Assignment 3

Marvin Lorenz, Dr. Martin Schmidt
due to 16.05 .2018

1 Problem 1

In this problem we will take a look at how an infinite ocean at rest reacts to a homogeneous wind starting at $t=0$. The wind acts as a volume force onto the surface mixed layer:

$$
\begin{align*}
& X(t, z)=X_{0} \theta\left(z+H_{m i x}\right) \theta(t) \tag{1}\\
& Y(t, z)=0 \tag{2}
\end{align*}
$$

Our equations of motion are:

$$
\begin{align*}
& \frac{\partial u}{\partial t}-f v=X-r u \tag{3}\\
& \frac{\partial v}{\partial t}+f u=Y-r v \tag{4}
\end{align*}
$$

with $r>0$ being a damping coefficient. The goal of this exercise is to find $u(t)$ and $v(t)$.
(a) Describe in your own words the meaning of each term in eq. (3) and (4).
(b) Introduce the complex velocity U,

$$
\begin{equation*}
U=u+i v \tag{5}
\end{equation*}
$$

to reduce the differential equation system to one equation.
(c) Use a Fourier ansatz for $U(t)$ and $X(t)$ to find an expression for $\tilde{U}(\omega)$. We define Fourier transformation by:

$$
\begin{equation*}
f(t)=\int_{-\infty}^{\infty} e^{-i \omega t} \tilde{f}(\omega) \frac{d \omega}{2 \pi}, \quad \text { and } \quad \tilde{f}(\omega)=\int_{-\infty}^{\infty} e^{i \omega t} f(t) d t \tag{6}
\end{equation*}
$$

Hint: The Fourier transform of $f(t)=\theta(t)$ is $\tilde{f}(\omega)=\frac{i}{\omega+i \epsilon}$.
(d) Transform $\tilde{U}(\omega)$ back to $U(t)$ using the definition in eq. (6). This is a complex path integral. Use the Residue theorem to solve it. Is the path integral closed in the upper or lower halfplane? Hint: If you didn't find $\tilde{U}(\omega)$:

$$
\begin{equation*}
\tilde{U}(\omega)=\frac{-X_{0} \theta\left(z+H_{m i x}\right)}{(\omega+i \epsilon)(\omega-f+i r)} \tag{7}
\end{equation*}
$$

(e) Compute the real and imaginary part of $U(t)$ to find $u(t)$ and $v(t)$. Describe the resulting motion of the velocity field of u and v.

