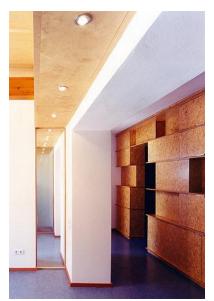
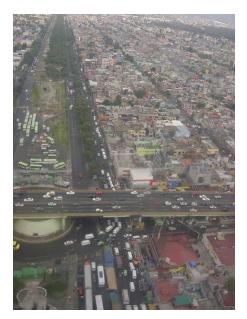

Troposphärenchemie

- Smog
- Besonderheiten der Stadtatmosphäre – "Megacities"
- Luft in geschlossenen Räumen





Smog

- Besonderheiten der Stadtatmosphäre – "Megacities"
- Luft in geschlossenen Räumen

Troposphärenchemie - Smog

Troposphäre

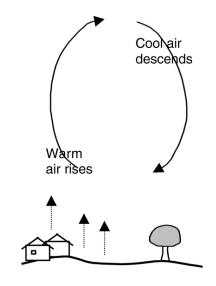
- Smog als Hauptproblem in Ballungszentren
- Wortbildung aus "Smoke" "und Fog"
- Problem schon bekannt im 17. Jh

spare no man . . .

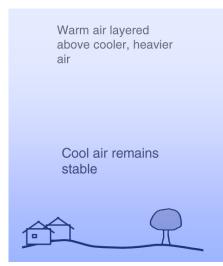
Classical (London) Smog

In 1661, John Evelyn

described the atmosphere in London, England. '... a cloud of sea-coal, as if there be a resemblance of hell upon Earth, it is in this volcano in a foggy day: this pestilent smoak, which corrodes the yron, and spoils all the moveables leaving soot on all things that it lights and so fatally siezing on the lungs of the inhabitants, that cough and consumption


Monet, Houses of Parliament, 1899-1901

 "alte" Smog Form, Hauptursache Kohleverbrennung => Viele Rußpartikel + SO₂ induzierte reduzierende, saure Bedingungen, unter feuchten Bedingungen Nukleusbildung, daneben oft hohe CO-Werte

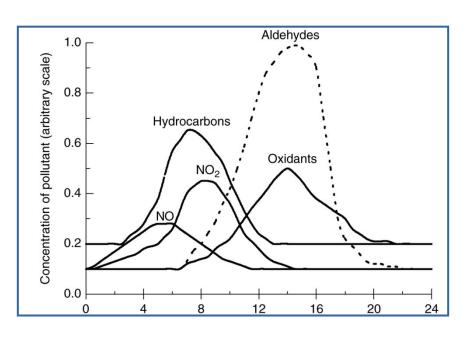

Troposphärenchemie - Smog

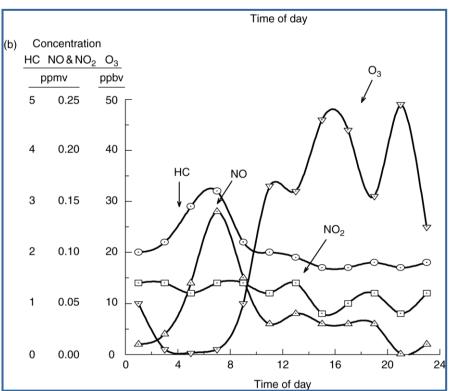
Troposphäre

- Classical (London) Smog
- Photochemical (LA) Smog
 - Benötigt Kohlenwasserstoffe,
 Stickoxide => induziert durch
 Straßenverkehr
 - Viel Licht
 - Inversionswetterlage
 - Eher leicht oxidierende Bedingungen

'Normal' atmospheric conditions

An atmospheric inversion


• Diverse Übergangsformen (Mexiko City, Kairo, Jakarta, Peking ...



Dichter Smog über Peking

Smog -Photochemie

- Smog-Photochemie
 - Tagesgang an einem sonnigen Tag in einer autoreichen Stadt

Smog -Photochemie

1
$$N_2(g) + O_2(g) => 2 NO(g)$$

2
$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

 $\text{ROO} + \text{NO} \rightarrow \text{RO} + \text{NO}_2$
 $\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$

langsam
Peroxyradikale aus KW-Abbau
auch über Ozon

- 3 NO₂ + h_V (<400 nm) \rightarrow NO + O
- 4 $O + O_2 + M \rightarrow O_3 + M$
- 5 $O_3 + hv$ (<315 nm) \rightarrow O* + O_2 * Rekombination oder
- 6 $O^* + H_2O \rightarrow 2 \cdot OH$

$$\Sigma$$
(3-6): NO₂ + H₂O \rightarrow NO + 2 · OH

(in stark verschmutzter Luft auch unter Nebenreaktion und HONO-Bildung mit anschliessender Photolyse

Beachte: erhöhte Hydroxylradikalkonzentration (10⁷ Molek. cm⁻³ in Ballungsgebieten gegenüber 2.5 x 10⁵ Molek. cm⁻³ in ländlicher Umgebung in gemäßigten Breiten) Folge der NO_x-Produktion => Verkehr

Smog -Photochemie

Neben NO_x auch Kohlenwasserstofffreisetzung

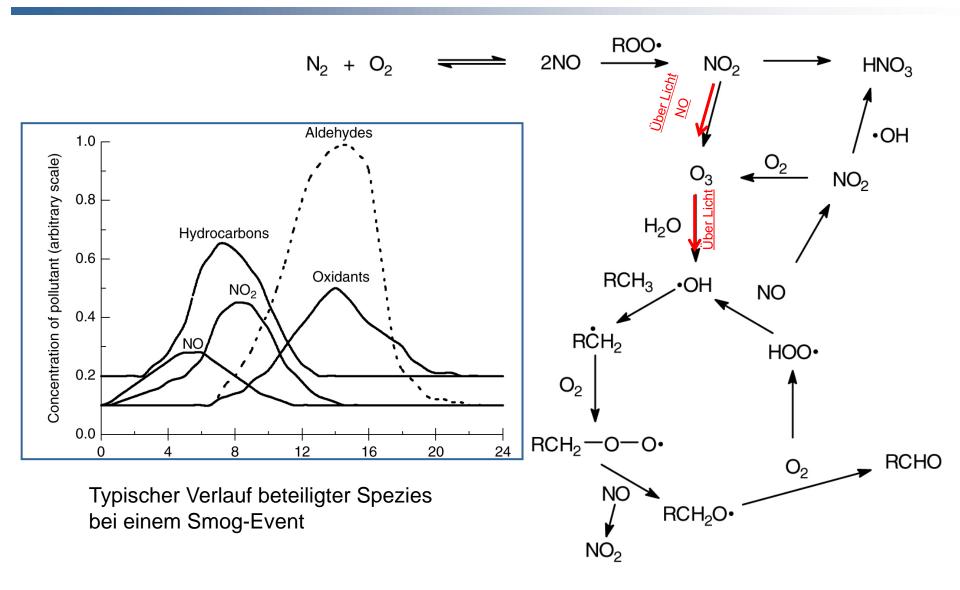
Abbau über Hydroxylradikale

$$\cdot$$
OH + RCH₃ \rightarrow RCH₂ \cdot + H₂O Alkylbildung

$$RCH_2 \cdot + O_2 + M \rightarrow RCH_2OO \cdot + M$$
 Peroxoalklybildung

$$RCH_2OO \cdot + NO \rightarrow RCH_2O \cdot + NO_2$$
 Alkoxylbildung

$$\cdot$$
OOH + NO \rightarrow NO₂ + \cdot OH


$$\Sigma$$
: RCH₃ + 2O₂ + 2 NO \rightarrow RCHO + 2 NO₂ + H₂O

Beachte: NO₂ identifiziert als Quelle des Hydroxylradikals und Vorstufe zur Ozonkonzentration

$$\Sigma$$
(3-6): NO₂ + H₂O \rightarrow NO + 2 · OH

Gesamt
$$RCH_3 + 2O_2 + H_2O \rightarrow RCHO + 4.OH$$

Potential zur netto-Erhöhung der Radikaldichte, reguliert durch terminierende Reaktionen, und erinnere Photoreaktionscharakter

$$CH_3CHO + \bullet OH \rightarrow CH_3CO + H_2O$$

Seitenreaktionen PANs

$$CH_3CO + O_2 + M \rightarrow CH_3COOO$$
acetylperoxy

$$CH_3C(O)OO \cdot + \cdot NO_2 \rightleftharpoons CH_3C(O)OONO_2$$

peroxyacetic nitric anhydride (PAN)

Bildung von "Peroxyacetylnitrat" (PAN) – Augenirritierend und NO₂-speichernd

Smog- Bestandteile und ihr natürlicher Hintergrund

Table 4.1 Typical atmospheric concentrations of selected species characteristic of a photochemical smog^a.

Species	Concentration / ppbv			
	Polluted area	Unpolluted area		
Carbon monoxide	10 000-30 000	<200		
Nitrogen dioxide	100–400	<20		
Hydrocarbons (excluding methane)	600–3000	<300		
Ozone	50-150	<5		
PANs	50-250	<5		

^a Most values are estimates based on data in Air quality in Ontario 1991, Environment Ontario, Queen's Printer for Ontario; 1992.

Kohlenwasserstoffe in der Atmosphäre

Table 4.2 Mean concentration of volatile organic compounds in the atmosphere of Taipei city^a.

Compound	Atmospheric concentration / μg m ⁻³
Toluene	980
<i>m,p</i> -xylene	910
o-xylene	510
Benzene	370
Ethylbenzene	310
1,3,5-trimethylbenzene	230
1-ethyl,4-methylbenzene	200
Hexane	150
Heptane	130
1-ethyl,2-methylbenzene	120

^aMeasurements were made in the breathing zone of cyclists and pedestrians in three parts of the city frequented by commuters (from Chan, C-C., S-H. Lin, and G-R. Her, Student's exposure to volatile organic compounds while commuting by motorcycle and bus in Taipei City. *Air Waste*, **43** (1993), 1231–8).

Oxidationswege einzelner Verbindungen

- Alkane oder alkylierte Aromaten über H-Abstraktion => Aldehyde
- Ungesättigte Verbindungen und Aromaten=> elektrophile Addition
- ⇒ Ketone und Phenole, Aldehyde

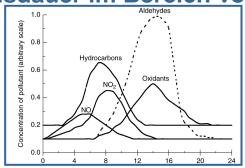
als Nebenreaktion auch Bildung kondensierter aromatische Systemen (Polynuclear aromatic hydrocarbons – PAH)

Weiterer Abbau von Aldehyden und Ketonen

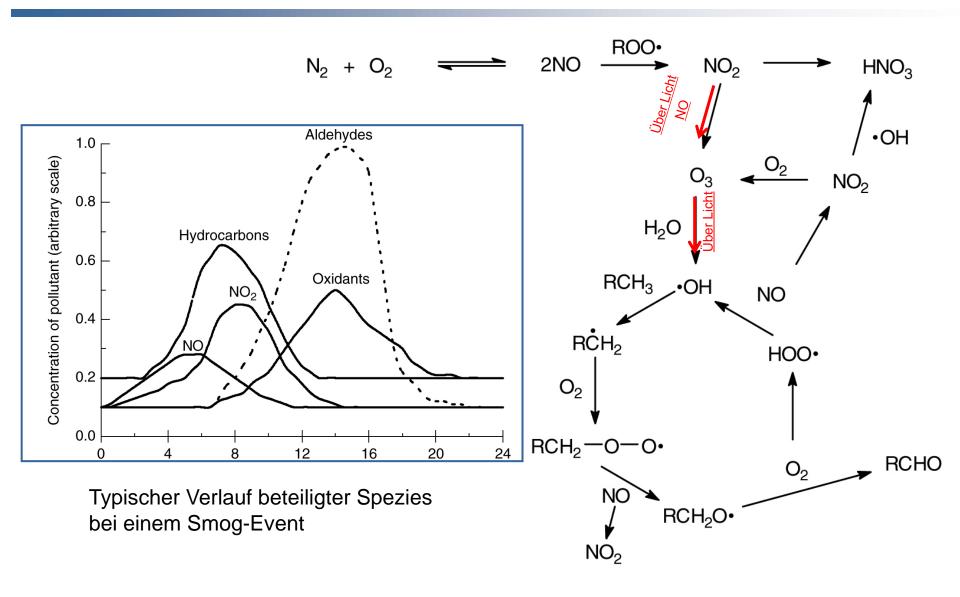
Bildung von Peroxyacetylnitrat

CH₃CHO + •OH
$$\rightarrow$$
 CH₃C $\overset{\bullet}{O}$ + H₂O
CH₃C $\overset{\bullet}{O}$ + O₂ + M \rightarrow CH₃C(O)OO•

 Bildung von Alkylradikalen unter Dekarboxylierung

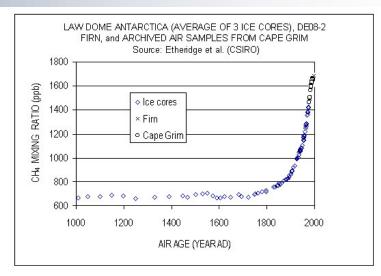

$$CH_3C(O)OO \cdot + NO \rightarrow CH_3C(O)O \cdot + NO_2$$

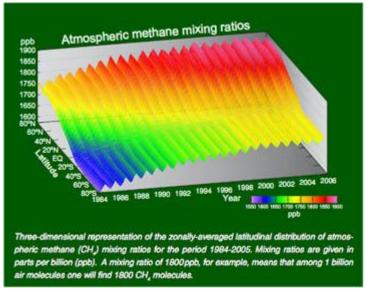
 $CH_3C(O)O \cdot \rightarrow \cdot CH_3 + CO_2$


Photolyse

$$\text{CH}_3\text{CHO} \xrightarrow{hv, \lambda \sim 290 \, \text{nm}} \bullet \text{CH}_3 + \text{HCO}$$

$$CH_3CHO \xrightarrow{hv, \lambda \sim 290 \text{ nm}} CH_4 + CO$$


Lebensdauer im Bereich von 24 h;



Methan - der weitverbreiteste Kohlenwasserstoff

- Methankonzentration in der Regel h\u00f6her als die Summe aller anderen Kohlenwasserstoffe (NMHC), heute etwa 1800 ppbV
- Mehr als verdoppelt seit Beginn der industriellen (und Agrar-)Revolution
- Quellen natürlich (~ 40%), Widerkäuer, fossile Brennstoffgewinnung,
 Feuchtgebiete, d.h. nicht gekoppelt an gesteigerte NO_x-Produktion
- Z.B. in ländlichen Gebieten Σ (NMHC) von 10- 20 ppbV C (Terpene)
- Selten im urbanen Bereich aber Σ (NMHC) von 5000 10000 ppbV C
- Deutlich stabiler bezüglich Abbau durch Hydroxylradikale

Abbau initiiert über Abstraktion von H bis zur Aldehydbildung

$$\begin{aligned} \text{CH}_4 + \bullet \text{OH} &\to \bullet \text{CH}_3 + \text{H}_2\text{O} \\ \bullet \text{CH}_3 + \text{O}_2 &\to \text{CH}_3\text{OO} \bullet \end{aligned}$$

$$\begin{aligned} \text{CH}_3\text{OO} \bullet + \text{NO} &\to \text{CH}_3\text{O} \bullet + \text{NO}_2 \\ \text{CH}_3\text{O} \bullet + \text{O}_2 &\to \text{CH}_2\text{O} + \text{HOO} \bullet \end{aligned}$$

Photchemischer
Formaldehydabbau über CO
zum Endprodukt CO₂

$$\sum$$
 CH₄ + •OH + 2O₂ + NO \rightarrow CH₂O + H₂O + HOO• + NO₂

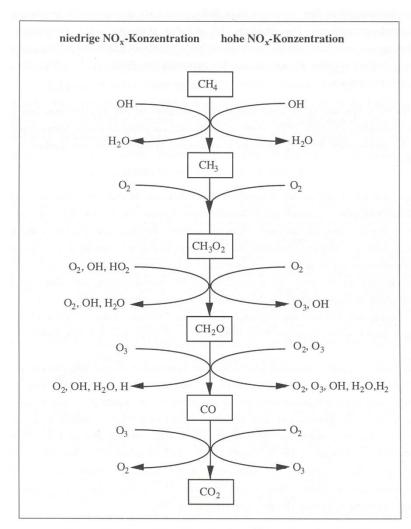
$$h\nu, \lambda < 330 \text{ nm}$$

$$CH_2O \xrightarrow{} HCO + \bullet H$$

$$HCO + O_2 \rightarrow HOO \bullet + CO$$

$$CO + \bullet OH \rightarrow CO_2 + \bullet H$$

$$2(\bullet H + O_2 \rightarrow HOO \bullet)$$


$$2(HOO \bullet + NO \rightarrow \bullet OH + NO_2)$$

 Weiterreaktion der gebildeten Radikale

$$\Sigma$$
 CH₄ + 5O₂ + 2H₂O \rightarrow 2HOO• + 6•OH + CO₂

Terminierungsreaktionen

- In NO_x-reichen Gebieten Anstieg der Hydroxylradikalkonzentration
- In NO_x-armen Gebieten Abnahme der Hydroxylradikalkonzentration
- Damit einhergehend
 Ozonproduktion oder Abbau
- Schwellenwert etwa bei 15 20 pptV NO_x (Lelieveld und Crutzen, 93 & 98)

Schema der Reaktionswege der Methanoxidation in der Troposphäre bei geringem (\leq 15-20 pptV) und hohem (> 20 pptV) NO_x-Gehalt [nach Ehhalt, 1985].

Generelles zur Oxidation leichtflüchtiger Kohlenwasserstoffe

Zusammenfassend

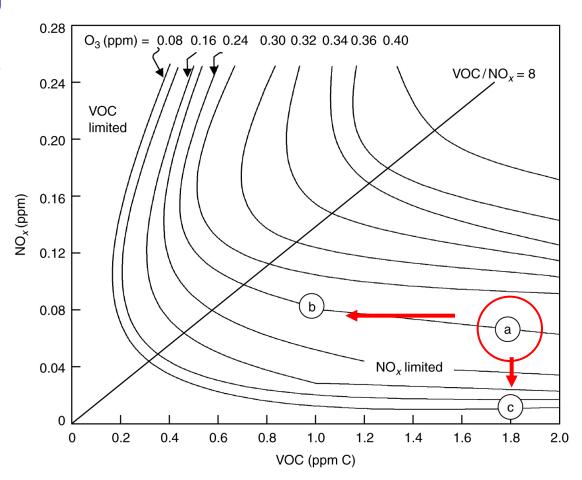
General principles describing VOC oxidation

In this survey of hydroxyl-initiated reactions of VOCs, we have observed a number of important general steps.

- 1 The initiation begins with either hydrogen abstraction or hydroxyl addition.
- 2 The radical produced by step 1 adds an oxygen molecule forming a peroxyl species or, in the case of aromatics, the dioxygen abstracts a hydrogen.
- 3 The peroxyl species transfers an oxygen atom to a molecule of nitric oxide.
- 4 The product molecule now loses a hydrogen atom to another oxygen molecule, or it splits into two smaller species. In either case, aldehydes (or, less commonly, ketones) are formed. The hydroperoxyl radical is the other product.
- 5 The aldehydes react with nitrogen dioxide to form PANs, undergo further hydroxylinitiated oxidation, or photochemically decompose.
- 6 The decomposition products are again subject to a repeat sequence of oxidation steps and the ultimate stable products are carbon dioxide and water.
- 7 The reactions indicated in this section are a summary of some of the more important reactions occurring in the troposphere. The situation is highly complex and many alternative processes occur. For those who model atmospheric behaviour in a polluted environment, hundreds of simultaneous reactions must be taken into account, rate constants measured, and concentrations estimated. Assumptions are involved at every step and the natural climatic variations make quantitative calculations even more difficult.

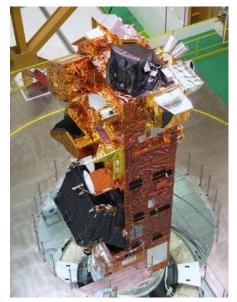
Rest-KW und Katalysatorwirkung

Table 4.3 Exhaust gas output of CO, NO_x and hydrocarbons, from 7.3 kW two- and four-stroke engines operating under the same conditions^a.

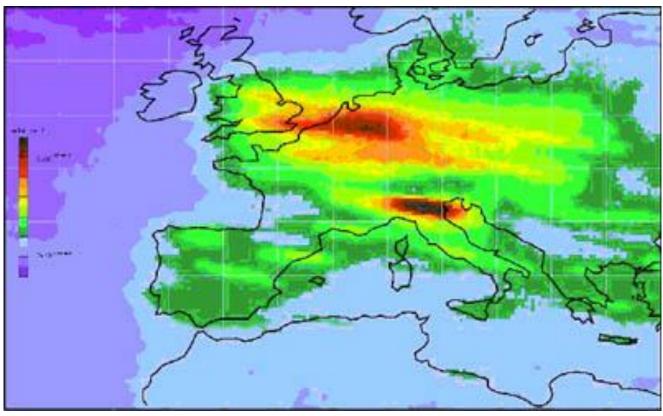

	Exhaust gas	Exhaust gas output / 10^{-8} g J $^{-1}$	
	СО	NO_x	Hydrocarbons
Two-stroke engine	165	0.3	89
Four-stroke engine	127	0.7	7

^a Juttner, F., D. Backhaus, U. Matthias, U. Essers, R. Greiner, and B. Mahr, Emissions of two- and four-stroke outboard engines. I. Quantification of gases and VOC. *Water Res.*, **29** (1995), 1976–82.

Table 4.4 The effects of engine optimization and catalysts on release of CO, $NO_{x'}$, and hydrocarbons from a 125 cc two-stroke motorcycle engine.

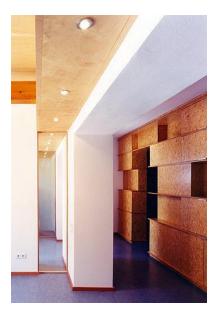

	Output / g	km ⁻¹	
	СО	NO _x	Hydrocarbons
Production engine	21.7	0.01	16.9
Optimized engine	1.7	0.03	10.4
Engine with catalyst	0.8	0.02	1.9
Swiss standards	8	0.1	3

- Strategie bei Optimierung
- Fall hoher VOC bei relativ niedriger NOx-Konzentration (a)
- Problem: zu hohe
 Ozonkonzentrationen im
 Sommer
- Wo setze ich an?
- Warum ist das eben nur teilweise ein umweltchemischer Ansatz?



Isoplethen maximaler Ozonkonzentration, Output eines empirisch kalibrierten kinetischen Modells

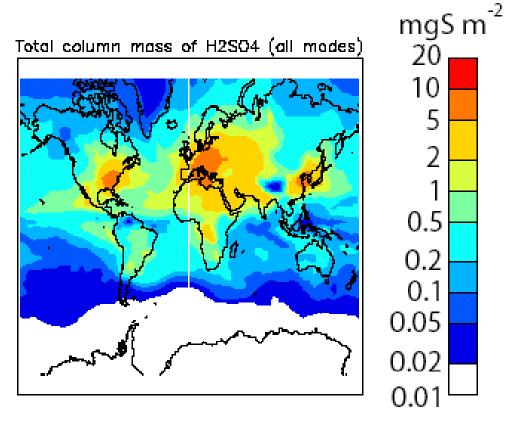
Monitoring mit Satellitenunterstützung


22 February 2002: Envisat ready for launch. The satellite is safely connected to the Ariane launcher, and all the covers have been removed. This picture was taken shortly before encapsulation.

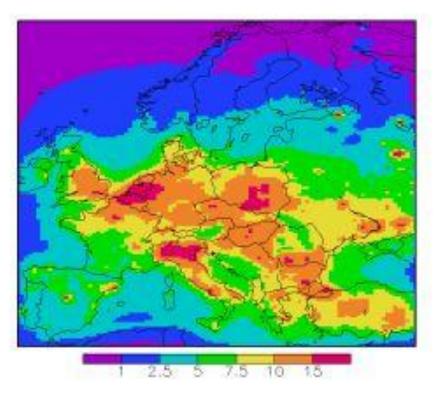
The signature of mankind's industrial activity is all too visible in our atmosphere. In this case, the NO₂ output is very obvious over the industrialised centres of Southern Great Britain, Belgium, Germany and Northern Italy.

- Smog
- Besonderheiten der Stadtatmosphäre – "Megacities"
- Luft in geschlossenen Räumen

- Vielzahl von atmosphärischen Belastungen als gesundheitsgefährdend eingestuft
- Daher Einführung von Luftqualitätsrichtlinien
- Maximalbelastungen zeitabhängig, aber nicht linear

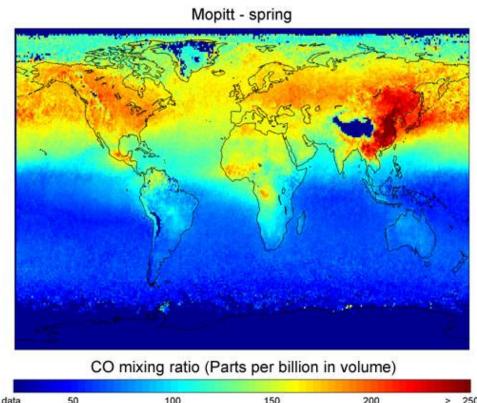

Table 7.1 Summary of World Health Organization (WHO) Air Quality Guidelines^a.

Pollutant	Maximum time-weighted average concentration	Averaging time ^b
Sulfur dioxide	500 μg m ⁻³	10 min
	$350 \mu \mathrm{g} \mathrm{m}^{-3}$	1 h
	$100-150 \mu \mathrm{g} \mathrm{m}^{-3}$	24 h
	$40-60 \mu \mathrm{g} \mathrm{m}^{-3}$	ly
Carbon monoxide	30 mg m ^{−3}	1 h
	$10\mathrm{mgm^{-3}}$	8 h
Nitrogen dioxide	400 μg m ⁻³	1 h
	$150\mu gm^{-3}$	24 h
Ozone	150-200 μg m ⁻³	1 h
	$100-120~\mu gm^{-3}$	8 h
Suspended particulate matter (SPN	Л)	
Black smoke	$100-150 \mu \mathrm{g} \mathrm{m}^{-3}$	24 h
	$40-60~\mu gm^{-3}$	1 y
Total suspended particulates	$150-230\mu gm^{-3}$	24 h
	$60-90 \mu \mathrm{g} \mathrm{m}^{-3}$	ly
Respirable particlulates (PM ₁₀)	$70 \mu \mathrm{g} \mathrm{m}^{-3}$	24 h
Lead	0.5-1 μg m ⁻³	l y

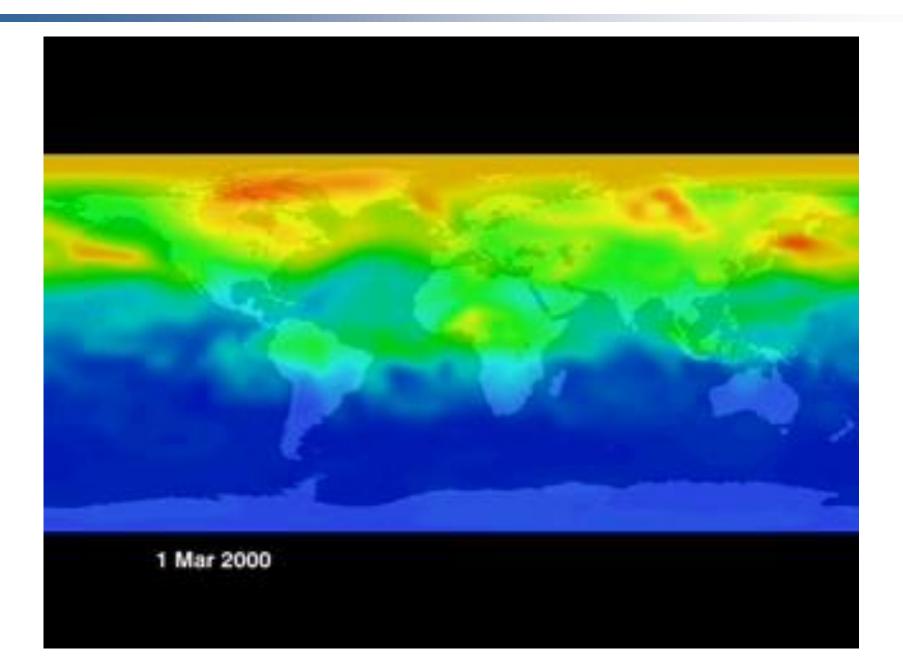

^a Reproduced with permission from Additional Reading 3.

^b The averaging time refers to the time period during which the weighted-average value should not exceed the specified guideline concentration.

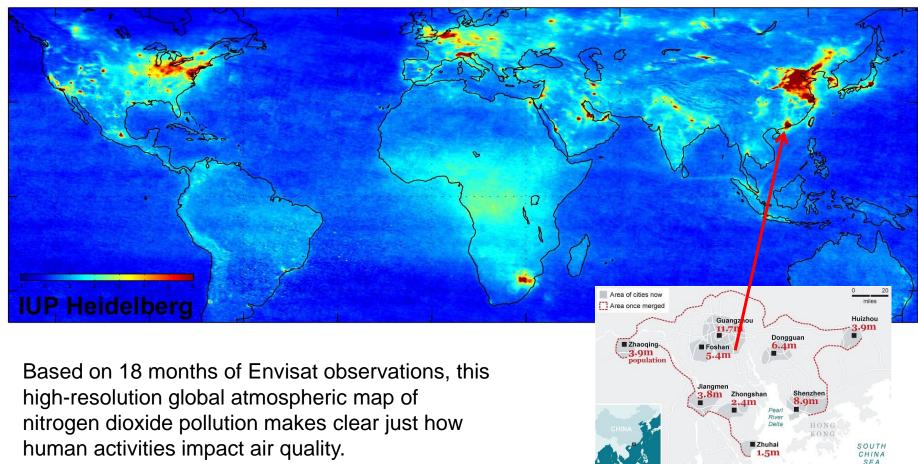
- Schwefeldioxid: z.B. Peking, Seoul, Mexico City; Hauptursache i.d.R. Kohleverbrennung, daher rückläufig; Auftreten verstärkt in Gebieten mit ausgeprägter Trockenzeit
- Azide Verhältnisse, saurer Regen
- Aerosolbildung



SPM (Suspended Particulate Matter): eines der Hauptprobleme von Ballungszentren; Kohleverbrennung, Dieselmotoren, veraltete private Heizungsanlagen, natürlicher Staubeintrag kann überlagern



Distribution of PM2.5 aerosols over Europe in 2000, From LOTOS-EUROS aerosol analysis system


Kohlenstoffmonoxid: vor allem in Reaktionssequenz des Abbaus von KW aus Strassenverkehr, Verbrennung von Biomasse, Hämbindend

Map of average concentration of carbon monoxide in the spring. From Measurements Of Pollution In The Troposphere MOPITT instrument on the Terra satellite. Note the high concentrations in the northern hemisphere associated with industrial activity, and high concentrations in Africa associated with agricultural burning.

NO_x und Ozon: vor allem durch Strassenverkehr gesteuert, bei offenen Gasherden wichtig für Belastung in geschlossenen Räumen

Megacities (über 10 Mio Einw.)

- Schwefeldioxid: z.B. Peking, Seoul, Mexico City; Hauptursache i.d.R. Kohleverbrennung, daher rückläufig; Auftreten verstärkt in Gebieten mit ausgeprägter Trockenzeit
- SPM (Suspended Particulate Matter): eines der Hauptprobleme von Ballungszentren; Kohleverbrennung, Dieselmotoren, veraltete private Heizungsanlagen, natürlicher Staubeintrag kann überlagern, bei uns zunehmende Bedeutung der privaten Kaminöfen
- Kohlenstoffmonoxid: vor allem in Reaktionssequenz des Abbaus von KW aus Straßenverkehr, Häm-bindend
- NO_x und Ozon: vor allem durch Straßenverkehr gesteuert, bei offenen Gasherden wichtig für Belastung in geschlossenen Räumen
- Pb-Belastung heute allg. rückläufig, aber Bodenbelastung bleibt lange erhalten

Megacities (über 10 Mio Einw.)

- Abhängig von Umweltstandards
- Spezifische Umwelttechnologien und Energiewirtschaft
- Bevölkerungsdichte
- Verkehr
- Klimatische und meteorologische Verhältnisse
- "London" vs "Los Angeles"

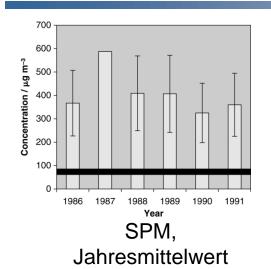
Table 7.2 Summary of air quality in 20 megacities from all continents around the globe^a.

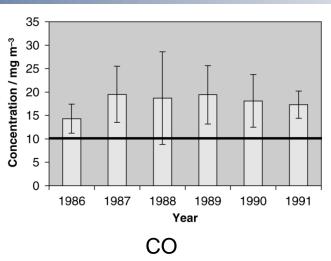
City	SO ₂	SPM	СО	NO ₂	03	Pb
Bangkok	-	++	_	_	-	+
Beijing	++	++	NA	-	+	_
Buenos Aires	NA	+	NA	NA	NA	_
Cairo	NA	++	+	NA	NA	++
Delhi	-	++	-	-	NA	_
Jakarta	-	++	+	_	+	+
Karachi	-	++	NA	NA	NA	++
Kolkata ^b	-	++	NA	-	NA	-
London	_	-	+	_	-	-
Los Angeles	_	+	+	+	++	_
Manila	-	++	NA	NA	NA	+
Mexico City	++	++	++	+	++	+
Moscow	NA	+	+	+	NA	-
Mumbai ^b	-	++	-	-	NA	-
New York	_	-	+	-	+	_
Rio de Janeiro	+	+	_	NA	NA	-
São Paulo	-	+	+	+	++	-
Seoul	++	++	-	-	-	-
Shanghai	+	++	NA	NA	NA	NA
Tokyo	-		- , ,		++	NA

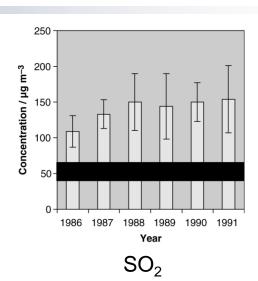
^a Data reproduced with permission from Additional Reading 3. –, Low pollution; WHO guidelines normally met; short-term guidelines may be exceeded occasionally. +, Moderate to heavy pollution; WHO guidelines exceeded by up to a factor of two; short-term guidelines may be exceeded regularly in some locations. + +, Serious pollution; WHO guidelines regularly exceeded by a factor of more than two. NA, No data or insufficient data.

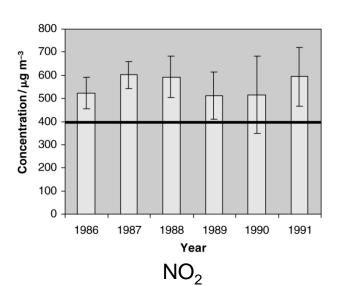
^b Kolkata and Mumbai were formerly known as Calcutta and Bombay, respectively.

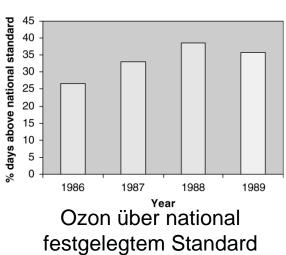
Probleme in "Megacities"

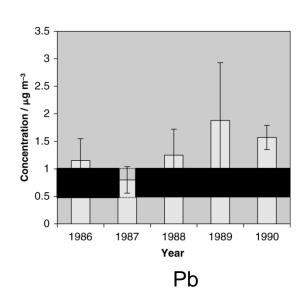

Table 7.2 Summary of air quality in 20 megacities from all continents around the globe^a.


City	SO ₂	SPM	CO	NO ₂	03	Pb
Bangkok	_	++	-	-	-	+
Beijing	++	++	NA	-	+	-
Buenos Aires	NA	+	NA	NA	NA	-
Cairo	NA	++	+	NA	NA	++
Delhi	-	++	-	-	NA	-
Jakarta	_	++	+	_	+	+
Karachi	-	++	NA	NA	NA	++
Kolkata ^b	_	++	NA	-	NA	-
London	_	_	+	_	-	-
Los Angeles	_	+	+	+	++	-
Manila	_	++	NA	NA	NA	+
Mexico City	++	++	++	+	++	+
Moscow	NA	+	+	+	NA	-
Mumbai ^b	-	++	-	-	NA	-
New York	-	-	+	-	+	-
Rio de Janeiro	+	+	_	NA	NA	-
São Paulo	_	+	+	+	++	-
Seoul	++	++	-	-	_	-
Shanghai	+	++	NA	NA	NA	NA
Tokyo	-	-		, -	++	NA

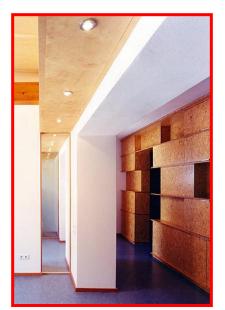

^a Data reproduced with permission from Additional Reading 3. –, Low pollution; WHO guidelines normally met; short-term guidelines may be exceeded occasionally. +, Moderate to heavy pollution; WHO guidelines exceeded by up to a factor of two; short-term guidelines may be exceeded regularly in some locations. + +, Serious pollution; WHO guidelines regularly exceeded by a factor of more than two. NA, No data or insufficient data.


^b Kolkata and Mumbai were formerly known as Calcutta and Bombay, respectively.


Mexico City: wo alles zueinander kommt



Mexico City - Besonderheiten


- Höhe 2240 m; UV Einstrahlung hoch, Teilchendichte (des verdünnenden Mediums) gering (P_h < 750 mbar)
- Extrem bevölkerungsreich, extrem hohe Bevölkerungsdichte, gleichzeitig industrieller Ballungsraum
- Hochebene, eingeschlossen von Gebirgen,
- Gleichzeitig veraltete
 Brennstofftechniken und
 Energieversorgung aus
 Kohlekraftwerken (jetzt i.d.R.
 geändert) mit moderner
 Verkehrsdichte

- Smog
- Besonderheiten der Stadtatmosphäre – "Megacities"
- Luft in geschlossenen Räumen

Schadstoffe Belastungen der Luft von geschlossenen Räumen

Einleitung

- 70 80% des Tages in geschlossenen Räumen
- Besonders empfindliche
 Personengruppen
 ≈100%

- 50.000 60.000 Chemikalien im Handel
- Über 100.000 Baustoffe für die Errichtung von Gebäude genutzt
- In Innenräumen bis zu 5000 Substanzen nachweisbar
- Große Variabilität in der Zusammensetzung; es wirkt nie ein Faktor allein

Einleitung Lage des Gebäudes (auch Lage innerhalb) Ventilation Verbaute Schadstoffe der Räume Materialien Art und Intensität der Nutzung

Quellen

Quelle: "Dicke Luft; Schadstoffe in Innenräumen und wie Sie am besten damit umgehen" Dr. Sabine Wenzel Seite 19

Tab. 2: Quellen chemischer Stoffe in der Innenraumluft.

Quelle		Emittierte Substanzen
Außenluft	Je nach Verkehrs- und Ortslage	Schwefeldioxid, Stickoxide usw.
Baumaterialien und Raumausstattung	Zement, Mörtel, behandeltes Holz, Heimtextilien, Möbel, Tapeten	Viele organische Verbindungen (Lö- sungsmittel, Holz- schutzmittel), Asbest und andere Fasern, Radon, Formalde- hyd)
Energieversorgung	Heizungen, offene Feuerstellen, Gas- geräte	Kohlendioxid, Kohlenmonoxid, Stickoxide, Wasserdampf, Aldehyde, Kohlenwasserstoffe und andere organische Verbindungen, Staub
Menschliche Aktivi- täten	Reinigung, Hobby- arbeiten, Renovie- rung, Schädlings- bekämpfung	Organische Verbindungen (Lösungsmittel, Pestizide, zum Teil als Aerosole)
Ausdünstungen von Menschen und Haustieren		Kohlendioxid, Was- serdampf, Geruchs- stoffe

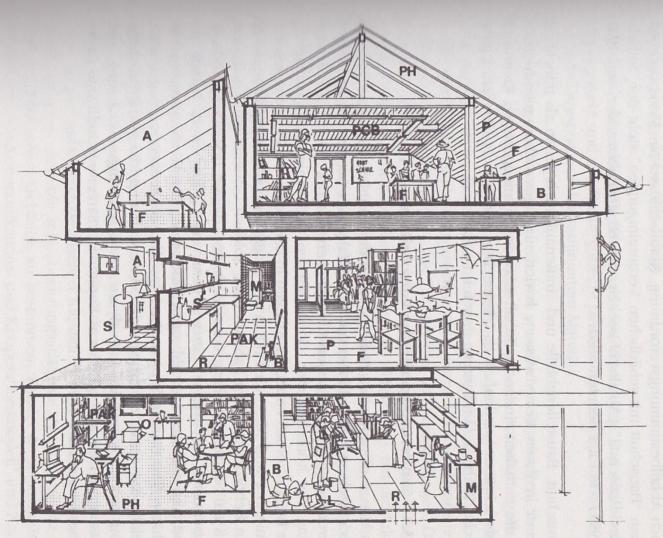


Abbildung 1.2. Schadstoffquellen in Wohn- und Arbeitsbereichen

A Asbest

B Benzol

F Formaldehyd

I Isocyanate

L Lösungsmittel

M Mikrobiologische

Keime

O Ozon

P Pestizide

Ph Phenole

PAK Polycyklische aromatische

Kohlenwasserstoffe

PCB Polychlorierte Biphenyle

R Radon

S Stickstoffoxide

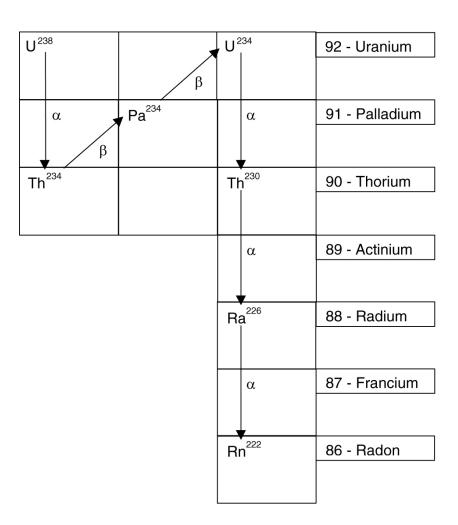
Quelle: "Schadstoffe in Gebäuden" Reinhold Hempfling [Hrsg.] Seite 15

Qualität von Luft in geschlossenen Räumen

- Extreme Variabilität
- Hier einige Gesetzmäßigkeiten für den Heimbereich
 - Möglichkeiten der Anreicherung/Abreicherung gegeben durch die Ventilation
 - Aussenquellen gegen Innenquellen
 - Innenquellen bedingt durch
 - Material
 - Nutzung

- Luftaustausch von bis 10 h⁻¹
 (offen) über 1 h⁻¹ (unsere
 Breiten, Standardisolation) bis
 < 0.1 h⁻¹ (modernste
 Energiesparbauweise)
- Z.B.: für Ozon ist C_i << C_o, z.B
 Formaldehyd C_i >> C_o

Innenproduktion


$$R_i = k_e C_i - k_e C_o$$

und mit C_o << C_i

$$C_i = C_o + R_i / k_e$$

- Einige klassische Schadstoffe in Innenräumen
- Radioaktivität durch Rn²²² als Tochterprodukt der U²³⁸ Reihe
- Alpha-Strahler mit t_{1/2} von 3.8 Tagen
- Wird als Gas eingeatmet => potentieller Alpha-Strahler in den Atemwegen

$$R_i + k_e A_o = k_e A_i + k_d A_i$$

Qualität von Luft in geschlossenen Räumen

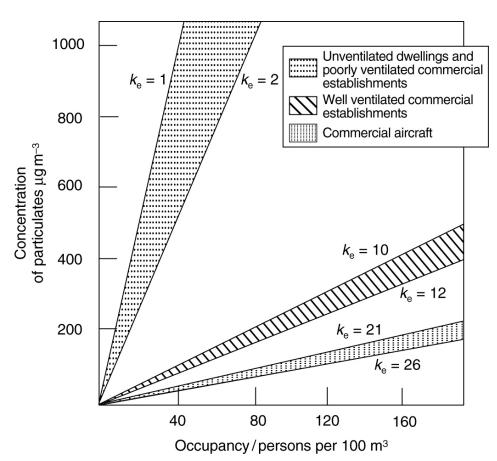
Example 7.2 Indoor radioactivity

Consider a situation where the rate of production of radioactivity inside the building, R_i , is 10 Bq m⁻³ h⁻¹, and the external radioactivity concentration, A_o , is 4.0 Bq m⁻³. Calculate the steady-state interior radioactivity concentration, A_i , in two situations: (a) an open building with excellent air exchange rate = 20 h⁻¹ and (b) a tightly sealed 'energy-efficient' building with air exchange rate = 0.10 h⁻¹.

Radon-222 has a half-life of 3.8 days, equivalent to a decay constant, $k_d = \ln 2 / t_{1/2}$, of 0.00754 h⁻¹. Using eqn 7.6,

$$A_{\rm i} = (R_{\rm i} + k_{\rm e}A_{\rm o}) / (k_{\rm d} + k_{\rm e})$$

For the open building, with rapid air exchange,


$$A_{i} = \frac{10 + (20 \times 4)}{0.00754 + 20}$$
$$= \frac{90}{20}$$
$$= 4.5 \text{ Bq m}^{-3}$$

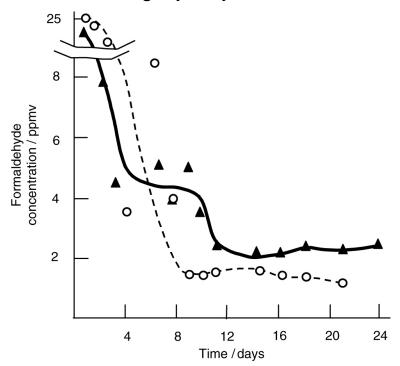
For the tightly sealed, energy-efficient building,

$$A_{i} = \frac{10 + (0.10 \times 4)}{0.00754 + 0.10}$$
$$= \frac{10.4}{0.107}$$
$$= 97 \text{ Bq m}^{-3}$$

Der Zusammenhang von Ventilation und Schadstoffanreicherung

- Ventilation vs.
 Anreicherung
- Beispiel Rauchen
- Max. Personendichte in öffent. Einrichtungen vielleicht 50 /100 m³
- Beachte: neue Bauweisen haben k_e-Werte deutlich kleiner 1

Theoretische Steady-State Dichte respiratorisch aufgenommener Partikel aus Zigarettenrauch, Annahme 33% Raucher, pro 3 Raucher eine Zigarette kont. brennend.


Qualität von Luft in geschlossenen Räumen

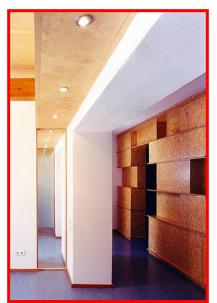
- Einige klassische Schadstoffe in Innenräumen
- Formaldehyd als Beispiel für Volatile Organische Verbindungen (VOC)
- Aus Polyurethanharzen etc.
- Das Problem neuer Räume ...

Formaldehydfreisetzung aus einem Gebäude mit Formaldehyd-basierenden Polymeren; 33° C; geschlossene Dreiecke: hohe Luftfeuchtigkeit; offene Kreise: niedrige Luftfeuchtigkeit

Endgruppenfreisetzung.

Bindungshydrolyse

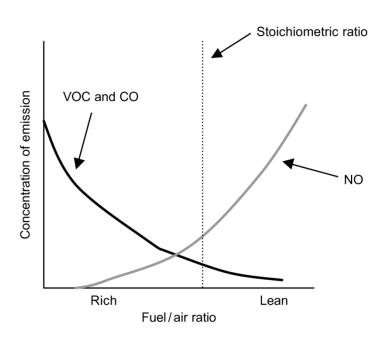
Hausstaub als Senke und Indikator

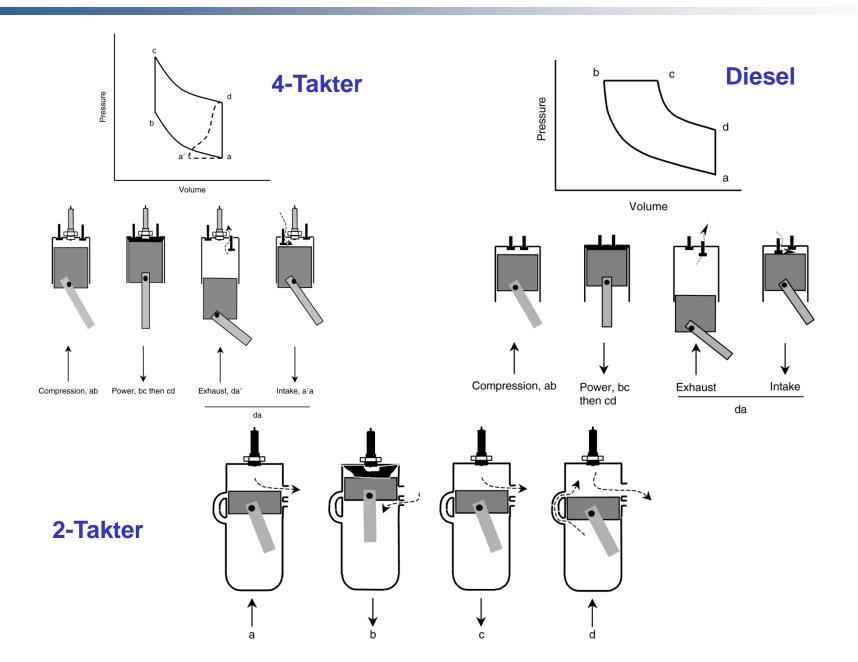

Quelle: "Hausstaub – Ein Indikator für Innenraumbelastun g" Umweltbundesamt Österreich [Hrsg.] Seite 91


Hausstaub als Senke und Indikator

- Anlagerung insbesondere von mittel und schwerflüchtige Schadstoffen aufgrund der großen Oberfläche
- Einfach zu sammeln, transportieren (Staubsaugerbeutelinhalt)
- Analyse des gesammelten Staubes erlaubt die Schadstoffbelastung in Wohnräumen zeitlich und örtlich zu vergleichen
- Zu Beachten: gleiche Größenfraktion wählen Beispiel: Korngrößen < 63µm

- Smog
- Besonderheiten der Stadtatmosphäre – "Megacities"
- Luft in geschlossenen Räumen




- Wirkungsgrad (thermodyn.) nimmt mit Verdichtung zu
- Klopfen ebenfalls
- ⇒Steigerung der Oktanzahl durch mehr verzweigter KW, Additivzugabe, Antiklopfmittel etc.
- Vollständige Verbrennung durch Zugabe von viel Sauerstoff führt auch zu Erhöhung der NO_x-Emission
- Gleichzeitige Zugabe teiloxidierter Brennstoffe (z.B) Ethanol ist günstiger (auch Biodiesel)
- Katalysator als Teillösung

$$\frac{W_{\text{cycle}}}{Q_{\text{bc}}} = 1 - \frac{T_{\text{d}}}{T_{\text{c}}} = 1 - \left(\frac{V_{\text{c}}}{V_{\text{d}}}\right)^{R/C_{\text{v}}}$$

$$\frac{V_{\rm d}}{V_{\rm c}}$$
 = the compression ratio, $r_{\rm c}$

$$\therefore \frac{W_{\text{cycle}}}{Q_{\text{bc}}} = 1 - \left(\frac{1}{r_{\text{c}}}\right)^{R/C_{\text{v}}}$$

1.) Thermodynamische Überlegungen (Beispiel NO Produktion) (wird gebildet bei hohen Temperaturen aus O₂ und N₂)

$$N_2(g) + O_2(g) => 2 NO(g)$$

Normaltemperatur

Example 2.4 The free energy of formation for NO (g) at 25 °C

From reaction 2.10,

$$\Delta G_{\text{rxn}}^{\circ} = 2\Delta G_{\text{f}}^{\circ} \text{ (NO)}$$

= 2 × 86.55 kJ mol⁻¹
= +1.73.1 kJ mol⁻¹

The value of ΔG_f° (NO) was obtained from Appendix B.2.

Bei 25 ° C:
$$InK = -\Delta G_{rxn}/RT = -69.83$$

=> $K = 4.7 \times 10^{-31}$

Hohe Temperaturen

$$N_2(g) + O_2(g) => 2 NO(g)$$

Example 2.5 The free energy and equilibrium constant for formation of NO (g) at 2773 K

 ΔG_{2773}° is determined by

$$\Delta G_{2773}^{\circ} = \Delta H_{f(N0)}^{\circ} - T(2S_{N0}^{\circ} - S_{N_{2}}^{\circ} - S_{0_{2}}^{\circ})$$

$$= 2 \times 90.25 \text{ kJ mol}^{-1} - 2773 \text{ K}(2 \times 02.11 - 0.192 - 0.205) \text{ kJ mol}^{-1} \text{ K}^{-1}$$

$$= 111.2 \text{ kJ mol}^{-1}$$

From this final value of $111.2 \text{ kJ} \text{ mol}^{-1}$, the equilibrium constant is then readily calculated.

$$\ln \left(\mathcal{K}_p \right) = rac{-\Delta G_{\mathsf{T}}^{\circ}}{RT}$$

Bei 2500 ° C:
$$InK_P = -\Delta G_T/RT = -4.82$$

$$\Rightarrow$$
 K_P = 0.008 = (P_{NO}/P⁰)² / [(P_{N2}/P⁰) x (P_{O2}/P⁰)]

⇒ aufgelöst für NO (6,5 bar, wenig Restsauerstoff) =>

Reaktionen – thermodynamische Kontrolle

Example 2.6 The mixing ratio of NO produced during combustion

Consider a situation where most of the oxygen has been burned and the compressed cylinder gas includes $P_{\rm N_2}$ =650 kPa and $P_{\rm O_2}$ =1.0 kPa with temperature at 2500 °C. After reaction of N₂ and O₂, assume each has reacted so as to lose partial pressure of x kPa; $P_{\rm NO}$ = 2x kPa.

Using the equation for K_p above and the conditions described,

$$\frac{(2x/101.2)^2}{((650-x)/101.3)((1.0-x)/101.3)} = 0.0080$$

and

$$\frac{4x^2}{(650-x)(1.0-x)} = 0.0080$$

Assume x << 650 kPa and thus

$$\frac{4x^2}{650(1.0-x)} = 0.0080$$

giving the quadratic

$$4x^2 + 5.2x - 5.2 = 0$$

$$x = 0.66$$

The assumption that x << 650 kPa is valid and

$$P_{NO} = 2x = 1.4 \text{ kPa}$$

...die dann weiter verdünnt werden

The nitric oxide mixing ratio in the hot cylinder is then

1.4 kPa
$$\div$$
 650 kPa \times 10⁶ ppmv = 2200 ppmv

Grenzen thermodynamischer Betrachtung

Zurück zu Normalbedingungen

Normaltemperatur

Example 2.4 The free energy of formation for NO (g) at 25 °C

From reaction 2.10,

$$\Delta G_{\text{rxn}}^{\circ} = 2\Delta G_{\text{f}}^{\circ} \text{ (NO)}$$

= 2 × 86.55 kJ mol⁻¹
= +1 73.1 kJ mol⁻¹

The value of ΔG_f° (NO) was obtained from Appendix B.2.

Auto (ohne Kat) ~ 2000 ppmV korrekt

Verdünnt 1:20.000 ~ 100 ppbV

beobachtet

GGW 25° C ~ $3 \times 10^{-7} \text{ ppbV}$

NIE anzutreffen

Bei 25 ° C:
$$InK = -\Delta G_{rxn}/RT = -69.83$$

$$\Rightarrow$$
 K = 4.7 x 10⁻³¹ = $(P_{NO}/P^0)^2 / [(P_{N2}/P^0) \times (P_{O2}/P^0)]$

$$\Rightarrow$$
 P_{NO} = (K x 79 x 21)^{0.5} kPa = 2.61 x 10⁻¹⁴kPa

$$\Rightarrow X_{NO} = P_{NO} / 101.3 \text{ kPa} => 2.6 \text{ x } 10^{-7} \text{ ppbV}$$

Betrachtung der Rückreaktion

 $2 \text{ NO(g)} => N_2(g) + O_2(g)$

Reaktionskonstante

 $k_2 = 2.6 \times 10^6 \text{ e}^{-(3.21 \times 10^4)/\text{T}} \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$

bei 25° C: $k_2 = 4.3 \times 10^{-41} \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$

Example 2.8 Rate of conversion of nitric oxide to nitrogen and oxygen

The first step is to convert the mixing ratio of 100 ppbv estimated above for nitric oxide to a concentration [NO]; in mol m^{-3}

$$[NO]_{i} = \frac{n}{V} = \frac{P}{R \times T} = \frac{100 \times 10^{-9} \times 101325 \text{ Pa}}{8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 298 \text{ K}}$$
$$= 4.1 \times 10^{-6} \text{ mol m}^{-3}$$

The rate of decomposition can now be estimated

Rate =
$$k_2[N0]_i^2$$

= $7.2 \times 10^{-52} \text{ mol m}^{-3} \text{ s}^{-1}$

The reaction is clearly very slow and the half-life is given by

$$t_{1/2} = \frac{1}{\text{k[NO]}_{i}}$$

$$t_{1/2} = \frac{1}{4.3 \times 10^{-41} \,\text{m}^{3} \,\text{mol}^{-1} \,\text{s}^{-1} \times 4.1 \times 10^{-6} \,\text{mol} \,\text{m}^{-3}}$$

$$= 5.7 \times 10^{45} \,\text{s}$$

$$= 1.8 \times 10^{38} \,\text{y}$$

Suggeriert praktisch gar keinen Abbau von Stickstoffmonoxid

Real: Nebenreaktion $2 NO(g) + O_2(g) => 2 NO_2(g)$ Auch langsam, aber über
Radikalreaktion => Troposphärenchemie