Assignment Nr. 1

due 27 April

Problem 1

Verify the identities
(a) $A_{i y k z d} \delta_{k l}=A_{i y l z d}$ ('exchange property'),
(b) $\varepsilon_{i j k} \varepsilon_{i j k}=6$,
(c) $\varepsilon_{i j k} \varepsilon_{i j m}=2 \delta_{k m}$,
(d) $\varepsilon_{i j k} \varepsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} \quad\left({ }^{\prime} \varepsilon-\delta\right.$ identity'),
where $\delta_{i j}$ denotes the Kronecker- δ and $\varepsilon_{i j k}$ the alternating symbol. Hint: (b) and (c) follow from (d).

Problem 2

Let $A_{i j}$ be a symmetric and $B_{i j}$ a skew-symmetric second-order tensor. Show that the contraction or the inner product of a symmetric and an anti-symmetric secondorder tensor is always zero, i.e. $A_{i j} B_{i j}=0$.

Problem 3

Use indical notation to verify the following identities:
(a) $\nabla \times \nabla c=\mathbf{0}$
(b) $(d \nabla c) \times \nabla c=\mathbf{0}$
(c) $\nabla \cdot(\nabla \times \boldsymbol{a})=\mathbf{0}$
(d) $\boldsymbol{a} \cdot \nabla \boldsymbol{a}=(\nabla \times \boldsymbol{a}) \times \boldsymbol{a}+\frac{1}{2} \nabla(\boldsymbol{a} \cdot \boldsymbol{a})$
(e) $\nabla \times \nabla^{2} \boldsymbol{a}=\nabla^{2}(\nabla \times \boldsymbol{a})$
(f) $\nabla \times(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{a}(\nabla \cdot \boldsymbol{b})+(\boldsymbol{b} \cdot \nabla) \boldsymbol{a}-\boldsymbol{b}(\nabla \cdot \boldsymbol{a})-(\boldsymbol{a} \cdot \nabla) \boldsymbol{b}$
where \boldsymbol{a} and \boldsymbol{b} are vectors, and c and d scalars. Hint: for parts (d) and (f), use the $\varepsilon-\delta$ identity. For each case, indicate if the equalities hold for a scalar, a vector, or a second-order tensor.

Problem 4

For arbitrary ω_{k}, let the components of a tensor \boldsymbol{W} be given by

$$
\begin{equation*}
W_{i j}=-\frac{1}{2} \varepsilon_{i j k} \omega_{k} . \tag{1}
\end{equation*}
$$

(a) Show that \boldsymbol{W} is a skew-symmetric tensor.
(b) Using the relation $\varepsilon_{i j k} \varepsilon_{i j l}=2 \delta_{k l}$ (see above), show that (1) can be inverted to yield

$$
\begin{equation*}
\omega_{i}=\varepsilon_{i j k} W_{k j} \tag{2}
\end{equation*}
$$

Problem 5

With U being a random variable with probability density function $f(V)$, and a being a constant, use the definition of the mean to show that

- $\langle a\rangle=a$
- $\langle a U\rangle=a\langle U\rangle$
- $\langle\langle U\rangle\rangle=\langle U\rangle$
- $\langle u\rangle=0$, where $u=U-\langle U\rangle$
(Hint: Check the appendix of the lecture notes, where the basics of probability theory are briefly discussed.)

