Building an Open Source workbench for marine biogeochemical models of the water column

Hans Burchard1,2,3, Karsten Bolding2,3, Thomas Neumann1, Wolfgang Fennel1, Torsten Seifert1, Lars Umlauf1,3, and Marie Maar2

1. Baltic Sea Research Institute Warnemünde, Germany
2. Bolding & Burchard Hydrodynamics, Denmark/Germany
3. Member of GOTM Team, \url{http://www.gotm.net}
Contents

• Why an ecosystem model work bench?
• GOTM - A physical water column model
 • Turbulence models in GOTM
 • GOTM examples
• Positivity and conservation
• Coupling GOTM with BIO: Current status
• GOTM-BIO example
• Road Map
Motivation

Biogeochemical models strongly depend on the physical model into which they are embedded.

⇒ They can only be compared to each others in identical physical frames.

⇒ GOTM-BIO may be such a framework.
Motivation

Northern North Sea temperature

- simulation with GOTM
- annual run for 1998
- 110 m water depth
- realistic forcing

Range: $7^\circ C - 14^\circ C$
Motivation

Phytoplankton (NPZD-model, internal wave mixing):

Phytoplankton (NPZD-model, no internal wave mixing):

GOTM is a one-dimensional numerical model developed and supported by a core team of ocean modellers. GOTM aims at simulating accurately vertical exchange processes in the marine environment where mixing is known to play a key role. GOTM is freely available under the GPL (Gnu Public License).

The interested user can download the source code, a set of test cases (Papa, November, Flex, ...) and a comprehensive report.

You are warmly invited to join the GOTM mailing list and send any comments/questions to the GOTM team or become a GOTM contributor. The GOTM developers are grateful to their sponsors.
GOTM: Algebraic SMCs

Turbulent Fluxes:

\[\langle \bar{u} \bar{w} \rangle = -\nu_t \partial_z \bar{u}, \quad \langle \bar{w} \bar{T} \rangle = -\nu'_t \partial_z \bar{T} \]

Eddy Viscosity / Eddy Diffusivity:

\[\nu_t = c_\mu (\alpha_M, \alpha_N) \frac{k^2}{\varepsilon}, \quad \nu'_t = c'_\mu (\alpha_M, \alpha_N) \frac{k^2}{\varepsilon}. \]

Shear Number, Buoyancy Number:

\[\alpha_M = \frac{k^2}{\varepsilon^2} M^2, \quad \alpha_N = \frac{k^2}{\varepsilon^2} N^2. \]
GOTM: TKE-Equation

\[\frac{\partial_t k}{\partial z} \left(\frac{\nu_t}{\sigma_k} \frac{\partial_z k}{\partial z} \right) = P + B - \varepsilon, \]

\[L \propto \frac{k^{3/2}}{\varepsilon} \] \hspace{1cm} (1)

- \(k \) \hspace{1cm} \text{turbulent kinetic energy}
- \(P \) \hspace{1cm} \text{shear production}
- \(B \) \hspace{1cm} \text{buoyancy production}
- \(\varepsilon \) \hspace{1cm} \text{viscous dissipation}
- \(L \) \hspace{1cm} \text{macro length scale}
GOTM: Length scale equations

$k-\varepsilon$ model (*Launder and Spalding* [1972]):

$$\partial_t \varepsilon - \partial_z \left(\frac{\nu_t}{\sigma_\varepsilon} \partial_z \varepsilon \right) = \frac{\varepsilon}{k} \left(c_{\varepsilon 1} P + c_{\varepsilon 3} B - c_{\varepsilon 2} \varepsilon \right).$$

$k-kL$ model (*Mellor and Yamada* [1982]):

$$\partial_t (kL) - \partial_z (S_l \partial_z (kL)) =$$

$$\frac{L}{2} \left[E_1 P + E_3 B - \left(1 + E_2 \left(\frac{L}{L_z} \right)^2 \right) \varepsilon \right].$$
GOTM: Length scale equations

k-ω model (Wilcox [1988], Umlauf et al. [2003]):

\[\partial_t \omega - \partial_z \left(\frac{\nu_t}{\sigma_\omega} \partial_z \omega \right) = \frac{\omega}{k} (c_{m1} P + c_{m3} B - c_{m2} \varepsilon), \quad \omega = \frac{\varepsilon}{k}. \]

Generic model (Umlauf and Burchard [2003]):

\[\partial_t (k^m L^n) - \partial_z \left(\frac{\nu_t}{\sigma_{mn}} \partial_z (k^m L^n) \right) = \]

\[k^{m-1} L^n (c_{nm1} P + c_{mn3} B - c_{mn2} \varepsilon). \]
GOTM: Northern North Sea

Bathymetry and station map

Burchard et al. [2002]
GOTM: Northern North Sea

Wind and Tides

Surface stress at station NNS

Bed stress at station NNS

Date in 1998

Burchard et al. [2002]
GOTM: Northern North Sea

Observed temperature

PROVESS NNS, Observed Temperature, deg C

Bolding et al. [2002]
GOTM: Northern North Sea

Simulated temperature

Bolding et al. [2002]
GOTM: Northern North Sea

Observed and simulated dissipation rate during 24 h:

Burchard et al. [2002]
NPZD model as example

Simple four-compartment model:

\[T(N) = -s_{NP} + s_{PN} + s_{ZN} + s_{DN} \]
\[T(P) = +s_{NP} - s_{PN} - s_{PD} - s_{PZ} \]
\[T(Z) = +s_{PZ} - s_{ZN} - s_{ZD} \]
\[T(D) = +s_{PD} + s_{ZD} - s_{DN} \]

\[T(X) = \partial_t X - \partial_z (\nu_t' \partial_z X) - w_X \partial_z X \]

From model physics
NPZD model as example

Phytoplankton nutrient uptake term:

\[
S_{NP} = \frac{I_{PAR}}{I_{opt}} \exp \left(1 - \frac{I_{PAR}}{I_{opt}} \right) \frac{N}{\alpha + N} (P + P_0)
\]

\[
I_{PAR}(z) = \frac{I_0}{2} \frac{ae^{-z/\eta_1} + (1 - a)e^{-z/\eta_2}}{\exp \left(k_c \int_z^0 (P(\xi) + P_0 + D(\xi) + D_0) d\xi \right)}
\]

From model physics
Back to model physics
IOW biogeochemical model

Neumann et al. [2002]
Positivity and conservation

Generic zero-dimensional model formulation:

\[d_t c_i = P_i(c) - D_i(c) \quad , \quad i = 1, \ldots , I , \] \hspace{1cm} (2)

\[c^0 = c(t = 0) > \bar{0} , \] \hspace{1cm} (3)

\[P_i(c) = \sum_{j=1}^{I} p_{i,j}(c) , \quad D_i(c) = \sum_{j=1}^{I} d_{i,j}(c) , \] \hspace{1cm} (4)

\[p_{i,j}(c) = d_{j,i}(c) , \quad \text{for} \quad i \neq j . \] \hspace{1cm} (5)

Burchard et al. [2003]
Positivity and conservation

\[
\sum_{i=1}^{I} (P_i(\vec{c}) - D_i(\vec{c})) =
\]

\[
\sum_{i=1}^{I} \sum_{j=1}^{I} (p_{i,j}(\vec{c}) - d_{i,j}(\vec{c})) = \sum_{i=1}^{I} (p_{i,i}(\vec{c}) - d_{i,i}(\vec{c})).
\]

Thus, the system of equations is **conservative** for \(p_{i,i} = d_{i,i} = 0 \).

Burchard et al. [2003]
Discretisation problems:

- Explicit schemes are conservative but not non-negative.
- Positive schemes are not necessarily conservative.

Problem: Find conservative and non-negative scheme.

Burchard et al. [2003]
Positivity and conservation

Solution, e.q. first order:

Modified Patankar-Euler scheme:

\[c_i^{n+1} = c_i^n + \Delta t \left(\sum_{j=1}^{I} p_{i,j} (\bar{c}^n) \frac{c_j^{n+1}}{c_j^n} - \sum_{j=1}^{I} d_{i,j} (\bar{c}^n) \frac{c_i^{n+1}}{c_i^n} \right), \quad i = 1, \ldots, I \]

(7)

- The scheme is conservative (trivial)
- The scheme is non-negative (see Burchard, Deleersnijder, Meister [2003])

With the Runge-Kutta principle, conservative and non-negative schemes of arbitrary order may be constructed.
Positivity and conservation

Patankar Runge-Kutta scheme

\begin{align*}
\text{Concentration} = & \ c_1, \text{simulated} \\
\text{Concentration} = & \ c_2, \text{simulated} \\
\text{Concentration} = & \ c_3, \text{simulated} \\
\text{Concentration} = & \ c_1, \text{high-resolution} \\
\text{Concentration} = & \ c_2, \text{high-resolution} \\
\text{Concentration} = & \ c_3, \text{high-resolution}
\end{align*}

Burchard et al. [2003]
Positivity and conservation

Burchard et al. [2003]

GOTM-BIO: principles

Principles for inclusion of various ecosystem models into GOTM:

- Only few well-defined interfaces between GOTM and BIO necessary:

 \begin{verbatim}
 init_bio(), do_bio(), end_bio()
 \end{verbatim}

- BIO as two level system:
 1. General bio: setup is read from `bio.inp`
 2. Based on the chosen BIO-model, a second namelist is read in with model specific details

- Code must allow for various numerical methods for right-hand sides
GOTM-BIO: namelist input I

! Geobiochemical model
!
! pelagic_calc=.true.: calculate geobiochemical model
! pelagic_model=
!
! 1: NPZD
! 2: IOW
!
! w_adv_discr= advection scheme for vertical motion
!
! 2: first order upstream
!
... 6: TVD with ULTIMATE QUICKEST
!
! ode_method= scheme for source & sink dynamics
!
! 1: first-order explicit (not positive)
!
... 8: mod. Patankar-RK scheme (second ord., positive, conservative)
!
! 9: mod. Patankar-RK scheme (fourth ord., positive, conservative)
!
&pelagic_nml
pelagic_calc=.true.,
pelagic_model=2
ode_method=1,
w_adv_discr=6,
GOTM-BIO: namelist input II

!---
! NPZD biological model
!
! numc= number of compartments for geobiochemical model
! n_initial= initial nutrient concentration [mmol N/m**3]
! p_initial= initial phytoplankton concentration [mmol N/m**3]
! z_initial= initial zooplankton concentration [mmol N/m**3]
! d_initial= initial detritus concentration [mmol N/m**3]
! p0= minimum phytoplankton concentration (to be added to p) [" "]
! z0= minimum zooplankton concentration (to be added to z) [" "]
! w_p= settling velocity of phytoplankton [m/d]
! w_d= settling velocity of zooplankton [m/d]
! kc= attenuation constant for the self shading effect [m**2/mmol N]
! I_min= minimum photosynthetically active radiation (PAR) [W/m**2]
! rmax= maximum nutrient uptake rate [1/d]
! gmax= maximum grazing rate [1/d]
! Iv= Ivlev constant [-]
! alpha= half saturation [mmol N/m**3]
! rpn= p --> n rate (p metabolism) [1/d]
! rzn= z --> n rate (z metabolism) [1/d]
! rdn= d --> n rate (remineralisation) [1/d]
! rpdu= p --> d rate (p mortality), in euphotic zone [1/d]
! rpdl= p --> d rate (p mortality), below euphotic zone [1/d]
! rzd= z --> d rate (z mortality) [1/d]
! cnpar= Crank-Nickolson parameter for vertical diffusion
!---
GOTM-BIO: code I

```c
#ifdef PELAGIC
    call do_pelagic(nlev, I_0, dt, h, t, nuh, rad, bioshade)
#endif
```

- `nlev` for number of vertical layers,
- `I_0` for net shortwave radiation at surface,
- `dt` for Δt,
- `h` for layer heights,
- `t` for potential temperature in each layer,
- `nuh` for eddy diffusivity at each layer interface,
- `rad` for net shortwave radiation at each interface,
- `bioshade` for turbidity due to organic material.
GOTM-BIO: code for NPZD

do ci=1,nlev

 dd(n,p,ci)=fnp(cc(n,ci),cc(p,ci),par(ci),iopt)
 dd(p,z,ci)=fpz(cc(p,ci),cc(z,ci))
 dd(p,n,ci)=rpn*cc(p,ci)
 dd(z,n,ci)=rzn*cc(z,ci)
 dd(d,n,ci)=rdn*cc(d,ci)
 dd(p,d,ci)=rpd*cc(p,ci)
 dd(z,d,ci)=rzd*cc(z,ci)

do i=1,numc
 do j=1,numc
 pp(i,j,ci)=dd(j,i,ci)
 end do
end do
end do
GOTM Example: IOW model

Application to Northern North Sea as before.
Diatoms (min: 0 mmol N/m3, max: 1.5 mmol N/m3):

![Diatoms concentration map]

Flagellates (min: 0 mmol N/m3, max: 1.5 mmol N/m3):

![Flagellates concentration map]
GOTM Example: IOW model

Application to Northern North Sea as before.
Ammonium (min: 0 mmol N/m3, max: 0.2 mmol N/m3):

Nitrate (min: 0 mmol N/m3, max: 10 mmol N/m3):
GOTM Example: IOW model

Application to Northern North Sea as before.
Zooplankton (min: 0 mmol N/m3, max: 0.5 mmol N/m3):

Detritus (min: 0 mmol N/m3, max: 3 mmol N/m3):
GOTM Example: IOW model

Application to Northern North Sea as before.

Oxygen (min: 300 mmol/m3, max: 380 mmol/m3):
Road map towards GOTM-BIO

1. Try to get funded
2. Implement some more ecosystem models in GOTM (e.g. Fasham [1990])
3. Create scenarios suitable for ecosystem model comparison (e.g. FLEX, ESTOC, OWS PAPA)
4. Generate Windows version for GOTM
5. Write documentation & user guide
6. Write scientific paper on model comparison with GOTM-BIO
7. Release GOTM-BIO
8. Get flooded with email requests from biologists