
Statistical Modelling
of Marine Turbulence

Hans Burchard
hans.burchard@io-warnemuende.de

Baltic Sea Research Institute Warnem̈unde, Germany

Seminar of the Leibniz Institute of Atmospheric Physics, K¨uhlungsborn, Germany, June 24, 2004 – p. 1/32



Contents

� Some theory of statistical turbulence modelling
� Mixing vs. strati�cation
� General Ocean turbulence Model (GOTM)
� Turbulence observations in the ocean
� Example: SIPS in Liverpool Bay
� Example: Convection in Lago Maggiore
� General Estuarine Transport Model (GETM)
� Example: In�ox events in Arkona Sea

Seminar of the Leibniz Institute of Atmospheric Physics, K¨uhlungsborn, Germany, June 24, 2004 – p. 2/32



Basic approaches

Two approaches to averaged turbulence modelling:

� Statistical turbulence modelling: Convert NSE
to Friedmann-Keller series, cut-off where suitable
and parameterise unknown terms.

� Empirical turbulence modelling: Close
equations on lowest order and parameterise
relevant processes.
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NSE! Reynolds equation
Momentum Equation:
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Reynolds Stress Equation
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Algebraic SMCs
The following steps lead to different types of second-moment
closures:

� Empirical closures of pressure-strain correlators.

� Neglect or simpli�cation of advective and diffusive �uxes
of second-moments.

� Neglect of rotational terms in the second-moment
equations.

� Boundary layer assumption (neglect of horizontal gradients
and non-hydrostatic effects).

� ... and many more details ...
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Algebraic SMCs
Turbulent Fluxes:
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t@z

�T

Eddy Viscosity / Eddy Diffusivity:
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Shear Number, Buoyancy Number:
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Stability Functions
Canuto et al. [2001]:
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Exact TKE-Equation
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This TKE equation will be modelled as it is given
above, the only parameterisations needed are for the
turbulent f lux terms, for which usually the
down-gradient approximation is used.
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Dissipation equation
Exact form (e.g.Wilcox[1998]):
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k-" model (Launder and Spalding[1972]):

@t " � @z

�
� t

� "
@z"

�
=

"
k

(c" 1P + c" 3B � c" 2" ) :

Seminar of the Leibniz Institute of Atmospheric Physics, K¨uhlungsborn, Germany, June 24, 2004 – p. 10/32



Mellor-Yamada model
General relation betweenk, " andL:
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Length scale equations (cont'd)
Other approaches are using equations for! = "=k
(k-! model),k=", k2=", ..., so why not using the
generalised approach of akn"m equation ?

Generic length scale equation
(Umlauf and Burchard[2003]):
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This works without correction term only form � 0.
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Total equilibrium ( k-")
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Rst
i � 0:25: Steady-state Richardson number.

Burchard & Bolding [2001]
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Kato-Phillips experiment
Wind-induced mixed-layer depth (MLD)

Burchard & Bolding [2001]
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Microstructure observations
Shear probe mounted on free-falling pro�ler

"

Pers. comm. Hartmut Prandke
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Microstructure observations
De�nition of dissipation rate:
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Liverpool Bay
SST from space and location of station (� )

Courtesy to School of Ocean Sciences, UBW, Wales
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Liverpool Bay
Section of Temperature and Salinity

Rippeth, Fisher, Simpson [2001]
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Liverpool Bay
Observed and simulated temperature and salinity

Simpson, Burchard, Fisher, Rippeth [2002]
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Liverpool Bay
Observed and simulated current velocity

Simpson, Burchard, Fisher, Rippeth [2002]
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Liverpool Bay

Observed and simulated dissipation rates

Simpson, Burchard, Fisher, Rippeth [2002]
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Lago Maggiore, Italy
Observations and simulations ofT and" (Stips et al. [2002])
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General Estuarine Transport Model

� Three dimensional, hydrostatic, free surface, baroclinic

� Mode-splitting, Arakawa-C grid

� Horizontal coord.: Cartesian, spherical or orthogonal

� Vertical coord.: Sigma, z-levels or generalised

� Turbulence closures from GOTM (http://www.gotm.net )

� Various advection schemes for momentum and tracers

� Stable drying and �ooding algorithm

� Fully parallelised (domain decomposition)

� Public Domain (http://www.bolding-burchard.com/getm )
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Arkona Sea

Graphics by Volker Mohrholz, IOW

Seminar of the Leibniz Institute of Atmospheric Physics, K¨uhlungsborn, Germany, June 24, 2004 – p. 25/32



Arkona Sea
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Arkona Sea
Surface salinity (8-25 psu) Bottom salinity (8-25 psu)
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Simulation with GETM
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Arkona Sea

Observations from moored ship (MzB Helmsand)

Data by Jürgen Sellschopp, Volker Fiekas, FWG Kiel
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Arkona Sea

Idealised simulations (with GETM)
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Offshore Constructions
Additional mixing by Offshore Wind Farms ?

Graphics by Jan Donath (IOW)
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Conclusions
Quantitative numerical simulations of buoyancy
effects in the coastal zone require models with certain
properties such as

� Higher turbulence closures
� Surface and bottom following coordinates
� Positive de�nite and monotone advection

schemes

Advantageous are highly �exible vertical and
horizontal coordinates.
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