ ul

∂〈u′
iθ

′〉
∂xl

−Dθu
i =

〈u′
iθ

′〉
2k

(P +G− ε) . (2.33)

Gatski and Speziale [84] solved the implicit three-dimensional system (2.24) (with

Rodi’s assumption (2.29)) for the general form of the pressure-strain model of Laudner

et al. [147] without buoyancy effects. According to them, an algebraic stress model can

be interpreted as a special case of an explicit non-linear model for the Reynolds stresses

(see also Speziale [238]).

ASMs derived as outlined above can deal reasonably well with many situations where

a standard two-equation model fails (Wilcox [294]). However, any ASM with a slow

pressure-strain parameterization of the Rotta [209] type will fail to predict flows with

a sudden change in the mean strain rate like that realized by Tucker and Reynolds

[271]. It is not clear, to what extent such cases are important in an oceanographical

or meteorological context. This model deficiency seems to be a relatively small price

compared to the advantages gained by converting a system of differential equations to

algebraic equations.

A different approach for simplifying the turbulent transport equations has been used by

Mellor and Yamada [168, 169]. Briefly, it involves scaling all terms in (2.24) by powers

of the non-dimensional anisotropy tensor aij. All terms of order a2ij are then neglected.

Similar arguments can be applied to (2.25) and (2.26). Galperin et al. [80] reviewed

this procedure and found a slight inconsistency in the scaling arguments of Mellor and

Yamada [168, 169]. Essentially, the scaling suggested by Galperin et al. [80] amounts

to using the equilibrium assumption, P + G = ε, only in the equations for the second

moments, but retaining the full transport equations for k, thereby creating the notation

of a “quasi-equilibrium”.

Using the scaling arguments ofMellor and Yamada [168, 169] and applying the “quasi-

equilibrium” concept once, (2.24)-(2.26) can be written as

〈u′
iu

′
j〉 =

2

3
δijk +

τp
c1

[
(1− c2 + c4)Fij + (1− c2)Pij + (1− c3)Gij

− c4Dij − c5kSij +
2

3
δij ((c2 + c4)P + c3G− ε)

]
,

(2.34)

〈θ′u′
i〉 =

τp
cθ1

[
P θu1
i − (1− cθ2)Sil〈θ′u′

l〉 − (1− cθ3)W il〈θ′u′
l〉+ (1− cθ4)G

θu
i

]
, (2.35)
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and

〈θ′2〉 = cθ

2
τP θ . (2.36)

The simple form of (2.36) is supported by some measurements in the ocean and in lakes by

Dillon [65], who concludes ”that the rate of decay of temperature variance in most cases

cannot be an important term”. In situations of counter-gradient heat fluxes, however, the

simple form of (2.36) is known to be one of the main reasons for an inaccurate description

of this phenomenon (Schumann [218]). If one considers adding an additional differential

equation, an extension of (2.36) would probably be the most interesting candidate.

The Coriolis terms will be neglected from now on. They seem to be of some importance

at least in free convection with rotation as shown very recently by the LES of Mironov

et al. [170]. In stably stratified flows there is currently no agreement about their im-

portance. Galperin et al. [81] concluded that due to the effect of stable stratification,

rotation is only marginally important and thus does not require any additional modelling.

On the other hand, Canuto et al. [38] claimed that rotation must also exert an in-

fluence at other places (e.g. in the equation for the rate of dissipation, ε) and reached

the opposite conclusion with their second-order closure. Besides this, Speziale and

Mac Giolla Mhuiris [239] compared the performance of the model of Launder et

al. [147], a model of the Rotta-Kolmogorov type (i.e. a model similar to the Mellor

and Yamada [169] model), and some other models for the case of homogeneous rotating

turbulence with plane shear and no stratification. They found that none of the models

yielded sufficient predictions for the time evolution of turbulent quantities. As long as the

situtation is so unclear, there is little gained by including rotational terms in the model.

Then, the tensor Fij drops out, and the tensor W ij simplifies to Wij.

Several other models of geophysical interest can be recovered from (2.34)–(2.36). The

model of Luyten et al. [156] is exactly recovered for cθ2 = cθ3 = cθ4, if the production,

P , is replaced by ε − G in (2.34) (P. J. Luyten, pers. com., for the model coefficients

see Tab. 2.1 and Tab. 2.2). This assumption is consistent with the “quasi-equilibrium”

concept of Galperin et al. [80].

If it is assumed that c2 = c3 = c4 = 0 and cθ2 = cθ3 = cθ4 = 0 the famous model of

Mellor and Yamada [169] with the modifications suggested by Galpering et al.

[80] is recovered. Frey [79] used the same assumptions in his model.

Burchard and Baumert [27] set c2 = c3 and c4 = c5 = 0 as suggested by Rodi [206]

and also applied cθ2 = cθ3 = cθ4. In addition, they modelled the time rate and transport

terms according toRodi [205] andGibson and Launder [87] as discussed in the context
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of (2.29) and (2.33). However, they were not able to show a clear superiority of this slightly

more complex model.

2.3.1 The Boundary Layer Approximation

If it is assumed that all variables except the pressure are horizontally homogeneous, (2.2),

(2.3) and (2.5) simplify considerably7. The horizontal pressure-gradient has to be retained

as one of the driving forces of the system. However, it cannot be determined as a solution

of the boundary layer equations, but is imposed from the outer flow. Its effect (in lakes

mainly due to wind set-up and internal and external oscillations) has to be parameterized,

if desired. In the so-called boundary layer approximation the balance equations of mass,

momentum and energy, (2.2), (2.3) and (2.5) reduce to

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
+

∂

∂z

(
ν
∂u

∂z
− 〈u′w′〉

)
,

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
+

∂

∂z

(
ν
∂v

∂z
− 〈v′w′〉

)
,

(2.37)

and
∂θ

∂t
=

∂

∂z

(
λ

ρ0cv

∂θ

∂z
− 〈θ′w′〉

)
+

1

cv
R . (2.38)

Since u = u(z, t) and v = v(z, t) the balance of mass yields w = 0, if the vertical velocity

is zero at the boundaries. The vertical balance of momentum reduces to a hydrostatic

pressure balance.

The equations describing the transport of variances and covariances of the turbulent

variables are also very advantageously affected by the boundary layer approximation.

Using the expressions derived in Appendix A.2, (2.34)–(2.36) reduce to

〈u′v′〉 =
τp
c1

[
− (1− c2)

(
〈v′w′〉∂u

∂z
+ 〈u′w′〉∂v

∂z

)]
, (2.39)

〈u′w′〉 =
τp
c1

[
− (1− c2)〈w′2〉∂u

∂z
+ (1− c3)gα

θ〈θ′u′〉

+ c4

(
〈u′2〉∂u

∂z
+ 〈u′v′〉∂v

∂z

)
− c5

2
k
∂u

∂z

]
,

(2.40)

7In what follows x and y are the horizontal coordinates and the z-axis is taken anti-parallel to the

acceleration of gravity.
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〈v′w′〉 =
τp
c1

[
− (1− c2)〈w′2〉∂v

∂z
+ (1− c3)gα

θ〈θ′v′〉

+ c4

(
〈v′2〉∂v

∂z
+ 〈u′v′〉∂u

∂z

)
− c5

2
k
∂v

∂z

]
,

(2.41)

〈u′2〉 =
2

3
k +

τp
c1

[
− 2(1− c2)〈u′w′〉∂u

∂z

+
2

3

(
(c2 + c4)P + c3 gαθ〈θ′w′〉 − ε

) ]
,

(2.42)

〈v′2〉 =
2

3
k +

τp
c1

[
− 2(1− c2)〈v′w′〉∂v

∂z

+
2

3

(
(c2 + c4)P + c3 gαθ〈θ′w′〉 − ε

) ]
,

(2.43)

〈w′2〉 =
2

3
k +

τp
c1

[
2(1− c3)gαθ〈θw〉 − 2c4P

+
2

3

(
(c2 + c4)P + c3 gαθ〈θ′w′〉 − ε

) ]
,

(2.44)

〈θ′u′〉 = τp
cθ1

[
−〈u′w′〉∂θ

∂z
+

cθ2 + cθ3 − 2

2
〈θ′w′〉∂u

∂z

]
, (2.45)

〈θ′v′〉 = τp
cθ1

[
−〈v′w′〉∂θ

∂z
+

cθ2 + cθ3 − 2

2
〈θ′w′〉∂v

∂z

]
, (2.46)

〈θ′w′〉 =
τp
cθ1

[
− 〈w′2〉∂θ

∂z
+

cθ2 − cθ3
2

(
∂u

∂z
〈θ′u′〉+ ∂v

∂z
〈θ′v′〉

)

+ (1− cθ4)gα
θ〈θ′2〉

]
,

(2.47)

〈θ′2〉 = −cθτ〈θ′w′〉∂θ
∂z

. (2.48)

As remarked above, the Coriolis terms have been ignored. It is nevertheless straight-

forward to retain them. The tensors of the Coriolis production, Fij and F θu
i , valid for

boundary layers are derived in Appendix A.2.

(2.39)–(2.48) constitute a linear system that can be solved for the turbulent fluxes as

functions of k, ε, and gradients of the mean field variables. Alternatively, it would of

course be possible to embed this ASM directly in a time stepping scheme and solve it

numerically.
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2.3.2 Stability Functions

It turns out that the solution for the vertical turbulent momentum and heat fluxes can

be written in analogy with the Boussinesq approximation (2.28) as

〈u′w′〉 = −cεµ(k, ε, N
2,M2)

k2

ε

∂u

∂z
,

〈v′w′〉 = −cεµ(k, ε, N
2,M2)

k2

ε

∂v

∂z
,

〈θ′w′〉 = −cεµ
′(k, ε, N2,M2)

k2

ε

∂θ

∂z
,

(2.49)

where

N2 = − g

ρ0

∂ρ

∂z
(2.50)

is the buoyancy or Brunt-Väisälä frequency and

M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

(2.51)

the shear frequency. Note, that (2.49) only resembles the form of the Boussinesq assump-

tion (2.28). This does by no means imply that the Boussinesq approximation has been

assumed. In fact, it is the purpose of the ASM introduced above to exactly avoid the

application of the Boussinesq assumption. If the boundary layer assumption is not used,

the Reynolds shear stresses cannot be expressed in a simple form analogous to (2.49). The

stability functions, cεµ and cεµ
′, contain the essential information of the ASM (2.39)–(2.48).

They make it possible to implement full ASMs efficiently in existing three-dimensional

numerical codes for the hydrostatic Reynolds Averaged Navier-Stokes Equations. In such

codes the turbulent fluxes are most often expressed in terms of a mean field gradient times

diffusivity, as stated in (2.49), if cεµ k
2/ε is interpreted as a turbulent diffusivity.

Generally, a turbulent diffusivity can be defined in terms of k and any other length-scale

determining variable, e.g.,

νωt = cωµ
k

ω
, νlt = clµk

1
2 l , νεt = cεµ

k2

ε
. (2.52)

In each case, the stability functions themselves can be expressed in terms of the non-

dimensional parameters αN and αM describing the influence of shear and stratification,

respectively. They read

cϕµ = c̄ϕµ(ᾱN , ᾱM) = c̃ϕµ(α̃N , α̃M) = ĉϕµ(α̂N , α̂M) , (2.53)
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where ϕ stands for any of the variables ω, l, or ε. The non-dimensional parameters

introduced in (2.53) are defined as

ᾱN =
l2

k
N2 , α̃N =

k2

ε2
N2 , α̂N =

1

ω2
N2 , (2.54)

and

ᾱM =
l2

k
M2 , α̃M =

k2

ε2
M2 , α̂M =

1

ω2
M2 . (2.55)

They relate to well-known non-dimensional numbers resulting from the analysis of strati-

fied shear flows.
√
ᾱN is proportional to an inverse turbulent Froude number, Fi, and

√
α̃M

is equal to the so-called shear number, M k
ε
, both important parameters in homogeneously

stratified shear flows.

Instability Exhibited by the Non-Equilibrium Stability Functions

Numerical difficulties with the stability functions introduced above have been encountered

by several authors, first of all by Mellor and Yamada [169] themselves, who stated that

”for some model simulations a discontinuity in the velocity could develop and persist”.

Deleersnijder [58] and Deleersnijder and Luyten [59] showed that the problem is

serious: The original stability functions ofMellor and Yamada [169] resulted in almost

useless, extremely jittery diffusivity profiles. They analyzed the problem and found regions

of decreasing (normalized) stability functions within regions of increasing non-dimensional

shear αM , a behaviour that leads to a fatal positive feedback. Deleersnijder [58]

pointed out that the problem did not appear if the quasi-equilibrium concept ofGalperin

et al. [80] is used, since the shear dependency in the resulting stability functions drops

out. Unfortunately, along with the omission of αM as an independent variable, all related

information of the ASM is lost: In the unstratified case the models reduce to the standard

forms with constant coefficients.

Very recently, however, Canuto et al. [38] introduced a new set of non-equilibrium

stability functions that resulted from the rather complete ASM also used in this work.

It came somewhat as a surprise that, even though the authors did not use the quasi-

equilibrium concept and thus retained the dependency on αM , their stability functions

proved to yield stable solutions. This fact led Burchard and Deleersnijder [29] to

re-analyse the stability problem. They confirmed the findings of Deleersnijder [58]

and Deleersnijder and Luyten [59] and stated quite clearly that the Mellor-Yamada

stability functions are “ not at all useful neither in their original nor in the modified form”.
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The reason for the stability of the new Canuto et al. [38] functions was found to be an

increase of the (normalized) stability functions for increasing non-dimensional shear, αM ,

in conditions close to equilibrium. The Mellor and Yamada [169] functions showed

just the opposite behaviour. Canuto et al.’s [38] stability functions appear to be the

only stable set of non-equilibrium stability functions available at present.

Conversion Relations

As remarked above, the ASM (in form of stability functions) has to be supplemented

by prescriptions of the turbulent kinetic energy, k, and a length-scale related variable.

If a two-equation model is used, the most popular choices for the length-scale related

(second) equation are an equation for the turbulent frequency, ω, for the product of k

and l, kl, and for the dissipation of turbulent kinetic energy, ε. Since stability functions

are usually derived only for one kind of length-scale related variable (ε was used here), a

generalization presumes the knowledge of conversion relations.

It will be shown in Section 3.4 below, that the variables determining the length-scale

are not independent of each other. From (3.7) and (3.11) below the following conversion

relations for the non-dimensional stratification and shear and for the stability functions

can be derived:

ᾱN = (c0µ)
6α̃N , α̂N = (c0µ)

8α̃N , α̂N = (c0µ)
2ᾱN ,

clµ =
1

(c0µ)
3
cεµ , cωµ =

1

(c0µ)
4
cεµ , cωµ =

1

c0µ
clµ ,

(2.56)

where c0µ is conventionally the value of clµ for zero stratification. All stability functions

introduced in this work are generally given in k-ε notation. As mentioned above, this

choice has not been made because the k-ε model is considered to be somehow superior

(in fact, the opposite will be shown in the following sections); it has been made because

in any two-equation model the rate of dissipation, ε, needs to be computed at some point

since it is a crucial quantity in the budget of k. Thus, there is no extra computational

effort, but probably some extra storage will be needed, if the second variable is not ε.

If this is to be avoided, the stability functions can be converted to whatever notation is

preferred using the relations (2.56). The resulting code will, however, become less generic

then.

For simplicity, from now on the variables αN and αM will replace α̃N and α̃M , respectively.
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Presentation of Some Stability Functions

Computation of stability functions from the ASM (2.39)–(2.48) requires the analytical

inversion matrices. Only in very simple cases this task can be achieved by hand. The

relations presented here have been derived by means of a symbolic mathematical tool.

Model constants as given in Tab. 2.1 and Tab. 2.2 have been inserted in (2.39)–(2.48)

after inversion. Clearly, it would have been possible then to present the stability functions

(and also the auto- and cross-correlations) analytically in terms of the model parameters.

The corresponding expressions, however, turn out to be rather lengthy in some cases and

no advantage was felt in writing them down here. Readers, who are interested in the pure

analytical form of the stability functions can obtain a symbolic notebook from the author

to compute their own relations8.

Galperin et al. [80] (GKHR) applied the quasi-equilibrium assumption to the model of

Mellor and Yamada [169] to obtain their stability functions. If their model equations

are converted to k-ε notation (see Appendix A.4) and the corresponding linear system is

solved, the stability functions can be written down as

(GKHR):

cεµ =
0.0948 + 0.0108αN

1 + 0.592αN + 0.0448α2
N

,

cεµ
′ =

0.119

1 + 0.503αN
.

(2.57)

This result could also have been obtained by simply converting the stability functions

given in Galperin et al. [80] by means of (2.56).

Kantha and Clayson [135] (KC) extended the pressure-temperature-gradient model

of Galperin et al. [80] slightly by introducing terms analogous to (2.19). Using again

the relations derived in Appendix A.4, their stability functions can be translated to

(KC):

cεµ =
0.0948 + 0.012αN

1 + 0.527αN + 0.039α2
N

,

cεµ
′ =

0.119

1 + 0.438αN
.

(2.58)

Making use of (2.56), for both sets of stability functions a value of c0µ = 0.5549 can be

computed. Recall, that c0µ was defined as a convention for clµ in the unstratified equilibrium

P = ε. It is related to the more popular quantity cε 0µ via the equation cε 0µ = (c0µ)
4 following

from (2.56).

8Complete analytical expression for some of the stability functions used here can also be found in a

recent publication of Burchard and Bolding [28].
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The model of Luyten et al. [156] (LDOR) includes the full pressure-strain model auf

Launder et al. [147] with model constants as given in Tab. 2.1 and Tab. 2.2. Its

quasi-equilibrium version was computed to be

(LDOR):

cεµ =
0.091 + 0.023αN

1 + 0.714αN + 0.067α2
N

,

cεµ
′ =

0.125

1 + 0.603αN
.

(2.59)

A value of c0µ = 0.5492 was obtained, only slightly different from the value of Galperin

et al. [80] and Kantha and Clayson [135].

As remarked above, Canuto et al. [38] (CHCD) very recently developed two new sets

of non-equilibrium stability functions. They are considered (by the authors) the state-of-

the-art of this type of ASMs. If they are converted to k-ε notation (see Burchard and

Bolding [28]) they read

cεµ=
0.1070 + 0.01741αN − 0.00012αM

1 + 0.256αN + 0.0287αM + 0.00868α2
N + 0.0052αNαM − 0.0000337α2

M

,

cεµ
′=

0.1120 + 0.004519αN + 0.00088αM
1 + 0.256αN + 0.0287αM + 0.00868α2

N + 0.0052αNαM − 0.0000337α2
M

,

(2.60)

with c0µ = 0.5268, and

cεµ=
0.1270 + 0.01526αN − 0.00016αM

1 + 0.198αN + 0.0315αM + 0.00583α2
N + 0.00417αNαM − 0.000042α2

M

,

cεµ
′=

0.1190 + 0.004294αN − 0.00066αM
1 + 0.198αN + 0.0315αM + 0.00583α2

N + 0.00417αNαM − 0.000042α2
M

.

(2.61)

They will be referred to as the stability functions “A” and “B” of Canuto et al. [38],

respectively. Their differences are based on slightly different model assumptions discussed

in the original paper.

In an earlier publication, Canuto [37] and Canuto et al. [40] used the return-to-

isotropy time-scale, τp, as defined in (2.14). They suggested a value h = 0.04 for the

new model parameter introduced with (2.14). Since it is not clear to what extent this

parameterization is valid for other types of models it is interesting to derive stability

functions that retain the parameter h explicitly. This was done here by introducing τp to

the model of Kantha and Clayson [135], a model of intermediate complexity. After

solving the corresponding linear system, it turns out that the stability functions become
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considerably more complex, but still can be written in the form (2.53). They read

cεµ =
N
D , where

N = 0.0948 + (0.012 + 0.358h)αN

+ (0.054 + 0.432h)hα2
N) + (0.044 + 0.168h)h2α3

N ,

D = 1 + (0.527 + 4h)αN + (0.039 + 1.315h+ 6h2)α2
N

+ (0.023 + 1.05h+ 4h2)hα3
N + (0.26 + h)h3α4

N ,

cεµ
′ =

0.119 + 0.178hαN
1 + (0.438 + 2h)αN + (0.26 + h)hα2

N

.

(2.62)

Clearly, for h → 0, the return-to-isotropy time-scale τp approaches τ and the stability

functions of Kantha and Clayson [135] in the form (2.58) are recovered.

Figure 2.2: The quasi-equilibrium stability functions of Luyten et al. [156]
(LDOR), Kantha and Clayson [135] (KC), and Canuto et al. [38] (CHCD)
in k-ε notation.

Fig. 2.2 illustrates the difference of three sets of quasi-equilibrium stability functions

converted to k-ε notation. The quasi-equilibrium version of the “A” stability functions

of Canuto et al. [38] has been derived by applying the quasi-equilibrium concept as

explained above.

It is obvious that the differences between the Kantha and Clayson [135] and the

Luyten et al. [156] stability functions are only marginal, even though the latter authors

use a much more elaborate model for the pressure redistribution terms. However, the

different model parameters used by Canuto et al. [38] and possibly also the slightly

different model for the pressure-temperature-gradient correlations have a large effect. The

full non-equilibrium set of the stability functions of Canuto et al. [38] is displayed in

Fig. 2.3.
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Figure 2.3: The non-equilibrium stability functions of Canuto et al.’s [38] “A”
model in k-ε notation.

A puzzling behaviour is exhibited by the stability functions expressed in (2.62). First of

all, Fig. 2.4 reveals that for very small values of the parameter h the original model of

Kantha and Clayson [135] is recovered. However, also for quite large values of h the

extended model becomes very similar to the original model. Only for some intermediate

Figure 2.4: The quasi-equilibrium stability functions of (2.62) for different values
of the model parameter h in k-ε notation.

values, e.g. h ≈ 0.04, the stability functions are very different from their original form,

especially for strongly stable stratification. h = 0.04 corresponds to the original proposal

of Canuto [37]. It is obvious that the parameter h dominates the overall behaviour of

the stability functions in this case. Obviously, details in the pressure redistribution model

are completely overshadowed by the influence of the parameter h. Without a thorough

comparison to experimental data it is difficult to decide whether differences in the return-

to-isotropy time-scale can really have such a large influence. Hence, this set of stability

functions is excluded from further consideration.



Chapter 3

Analysis of Two-Equation Models

for Geophysical Applications

Turbulence in the atmosphere and in natural waters is extremely rich in scales and pro-

cesses. Its modelling is notoriously difficult and even the most advanced second- and

third-order closures are known to have their deficiencies (Canuto [37], Sander [215]).

In spite of this fact, most of the three-dimensional models used in oceanography and

physical limnology implement much simpler one- or two-equation turbulence closures,

only extended by ASMs of a structure outlined in the preceeding chapter. Naturally, the

question arises in what situations these models are at all useful and give a reasonable

description of the processes occurring in the real world. This chapter is devoted to the

answer of this question.

Before the attention is concentrated on two-equation models, current modelling approaches

for buoyancy affected turbulence are very briefly reviewed. Since bulk integrated turbu-

lence models are still the ones most frequently used in physical limnology, it seemed

necessary to continue with a short summary of their properties and to show some re-

cent developments. The relative merits of bulk integrated and differential models will

be addressed. The main part of this chapter then starts with the comparison of some

well-known two-equation models. For the first time, a buoyancy extended version of the

Wilcox [293, 294] k-ω model is suggested and systematically explored (Umlauf and

Hutter [280]). The interrelations of two-equation models with some well-known ASMs

are discussed and in this context the new concept of the “structural equilibrium” stabil-

ity functions, an extension of the Galperin et al. [80] “quasi-equilibrium” stability

functions, will be established (Umlauf [278]). Then, this new concept is applied to anal-

35
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yse characteristic turbulent length-scales of turbulence in structural equilibrium and to

compare the results to some recently published experimental and DNS data. The chapter

closes with an investigation of the turbulence models in a state of equilibrium between

diffusive transport and dissipation of turbulent kinetic energy, a balance that is known to

be of some importance in geophysical applications.

3.1 Modelling Approaches for Turbulence in Natural

Waters and in the Atmosphere

Turbulence phenomena of geophysical interest are most often affected by the buoyancy of

the fluid. Buoyancy introduces the notion of potential energy to the budget equations.

This fact inherently complicates the description of turbulence: At first, potential energy

can be converted to kinetic energy in free convection. Next, in stable situations potential

energy can be gained from kinetic energy and a parallel energy cascade ending with the

destruction of temperature fluctuations by thermal conduction is opened up. It is known

that there exists also an alternative route for a backward flow of potential energy toward

larger scales (Schumann [218], Canuto and Minotti [39]). Besides this, the situation

is further complicated by the fact that non-locally acting internal waves with properties

completely different from turbulence can also contribute significantly to the fluctuating

potential energy.

3.1.1 Free Convection

In unstable situations, potential energy converted to turbulent kinetic energy can lead

to vigorous mixing. The statistics of this process are complicated (Willis and Dear-

dorff [295], Deardorff and Willis [57]) and need a careful and expensive modelling.

Canuto et al. [35, 36, 39, 37, 40] and the references therein give an extensive summary

of geo- and astrophysical modelling approaches to convection with second-order closures

and LES. Free convection is known to be a pitfall for two-equation models: Burchard

and Bolding [28] tested the k-ε model with the most advanced ASMs and concluded

that the height of the entrainment layer is not met very well and that, because of the

inability to model counter-gradient fluxes, the predicted temperature profiles are princi-

pally different from the observed ones. They pointed out that the diffusion term for the

turbulent kinetic energy, which is underestimated by a factor of approximately 2, might
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be the main reason for the model’s misbehaviour.

3.1.2 Stably Stratified and Sheared Flows

Stably stratified situations are of great importance for mixing in the atmosphere (Nieuw-

stadt [182]) and in the ocean (Gregg [93]). The particularities of stratified turbulence

in lakes have been addressed by Imboden and Wüest [122]. Stable stratification compli-

cates the situation additionally by introducing two types of fluctuating potential energy:

A turbulent part and a part related to the (possibly random) motion of internal waves.

This is a particularly difficult topic because internal waves cause mixing by either over-

turning or by contributing to the instability of the water column by wave shear (Woods

[297]). On the other hand turbulence itself may degenerate to random wavy motions

and so-called two-dimensional turbulence may develop under strongly stable stratifica-

tion (Hopfinger [110]).

Remote from boundaries of lakes and oceans, currents are weak and the mean Richardson

number is large. Mixing is thought to be generated by random instability of a random

internal wave field (Gregg [93]). In such cases the turbulent dissipation can be estimated

by considering the energy flux to high wave numbers and equating with the rate of dissipa-

tion, ε (Gregg [94]). The turbulence closures considered here are not applicable to such

high Richardson number flows. However, when the scales of internal waves become much

larger than any of the turbulent scales, internal waves can in principle be considered as

part of the mean flow and two-equation models can be applied with success. An example

is given in Section 4.2.

Transferring the above conclusions to the situation in lakes, there seem to be only a few

regimes in which two-equation models are a promising modelling tool:

• The surface mixed layer in regions of moderate to small Richardson number if con-

vection is not the dominant process.

• The seiche induced (perhaps stratified) bottom boundary layer if the breaking of

internal waves is not the dominant mixing process.

• Gravity-driven down-slope currents with density stratification, if shear is the main

turbulence generating agent.

In Section 4 applications of two-equation models for the first two cases will be discussed.
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3.2 Bulk Models

Stimulated by numerous observations of well mixed layers on top of a sharp, step-like

thermocline in the ocean, models able to reproduce the dynamics of such a configuration

were looked for. Attention was soon focused upon a category of models called bulk in-

tegrated models that trace back to the work of Kraus and Turner [274, 141]. These

models were based on the idea that quantities do not change much across a well-mixed

layer and thus vertical integrals of the balance equations for mean and turbulent variables

provide a useful representation of the system1.

Bulk models have undergone a considerable evolution in the past 30 years and are still in

use with great success. Because of their omnipresence in physical limnology (Imberger

and Patterson [120], Spigel et al. [240]) and also in physical-biological coupled

modelling (Hamilton and Schladow [97, 216], Franke et al. [77]), a brief review

of this branch of modelling seems worthwhile.

The one-dimensional vertically integrated balance equation for the turbulent kinetic en-

ergy, k, requires some closure assumptions, as does its differential counterpart. The

classical entrainment experiments, which were hoped to mimic the entrainment across a

thermocline as it occurs in lakes and in the ocean, were considered to provide some of the

information needed to close the bulk models.

These experiments suggested a functional dependence of the entrainment velocity of the

interface, ue, on a bulk Richardson number, Rib, as in

ue
U

= E(Rib) = E(
g∆ρh

ρ0U2
) , (3.1)

where E is the entrainment function, h the mixed layer depth, ∆ρ the density difference

across the interface, U an unknown velocity scale, and ρ0 a reference density. The form

of (3.1) is compulsory by dimensional arguments. However, there was (and still is) a

controversy about the proper choice of the scaling velocity U . Many scales seem to be at

least plausible:

• The friction velocity, u∗ =
√

τ/ρ0, which is known to be the right scaling in the

law-of-the-wall regions of shear driven boundary layers;

1Under certain conditions bulk models can compute appropriate results even if the upper layer is not

well mixed and the profiles of the variables are not homogeneous (see Section 4.1.3).
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• the velocity difference across the interface, ∆U , which is a controlling parameter for

shear instabilities across the interface;

• the variance of the velocity fluctuations close to the interface. This scaling is phys-

ically the most reasonable one, but it marks already the limits of bulk models:

Entrainment laws formulated in terms of interface quantities must refer to a local

Richardson number, which can in general not be determined from bulk parameters.

Different authors prefer distinct scalings: In their classical paper, Turner and Kraus

[274] scaled with the friction velocity u∗. In contrast to that, some of the classical shear

layer experiments were scaled with ∆U (e.g. Ellison and Turner [69], Moore and

Long [176]), whereas others preferred u∗ (Kato and Phillips [137], Kantha et al.

[136]). Pollard et al. [192] claimed that shear instability at the bottom of the mixed

layer does most significantly contribute to entrainment and suggested to scale generally

with ∆U .

Niiler [183] clarified the situation somewhat by showing that models of the Kraus-Turner

type, which use a u∗ scaling (like the models of Turner and Kraus [274] and Denman

[60]) can be used with benefit for the long term prediction of thermocline erosion, if large

time-steps are used. However, for the prediction of the short term reaction to wind forcing,

these models do not capture the right physics and lead to inaccurate results. Niiler [183]

suggested a combination of the model of Denman [60] and of a ∆U scaled model like

that of Pollard et al. [192].

Motivated by observations in the ocean (see Price et al. [196]) exhibiting strong

evidence for the entrainment scaled with ∆U rather than u∗, Price [195] could show

that the differences between the classical experiments of Kato and Phillips [137] and

Kantha et al. [136] were mainly due to the wrong scaling. Using ∆U as the most

appropriate scale (and correcting for the influence of the side-wall drag), Price [195]

was able to collapse the two experiments and also the buoyant jet data of Ellison and

Turner [69] for a small range of bulk Richardson numbers.

Albeit there is up to the present day no agreement about the functional form of the

entrainment law (and hence about the most crucial closure assumption of bulk models),

numerous successful applications of these models in limnological situations have been

reported. One of the most advanced bulk-integrated models, DYRESM, is described

in Imberger and Patterson [120]. It uses a synthesis of the entrainment models

of Niiler [183] and Zeman and Tennekes [304] as described in a review article of

Sherman et al. [222]. Spigel et al. [240] and Imberger [116] extended the model
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further to retain the average mixed layer turbulent kinetic energy as an explicit variable.

This, and the inclusion of a parameterization of Kelvin-Helmholtz billowing using the

results of some experiments by Thorpe [263, 264, 265, 266], were shown to be important

if time-steps shorter than a day are used and the forcing varies strongly.

Hamilton and Schladow [97, 216] claim that DYRESM is a model free of calibration

and use it as the hydrodynamic component of their water quality model. A much simpler

model of the Kraus-Turner type with u∗ scaling has been implemented by Franke et al.

[77] in their coupled model. However, since time-steps of much less than a day were used

and also periods of strongly varying winds were modelled (both cases in which standard

Kraus-Turner type models are strictly not applicable), it is not clear, if the physics is

sufficiently represented in that case.

Bulk integrated or mixed layer models have also been implemented in three-dimensional

models of the ocean (Chen et al. [44] and Sterl and Kattenberg [246]) and of

lakes (see the very recent publication by Hodges et al. [108]).

3.3 Differential Models

A different class of models was also applied with great success in meteorology, oceanog-

raphy and later in physical limnology. Ekman [68] can be considered the pioneer of the

so-called differential models used in oceanography. In contrast to their integrated coun-

terparts, these models try to resolve the structure of the mixed (better: mixing) layer

and describe it by differential equations. Munk and Anderson [180] generalized the

results of Ekman [68] by suggesting a dependence of the vertical turbulent diffusivity on

the Richardson number, an approach that is used until today in numerous models with

some success (see, e.g., Pacanowski and Philander [187]).

However, a much more powerful family of differential turbulence closures applied in

oceanography and atmospheric sciences evolved together with the rapid success in second-

order turbulence modelling during the seventies of the last century. It was not surprising

that early applications in oceanography (e.g., Mellor and Durbin [165]) and physical

limnology (Svensson [249, 250]) emanated from the institutes dominating turbulence

research at that time, namely Princeton and the Imperial College in London.

Today, there is an almost uncountable list of successful geophysical applications of dif-

ferential models. However, since differential methods have often been critisized by the
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advocators of integral methods until very recently (e.g., Hodges et al. [108]), it seems

necessary to review some of the arguments to clarify the relative merits of both types of

models:

• The exact prediction of the mixed layer depth is one of the main purposes of tur-

bulence models for the mixed layer. The capabilities of bulk integrated models in

simulating the depth of the mixed layer has been demonstrated many times (e.g.

Spigel et al. [240]). However, also differential models have been shown to com-

pare excellently to the entrainment experiments mentioned above (Burchard and

Bolding [28], Luyten et al. [156]). In spite of this, differential models are known

to yield too shallow mixed layer depths in real-world simulations (Martin [160],

Large and Crawford [145]). This problem has been recognized by Mellor

[164], who very recently suggested a modification of the Mellor-Yamada model that

partly removed this deficiency.

• Local turbulent variables of a differential model can be integrated to yield bulk

parameters, but no local values can be derived from the integrated models. This

means that differential models can be verified with both, measured bulk parameters

and local turbulent parameters obtained from measurements. Since it is now widely

accepted that turbulence in stratified fluids scales with local parameters (see Ivey

and Imberger [125, 118], Nieuwstadt [182]), a tremendous amount of data

recently obtained from measurements and from DNS can be used to compare and

calibrate differential models.

• Differential one- and two-equation models are known to be in accordance with the

similarity theory ofMonin and Obukhov [175], a cornerstone of turbulence theory

(Mellor and Yamada [169], Kantha and Clayson [135], Burchard and

Petersen [30]). Besides this, Luyten et al. [156] showed that at least the

k-ε model does also reproduce the self-similar structure exhibited in entrainment

experiments as suggested by Kundu [143] and Mellor and Strub [167]. It is

shown in Section 4.1.3 that these findings can also be extended to the k-ω model.

Bulk models cannot be tested in terms of self-similarity.

• For the three-dimensional modelling of lakes, computing power has increased so far

that, together with an adaptable and topography-following vertical grid, a resolution

sufficient for the convergence of differential schemes can be achieved (Umlauf et

al. [283]). Nevertheless, in ocean modelling a too coarse vertical resolution must

still be considered a problem. (Ezer [70] for example resolves a 5550m deep water

column in the Atlantic ocean with only 15 levels.)
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• Franks [78] reviewed physical-biological coupled models and found that both,

mixed-layer and differential models have been used with some success in the past.

However, a new interesting branch of coupled modelling that focuses on the inter-

action between small-scale turbulence and biology has started to develop (Cap-

blancq [41], Denman and Gargett [61] and Reynolds [199]). Only the differ-

ential models are able to resolve the turbulent parameters required by the biological

model and thus can be used as the physical component.

3.4 Two-Equation Models of Turbulence

In view of a widely applicable description of the turbulent length-scale, l, models were

developed that use a differential transport equation for l or a related quantity. Two-

equation models that use two differential transport equations for both, the turbulent

kinetic energy, k, and a length-scale determining variable have proven to be an excellent

compromise between accuracy and computational effort. Alternatives to the formulation

of a second differential equation have also been suggested. In fact, there has been an

enormous development of powerful analytical descriptions for the turbulent length-scales

in stratified flows in the last years. These descriptions are usually formulated in terms

of local non-dimensional parameters, some of which are conveniently available only in

sub-grid models of LES, and thus their applicability to ensemble averaged models is very

restricted (Schumann [219], Canuto and Minotti [39], Cheng and Canuto [45]).

Very simple analytical formulae like the one of Blackadar [14] or that suggested for the

zero- or one-equation models of Mellor and Yamada [168] are also still in use. Their

predictions, however, are often not satisfactory.

Among the most well-known two-equation models used in geophysics is the “model of the

level 2.5” from the hierarchy of closure schemes successively developed by Mellor and

Herring [166], Mellor [163], and Mellor and Yamada [168, 169]. It will from now

on be referred to as the Mellor-Yamada model. This model uses a length-scale related

equation that describes the evolution of the product kl.

Another model that recently attracted great attention in the geophysical modelling com-

munity, describes the evolution of the rate of dissipation of turbulent kinetic energy, ε.

It has originally been developed by Hanjalić and Launder [101], Jones and Laun-

der [132], and Launder and Spalding [148]. Rodi [206] described some geophysical

applications of this model that is usually called the k-ε model.
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There have been numerous applications of one-dimensional versions of the Mellor-Yamada

model (e.g., Martin [160], Price et al. [196], Large and Crawford [145], Ri-

chardson et al. [201]) and of the k-ε model (e.g., Svensson [249, 250], Kundu [142],

Omstedt et al. [185], Rodi [206], Baumert and Radach [12], Burchard and

Baumert [27], Jöhnk [130]). Quasi-one-dimensional models of both types have also

been implemented and tested in well-known ocean circulation models (e.g., Blumberg

and Mellor [16], Allen et al. [4], Federiuk and Allen [72], Luyten et al.

[156], Stansby [242], Ezer [70]). Also for lakes there are some recent examples of

three-dimensional implementations (see, e.g., Güting and Hutter [96]). Beletsky

et al. [13] recently reported a highly interesting comparison of a three-dimensional

implementation of the Mellor-Yamada model and a simple Richardson number dependent

model in a simulation of observed Kelvin waves in Lake Michigan.

Driven by a steadily increasing amount of data describing turbulent properties of stratified

flows from field measurements, laboratory experiments, LES, and DNS, there appeared a

number of works in the last decade investigating the properties of two-equation models

in simple, but from a theoretical viewpoint fundamental flows (Baum and Caponi [10],

Craig and Banner [53], Burchard and Baumert [27], Baumert and Peters

[11], Burchard and Bolding [28]). Unfortunately, only very few authors conducted

a systematic comparison of different two-equation models. Moreover, only the k-ε and

the Mellor-Yamada model have been compared so far (see Burchard et al. [31],

Burchard and Petersen [30]). This work is intending to fill the gap.

One model has been largely unnoticed by the geophysical turbulence modelling commu-

nity: The model of Wilcox [293, 294], which will be referred to as the k-ω model from

now on. This model has been shown to be free of many deficiencies of the Mellor-Yamada

model (e.g., its non-locality induced by the wall function) and of the k-ε model (e.g., its

misbehaviour very close to rigid walls), while sharing all the merits of these models in

the case of unstratified fluids. However, the k-ω model has, to my knowledge, not been

extended to the case of buoyancy affected flows. As a consequence, its applicability to

atmospheric and oceanographic flows was extremely restricted. In this work an extension

of the k-ω model to stratified flows will be suggested and the properties of the resulting

model will be closely examined.

In the following section all three two-equation models will be briefly introduced. Their

mathematical properties will then be compared for homogeneous and density stratified

flows. All models will be presented in both, the original formulation used by their respec-

tive authors and in an unified form that simplifies the identification of model constants
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with the same functionality in different models.

3.4.1 The k-ω Model

The equations for this relatively recent model are discussed in Wilcox [293] and Wilcox

[294]. They are repeated here for reference:

∂k

∂t
+ ul

∂k

∂xl
=

∂

∂xl

(
σ∗νt

∂k

∂xl

)
+ P − β∗kω ,

∂ω

∂t
+ ul

∂ω

∂xl
=

∂

∂xl

(
σνt

∂ω

∂xl

)
+ α

ω

k
P − βω2 ,

(3.2)

where the variable ω described by the second equation can be interpreted as a turbulent

frequency or an inverse time-scale of the energy containing eddies. β and β∗ may be

functions of the mean flow and turbulent properties, but σ and σ∗ are simply constants.

Note, that the original version of the model is not applicable to buoyancy affected flows.

As mentioned above, all models will be converted to a unified notation (borrowed from the

standard k-ε literature) to simplify the comparison of the model structure. If necessary,

constants will be subscripted, e.g., with an ω as in cω1 to make it clear that this constant

belongs to the k-ω model and plays a role comparable to the constant c1 in the standard

k-ε notation.

Translated to unified form, (3.2) reads

∂k

∂t
+ ul

∂k

∂xl
=

∂

∂xl

(
νωk

∂k

∂xl

)
+ P +G− ε ,

∂ω

∂t
+ ul

∂ω

∂xl
=

∂

∂xl

(
νω

∂ω

∂xl

)
+

ω

k
(cω1P + cω3G− cω2

fcµ
ε) .

(3.3)

The unified model (3.3) contains already the suggested extension to buoyancy affected

flows. The extension of the equation for k is straightforward and follows directly from

(2.11). The fruitfulness of the extension suggested for the transport equation of ω will be

discussed in greater detail below.

The k-ω model in its revised form recently suggested by Wilcox [294] contains the two

parameter functions called fcµ and fcω in unified notation. They are defined by

ε = (c0µ)
4fcµkω (3.4)
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fcµ =


1 χk ≤ 0

1+680χ2k
1+400χ2k

χk > 0
, χk =

1

ω3

∂k

∂xj

∂ω

∂xj
(3.5)

cω2 = c0ω2fcω , fcω =
1 + 70χω
1 + 80χω

, χω =

∣∣∣∣W ∗
ijW

∗
jlSli

(c0µ)
12ω3

∣∣∣∣ , (3.6)

where Sij and W ∗
ij as defined in (2.17) have been used 2.

The traditional Wilcox [293] model can be recovered by setting fcµ = fcω = 1. The

function fcµ was intended by Wilcox [294] to reduce the somewhat too large spreading

rate for free shear layers by enhancing the dissipation near the edge of the layer, but

leaving the flow close to the boundary almost untouched. fcω was introduced to treat the

so-called round-jet/plane-jet anomaly known to be a plague for every turbulence model.

Wilcox [294] demonstrated convincingly that his new k-ω model retains the superiority

of the older version over the k-ε model for wall bounded flows and, in addition, is now also

better suited for the prediction of standard jet and shear entrainment situations. It will

be very interesting to see how this promising model behaves in scenarios of geophysical

interest.

If the k-ω and other two-equation models are applied to the logarithmic part of the law-

of-the-wall, useful relationships between different model variables and the parameter c0µ
can be obtained. To derive these relationships, one has to use the well-known asymptotic

behaviour of the turbulent variables in the logarithmic boundary layer P = ε, ε = u3
∗/κz,

∂U/∂z = u∗/κz, l = κz, etc., where κ is the von Kármán constant and z the distance

perpendicular to the wall. The turbulent length-scale, l, is seen to coincide with the

Prandtl mixing length close to a wall. (Note, that the scale l is different from a length-

scale with the same name sometimes used in Wilcox [294]). For the constant c0µ, usually

referred to as Bradshaw’s constant, the relation (c0µ)
2 = u2

∗/k can be shown to hold in the

logarithmic boundary layer. Its value is known to be about (c0µ)
2 = 0.3 from numerous

measurements (see Townsend [270]). The following useful relations apply:

ε = (c0µ)
4fcµkω , l =

1

c0µ

k
1
2

ω
,

νt = cωµ
k

ω
, νωk =

νt
σωk

, νω =
νt
σω

,

(3.7)

where σωk and σω are the turbulent Schmidt numbers for the diffusivities of k and ω,

respectively. The function cωµ results from an ASM as shown above. All model constants

can be found in Tab. 3.1.
2The original model uses the in-objective tensor Wij in place of W ∗

ij . As discussed in Chapter 2, such

a formulation is inconsistent in rotating flows.
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model parameters c0µ σωk σω cω1 c0ω2 cω3

original parameters (β∗
0)

1
4 1/σ∗ 1/σ α β0/(c

0
µ)

4 —

Wilcox ’88 [293] 0.5477 2 2 0.555 0.833 see text

Wilcox ’98 [294] 0.5477 2 2 0.52 0.8 see text

Table 3.1: Constants of the k-ω model

3.4.2 The Mellor-Yamada Model

The two-equation version of the Mellor-Yamada models was introduced by Mellor and

Yamada [169]. They referred to it as the “level 2.5” of their hierarchy of turbulent

closures reaching from simple equilibrium models to a full second-order closure. In its

original form it was written as

∂q2

∂t
+ ul

∂q2

∂xl
=

∂

∂xl

(
lqSq

∂q2

∂xl

)
+ 2(P +G− q3

B1l
) ,

∂q2l

∂t
+ ul

∂q2l

∂xl
=

∂

∂xl

(
lqSl

∂q2l

∂xl

)
+ lE1(P +G)− Fq3

B1
.

(3.8)

Noting that q2 := 2k this model can be transformed to the unified form and re-written as

∂k

∂t
+ ul

∂k

∂xl
=

∂

∂xl

(
νlk

∂k

∂xl

)
+ P +G− ε ,

∂kl

∂t
+ ul

∂kl

∂xl
=

∂

∂xl

(
νl
∂kl

∂xl

)
+ l(cl1P + cl3G− cl2Fε) .

(3.9)

By inspection of the second equation of (3.8) it is clear that the model constants cl1 and

cl3 are not independent. In fact, for the lack of precise data Mellor and Yamada [169]

chose them to be equal. As discussed below this decision has a large negative impact on

the model performance in stratified shear flows (see also Burchard [24]).

The Mellor-Yamada model only reproduces the logarithmic region of the law-of-the-wall,

if the wall damping function, F , is described according to

F = 1 + E2

(
l

κL

)
, (3.10)

where the new model constant has been assigned a value E2 = 1.33 by Mellor and

Yamada [169]. L is supposed to be a measure of the distance away from the wall that

has to converge to L = z as the wall is approached. Of course, the functional choice

is otherwise little restricted and there are many alternatives. Unfortunately, different
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choices for L may result in considerably different results even at remote distances from

walls. Burchard et al. [31] compared a triangular and a parabolic profile for L and

demonstrated that in the simulation of a simple barotropic channel flow the velocities in

the middle of the channel could differ as much as 30%. The non-uniqueness and non-

locality introduced by the wall damping function has to be considered a large drawback

of the Mellor-Yamada model.

The rate of dissipation and the turbulent diffusivities are defined as

ε = (c0µ)
3k

3
2

l
,

νt = clµk
1
2 l , νlk = clkk

1
2 l , νl = clk

1
2 l .

(3.11)

The revised model constants of Mellor and Yamada [169] have been converted to the

notation used here and are given in Tab. 3.2. Their relation to the original parameters is

also displayed.

model parameter c0µ clk cl cl1 cl2 cl3

original parameters 2
1
2B

− 1
3

1 2
1
2Sq 2

1
2Sl E1/2 by insp. E1/2

Mellor and Yamada [169] 0.5544 0.2828 0.2828 0.9 0.5 0.9

Table 3.2: Constants of the Mellor-Yamada model

3.4.3 The k-ε Model

The original k-ε model of Hanjalić and Launder [101] is adopted here. However,

the triple correlations appearing in the transport equations of k and ε are replaced be

simple eddy diffusivity formulations also used by Rodi [207]. An excellent review of the

mathematical properties of the k-ε model is given in Mohammadi and Pironneau

[171]. This model is usually formulated as

∂k

∂t
+ ul

∂k

∂xl
=

∂

∂xl

(
νt
σk

∂k

∂xl

)
+ P +G − ε ,

∂ε

∂t
+ ul

∂ε

∂xl
=

∂

∂xl

(
νt
σε

∂ε

∂xl

)
+

ε

k
(c1P + c3G)− c2

ε2

k
.

(3.12)

The buoyancy term in the transport equation for ε is adopted by some authors (Rodi

[206] and Rodi [207] ), whereas others refrain from using it (Gibson and Launder
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[87]). Completely analogous to Mellor and Yamada [169], Craft et al. [50] set

cε1 = cε3 and will thus also encounter difficulties in stratified shear flows (see below).

As mentioned above, the unified form is borrowed from the k-ε notation, and there is

almost no change necessary, and the equations can be re-written as

∂k

∂t
+ ul

∂k

∂xl
=

∂

∂xl

(
νεk

∂k

∂xl

)
+ P +G− ε ,

∂ε

∂t
+ ul

∂ε

∂xl
=

∂

∂xl

(
νε

∂ε

∂xl

)
+

ε

k
(cε1P + cε3G− cε2ε)

(3.13)

Again, relations to other model variables can be derived, e.g.,

l = (c0µ)
3k

3
2

ε
,

νt = cεµ
k2

ε
, νεk =

νt
σεk

, νε =
νt
σε

,
(3.14)

where σεk and σk denote the Schmidt numbers for k and ε, respectively. The relations to

the original model parameters given in Tab. 3.3 are trivial. For the constant c3 there

have been numerous suggestions, which will be discussed in the following sections.

model parameters c0µ σεk σε cε1 cε2 cε3

original parameters (corigµ )
1
4 σk σorig

ε c1 c2 c3

k-ε (Rodi [206]) 0.5477 1.0 1.3 1.44 1.92 see text

Table 3.3: Constants of the k-ε model

3.4.4 Determination of the Model Constants

In this section the impact of the chosen model constants will be analyzed. An application

of each model to standard situations like the logarithmic wall layer or the homogeneous

decay of turbulence are considered to be indispensable for a thorough comparison. More-

over, useful results will be obtained that can be referred to during the more elaborate

evaluations in later sections.

The Constant Stress Layer

The probably best known “dogma” of turbulence theory is the logarithmic velocity profile

of a steady-state current close to a rigid wall, where viscous stresses are negligible (see Ap-
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pendix A.1). It is the most elementary requirement that a turbulence model reproduces

the logarithmic part of the “law-of-the-wall”. Thus, it is not surprising that all models

introduced above satisfy this requirement. However, it has been pointed out many times

that the model of Mellor and Yamada [168, 169] needs a specific wall damping func-

tion, F , to yield the logarithmic layer (see (3.9)2). If the standard expressions applying

to the logarithmic region ((c0µ)
2k = u2

∗, ∂U/∂z = u∗/(κz), l = κz, etc.) are inserted in the

model equations, the turbulent kinetic energy budget always yields P = ε. The second

equation of each model leads to an important relation between several model constants,

which is sometimes referred to as the “compatibility relation” (see e.g. Launder et al.

[147], Abid and Speziale [1]). For the k-ω model, for example, the expression

σω =
κ2

(c0µ)
2(c0ω2 − cω1)

(3.15)

can be derived. Similar equations follow for the Mellor-Yamada model with

cl =

(
c0µ
)3

(cl2 (1 + E2)− cl1)

κ2
, (3.16)

and for the k-ε model with

σε =
κ2

(c0µ)
2(cε2 − cε1)

. (3.17)

These equations can be used to determine the value of the von Kármán constant, κ, for

the standard model coefficients or, vice versa, the (inverse) turbulent Schmidt number as

a function of a selected κ and other model parameters3. It should be pointed out that

every reasonable model comparison in the turbulent boundary layer requires each model

to compute the same value of the von Kármán constant. Here, all models were tuned to

the standard value of κ = 0.4.

The value of the constant c0µ has to be consistent with the ASM used. Tab. 3.4 summarizes

some model constants that satisfy the consistency relations. Note, that only the Mellor-

Yamada model computes a value of κ = 0.4 with its standard parameter set.

Homogeneous Decay

Another example of a simple but fundamental turbulent situation is the decay of isotropic,

homogeneous turbulence. Data from many experiments are well described by a power law
3Even though the compatibility relations must be considered an elementary requirement, Abid and

Speziale [1] found that this constraint “has been ignored in the formulation of some recent second-

order closures” and pointed out that it “should be made use of more carefully in the future formulation

of models”.
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k-ω 1988 k-ω 1998 k-kl k-ε

κ orig. 0.408 0.41 0.4 0.433

κ = 0.4 σω = 1.92 σω = 1.9 cl = 0.28 σε = 1.11

Table 3.4: Model parameters consistent with (3.15)–(3.17).
The values have been derived by assuming c0µ = 0.548 for the

k-ω and the k–ε model and c0µ = 0.554 for the Mellor-Yamada
model.

of the form
k

k0
= A

(
t

τ0

)n
, (3.18)

with the initial values of the kinetic energy, k0, and the eddy turnover time, τ0. The decay

rates, n, have been thoroughly documented. Experiments (Bradshaw [20], Townsend

[270]) suggest that n is in the range −1.7 < n < −1.1, with a consensus for a value near

−1.2. DNS, generally conducted at low Reynolds numbers, produce consistently higher

values. Briggs et al. [21], e.g., obtain a value near −1.5 from their DNS.

For homogeneous decay, two-equation models simplify to a system of two ordinary differ-

ential equations describing the homogeneous decay. They can easily be solved by hand or

with the help of a symbolic mathematics tool. The k-ω model reduces to the system

dk

dt
= −(c0µ)

4 kω ,
dω

dt
= −(c0µ)

4 c0ω2 ω2 , (3.19)

which has the simple solutions

k = k0 (ω0 c0ω2(c
0
µ)

4 t+ 1)
− 1

cω2 , ω = ω0 (ω0 c0ω2(c
0
µ)

4 t + 1)−1 , (3.20)

where ω0 defines the value of ω at t = 0.

In homogeneous turbulence, the wall damping function, F , of the Mellor-Yamada model

reduces to unity, and the model equations simplify according to

dk

dt
= − 1

(c0µ)
3

k
3
2

l
,

dkl

dt
= − cl2

(c0µ)
3
k

3
2 , (3.21)

for which a solution of the form

k = k0

(
(3− 2cl2) k

1
2
0

2(c0µ)
3 l0

t+ 1

)− 2
3−2cl2

, l = l0

(
(3− 2cl2) k

1
2
0

2(c0µ)
3 l0

t+ 1

)− 2(cl2−1)

3−2cl2

(3.22)
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can be computed. If a value of cl2 = 0.5 (which can be obtained by inspection from the

original model, see Tab. 3.2) is inserted in (3.22), the solution simplifies further to

k = k0

(
k

1
2
0

(c0µ)
3 l0

t+ 1

)−1

, l = l0

(
k

1
2
0

(c0µ)
3 l0

t + 1

) 1
2

. (3.23)

Analogously, the k-ε model reduces to

dk

dt
= −ε ,

dε

dt
= −cε2

ε2

k
, (3.24)

with a solution of the form

k = k0

(
ε0
k0

(cε2 − 1) t+ 1

) 1
1−cε2

, ε = ε0

(
ε0
k0

(cε2 − 1) t + 1

) cε2
1−cε2

. (3.25)

For large times all models predict a decay of the form (3.18). The decay rates for k

are summarized in Tab. 3.5. It can be seen that all models compute reasonable results,

k-ω (1988) k-ω (1998) k-kl k-ε

decay rate n −1.2 −1.25 −1 −1.087

Table 3.5: Decay rates for homogeneous, isotropic, unstrat-
ified turbulence as computed by different models

the Mellor-Yamada model exhibiting a decay rate perhaps a bit to slow and the k-ω

model being closest to the bulk of the measurements. Note, that in all cases the decay

experiments cited above restrict the range of only one model constant, namely cϕ2 (where

ϕ is either ω, l, or ε).

3.4.5 Homogeneously Sheared and Stratified Turbulence

A natural extension of the concept of decaying homogeneous turbulence, be it unstratified

as discussed in the previous section or stratified (Dickey and Mellor [64], Lienhard

and van Atta [150], Stillinger et al. [247]), is the inclusion of a homogeneous

shear and an aligned homogeneous stratification. Since turbulence is still assumed to be

homogeneous, the divergence of any turbulent transport terms vanishes and the intricate

interplay between the stabilizing effects of stratification and the destabilizing action of

shear can be isolated from further complications. Thus, it is not surprising that this highly

interesting special case of turbulence has been explored extensively by laboratory exper-

iments (Tavoularis and Courrsin [254, 255], Tavoularis and Karnik [256],
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Rohr et al. [208]), by Direct Numerical Simulation (Gerz et al. [86], Holt et al.

[109], Jacobitz et al. [126]) and by Large-Eddy Simulation (Kaltenbach et al.

[134]).

Naturally, the experimental results also attracted the attention of turbulence modellers

seeking for data to verify their closure assumptions. With this idea in mind this section is

structured as follows: First, a canonical notation, similar to that used by Baumert and

Peters [11], to which all models can be mapped is introduced. It will be shown that the

model coefficients in this notation are subject to simple, but strong restrictions following

from analytical reasoning and experiments. Then, the concepts of Full Equilibrium (FE)

and Structural Equilibrium (SE) are developed. The behaviour of different ASMs in form

of stability functions will be strictly explored for both cases. From this evaluation emerges

the new concept of the ”Structural Equilibrium Stability Functions”that is used to show

inconsistencies in the theoretical investigations recently published on this topic.

Canonical Representation

Owing to the assumption of homogeneity, the turbulent transport terms vanish and thus

exert no influence on the results. Only in this limiting case, all two-equation models

considered here are isomorphic. They will be converted to a so-called canonical two-

equation model for the variables k and ε. This choice was made, since it was felt that

most readers are more familiar with the k-ε notation than with any other. Apart from

this, the choice is completely arbitrary and other pairs of variables could be used.

The k-ω model can be converted to canonical notation after applying the chain rule of

differentiation to (3.4) and obtaining

1

ε

dε

dt
=

1

k

dk

dt
+

1

ω

dω

dt
. (3.26)

If the time derivatives on the right hand side of (3.26) are substituted according to (3.3),

the canonical form of the k-ω model for homogeneously sheared and stratified turbulence

can be written as

1

k

dk

dt
=

1

k
(P +G)− ε

k
,

1

ε

dε

dt
= [(cω1 + 1)P + (cω3 + 1)G]

1

k
− (c0ω2 + 1)

ε

k
.

(3.27)

With the help of (2.49) the production terms appearing in (3.27) can be conveniently
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expressed as

P = cεµ
k2

ε
M2 and G = −cεµ

′k
2

ε
N2 . (3.28)

Substitution of this result in (3.27) yields

1

k

dk

dt
= (cεµM

2 − cεµ
′N2)

k

ε
− ε

k
,

1

ε

dε

dt
=

[
(cω1 + 1)cεµM

2 − (cω3 + 1)cεµ
′N2
] k
ε
− (c0ω2 + 1)

ε

k
.

. (3.29)

Note that in homogeneous turbulence with plane shear the parameter functions fcµ and

fcω appearing in (3.4)–(3.6) are equal to 1.

Applying the chain rule to (3.11)1, an analogous procedure yields the canonical form of

the Mellor-Yamada model

1

k

dk

dt
= (P +G)

1

k
− ε

k
,

1

ε

dε

dt
=

[(
5

2
− cl1

)
P +

(
5

2
− cl3

)
G

]
1

k
−
(
5

2
− cl2

)
ε

k
,

(3.30)

which can also be expressed in the form

1

k

dk

dt
= (cεµM

2 − cεµ
′N2)

k

ε
− ε

k
,

1

ε

dε

dt
=

[(
5

2
− cl1

)
cεµM

2 −
(
5

2
− cl3

)
cεµ

′N2

]
k

ε
−
(
5

2
− cl2

)
ε

k
,

(3.31)

where the influence of walls has been assumed to be negligible and thus F = 1 in (3.9)

has been assumed.

The conversion of the k-ε model to the canonical notation is obvious and yields

1

k

dk

dt
= (P +G)

1

k
− ε

k
,

1

ε

dε

dt
= (cε1P + cε3G)

1

k
− cε2

ε

k
.

(3.32)

or
1

k

dk

dt
= (cεµM

2 − cεµ
′N2)

k

ε
− ε

k
,

1

ε

dε

dt
= (cε1c

ε
µM

2 − cε3c
ε
µ
′N2)

k

ε
− cε2

ε

k
.

(3.33)

Comparison with (3.29) and (3.31) corroborates that all models are indeed isomorphic.

Inspection shows, that model parameters are connected by simple relations summarized

in Tab. 3.10 below. (3.33) will thus be referred to as “the” canonical model from now on.
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Tennekes [257] used (3.33) and (3.14)1 for the unstratified case to obtain an evolution

equation for the turbulent length-scale, l. Generalizing his results for stratified cases one

obtains
1

l

dl

dt
= (cε2 − 3

2
)τ−1 + [(

3

2
− cε1)c

ε
µM

2 − (
3

2
− cε3)c

ε
µ
′N2]τ , (3.34)

where τ = k/ε can be thought of being related to a typical time-scale of turbulence via

the autocorrelation time of the velocity fluctuations

τ ∼ 1

〈u′2〉
∫ ∞

0

〈u′(t)u′(t+ t̃)〉dt̃ . (3.35)

Noting that
1

τ

dτ

dt
=

1

k

dk

dt
− 1

ε

dε

dt
, (3.36)

and using (3.32) it is easy to obtain also an evolution equation for τ ,

1

τ

dτ

dt
= ((1− cε1)P + (1− cε3)G)

1

k
− (1− cε2)

1

τ
. (3.37)

With the help of (3.28), this equation can be re-written as

1

τ

dτ

dt
=
(
(1− cε1) c

ε
µM

2 − (1− cε3) c
ε
µ
′N2
)
τ − (1− cε2)

1

τ
, (3.38)

which depends only on τ , M2, and N2. Alternatively, this equation is expressible as

dτ

dt
= (1− cε2)

((
τ

τSE

)2

− 1

)
, (3.39)

with

τSE =

(
(1− cε2)

(1− cε1) cεµM
2 − (1− cε3) cεµ

′N2

) 1
2

. (3.40)

(3.38) and (3.39) are non-linear ordinary differential equations. Note, that τSE is a con-

stant only in Structural Equilibrium (see below). In general, it depends on τ via the

non-dimensional numbers αM and αN introduced by the stability functions, and a partic-

ular solution of (3.39) can only be found by numerical integration. Nevertheless, if it is

assumed that deviations from Structural Equilibrium are small and τSE can be assumed

to be constant, an analytical solution of the dimensionless form

τ

τSE
=

τSE+τ0
τSE−τ0 − exp

(
−2 (cε2 − 1) t

τSE

)
τSE+τ0
τSE−τ0 + exp

(
−2 (cε2 − 1) t

τSE

) (3.41)

can be derived.
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Figure 3.1: Dimensionless solution (3.41) for τ0 = 0 and cε2 of the k-ε model.

From (3.41) it is seen that the exponential terms approach zero with a time-scale of

approximately τSE/2 independently of the initial conditions, since cε2 ≈ 2 for all models

considered here. From a similar result obtained by a perturbation method, Baumert and

Peters [11] concluded that τ → τSE with the same time-scale. The exact solution of

(3.39) for τSE = const is given by (3.41). If this solution is plotted as in Fig. 3.1 the actual

relaxation time-scale is seen to be somewhat larger than τSE/2. A careful investigation

of this topic, including also some numerical results, can be found in Burchard [26].

Full Equilibrium in Stably Stratified Flows

Assuming that there is a state of Full Equilibrium (FE) in homogeneous turbulence, i.e.,

a state of zero growth or decay of any turbulent parameter, the balance equation for the

turbulent kinetic energy of the canonical model (3.33) simplifies to

P +G = ε or

cεµαM − cεµ
′αN = 1 .

(3.42)

However, (3.42) is only a necessary condition for FE. In the context of the canonical

model, a second constraint is given by requiring that the right hand side of (3.32)2 is also

zero in FE. Application of the equilibrium (3.42)1 then yields

cε2 = cε1
P

P +G
+ cε3

G

P +G
, (3.43)

which, using the definitions of the flux Richardson number, Rf , and the gradient Richard-

son number, Ri,

Ri :=
N2

M2
=

αN
αM

and Rf := −G

P
=

cεµ
′

cεµ

αN
αM

=
cεµ

′

cεµ
Ri , (3.44)

can be transformed to the simple statements

Rf = Rstf =
cε2 − cε1
cε2 − cε3

, Ri = Rist =
cεµ
cεµ

′
cε2 − cε1
cε2 − cε3

in FE . (3.45)
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Hence, two-equation models predict FE in homogeneous turbulence only for a single so-

called steady-state Richardson number, Ri = Rist. This is confirmed by the experiments

of Rohr et al. [208], who observed Rist ≈ 0.25. More recent investigations by Holt

et al. [109] and Piccarillo and van Atta [191], however, showed a systematic

dependence of Rist on the Taylor microscale Reynolds number, Reλ, an effect that cannot

be expected to be captured by the high Reynolds number models used here. A more serious

deficiency of two-equation models seems to be the failure of predicting a dependence of Rist

on the initial dimensionless shear number,
√
αM , introduced in (2.55). Such a dependence

is strongly suggested by the recent DNS results of Jacobitz et al. [126]. These authors

demonstrated that also all other key quantities in structural equilibrium (e.g., the growth

rate and the dimensionless anisotropies) depend on the initial value of
√
αM (see next sub-

section). Unfortunately, there seems to be no obvious way to modify turbulent closures

accordingly.

The Structural Equilibrium in Stably Stratified Flows

An important generalization of the FE is the so-called Structural Equilibrium (SE) that

is reached, when the left hand sides of (3.38) or (3.39) become zero. Clearly, FE is a

special case of SE. The term “Structural Equilibrium” was introduced first in the context

of homogeneously sheared, unstratified flows (see e.g. Speziale [239]). In accordance

with most other authors, it is used here analogously also for stratified flows, even though

flows of this type were realized much earlier without assigning a particular name to them.

The basic physics for passively stratified flows in SE have first been successfully described

by the experiments of Tavoularis and Corrsin [254, 255] (also see Tavoularis and

Karnik [256]). Buoyancy affected flows have been produced successfully in the laboratory

experiments by Rohr et al. [208].

SE is established mathematically by noting that for any constant and homogeneous strat-

ification, N , and shear, M , the value of τ approaches τSE for large times. As shown above,

perturbations to SE relax back exponentially to SE with a time-scale of approximately

2τSE. Thus, in SE (3.37) and (3.38) simplify to

(1− cε2) = (1− cε1)
P

ε
+ (1− cε3)

G

ε
or

(1− cε2) = (1− cε1)c
ε
µαM − (1− cε3)c

ε
µ
′αN ,

(3.46)

respectively.
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The Role of the Richardson Number

It is clear that the stability functions in the form (2.53) can be converted to functions of

Ri and αM simply by using the definition (3.44) of the gradient Richardson number, Ri,

and writing αN = RiαM . Along with this idea an interesting question arises: Are there

flows described by the models, for which the stability functions reduce to pure functions

of Ri, i.e. for which the explicit dependence on the shear number, αM drops out? That

this is indeed the case has been demonstrated more than a decade ago by Galperin et

al. [80] for turbulence in FE. In their derivation (see Section 2.3) the quasi-equilibrium

assumption was used extensively and stability functions that can be written solely in

terms of Ri emerged. Since in FE the equilibrium P + G = ε necessarily holds, these

functions then coincide with the full ASM.

In contrast, for the case of SE, stability functions with a pure Ri dependence have not yet

been introduced. Given the importance of homogeneous turbulence in SE, such stability

functions should provide a highly interesting analytical tool. In the following, it will be

demonstrated, how SE stability functions can be obtained by the use of symbolic algebra.

To derive stability functions for both, FE and SE, one can formally solve (3.42)2 and

(3.46)2, respectively, for αM according to

αM = f1(αN ) , Ri =
αN
αM

=
αN

f1(αN)
= f2(αN) , (3.47)

since both, cεµ and cεµ
′ are only functions of αN and αM . Clearly, the functions f1 and f2

are different for FE and SE and will depend on the ASM chosen. Moreover, in SE they

will also depend on the model constants cε1, cε2 and cε3 of the canonical model, since these

constants appear in (3.46)2. If the relation (3.47)2 is inverted and inserted in (3.47)1 one

obtains

αN = f−1
2 (Ri) = α̌N (Ri) and αM = f1(α̌N(Ri)) = α̌M (Ri) . (3.48)

It follows that not only in FE, but also in SE the stability functions can be expressed in

terms of the gradient Richardson number, Ri, without loss of generality. The validity of

cεµ = čεµ(Ri) and cεµ
′ = čεµ

′(Ri) . (3.49)

in SE is a new result. Note again, that the functional form of (3.49) will change from FE

to SE and depends on the model constants cε1, cε2 and cε3 and the ASM used.

To avoid confusion, at this point it seems worthy to review some of the general properties

of the FE and the newly derived SE stability functions and clarify things to the reader.
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• Stability functions resulting from the full ASM (2.39)–(2.48) without assuming

quasi-equilibrium at any point are referred to as the non-equilibrium stability func-

tions.

• Quasi-equilibrium stability functions can be derived from the ASM (2.39)–(2.48) by

assuming the equilibrium P + G = ε in deriving the ASM (in a manner laid out in

Section 2.3). However, the same quasi-equilibrium stability functions are obtained

if one uses P + G = ε in the form (3.47)1 and replaces αM in the non-equilibrium

stability functions by a function of αN .

• Starting from the quasi-equilibrium functions and assuming quasi-equilibrium once

more, αN appearing in the quasi-equilibrium stability functions can be replaced by

a function of Ri according to (3.48)1. The resulting functions will be referred to as

the FE stability functions from now on. Since the quasi-equilibrium assumption has

been invoked anyway, both, the quasi-equilibrium and the FE stability functions

contain the same physical information. (However, they will behave differently in

different flows, see below!)

• Analogously, (3.48) (now derived for SE!) can be used to replace αN and αM in the

non-equilibrium stability functions by functions of Ri. The result is referred to as

the SE stability functions, which then also depend only on Ri.

• Apart from the FE and SE versions, yet another set of stability functions depending

only on Ri can be derived: If (3.48)1 (derived for SE!) is used to replace αN in the

quasi-equilibrium functions by a function of Ri, as set of stability functions referred

to as the SEE stability functions can be obtained.

All in all there are 5 different sets of stability functions now: The non-equilibrium and the

quasi-equilibrium versions (which are functions of αN and, in the former case, also of αM),

and the FE, SE, SEE derivatives of them, which are functions of Ri. Stability functions

are used in their Richardson number depending form mostly for theoretical discussions of

their properties. In model codes almost exclusively non-equilibrium and quasi-equilibrium

versions that depend on αN and αM are implemented. The interesting question arises,

how these functions are related to each other in the important case of SE. The answer is

as follows:

• The SE(Ri) versions describe the behaviour of the non-equilibrium stability func-

tions in SE. This means that in SE they are completely equivalent to the full ASM.
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• The SEE(Ri) versions describe the behaviour of the quasi-equilibrium stability func-

tions in SE. Thus, comparing them to the SE versions, an estimate of the error

computed by invoking the quasi-equilibrium assumption in SE can be obtained.

• The FE(Ri) versions represent the behaviour of the quasi-equilibrium stability func-

tions in situations where P +G = ε. Moreover, in such situations results computed

by them coincide with results from the complete ASM (and even from the com-

plete second-order closure). An example of P + G = ε (being of some relevance in

oceanography and physical limnology) is given in Fig. 4.7 below, which shows the

budget of the turbulent energy equation in a stratified entrainment experiment. In

SE, however, the behaviour of the FE(Ri) versions cannot be exactly defined.

The Evaluation of Stability Functions in SE

The ease of using stability functions (in contrast to solving a complete ASM) has attracted

many researchers, and it is no wonder that a large number of different stability functions

is implemented in oceanographic (and atmospheric) models. Three sets of stability func-

tions, each of them typical of a certain class of models introduced in Section 2.3, will

be considered here4. The first set consists of the relatively simple stability functions of

Kantha and Clayson [135] (referred to as “KC”), which are a derivative of the orig-

inal functions of Mellor and Yamada [169]. The second set has been published by

Luyten et al. [156] (“LDOR”) and contains the full pressure-strain model of Launder

et al. [147]. As discussed in Section 2.3, both sets are unstable in their non-equilibrium

forms and hence only the quasi-equilibrium versions will be discussed. The third set has

been designed by Canuto et al. [38] (“CHCD”) and is based on an ASM that con-

stitutes, according to the authors, the state-of-the-art of turbulence models of this type.

Apart from this, it seems to be the only available stable set of non-equilibrium stability

functions. The three sets are expressed by (2.58), (2.59), and (2.60), respectively.

The traditional approach to analyse stability functions, is to convert their quasi-equili-

brium forms to the respective FE forms and display them as functions of the Richardson

number, Ri. This idea will be adopted here for the moment, however, only to show its

deficiencies. Fig. 3.2 illustrates that in this case the KC and LDOR stability functions

behave quite similarly, in spite of the fact that they are based on different model families.

The CHCD functions, however, greatly depart from the others. The value attained by

them for zero stratification is clearly smaller than the standard value (cεµ = 0.09), but

4Model coefficients used in their derivation can be found in Tab. 2.1 and Tab. 2.2.
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Figure 3.2: The FE stability functions of Luyten et al. [156] (LDOR), Kantha

and Clayson [135] (KC), and Canuto et al. [38] (CHCD) as functions of the
Richardson number, Ri.

the most remarkable feature is the large value of Ricr, the critical Richardson number for

which the complete extinction of turbulence is predicted. Tab. 3.6 corroborates this fact.

It also shows that the LDOR model allows for mixing at a slightly larger Ricr compared

to the KC model.

LDOR KC CHCD

Ricr 0.284 0.242 0.849

Table 3.6: The traditional critical
Richardson number, Ricr, as pre-
dicted by different FE stability func-
tions.

An impression of the behaviour of the new SE version of the CHCD stability functions

can be gained by inspection of the left panel of Fig. 3.3, which illustrates the dependence

of αN and αM on the Richardson number, Ri, as suggested by (3.48). Two points are

noticeable: First, as in FE, the existence of a critical Richardson number in SE, RiSEcr , at

which αN and αM become infinite and thus all turbulence is damped out, is suggested by

the left panel of Fig. 3.3. Second, in the unstratified case, αN = 0, (3.46)2 simplifies to

cεµ(αM) =
1− cε2

αM(1− cε1)
, (3.50)

which is a simple non-linear equation that can be solved for αM . Hence, the model predicts

that SE in the unstratified case occurs only for a single, universal value of the shear

number, M k
ε
=

√
αM . This is in accordance with many experiments (see Tavoularis

and Karnik [256] and Abid and Speziale [1]). Wilocx [294], pp. 296, summarizes
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Figure 3.3: Left panel: αN and αM as functions of Ri in SE for the Canuto et

al. [38] ASM used with the k-ω model. Right panel: Graphical solutions for the SE
value of αM for unstratified flows and different two-equation models. (KW=k-ω, MY=
Mellor-Yamada, KE=k-ε).

the findings and suggests that the measured value is about αM ≈ 25. It is obvious from

(3.50) that the value of αM predicted by the model depends on the model parameters.

Tab. 3.7 illustrates that, using the CHCD stability functions, this value is best met with

the coefficients of the k-ω model.

KW88 MY KE

αM 25.18 29.1 46.85

Table 3.7: Solutions of (3.50) for αM = (M k
ε )

2 for
the CHCD stability functions compared for different two-
equation models. The experimental value is about αM ≈ 25.
(KW88=k-ω 1988, MY= Mellor-Yamada, KE=k-ε)

It is also instructive to look at a graphical solution of (3.50). To this end, the CHCD

stability function cεµ for unstratified flows is plotted together with the SE restriction

condition (3.50) for different models in the right panel of Fig. 3.3. At the intercept points

of the restriction conditions with the stability function, the αM values of Tab. 3.7 can be

recovered. The corresponding values of cεµ are in the interval 0.04 ≤ cεµ ≤ 0.07, remote

from the value of the standard k-ε model, cεµ = 0.09. Fig. 3.3 also illustrates, that the

position of the intercept point for the k-ε model is very sensitive to small changes in both,

the model parameters and the ASM. It is rather unphysical that a slightly different ASM

could result in a very different value of αM , one of the most important parameters in

unstratified homogeneous shear flow. Hence, in the unstratified case of SE the ASM of

CHCD should be used together with the k-ω model (or the coefficient cε2 of the k-ε model

should be modified to yield a reasonable shear number,
√
αM , in SE).
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The steady state Richardson number, Rist, at which there is neither growth nor decay of

stratified turbulence, follows from (3.45). It depends on the model parameters, cε1, cε2

and, in particular, on cε3. In that sense, (3.45) constitutes a means of determining cε3,

once the stability functions, the model parameters cε1, cε2 and the steady-state Richardson

number, Rist, have been fixed.

Figure 3.4: Model parameter cε3 as a function of the steady-state Richardson number,
Rist, for the LDOR (left panel) and the KC (right panel) stability functions and different
two-equation models. (KW=k-ω 1988, MY= Mellor-Yamada, KE=k-ε)

The dependence of cε3 on Rist is displayed in Fig. 3.4 for two ASMs. Precise values for

all models considered are given in Tab. 3.8. It is obvious that the value of cε3 strongly

depends on the model parameters cε1 and cε2, i.e. on the two-equation model used. This

clearly contradicts Baumert and Peters [11], who argued that the canonical values

of cε1 and cε2 should be very similar for all models and hence a general condition for

cε3, valid for all models, should be derivable. In contrast to them, it is shown here that

small differences in cε1 and cε2 have an influence on cε3 that is at least comparable to

the influence of the different stability functions themselves. E.g., in the case of the k-ω

model the condition cε3 < 0 (equation (78) of Baumert and Peters [11]) excludes the

physically most interesting values of Rist for some sets of stability functions (see Tab.

3.8).

cε3
LDOR
(Rist = 0.25)

LDOR
(Rist = 0.15)

KC
(Rist = 0.20)

CHCD
(Rist = 0.25)

CHCD
(Rist = 0.15)

KW88 0.166 −0.178 0.422 0.358 −0.198

MY −0.401 −0.896 −0.032 −0.124 −0.925

KE −0.961 −1.556 −0.518 −0.629 −1.589

Table 3.8: Model parameter c3 in structural equilibrium for different steady-
state Richardson numbers, Rist, and different models. (KW88=k-ω 1988, MY=
Mellor-Yamada, KE=k-ε)
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Note also, that the choice cε1 = cε3 = 1.6 suggested by Mellor and Yamada [168, 169]

yields a model that computes a Rist far from the physically meaningful range (also see

Burchard [24]). From the arguments used above it should be clear that the value of

the constant c3 must be carefully re-computed for each model and each ASM in order to

assure a well-defined steady-state Richardson number.

The question addressed above, whether in SE, like in FE, there also exists a critical

Richardson number, RiSEcr , at which the model predicts the complete extinction of tur-

bulence, can be answered now, as the values of cε3 can be determined for all models (if

the value of Rist is fixed). Looking for singularities of the form αN , αM → ∞ when

Ri → RiSEcr in the analytical expressions (3.48) (an illustration of (3.48) is given in the

left panel of Fig. 3.3), the values of RiSEcr compiled in Tab. 3.9 can be derived.

Two facts should be pointed out: First, the values of RiSEcr are generally higher than the

corresponding values of Ricr. This shows, particularly in the case of the CHCD stability

functions, how important it is, to distinguish between FE and SE stability functions:

In many situations a model will continue to mix long after the “theoretical” (or better

traditional) limit, Ricr, is exceeded. Second, the values of RiSEcr depend heavily on the

parameters of the two-equation model. For the CHCD stability functions, e.g., the k-ε

model predicts a complete suppression of turbulence not before the Richardson number

reaches RiSEcr = 6.9, a value certainly beyond the physically reasonable range.

RiSEcr
LDOR
(Rist = 0.25)

LDOR
(Rist = 0.15)

KC
(Rist = 0.20)

CHCD
(Rist = 0.25)

KW88 0.289 0.324 0.253 1.353

MY 0.290 0.339 0.257 1.734

KE 0.294 0.387 0.267 6.908

Table 3.9: Critical Richardson number in SE, RiSEcr , for different steady-state
Richardson numbers, Rist, and different two-equation models. (KW88=k-ω 1988,
MY= Mellor-Yamada, KE=k-ε)

With the results obtained above, one is now in the position to obtain three versions of

stability functions depending only on Ri: The standard FE version, the new SE version

introduced in this section, and also the new SEE version, in which the actual behaviour

of the quasi-equilibrium version in SE is manifested. Before the actual stability functions

are displayed, however, it is instructive to look at the relations (3.48) that form the basis

on which the stability functions are built.

The versions of (3.48)1 that can be derived for quasi-equilibrium and thus lead to the
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stability functions displayed in Fig. 3.2, are displayed in Fig. 3.5. It is obvious that

for the range of αN displayed, the CHCD model predicts mixing at substantially higher

values of Ri. For αN → ∞, the values of the traditional critical Richardson number, Ricr,

compiled in Tab. 3.6 will be approached. Recall, that these conclusions apply only to

turbulence in equilibrium.

Figure 3.5: Richardson number, Ri, as a function of the
buoyancy parameter, αN , for the FE version of the stability
functions.

Since the SE and SEE versions of the stability functions represent the exact behaviour

of the non-equilibrium and quasi-equilibrium stability functions in SE, respectively, com-

paring them to the FE versions leads to an estimate of the error introduced in SE. On

the other hand, comparing the SE versions to the SEE versions in situations of SE gives

an answer to the interesting question, how large the error between the non-equilibrium

and the widely used quasi-equilibrium functions is. This possibility of obtaining error

estimates in SE is probably the most interesting application of the newly derived SE

stability functions. Up to now, no general statements about the error introduced by the

use of different stability functions could be obtained and most authors only conducted

numerical case studies of little general relevance.

(3.48)1 for the FE and the SEE versions of the LDOR and the KC stability functions

are compared in Fig. 3.6. The SEE versions were computed for model parameters of

different two-equation models. This figure illustrates that all versions exhibit only slightly

different behaviour, and for the single value of Ri = Rist they are necessarily equal. For

other values of Ri the curves are relatively close to each other and there seems to be

no particular need to distinguish between the FE and the SEE versions. Hence, in this

particular case there will be little difference between numerical models that evaluate the
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quasi-equilibrium versions (depending on αN), and models that use the FE and SEE

versions (both depending only on Ri).

Figure 3.6: Richardson number, Ri, as a function of the buoyancy parameter, αN ,
for the FE and the SEE versions of the LDOR (left panel) and the KC (right panel)
stability functions. The steady-state Richardson numbers, Rist, to which the models
have been tuned in each case, are marked by horizontal lines. (For the SEE versions:
KW88=k-ω 1988, MY= Mellor-Yamada, KE=k-ε)

However, Fig. 3.7 demonstrates that care must be observed, if other stability functions

are used: For the CHCD stability functions, e.g., the variability induced by using their

respective SE/SEE/FE versions (left panel) is exceeded by the variability induced by

using different two-equation models (right panel)!

Figure 3.7: Left panel: Richardson number, Ri, as a function of the buoyancy
parameter, αN , for the SE, SEE, and FE versions of the CHCD stability functions.
The parameters of the k-ω model have been used. Right panel: Same as left panel, but
now only for the FE version and the SE version computed for different two-equation
models. (KW88=k-ω 1988, MY= Mellor-Yamada, KE=k-ε)

Fig. 3.8 reveals that for high Ri this effect is even more pronounced: For the k-ω model

(left panel) all versions of the CHCD stability functions are well behaved, but for the k-ε

model (displayed together with other two-equation models in the right panel) a completely

unrealistic behaviour is computed for Ri � 0.8. In this case a value of RiSEcr = 6.9 for
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very large αN can be inferred from Tab. 3.9. Note again, that in all cases the stability

functions are equal only for the value Ri = Rist, marked by a horizontal line in all plots.

It can be concluded that for the CHCD stability functions there will be large differences

in model behaviour depending on what version is implemented in a numerical model. It

is recommended here to use the full non-equilibrium version together with the k-ω model.

Figure 3.8: Same a Fig. 3.7, but now for a greater range of Richardson numbers.

Corresponding relations for the newly derived, extended form of the KC stability functions

of (2.62) are plotted in Fig. 3.9 for different values of the new model parameter h. As

already pointed out in the context of (2.62), the overall behaviour is largely determined by

the value of h. Fig. 3.9 illustrates that for very small and for large values of h, functions

similar to the original KC versions are obtained. However, for intermediate values of h,

the functions do not show any similarity to the KC functions. Amazingly, for a value of

h ≈ 0.135, a set of stability functions very similar to the ones suggested by CHCD can be

derived (for example the value of RiSEcr is the same). This picture corroborates the fact

that a closer examination of the role of the return-to-isotropy time-scale, τp, is necessary,

before these stability functions can be used with any confidence.

Fig. 3.10–Fig. 3.13 illustrate, how the features discussed above manifest themselves in

the actual stability functions. In these plots, FE and SE/SEE versions of the stability

functions are displayed for a moderate range of Richardson numbers. Since the k-ω model

has proven to be most advantageous in connection with the stability functions used here,

SE and SEE versions are computed for the k-ω model coefficients only. Fig. 3.10 and Fig.

3.11 exemplify, how a different value of Rist (and hence cε3) affects the overall behaviour

of the stability functions: A decrease of Rist leads to a small increase of RiSEcr in this case.

FE and SEE versions are only equal for Ri = Rist. For the FE and SEE versions of the

KC stability functions shown in Fig. 3.12, a somewhat lower value of Rist = 0.2 had to
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Figure 3.9: Ri as a function of αN for the FE (left panel) and the SEE (right panel)
versions of the modified KC stability functions (see (2.62)). The k-ω model parameters
have been used with c3 = 0.422.

Figure 3.10: FE and SEE versions of cεµ (left panel) and cεµ
′ (right panel) for the

LDOR quasi-equilibrium stability functions. For the computation of the SEE version
the k-ω model parameters have been used. Rist = 0.25.

be chosen, since both, Ricr and RiSEcr were too close to the value 0.25 (see Tab. 3.6 and

Tab. 3.9).

Figure 3.11: Same as in Fig. 3.10, but now with Rist = 0.15.
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For the CHCD stability functions shown in Fig. 3.13, the differences between the FE and

the SE versions are much larger: Distinct from SEE, the SE version does not approach the

equilibrium value for Ri → 0. In SE, this limit corresponds to homogeneously sheared

turbulence not affected by buoyancy. Thus the values of cεµ and cεµ
′ correspond to the

value computed with αM from Tab. 3.7 (also see Appendix A.1). νht = cεµ
′ k2
ε
for Ri → 0

Figure 3.12: Same as in Fig. 3.10, but now for the KC quasi-equilibrium stability
functions and Rist = 0.2.

then relates to the viscosity of a passive scalar as in the experiments of Tavoularis

and Corrsin [254, 255]. Fig. 3.13 demonstrates particularly clearly, that the traditional

critical Richardson number, Ricr (see Tab. 3.6), cannot be an important parameter in

SE: The values of RiSEcr indicate that turbulence in SE is predicted to be active for values

much larger than Ricr. Again, both FE and SE stability functions coincide only for the

single value Ri = Rist = 0.25.

Figure 3.13: Same as in Fig. 3.10, but now for the FE and SE versions of the CHCD
non-equilibrium stability functions.

The turbulent Prandtl number is the ratio of the turbulent diffusivities of momentum and

heat as in

Prt =
νt
νht

=
cεµ
cεµ

′ . (3.51)
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The dependence of Prt on Ri is displayed in Fig. 3.14 for the FE and the SE/SEE versions

of the stability functions. The value for passive stratification (Ri → 0), Prt0, is in the

interval 0.7 < Prt0 < 0.85 for all models. Prt0 changes from FE (Prt0 ≈ 0.85) to SE

(Prt0 ≈ 0.78) for the CHCD stability functions. These values are close to Prt0 = 0.79

resulting from the DNS of Gerz et al. [86]. Launder [146] tuned his second-order

closure to Prt0 = 0.63. On the other hand, the laboratory experiments of Tavoularis

and Corrsin [254] suggested somewhat higher values of 1.06 < Prt0 < 1.12. The strong

increase of Prt with increasing Ri is in agreement with all measurements and DNS (see,

e.g., Figure 8 in Gerz et al. [86]). Only moderate Richardson numbers have been

plotted, since it is known from DNS (Gerz et al. [86]) and LES (Kaltenbach et

al. [134]) that Prt may become infinite near Ri ≈ 0.5, where the heat flux becomes zero

(and counter-gradient for even higher values of Ri). This trend would certainly not be

reproduced by the simple models used here.

Figure 3.14: Turbulent Prandtl number, Prt, as computed with the FE versions (left
panel) and the SEE (LDOR/KC) and SE (CHCD) versions (right panel) of the stability
functions. SE and SEE results have been computed with the k-ω coefficients. Rist was
chosen as in Fig. 3.10 - Fig. 3.13.

Turbulent Length-Scales in Stably Stratified Shear Flows

In stratified turbulence a number of different length-scales appear. The study of their

interrelations opens up new vistas on the properties of stratified turbulence (Dillon [65],

Schumann [219], Moum [179], Baumert and Peters [11]). Most prominent in the

framework of two-equation models is the master length-scale, l, directly available in the

Mellor-Yamada model, but also easily obtained from the other length-scale related vari-

ables via the relations (3.7)2 and (3.14)1. These relations also show that l is a dissipative

scale by its nature.
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The overturning length-scale of stratified laboratory flows is usually reported in terms of

the so-called Ellison scale

LE = −〈ρ′2〉
1
2

(
∂ρ

∂z

)−1

= 〈θ′2〉
1
2

(
∂θ

∂z

)−1

, (3.52)

a scale that also can be computed from the ASM. Using (2.48) and (2.49)3, the result is

LE =
(
cθcεµ

′) 1
2
k

3
2

ε
. (3.53)

Then, with the help of (3.14)1 it is easy to obtain the relation

LE
l

=
(
cθcεµ

′) 1
2
(
c0µ
)−3

. (3.54)

In SE, relation (3.54) can be expressed as a function of the Richardson number if (3.49)

is applied.

The Ellison scale is very sensitive with respect to fluctuations caused by internal waves

omnipresent in field measurements. There is another overturning scale better suited to

measurements in the ocean and in lakes. This scale is based on the stable reordering of

density fluctuation profiles and was introduced by Thorpe [267]. It is usually referred

to as the Thorpe scale, LT . Clearly, there is no straightforward way to obtain LT from

the model. Fortunately, the laboratory measurements of Itsweire et al. [123] and

the DNS of Itsweire et al. [124] indicate that it is quite reasonable to simply assume

LE ≈ LT .

Baumert and Peters [11] used results from the investigations of Rohr et al. [208]

and Ivey and Imberger [125] and claimed that

LT
l

≈ LE
l

=
1

c

(
c0µ
)−3

, (3.55)

with a value of c ≈ 2.8. Baumert and Peters [11] established their analysis of turbulent

length-scales computed by two-equation models partly on the basis of (3.55). However,

there are two serious problems with this approach: First, as remarked by the authors

themselves, it is not clear if c can really be considered a constant. Second, and more

seriously, by using (3.55), Baumert and Peters [11] mixed up experimental results

and model parameters, in order to study the behaviour of a model. Indeed, inspection

of (3.54) and (3.55) shows that the models do not predict c = const in general. Fig.

3.15 reveals that for different versions of stability functions, LE/l is a strong function of

Ri. This should be contrasted to the constant value of LE

l
≈ 2.2, which is obtained from

(3.55) using a standard value of c0µ ≈ 0.55.
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Figure 3.15: LE/l for the FE and the SE/SEE versions of the LDOR (left panel)
and CHCD (right panel) stability functions. Rist = 0.25 was used together with the
coefficients of the k-ω model. Note the different ranges of Ri.

The scales at which vertical turbulent motions are likely to be affected by buoyancy has

become famous by the name Ozmidov [186] scale. It is defined by

LO =
( ε

N3

) 1
2

. (3.56)

An interesting relation can be found from (3.53) and (3.56). Making use of (2.54)2, it is

easy to show that
LE
LO

=
(
cθcεµ

′) 1
2 α

3
4
N . (3.57)

In FE and SE, the scale relation (3.57) can be expressed as a function of the Richardson

number only, if (3.48) and (3.49) are used. (3.57) extends the results of Baumert and

Peters [11] in providing an exact analytical expression of the model behavior. The above

authors used the empirical (and problematic) relation (3.55) and, in addition, another

empirical relation for the turbulent Prandtl number (their equation (84)), to express

LE/LO in terms of Ri. It will be interesting to see, how their findings deviate from the

exact expression (3.57). Note, that the experiments of Rohr et al. [208] were conducted

for turbulence in SE, and hence cεµ
′(Ri) and αN(Ri) in (3.57) should be derived also for

SE.

Laboratory data of Rohr et al. [208] and the LES of Schumann and Gerz [220],

obtained from turbulence in SE, support a simple power law of the form

LE
LO

= 4.2Ri
3
4 , (3.58)

which is valid up to (very roughly) LE/LO ≈ 1.2 . For larger Richardson numbers the

data are not conclusive. Fig. 3.16 illustrates, how measured and modelled length-scales

relate for several versions of stability functions. The FE versions of both, the LDOR
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Figure 3.16: LE/LO for different versions of the LDOR (left panel) and the CHCD

(right panel) stability functions. The line coding is as follows: — 4.2Ri
3
4 , - - - FE

model, – · – · – SE/SEE model. The horizontal line marks the approximate range of
validity of (3.58).

and the CHCD stability functions almost perfectly mimic the 3/4 exponent of the power

law, but underestimate somewhat the factor in the scale ratio. The SE/SEE versions

are closer to the measurements for small Ri, but tend to show a larger departure and

undesired curvature for large values of Ri. The abrupt change in the power law exponent

at LE/LO ≈ 1.2 suggested by the data (and indicated by a horizontal line in Fig. 3.16)

is not even rudimentarily reproduced by the models. Note, that this does not imply that

the overturning scale is unlimited by the Ozmidov scale in other situations. In fact, it is

shown in Section 4.1.3 that in FE the ratio LE/LO is a constant with a value near one

(depending on Ri, see Tab. 4.1).

It has been remarked by several authors (Schumann [219], Kaltenbach et al. [134])

that stratified turbulence is a problem of multiple outer time-scales set by the shear

frequency, M , and the buoyancy frequency, N . Thus, using a representative internal ve-

locity scale, two length-scales can be defined, the shear length-scale, Ls, and the buoyancy

length-scale, Lb, which can be written as

Ls =
k

1
2

M
and Lb =

k
1
2

N
. (3.59)

Other authors (e.g. Stillinger et al. [247], Kaltenbach et al. [134]) prefer us-

ing the r.m.s vertical velocity,
√
w′2, instead of k

1
2 , as the internal velocity scale. Re-

sults should, however, not be overly influenced by this choice. Schumann [219] and

Kaltenbach et al. [134] pointed out that the dissipation roughly scales with Ls, but

not with Lb.

The ratio of LE to the buoyancy scale, Lb, can be found from combining (3.53), (3.59)2
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and (2.54)2. The result
LE
Lb

=
(
cθcεµ

′) 1
2 α

1
2
N (3.60)

should be compared to LE/Lb ≈ 1.6Ri
1
2 , the approximate behaviour of the measured

values for Ri < 0.25 (see Baumert and Peters [11]). Fig. 3.17 reveals that the model

Figure 3.17: Same as in Fig. 3.16, but now for LE/Lb. The line coding is as follows:

— 1.6Ri
1
2 , - - - FE, – · – · – SE/SEE.

behaviour is comparable to that in Fig. 3.16: The decay exponent is met almost perfectly

by the FE versions of the stability functions, but the data are somewhat underestimated.

The SE/SEE versions predict the data very well for small values of Ri, but exhibit devi-

ations for high Ri.

Restrictions for the Parameters of Two-Equation Models

By using the canonical form of the two-equation models, simple relations between the

parameters of different models can be derived by inspection of (3.29)–(3.33). A glance on

Tab. 3.10 shows that the model coefficients are generally not far apart. It seems plausible

that they are subject to similar restrictions.

In this context it was the important contribution of Tennekes [257] to recognize that “on

dimensional grounds, l cannot depend upon the shear because the shear is homogeneous

and cannot impose a length-scale.” Inspection of (3.34) reveals that this requires cε1 =

3/2. Of course, an analogous argument is not valid for the influence of the stratification.

In fact, the stratification is known to impose the only restriction on the length-scale in

stratified flow, if the influence of boundaries is negligible. This is in accordance with the

observation of Schumann [219] that, if the value of cε1 is chosen far from cε1 = 3/2,

an unphysical increase of the dissipative length-scale under shear will result. With the
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cε1 cε2 cε3

Relation k-ω parameters: cω1 + 1 c0ω2 + 1 cω3 + 1

k-ω 1988 values: 1.555 1.833 f(Rist)

k-ω 1998 values: 1.52 1.8 f(Rist)

Relation to MY-parameters: 5
2
− cl1

5
2
− cl2

5
2
− cl3

MY values: 1.6 2 1.6

Relation k-ε parameters: corigε1 corigε2 corigε3

k-ε values: 1.44 1.92 f(Rist)

Table 3.10: Relations of model coefficients of the canonical model
expressed by (3.29) - (3.33).

coefficients used here, however, the exponential evolution of l in SE is controlled mainly

by a balance between the first and the last term in (3.34).

It was Tennekes argument that tempted Baumert and Peters [11] to assume that the

small differences between the parameters of different models were unimportant and that

general results, valid for all models, could be derived from the canonical model. However,

it has been shown in the preceeding sections that this is in fact not true: It is precisely the

small difference in model parameters that leads to large differences in model performance,

a drastical example being the right panel of Fig. 3.8.

3.4.6 Shear-Free Turbulence

In the preceeding section, two-equation models were shown to be isomorphic only in

homogeneous turbulence, where the turbulent transport terms are zero. The structural

difference of the models manifests itself only in the presence of turbulent transport, where

the mapping from one model to another is known to introduce extra, so-called cross-

diffusion terms. This section emphasizes the differences in model performance induced

by the turbulent transport terms, which are modelled as diffusion terms in the standard

down gradient form.

The essential influence of the turbulent diffusion terms can be investigated by considering

the simple balance of turbulent dissipation and transport of turbulent kinetic energy in

one coordinate direction. Using the Taylor scaling for the rate of dissipation, ε = Bk
3
2/l,
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the balance of kinetic energy simplifies to

d

dz

(
νt
dk

dz

)
= B

k
3
2

l
. (3.61)

In spite of its apparent simplicity, a balance of turbulent diffusion and dissipation is of

great importance in geophysical situations: In lakes and oceans, e.g., the existence of a

layer affected by wave breaking with a near balance of dissipation and diffusion of kinetic

energy is now well established (see, e.g., Gemmrich and Farmer [85]). Stimulated by

such observations, there have been some recent attempts to model the wave enhanced layer

with differential turbulence closures (Craig and Banner [53], Craig [52], Burchard

[25]). Since the wave affected layer is by far not the only region, in which the diffusive

terms are important, this section focuses on the fundamental properties of two-equation

models in the diffusive-dissipative balance.

Having wave induced mixing in mind, early laboratory set-ups by Rouse and Dodu

[211], Cromwell [54], Turner and Kraus [274], and Turner [272] used grid stirrers

to mimic wave breaking. These investigators were mainly interested in entrainment laws

depending on a bulk Richardson number, like that in (3.1). Turner [273] summarized

the knowledge available then.

Soon, however, it was recognized (Thompson and Turner [262], Linden [151]), that

entrainment laws cannot reliably be formulated as functions of Richardson numbers de-

pending only on bulk parameters. The local Richardson number based on turbulent

parameters close to the interface was identified to be the most relevant parameter. As a

consequence, a large number of publications appeared investigating the local Richardson

number influence on entrainment processes (Hopfinger and Toly [111], Hannoun et

al. [102], Hannoun and List [103], Nokes [184], Fernando [73], Briggs et al.

[22]). Unfortunately, the entrainment turned out to depend on countless subtleties and

Fernando [73] had to state that “it is clear that the present state of affairs does not

allow us to arrive at any conclusion on the entrainment law”. Thus, apparently little can

be gained at the moment by comparing differential closures to entrainment laws.

If it is accepted, however, that the entrainment is correlated with turbulent quantities close

to the interface, naturally the question arises, how these quantities decay with increasing

distance from the stirrer (or the wave affected layer in open waters). A number of works

were aimed to answer this question (Thompson and Turner [262], Hopfinger and

Toly [111], Hannoun et al. [102], Briggs et al. [21]). However, it seems that only

Briggs et al. [21] investigated (very briefly, though) the spatial decay of turbulent

quantities as predicted by two-equation models. Since these models a very popular, a
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more detailed investigation of this topic is necessary.

With the help of (3.61), first insight can be gained by using the plausible assumptions

νt ∝ k
1
2 l and 〈w′ 1

2
u′
iu

′
i〉 = νt

∂k

∂z
∝ k

3
2 as suggested by the results of Hannoun et al.

[102]. Then (3.61) simplifies to

d

dz
k

3
2 = B

k
3
2

l
, (3.62)

where the constants of proportionality have been absorbed in B. (3.62) can be integrated,

if the mixing length is described as a function of z. A relation of the form l = Lz (L

being the constant of proportionality) suggested by many experiments (Thompson and

Turner [262], Hopfinger and Toly [111], Hannoun et al. [102]) can be used. The

spatial decay of k is then given by a simple power law of the form

k = k0

(
z

z0

)α
, α = −2B

3L
, (3.63)

where k0 is the kinetic energy at the position z = z0.

Indeed, the existence of a power law for the decay of turbulent fluctuations has been

confirmed by most authors (however, see Nokes [184]). Unfortunately, measurements

did not allow for a very precise establishment of the decay exponent, α. Tab. 3.11

displays a range of −3.0 < α < −1.7, with a value of α = −2.45 computed from the DNS

of Briggs et al. [21].

Measured decay rates: α L

Thompson and Turner [262] -(3.0) 0.1

Hopfinger and Toly [111] - 2.0 0.17-0.33

Nokes [184] -(1.7-3.0) —

Hannoun et al. [102] -(2.0) 0.1

Briggs et al. [21] - 2.45 —

Table 3.11: Decay exponent for the turbulent kinetic energy,
α, and the constants of proportionality for the length-scale, L,
in grid stirring experiments and DNS. The values in brackets
have been calculated by assuming that the decay exponent for
the horizontal velocity fluctuations is half of that for k.

In the unstratified, shear-free, but inhomogeneous case, all two-equation models simplify

to a balance between diffusion and dissipation of the kinetic energy and of the length-

scale determining variable. Under these conditions, (3.3), describing the Wilcox [293]
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k-ω model, becomes

d

dz

(
1

σωk

k

ω

dk

dz

)
= (c0µ)

4ωk ,
d

dz

(
1

σω

k

ω

dω

dz

)
= (c0µ)

4c0ω2ω
2 . (3.64)

Note, that the new Wilcox [294] version would have introduced the parameter function

fcµ (defined in (3.4) and (3.5)) on the left hand side of (3.64). In this case, however, the

equations become intractable by analytical methods. Nevertheless, a numerical solution

can be found and this is discussed below.

With the same assumptions, the Mellor-Yamada model, expressed by (3.9), simplifies to

d

dz

(
clkk

1
2 l
dk

dz

)
= (c0µ)

3k
3
2

l
,

d

dz

(
clk

1
2 l
dkl

dz

)
= (c0µ)

3cl2k
3
2 . (3.65)

For simplicity, it has been assumed, that walls are remote, and thus F = 1 can be assumed

for the wall function appearing in (3.9)2. Recalling that the wave affected layer is close to

the surface, it is clear that this assumption does not hold in general. Chances are small

that the wall function, F , which has been tuned to the logarithmic boundary layer will

be of great benefit in shear-free situations. This again indicates that the presence of a

wall function must be considered a large draw back of the Mellor-Yamada model.

Finally, the k-ε model (3.13) reduces to

d

dz

(
(c0µ)

4

σεk

k2

ε

dk

dz

)
= ε ,

d

dz

(
(c0µ)

4

σε

k2

ε

dε

dz

)
= cε2

ε2

k
. (3.66)

Even with symbolic mathematical tools, it turned out to be impossible to obtain a com-

plete analytical solution of the non-linear systems (3.64)–(3.66). However, recalling (3.63),

it seemed promising to try a simple power law Ansatz of the form k = Kzα, ε = Ezβ ,

ω = Wzδ, l = Lzσ and νt = Nzγ with constant factors and exponents. This method

has already been used successfully by Briggs et al. [21]. If the power law Ansatz is

inserted in (3.64)–(3.66), after some algebra the non-linear systems of differential equa-

tions reduce to linear systems for the exponents of the decay laws. The exponents and

the model coefficients for the k-ω model have to obey the relations

0 = α− 2δ − 2 , 1 =
σωc

0
ω2

σkω

α(2α− δ − 1)

δ(α− 1)
; (3.67)

for the Mellor-Yamada model they are

0 = σ − 1 , 1 =
clkcl2
cl

α(3
2
α+ σ − 1)

(α + σ)(3
2
α + 2σ − 1)

, (3.68)
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and for the k-ε model

0 = 3α− 2β − 2 , 1 =
σεcε2
σkε

α(3α− β − 1)

β(2α− 1)
. (3.69)

Each system yields a quadratic equation for the decay exponent α. On physical grounds,

one of the two roots can be discarded in all cases. Tab. 3.12 summarizes the relevant

roots for the standard model coefficients. Also included are results in which the turbulent

Schmidt numbers, σω and σε, appearing in (3.67) and (3.69) have been re-computed for

a von Kármán constant κ = 0.4 by means of the log-layer compatibility relations (3.15)

and (3.17), respectively. It has been remarked several times above that models should be

compared only, if they are tuned to compute a common von Kármán constant, κ, in the

logarithmic boundary layer.

The sensitivity of the new Wilcox [294] k-ω model to the parameter function fcµ was

investigated by simply setting fcµ = 1, but otherwise retaining the new parameter values.

The difference between the decay exponents computed this way and the ones computed

numerically with non-constant fcµ (see below) extracts the influence of fcµ. Tab. 3.12 re-

computed decay rates: α σ γ

k-ω 1988 (orig.) −2.53 1 −0.26

k-ω 1988 (κ = 0.4) −2.39 1 −0.2

k-ω 1998 (fcµ = 1) −2.68 1 −0.34

Mellor-Yamada (orig.) −2.87 1 −0.43

k-ε (orig., σε = 1.2) −7.95 1 −2.98

k-ε (orig., σε = 1.3) −4.97 1 −1.49

k-ε (orig., σε = 1.4) −3.65 1 −0.83

k-ε (κ = 0.4) −19.47 1 −8.74

Table 3.12: Decay exponents α for the turbulent
kinetic energy, k, σ for the turbulent length-scale, l,
and γ for the turbulent diffusivity, νt, as computed
by different two-equations models.

veals that the decay exponents for the kinetic energy are in the range of the measurements

in all cases, except for the k-ε model. In perfect accordance with the measurements, the

turbulent length-scale, l, is computed to increase in proportion to the value of z for all

models.

All models, except the k-ε model, are rather insensitive to small changes in model pa-

rameters. Thus, it seemed worthwhile to conduct a sensitivity analysis for this model
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by expressing the decay exponent of the turbulent energy, α, as a function of the model

parameters. (3.69) and (3.17) have been used to study the behaviour of α, if the von

Kármán constant, κ, and the parameters cε2 and σk, respectively, are varied over a small,

physically reasonable interval. Surprisingly, a singularity in the decay exponent α pre-

dicted by the k-ε model is revealed in Fig. 3.18: For certain parameter relations, α

becomes infinite and, after crossing the singularity, it takes on values that are beyond the

physically meaningful range.

Figure 3.18: Sensitivity of the spatial decay exponent α for small changes of the
parameters κ and cε2 (left panel) and κ and σεk (right panel) as computed by (3.69) and
(3.17) for the k-ε model. The singularities are marked by a vertical surface, respectively.
Only negative exponents have been displayed.

Conducting a similar sensitivity study for the k-ω model, Fig. 3.19 confirms that this

model is not sensitive to small parameter changes and computed results are in the range

of the measured values.

Figure 3.19: Sensitivity of the spatial decay exponent α for small changes of the
parameters κ and cω2 (left panel) and κ and σωk (right panel) as computed by (3.67)
and (3.15) for the k-ω model. Only negative exponents α have been displayed.
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A closer investigation of the singularity of the k-ε model showed that for certain relations

of the model parameters κ, cε2, and σk, the denominator of the polynomial expression

determining α becomes zero. These relations are illustrated in Fig. 3.20. The figure

reveals that the standard k-ε model predicts a singular α, if the von Kármán constant, κ

is tuned to a value of κcrit ≈ 0.387. For lower values of κ, α becomes regular again, but

takes on unphysical values. The value of κcrit should be contrasted to the popular value

of κ = 0.35 used in atmospheric sciences (see Businger et al. [32]).

Figure 3.20: The k-ε model: Critical relations, at which the spatial decay exponent
α becomes infinite, for the model parameters κ and cε2 (left panel) and for κ and σεk
(right panel). Axis origin is at the standard values, respectively

As remarked above, a power law of decay probably does not embrace the complete set

of solutions of the non-linear systems (3.64)–(3.66). The question, whether the power

law solutions are in fact reproduced by the numerical models and whether singularities

can really be identified, will be answered now. Fig. 3.21 displays numerical results for

the decay of the turbulent kinetic energy, k, computed with the standard k-ε model, but

with the parameter σε varied between 1 < σε < 1.4. Note, that for the standard model

parameters a range of the von Kármán constant 0.35 < κ < 0.45 corresponds to a range

of 0.85 < σε < 1.41. The critical value κcrit ≈ 0.387 corresponds to σcrit
ε ≈ 1.042.

At a first glance, Fig. 3.21 contradicts the analytical results derived above: Seemingly,

there is no evidence of a singularity or of a particularly unphysical behaviour in the decay

of k. Moreover, the curves in Fig. 3.21 do not simplify to straight lines, if plotted on a

double-logarithmic scale (not shown). This indicates that there is apparently no simple

power law behaviour.

The apparent contradiction between analytical and numerical results can be resolved

by introducing the notation of the virtual origin. It has been remarked by almost all

authors conducting grid stirring experiments (Hopfinger and Toly [111], Nokes [184],
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Figure 3.21: Decay of the turbulent kinetic energy, k, with distance, z, from the
source of k at z = 0. The results have been computed with the standard k-ε model,
but with varying parameter σε. Values of k and ε at the source (z = 0) have been used
in accordance with an experiment by Hopfinger and Toly [111].

Hannoun et al. [102]) or Direct Numerical Simulations (see Briggs et al. [21]) that

the mid position of the oscillating grid (or the position of the source of k in DNS) is not

the appropriate origin for the determination of the decay exponents. Of course, the same

arguments apply also for the numerical results presented here: The position of the source

of k, which has been assigned the value z = 0 in Fig. 3.21, is not an appropriate choice

for the origin of the decay laws.

Different methods have been suggested to assess the appropriate position of the virtual

origin. Here, the method of Hopfinger and Toly [111], who defined the virtual origin

as the point, where the integral scale of turbulence, l, becomes zero, is adopted. Fig. 3.22

displays numerical results for l using different values of the parameter σε. In accordance

with the analytical solution, a linear relation between the distance, z, and the length-

scale, l can be observed. Note, that a linear relation is the only one not affected by the

choice of the virtual origin. The position of the virtual origin, i.e. the position at which

l = 0, varies strongly with the parameter σε. Furthermore, for values σε > σcrit
ε it is at

z < 0 and for σε < σcrit
ε it is at z > 0 (recall that σcrit

ε = 1.042). As illustrated in Fig.
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Figure 3.22: Same as Fig. 3.21, but now for the turbulent length-scale, l. The
theoretical value for the transition from increasing to decreasing l is σcritε = 1.042.

3.22, in the latter case the k-ε model predicts, in contrast to all measurements, that the

turbulent length-scale, l, decreases with increasing distance from the source. At σε = σcrit
ε

the position of the virtual origin changes from −∞ to +∞.

It is hoped that, if the spatial decay of k is re-evaluated with an offset corresponding

exactly to the virtual origin, a power law of decay will be recovered. That this is indeed

the case, is illustrated in Fig. 3.23: Using the method outlined above, the spatial decay of

k has been plotted on a double-logarithmic scale for different versions of the k-ε and the

k-ω models. From Fig. 3.23 it is clear, that all curves are represented almost perfectly

by straight lines. These lines start in each case at a value of z, which corresponds to

their offset from the virtual origin, respectively. The computed slopes (marked by small

numbers in the plot) agree very well with the values given in Tab. 3.12 considering the

uncertainty in finding the exact position of the virtual origin.

The above arguments show that the numerical model perfectly reproduces the analytical

results. Thus, the power law solution of the non-linear systems (3.64)–(3.66) is identical

to the numerical results. It should be added that the numerical solution of the complete

Wilcox [294] k-ω model (recall that no analytical solution could be found for this case)
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Figure 3.23: Doubly logarithmic representation of the numerically computed spatial
decay of the turbulent kinetic energy, k, for the standard k-ε model (with different
values of σε) and for different versions of the k-ω model. k-ω 88 relates to the Wilcox

[293] model, k-ω 98 (a) to the complete Wilcox [294] model, whereas k-ω 98 (b) stands
for the same model with fcµ = 1. Numbers indicate the slope of the curves estimated
from a straight line fit.

predicts a decay exponent of α ≈ −6.4. This value is not in the range of the measurements

and it can be concluded that the parameter function fcµ introduced in (3.5) has a strong,

but undesired effect in shear-free situations.

Some concluding remarks seem appropriate. In this section it has been demonstrated that

the only meaningful method of interpreting laboratory and numerical results for shear-free

decay experiments is by referring to a virtual origin. If this method is used, numerical

calculations agree perfectly with simple analytical power law solutions. However, it has

also become evident that the standard k-ε model computes a decay rate, that is far too

high. Moreover, for slightly different, but physically reasonable and popular parameter

values, the decay rates computed by this model cross a singularity and become unphysical.

In this case the turbulent length-scale, l, decreases with increasing distance from the

source, a behaviour that is contradicted by all measurements. Since νt ∝ k
1
2 l this leads
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also to an unphysical decay of the turbulent diffusivity. In contrast to that, the standard

versions of the k-ω model and the Mellor-Yamada model predict decay rates that are

fully in the range of the measured values and insensitive to small changes in the model

parameters. Taking the drawbacks related to the wall function of the Mellor-Yamada

model into consideration, the results discussed in this section indicate a clear superiority

of the k-ω model of Wilcox [293] compared to all other two-equation models introduced

in this chapter.



Chapter 4

Applications

In this chapter a number of applications of the two-equation models introduced in Section

3 will be presented. The chapter starts with a model validation by comparing model

predictions for three standard flows: A plane Couette flow, a barotropic channel flow, and

the stratified shear-entrainment experiment of Kato and Phillips [137]. Besides this,

the prerequisites for the following section are prepared.

The validation also includes an investigation of the relative performance of the two-

equation models used in this chapter: The k-ω model in its traditional form from 1988

(Wilcox [293]), the same model in its revised form from 1998 (Wilcox [293]), and

the k-ε model in its standard form. The Mellor-Yamada model is not included, because

the ambiguous definition of its wall damping function was considered to be a too serious

impairment of an objective model comparison1.

The main section consists of an application of the k-ω and the k-ε models to the seiche-

induced boundary layer of a small lake (Umlauf and Lorke [282]). This part of the

chapter owes much to Drs. A. Wüest and A. Lorke from the EAWAG, Switzerland, who

kindly gave me access to their very recently measured and still unpublished data in the

seiche-induced bottom boundary layer of Lake Alpnach, Switzerland. Their unique data

set made it possible to present here (for the first time, it is believed) a comparison of

modelled and measured turbulent quantities in the oscillating bottom boundary layer

of a lake. These results will be contrasted to the much better explored tidally induced

boundary layers in the ocean.

1Excellent comparisons between the k-ε model and the Mellor-Yamada model can be found in Bur-

chard et al. [31] and Burchard [24].
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4.1 Validation

The numerical models presented in this work are based on a new, object-oriented structure

(see Section 6); besides this, they use non-standard boundary conditions and a different

type of boundary cells (see Section 5). To demonstrate, that the numerical method and

the model implementation are correct, in this section a brief validation of the respective

model performance for three standard flows is executed: A turbulent plane Couette flow,

a pressure-gradient driven, open barotropic channel flow, and the entrainment experiment

of Kato and Phillips [137] shall be considered.

All models have been tuned to compute a common von Kármán constant of κ = 0.4 by

using the consistency equations (3.15) and (3.17). Close to a rigid wall all models compute

the well-known solution
u

u∗
=

1

κ
ln

z + z0
z0

, (4.1)

where the wall roughness length, z0, has been assigned a value of z0 = 10−3m for all runs

(see Appendix A.1). For comparison, this asymptotic solution has been included in some

of the plots shown below (see respective legends). For the Couette flow and the channel

flow, the results presented in this section correspond to steady-state solutions for large

times. In the case of the open barotropic channel flow and the entrainment experiment,

no-flux boundary conditions for all quantities have been used at the free surface.

4.1.1 Plane Couette Flow

The structure of the plane turbulent Couette flow is well established by numerous exper-

iments (cf. Schlichting and Gersten [217]): Apart from the viscous sub-layers, not

resolved here, it consists of two logarithmic boundary layers and a small transition region

in the centre.

The non-dimensional profiles displayed in Fig. 4.1 correspond to the steady-state solutions

computed by several two-equation models. The left panel of this figure demonstrates that

all models reproduce the structure of the plane Couette flow. Close to the walls, the

profiles approach their asymptotic forms according to (4.1). Note, that on the scale of

this panel the profiles computed by the different models are indistinguishable.

The turbulent length-scale, l, displayed on the right panel of Fig. 4.1 has been computed

by using the formulae (3.7)2 for the k-ω and (3.14)1 for the k-ε model. This scale is seen
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Figure 4.1: The mean velocity, v, (left panel) and the turbulent length-scale, l, (right
panel) as functions of the distance from the bottom, z, in a shear-driven turbulent
Couette flow for different models. The variables have been made dimensionless with
the channel depth H = 5 m and the friction velocity u∗ = 6 · 10−3 m/s. The wall
roughness length is z0 = 10−3 m. All models have been tuned to compute a von
Kármán constant of κ = 0.4. The asymptotic law-of-the-wall relations have also been
included (see legends).

to approach exactly its asymptotic value l = κ(z + z0) close to the wall. As with the

velocity profiles, the curves computed by different models cannot be distinguished and

thus only the k-ε model result has been plotted here.

4.1.2 Pressure-Driven Channel Flow

Pressure-driven, barotropic channel flows with free surface have been investigated in de-

tail by numerous researchers (see Schlichting and Gersten [217]). Baumert and

Radach [12] demonstrated that their k-ε model (which is almost identical to that used

here) could reproduce the measurements of several authors fairly well. They pointed out,

however, that the slight asymmetry of the measured turbulent viscosity (not shown here)

is not predicted by the standard model. Here, the results of Baumert and Radach

[12] are assumed to be correct and their computations shall not be repeated. Merely, the

differences computed by different types of two-equation models will be considered. Fig.

4.2 shows that, in contrast to the Couette flow, the predicted profiles of the velocity and

the turbulent length-scale are not entirely identical for different models. Close to the wall,

however, all models approach the asymptotic log-layer form. A comparison with Figure 1
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Figure 4.2: Same as in Fig. 4.1, but now for a barotropic channel flow driven by a

pressure-gradient of 1
ρ

∂p

∂x
= −7.2 · 10−6 m/s2, which yields a value of u∗ = 6 · 10−3 m/s

at the bottom as in the plane Couette flow.

of Baumert and Radach [12] reveals that the scatter in the measurements of different

authors does not allow for a conclusive decision, which of the models would best predict

this channel flow.

Also in contrast to plane Couette flow, where k/u2
∗ = 1/(c0µ)

2 is a constant (not shown),

in the barotropic channel flow (Fig. 4.3) k/u2
∗ is seen to be a linearly decreasing function

of z. Clearly, this behaviour is due to the presence of a pressure-gradient and only very

close to the lower wall the asymptotic value k/u2
∗ = 1/(c0µ)

2 ≈ 3.333 is assumed. Fig. 4.3

also demonstrates that all models predict nearly identical profiles of k.

The influence of the non-constant k-distribution in the barotropic channel flow can also be

conceived in Fig. 4.4, which displays the budget of the turbulent kinetic energy according

to (2.11). The figure illustrates that this budget consists of a perfect balance between

shear production and dissipation for the plane Couette flow, whereas for the barotropic

channel flow there is also a small contribution due to the divergence of the turbulent

transport. Kinetic energy is shown to be transported from the lower part of the channel

to the upper part. For positions larger than z/H ≈ 0.8, where the shear production

becomes rather small, the divergence term dominates the budget of k. It has been shown

in Section 3.4.5 that two-equation models are only isomorphic, if the transport terms are

negligible. Hence, the small differences in the predicted profiles of Fig. 4.2 and Fig. 4.3
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Figure 4.3: Profiles of the turbulent kinetic energy, k, in the open barotropic chan-
nel flow as predicted by different models. Variables have been made non-dimensional
with the channel height, H and with the square of the friction velocity u2∗. All other
parameters are as in Fig. 4.2.

are likely due to the different influence of the turbulent transport terms for z/H � 0.8 in

different models.

Figure 4.4: Terms contributing to the budget of the turbulent kinetic energy, (2.11),
as computed by the k-ε model. Profiles of the budget are shown for the plane Couette
flow (left panel) and the barotropic channel flow (right panel). The budget terms have
been made dimensionless with the dissipation scale u3∗/H. Parameters are as in Fig.
4.1 and Fig. 4.2. The term “budget” in the legends refers to the sum of all budget
terms, which clearly should be zero and fall directly on the ordinate axis. Note the
different scales!
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It is also illustrated in Fig. 4.4 that for both, the plane Couette flow and the barotropic

channel flow, the models compute the sum of all budget terms to be exactly zero. This

can be taken as another indication for the correct discretization and implementation of

the model equations.

4.1.3 Wind-Driven Entrainment

One of the most essential requirements for a turbulence model used in oceanography

and physical limnology is the correct prediction of the mixing layer depth2 (MLD). As

discussed in Section 3.2, a great amount of research has been devoted to this topic, the

results, however, being not entirely conclusive until today.

An important contribution to the understanding of mixing layer deepening was the ex-

periment of Kato and Phillips [137] (KP) describing the entrainment of a turbulent

mixing layer, driven by a constant surface stress, into a linearly stratified fluid. KP

proposed an entrainment law of the form (3.1), scaled with U = u∗. However, later in-

vestigations of Price [195] and Thompson [261] showed, that their experiments were

affected by sidewall friction and that the scaling with u∗ was not appropriate. Having an

instability mechanism in mind, Price [195] suggested to scale with the difference between

the vertically integrated bulk velocity in the mixing layer and the velocity below it. This

idea, expressed as U = ∆U in (3.1), traces back to the work of Pollard et al. [192].

Price [195] showed that it leads to an entrainment law of the form

E =
ue
∆U

=
1

2
Ri

1
2
vRi

− 1
2

τ , (4.2)

where

Riv =
g δρ h

ρ0(∆U)2
and Riτ =

g δρ h

ρ0u2∗
. (4.3)

Recall, that E is defined as the dimensionless entrainment function, h as the depth of the

mixing layer, δρ as the difference between the vertically integrated density in the mixing

layer and the density just below it, and ρ0 as some reference density.

For linear stratification, δρ can be expressed in terms of the initial buoyancy frequency,

N0, leading to

Riτ =
1

2

N2
0h

2

u2∗
. (4.4)

2The term “mixing” layer is used here instead of the more common term “mixed” layer to emphasize,

that the layer in not completely mixed.



4.1. VALIDATION 91

It is seen that Riτ increases quadratically with increasing MLD.

Price [195] demonstrated the existence of a constant bulk Richardson number Riv ≈ 0.6

over a wide range of Riτ . With this assumption (and using the definition ue := dh/dt),

(4.2) constitutes a simple differential equation for the MLD that can be integrated to

yield

h = (2Riv)
1
4u∗ (t/N0)

1
2 = 1.047 u∗ (t/N0)

1
2 with Riv = 0.6. (4.5)

An equation of this form has also been suggested by Thompson [261]. Remarkably, the

same result can be obtained by simply considering the self-similarity of this entrainment

experiment (cf. Kundu [143], Mellor and Strub [167]). However, in all cases an

equation of the form (4.5) can only be found, if Riv = const. is assumed for all times.

Unfortunately, the physical basis of this bulk Richardson number criterion is not easy to

justify. As pointed out by Kundu [142, 143], the requirement Riv = const. is equivalent

to Ri = const. at the bottom of the mixing layer, if self-similarity is taken into account.

However, this author also remarked that other criteria like Rif = const. would have led

to very similar results. In this section a new, unifying interpretation of the physical

processes at the bottom of the mixing layer is suggested solely in terms of the steady

state Richardson number, Rist, defined in (3.45).

Almost all authors who modelled mixing layer deepening with one- or two-equation models

of the Mellor and Yamada [169] type (e.g. Hassid and Galperin [106], Galperin

et al. [81] , Martin [160], Richardson et al. [201]) had to employ a constraint of

the form

l < clim
q

N
with q =

√
2k

1
2 (4.6)

to obtain a reasonable mixing length at the bottom of the mixing layer. Using the def-

inition of the Ozmidov scale (3.56) and expressing the dissipation in terms of k and l

according to (3.11)1, (4.6) leads to a constraint on the ratio of the mixing length, l, to

the Ozmidov scale, LO, according to

l

LO
<

(
clim√
2c0µ

) 3
2

= 1.57 · · ·1.7 , (4.7)

if the value clim = 0.53 (suggested by Hassid and Galperin [106]) and the values for

c0µ implied by the ASMs introduced above are used.

Very recently, however, Burchard [24] pointed out that the restriction (4.6) is only

necessary because the Mellor and Yamada [169] model uses a model coefficient cl3 in

(3.9) that does not allow for a turbulent state of Full Equilibrium (FE). If this coefficient is

adjusted to yield a reasonable steady state Richardson number Rist, (4.6) is automatically
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satisfied at the bottom of the mixing layer. It has been argued already by Burchard and

Bolding [28] that Rist is the most important parameter affecting the predicted MLD.

In accordance with their findings, the left panel of Fig. 4.5 confirms, that the MLD3 is

almost exclusively determined by Rist: Both, the non-equilibrium ASM of Canuto et

al [38] (CHCD) and the quasi-equilibrium model of Luyten et al. [156] (LDOR) lead

to almost identical MLDs, provided Rist is the same. The right panel of Fig. 4.5 reveals

Figure 4.5: Left panel: MLD for shear-driven entrainment as computed by the k-ε
model with the ASMs of Canuto et al [38] (CHCD) and Luyten et al. [156]
(LDOR). The models have been tuned to different values of Rist. Right panel: Same
as left panel, but now for the k-ε model and the k-ω model with Rist = 0.25 and
the ASM of LDOR. The empirical relation suggested by Price [195] is also included.
(N2 = 10−4s−2, u∗ = 6 · 10−3m/s.)

that the findings of Burchard and Bolding [28] can also be generalized to the new

buoyancy extended k-ω model: For Rist = 0.25 the MLDs computed by the k-ε model

and the k-ω model satisfactorily reproduce the data of the KP experiment.

The left panel of Fig. 4.6 demonstrates, that at the bottom of the mixing layer Ri ≈ Rist,

irrespective of the ASM. This explains, at least partly, why Rist is the key parameter in

mixing layer simulations. With the LDOR model and for Rist = 0.25, the Richardson

number levels off faster with increasing distance from the interface. This effect is most

likely related to the fact that Rist = 0.25 is close to Ricr = 0.28 (taken from Tab. 3.6),

3The MLD is defined in this case as the depth, where the criterion k > 10−5 m2s−2 is first violated. It

is almost identical to other criteria that consider, e.g., the depth of the strongest density gradient. The

criterion used here emphasizes that the layer is actively “mixing” and can also be used for unstratified

entrainment experiments.
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at which turbulence is completely suppressed in FE. In contrast, for the CHCD model

the critical Richardson number Ricr = 0.85 is much higher and the profile of Ri is not

affected. According to the right panel of Fig. 4.6, both ASMs compute comparable

Figure 4.6: Left panel: Ri as a function of height after 24h entrainment as computed
by the k-ε model. Right panel: Same as left panel, but now for the turbulent diffusivity
of momentum, νt. Parameters and abbreviations as in Fig. 4.5.

turbulent diffusivities, if the models are tuned to the same Rist. However, for the reason

explained above, for Rist = 0.25, the LDOR model computes a somewhat suppressed

turbulent diffusivity at the bottom of the mixing layer compared to the CHCD model.

It is also instructive to look at the budgets of the turbulent kinetic energy, k, as displayed

in Fig. 4.7. It is obvious, that for both, the LDOR and the CHCD model, the rate

term and the turbulent transport term play only a marginal role (even though the latter

is somewhat more pronounced with the LDOR model). From this fact two important

conclusions can be drawn:

• Since the only structural difference between the two-equation models used here is

the representation of the turbulent transport terms, they will compute very similar

results, if used with the same ASM (see Fig. 4.5, left panel).

• The equilibrium P +G = ε is a necessary condition for FE (see Section 3.4.5). Since

this condition is satisfied over the whole mixing layer and Ri = Rist at its bottom,

turbulence must be in a state of FE there.
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Figure 4.7: Same as Fig. 4.6, but now for the terms contributing to the budget of k
in the mixing layer. “Divergence” denotes the divergence of the turbulent transport of
k, “budget” the sum of all terms (which has to be zero). Left panel: k-ε model with
the ASM of LDOR and Rist = 0.25. Right panel: k-ε model with the ASM of CHCD
and Rist = 0.25.

The last conclusion can be used to resolve the question of Kundu [143] discussed at the

beginning of the section, whether Riv = const., Rif = const. or Ri = const. is physically

most relevant for self-similarity of the problem: Self-similarity is achieved because turbu-

lence at the bottom of the mixing layer is in a state of Full Equilibrium (FE). According

to (3.45) in FE we have Ri = const. ⇒ Rif = const. As shown by Kundu [143] the

conditions for similarity then also require Riv = const. Only in this case, the conditions

Riv = const., Rif = const., and Ri = const. are equivalent.

To see, how the constant clim in (4.6) and Rist are related in FE, consider the relation

l

q
N =

(c0µ)
3

√
2

k

ε
N =

(c0µ)
3

√
2

√
αN , (4.8)

which can easily be obtained, if (3.14)1 is applied. Now, according to (3.48), in FE the

buoyancy parameter αN is only a function of Rist (an illustration is given in Fig. 3.3).

Hence, lN/q and by means of (4.6) also clim are only functions of Rist. Moreover, using

relation (3.57), the ratio LE/LO is also only a function of Rist (see Section 3.4.5). Tab.

4.1 summarizes the results. From this table it is seen that for the ASM of LDOR a steady

state Richardson number somewhat lower than Rist = 0.225 yields approximately the

value of clim = 0.53 also suggested by Hassid and Galperin [106]. This is very close

to Rist = 0.25, which has been shown to agree best with the MLD of the KP experiment.
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For both values, the ratio LE/LO is somewhat larger than one.

Rist 0.15 0.175 0.20 0.225 0.25

LE/LO 0.78 0.90 1.04 1.21 1.46

clim 0.28 0.34 0.43 0.55 0.78

Table 4.1: Relation between the steady state
Richardson number, Rist, the constant clim of
(4.6), and the ratio LE/LO for the ASM of
LDOR.

Figure 4.8: Left panel: Same as Fig. 4.6, but now for the turbulent kinetic energy,
k. Right panel: Same as left panel, but now for the k-ε model and the k-ω model with
Rist = 0.25 and the ASM of LDOR.

Note, that the conclusions drawn above do not imply that all ASMs compute the same

turbulent structure in mixing layers if adjusted to the same value of Rist: Fig. 4.8 clearly

shows that the profiles of k computed from different ASMs can be very different. The

LDOR model predicts a maximum of k in the lower part of mixing layer that is hard to

interprete physically. Unfortunately, KP did not measure any turbulent quantities and

there seem to be no other experiments which could be used to verify or contradict such a

profile. The CHCD model, in contrast, computes a smooth decrease of k with increasing

depth. The small differences in the values of k at the upper boundary result from the

different values of the Bradshaw constant, cB, predicted by the LDOR and the CHCD

model in the logarithmic boundary layer (see Appendix A.1).
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4.2 Modelling a Seiche-Induced

Oscillating Boundary Layer in a Lake

Mixing in the interior of oceans and lakes is known to be weak and intermittent. The

current state of knowledge is, that turbulence occurs in an extensive number of turbulent

patches with low dissipation rates, small vertical displacements, and consistently negligible

mass flux, 〈ρ′w′〉 (Imberger [117]). This author also estimates an average value for the

turbulent diffusivity of all turbulent patches of around νt ≈ 10−7 m2/s. A value of this

order can also be deduced from the dissipation rate measurements of Wüest et al.

[299] in a small Swiss lake. This value is at least an order of magnitude smaller than the

net value νnett ≈ 10-6–10-5 m2/s, found by tracer experiments of numerous authors using

different methods (Imboden and Emerson [121], Robarts and Wart [203], Wüest

et al. [299], Goudsmit et al. [92]).

The same discrepancy between tracer experiments and microstructure measurements has

been puzzling oceanographers for a long time. Finally, more than two decades ago, Armi

[6, 7] pointed out that bottom currents in the deep ocean were in many cases energetic

enough to produce a well mixed turbulent bottom boundary layer. He set forth that a

combination of mixing at the boundaries of the ocean and lateral advection might be

disguised in form of the high measured net (or better apparent) vertical diffusivity. It

is very likely that a comparable mechanism is of importance also in lakes. Indeed, this

assumption has obtained considerable support from an interesting tracer experiment in a

small lake, recently published by Goudsmit et al. [92]: A tracer cloud released far from

the boundaries of this lake at first showed a vertical diffusivity in perfect agreement with

parallel microstructure measurements. However, a soon as the tracer cloud touched the

bottom boundary layer, the basin-wide diffusivity of the tracer increased by an order of

magnitude. This carefully conducted experiment was an explicit proof of the importance

of boundary mixing, but it could not clarify, what kind of mixing mechanisms occurred

at the boundary.

From the classical works of C. H. Mortimer it is known, that in lakes the bottom currents

are most often caused by different types of (generally Coriolis force affected) internal

oscillations or seiches. Periods usually observed range between several hours and a few

days and the bottom speed seldom exceeds 10 cm/s (Mortimer [177]; Hutter [115],

Bäuerle [9], Lemmin and Imboden [149], Münnich et al. [181]). Imberger [117]

demonstrated that, even though the seiche-induced bottom currents are much weaker

compared to the ocean, the high value of the net diffusivity could be directly related to
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the action of internal seiches.

There are several other bottom mixing mechanisms that can be important in stratified

fluids (see Thorpe [268], Garrett [82, 83], Imberger and Ivey [119]). The mixing

caused by the breaking of internal waves at sloping boundaries (see de Silva et al.

[62]) is most notable in this context. Near the thermocline, the intrusion of mixed water

from the boundaries into the lake interior is a phenomenon also sometimes observed (see

Gloor et al. [90]). However, all these effects cannot be parameterized by the one-

dimensional two-equation models used here, and hence the discussion is confined to the

dynamics of boundary layers near the deepest part of a lake, where the effect of sloping

boundaries is small.

The first investigations of the turbulence structure in the bottom boundary layer of a

continental shelf were published by Caldwell and Chriss [33]. These authors found

strong evidence for the existence of a viscous sub-layer of a couple of millimetres thickness

below a logarithmic boundary layer. However, a closer investigation of the same site,

published a couple of years later by the same authors (Chriss and Caldwell [47, 48]),

indicated that observations in oceanic boundary layers were somewhat different from

the standard laboratory flow experiments over hydrodynamically smooth surfaces: They

found that the form drag and the non-local influence of larger roughness elements had to be

taken into account. Most interesting in the context of this work was their demonstration

that multiple roughness scales can generate velocity profiles with multiple logarithmic

regions above each other. It will be shown below that some of their findings can be

explained by only considering the dynamical behaviour of currents and turbulence in

non-stationary bottom boundary layers with a single roughness length.

Later measurements of velocity profiles on the deep sea floor by Gust and Weatherly

[95] and the dissipation measurements in the boundary layer performed by Dewey and

Crawford [63] corroborated the fact, that it is unreliable to obtain estimates of the bot-

tom stress by simply fitting a logarithmic profile to velocity measurements. These findings

will be confirmed by the current work, however with completely different arguments con-

sidering the dynamical behaviour of the boundary layer. Even though the importance of

the pressure-gradient and rate terms in the equations describing non-stationary boundary

layers are well documented (see Yaglom [300], Sleath [227]) only few oceanographers

have taken this fact into account, a noticeable exception being Soulsby and Dyer [230].

A number of applications of differential turbulence closures to oceanic boundary layers

have been reported. Vager and Kagan [284] conducted a theoretical investigation of
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unstratified rotating tidal flows with a one-equation model. Weatherly and Martin

[289] applied the zero-equation (level 2) model ofMellor and Yamada [168] to a steady-

state turbulent boundary layer and investigated the effects of stratification and bottom

slope. Zero-equation models do not predict a phase-lag between the velocity shear and the

turbulent quantities, known to be important in tidally accelerated flows (see Baumert

and Radach [12]). Besides this, they are known to compute unstable and unphysical

diffusivity profiles as shown by Burchard and Baumert [27]. Applications of one-

and two-dimensional two-equation models with simple ASMs to laboratory and stratified

real-world tidal flows have been reported by Smith and Takhar [228, 229]. Thomas

and Takhar [260] modelled the turbulent boundary layer induced by long non-linear

waves with a k-ε model. A complete second-order closure was used by Richards [200]

for their theoretical investigation of the stratified, rotating and oscillating boundary layer.

No comparison to measurements was included, though. One of the few comparisons of

measured and modelled tidal currents was conducted by Baumert and Radach [12].

With their standard k-ε model, they were able to explain the essential physics of tidal

flows, most remarkably the characteristic tidal time-lag between the current and the

turbulent kinetic energy at the flow reversal. Two-equation models have also been very

successfully compared to near bottom dissipation rate measurements in the Irish Sea over

several tidal cycles by Burchard et al. [31]. To my knowledge, no investigations of

this kind have ever been reported for the oscillating bottom boundary layer in a lake.

Apparently, there exist also no continuous time series of microstructure measurements of

the turbulent dissipation for a complete seiche period. This work presents results that fill

the gap.

Oscillating boundary layers of industrial relevance have also been modelled. Shima [224]

could excellently reproduce several laboratory and DNS results with his second-order low

Reynolds number model. Jakirlić [127] compared several other low Reynolds number

second-order closure schemes and came to a similar conclusion.

It can be summarized that differential closure schemes are a powerful tool for the descrip-

tion of oscillating boundary layers. Even though some aspects of such flows are known to

be only reproducible with expensive low Reynolds number second-order closure models,

the essential physics of tidal flows are captured by simple two-equation models. It will

be shown in the following that this is also true for the seiche-induced boundary layers in

lakes.
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4.2.1 The Measurements

Measurements of turbulent quantities in the bottom boundary layer of lakes are difficult to

perform. The rate of dissipation is several orders of magnitude smaller compared to tidal

flows in the ocean and the vertical extent of the boundary layers seldom exceeds a few

meters. Because of instrumental restrictions, no such measurements in lakes have been

realized until recently. The data available for this work were gathered by the EAWAG,

Switzerland. Apparently, they include the first reported measured dissipation rate profiles

in a seiche-induced bottom boundary layer of a lake, that have a temporal resolution

allowing for the construction of a dissipation rate time series over a whole seiche cycle.

The measurements have been conducted in Lake Alpnach, a small lake in Switzerland,

on 16./17. Mai 2000. Lake Alpnach is a relatively shallow (max. depth is 34m), almost

completely isolated side-basin of Lake Lucerne (see Fig. 4.9). In summer, the mountain

Figure 4.9: Geometry and bathymetry of Lake Alpnach (Switzerland). “P” denotes
the approximate position of the measuring site, where the depth is close to the maximum
depth of 34m.

and valley breezes along the nearby mountains result in a predominantly dial wind that

blows parallel to the major axis of the lake. Under such conditions, internal seiching of

the first and, remarkably, second vertical (and first horizontal in both cases) mode and

corresponding deep-water currents are excited in this lake. Observed periods are about

8 hours for the first vertical and about 24 hours for the second vertical mode (for details

see Münnich et al. [181], Gloor et al. [91, 89]).

The data set comprises high-resolution ADP velocity measurements at different heights

above the sediment, temperature profiles, and a great number of temperature microstruc-

ture profiles for one complete seiche period.
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Boundary layer velocities, averaged over moving intervals of one hour, are displayed in

Fig. 4.10. This figure illustrates that during the period of the measurements, time series

of the velocity can be approximated rudimentarily by a simple cosine curve. The seiche

period is somewhat less than 24 hours, indicating the excitation of the second vertical

mode (the corresponding eigenvalue problem for continuous stratification has been solved

numerically by Münnich et al. [181]). However, as modulations of the simple cosine

Figure 4.10: Measured averaged velocities in the main direction of the basin for one
seiche period at different heights above the sediment.

curve, there appear episodes of very high time rates (e.g. between 1 and 4 hours) and

episodes with almost constant velocities (e.g. between 4 and 6 hours and between 17.5

and 19 hours). It is not clear, if these distinctive features are due to the non-linearity

of the long internal wave, due to laminarization effects as described in Shima [224] or

due to the superposition of different internal wave modes and other influences. There is

no conclusive indication for a phase-shift in the velocity records at different heights as

suggested, e.g., by Soulsby and Dyer [230], however a small phase-shift can be deduced

from single velocity profiles (see below).

A typical temperature profile during the measuring period is given in Fig. 4.11. Only the

lower part of the water column is resolved. It can be seen that near the bottom there is a

well-mixed boundary layer of approximately 3m thickness. Earlier publications (Gloor

et al. [91, 90])) reported a thickness of 2-7m with an average of 4-5m. It is also known

that the thickness can vary considerably within a few hours solely because of the reversible

redistribution of water masses by the internal seiching motion. The observed time-scale

of decay of the well-mixed layer at the deepest part of the lake is 10-20 days, after the

seiching motion ceases (see Gloor et al. [91, 90]).

An investigation of the high resolution temperature profiles (not shown) revealed that in

the turbulent boundary layer the buoyancy frequency, N , is at least one order of magni-


