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Updating pH measurements in brackish waters:

Characterization of the indicator dye m-Cresol purple based on newly available TRIS buffers
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Å Track pH changes in 
brackish waters, e.g. 
potential acidifcation 
caused by the uptake 
of anthropogenic CO2

(Fig. 1 & 2)

Å Use accurate and 
precise pH 
measurements to 
determine other CO2

system parameters, 
like the total CO2

concentration
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Rising atmospheric CO2 and open 
ocean acidification [1] Alkalinity increase in the Baltic Sea 

counteracts CO2 induced acidification [2]

Xibuȥt!uif!
combined impact 
of the global 
atmospheric CO2

rise and local 
alkalinity 
dynamics on the 
Baltic Sea pH?

How it works: Spectrophotometric pH 
measurements with m-Cresol purple (mCP)

Task 1: Applicable pH range V

Task 2: H2S and DOM robustness of the 
method [5]

V

Outlook

Open Ocean

Baltic Sea

Baltic Sea rivers

Suwannee river (US)

Rio Orinoco (Venezuela)

éPore and ground watersé

Å The pH-indicator dye mCP is added to 
the sample and the absorption 
spectrum is measured (Fig. 3)

Å In the pH range of seawater the diprotic 
acid mCP exists as the deprotonated 
(I2-) and monoprotonated (HI-) species, 
which have different absorption peaks

Å The pH can be calcualted from the peak 
ratio R, the dissociation constant pK2

and the extinction coefficients ƨ[3,4]:

R-ratio

+H+

-H+

�L�* L �L�-�6 �5�á�6 E�Ž�‘�‰
�B�8�7�8�����? �Û�4F�B�9�;�< �����?

�B�9�;�< ���6�? F �B�8�7�8���6�? �Û�4
�:�s�;

Fig. 1:Atmospheric pCO2 (red), surface water pCO2 (blue) and pH trends at the 
Hawaii Ocean Time-series Station (HOTS) in the subtropical North Pacific Ocean.

Fig. 2: Temporal development of alkalinty in the surface water of the central Baltic Sea, shown as deviation 
from the long-term mean. High data quality allow for the clear detection of a positive trend since the mid 1990s.

Fig. 3: Molecular structure of mCP and absorption spectra at 
high, intermediate, and low pH. The ratio R of the absorbances at 
434 and 578 nm can be used to calculate the pH of the sample

Fig. 4: Precision of spectrophotometric pH measurements vs. 
salinity and pH. The highest precisions is achieved at an 
absorption ratio R = 1, at pH levels ~0.3 units below the pK(mCP).

Fig. 5: Spectrophotometric pH values of three buffered artificial 
seawater solutions (panels) spiked with variable amounts of humic 
(HA) and fulvic acids (FA) that cause a self-absorption (yellowish 
colour) of the solution. The true pH of the solutions, (TRIS, 2-AP, 
and BIS) did not change from the value at zero self-absorption by 
the addition of organic acids. Lower pH values towards higher self-
absorption of the solution are caused by spectral disturbances. The 
perturbation is more pronounced when the deuterium lamp is 
turned off (dashed line) vs. on (solid line).
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Å At high and low pH the spectra of mCP 
(Fig. 3) are dominated by either the 
deprotonated or the monoprotonated 
species and the precisions decreases

Å This is critical in waters with a high pH-
range, like the Baltic Sea (~ 6.7 Ȣ8.5)

Å The precision of the method was 
estimated based on the error propagation 
of absorption uncertainties (Fig. 4)

Å The robustness of the method 
against H2S and DOM was 
investigated experimentally

Å Spiking strongly buffered seawater 
solutions with organic matter 
extracts from the Suwannee river 
did not cause perturbations at 
concentration typical for the Baltic 
Sea (Fig. 5)

Å In solutions strongly coloured by 
CDOM we recommend to use 
intense light sources and short 
cuvettes

Å The robustness of the method 
against H2S (up to concentrations of 
400 µmol kg-1, Black Sea maximum) 
was verified by comparison 
measurement with glass electrodes

Å Integrate the spectrophotometric pH 
measurement system developed within 
the BONUS PINBAL project into the Ferry 
box system on VOS Finnmaid (within 
follow-up project BONUS INTEGRAL)

Å Start monitoring pH in the Baltic Sea 
surface waters with a high spatio-
temporal resolution

Å pH instruments need to be 
calibrated in buffer solutions 
with the same salinity (S) as 
the sample

Å Such buffer solutions were 
not available for S = 5-20 
(Fig. 6)

Fig. 6: Previous knowledge of TRIS buffer pH in 
artificial seawater  as function of salinity.

Å The calibration of spectrophotometric pH measurements refers to 
the determination of the dissociation constant pK2(mCP) (Eq. 1) 
of the dye

Å Based on a recent charaterization of TRIS buffer solutions (Poster 
P227 by Bastkowski et al.) we determined the pK2(mCP) for S = 5-
20 and temperatures between 5-35°C (Fig. 7).

Å After finalizaing the evaluation of the rawdata, this will allow for 
accurate spectrophotometric measurements in (almost) the 
entire S- and T-range of the Baltic Sea and other brackish waters
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dissociation constant pK for brackish 
waters (V)

Fig. 7: (a) Extended characterization of the pH of TRIS buffered artificial seawater solution for 
the salinity range 5-20 allow for (b) the accurate determination of the dissociation constant of 
mCP in brackish waters, covering a wide range of temperatures.
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