Assignment 5

Marvin Lorenz, Dr. Martin Schmidt

due to 13.06 .2018

1 Problem 1

In this assignment we continue with the scenario of assignment 4, but this time we take a look at the temporal evolution and the balances that establish before and after the propagation of inertial waves. The temporal evolution is given by eq. (2.335)-(2.337) for one vertical mode:

$$
\begin{align*}
& v(x, y, t)=-\frac{\tau^{x}}{\rho_{0} f} a\left[\theta(t) \theta(y)(1-\cos (f t))-\frac{\operatorname{sig}(y)}{2} \theta(t-\lambda|y|)\right. \\
&\left.\left(e^{-\frac{|y|}{R}}-\cos f t+\frac{|y|}{R} \sqrt{\frac{2}{f \pi t}} \cos \left(f \sqrt{t^{2}-\lambda^{2} y^{2}}+\frac{\pi}{4}\right)\right)\right], \tag{1}\\
& u(x, y, t)=\frac{\tau^{x}}{\rho_{0}} a\left[\theta(t) \theta(y) \frac{\sin (f t)}{f}+\frac{\operatorname{sig}(y)}{2} \theta(t-\lambda|y|)\right. \\
&\left.\left(t e^{-\frac{|y|}{R}}-\frac{\sin f t}{f}+\frac{|y|}{R f} \sqrt{\frac{2}{f \pi t}} \sin \left(f \sqrt{t^{2}-\lambda^{2} y^{2}}+\frac{\pi}{4}\right)\right)\right], \tag{2}\\
& p(x, y, t)=\frac{\tau^{x}}{\rho_{0}} a \frac{R}{2} \theta(t-\lambda|y|)\left(t f e^{-\frac{|y|}{R}}-\sqrt{\frac{2}{f \pi t}} \sin \left(f \sqrt{t^{2}-\lambda^{2} y^{2}}+\frac{\pi}{4}\right)\right) . \tag{3}
\end{align*}
$$

(a) Recall the geostrophic and the Ekman balance. Write down the equation systems and describe their meanings.
(b) What balance establishes at position y before the inertial waves propagate through? Verify that eq. (1)-(3) fulfill the governing equation system.
(c) Which balance establishes after the inertial waves propagated through? Again, verify the solution.

Hints: Recall that the wind stress X is given by:

$$
\begin{equation*}
X=\frac{\tau^{x}}{\rho_{0}} a \theta(y) \theta(t) \tag{4}
\end{equation*}
$$

Neglect the last complicated sine and cosine terms which have their origin in the approximations of the Bessel functions.

