IOW Logo

Publications

 

 

53. Geersen, J., Bradtmöller, M., Schneider von Deimling, J., Feldens, P., Auer, J., Held, P., Lohrberg, A., Supka, R., Hoffmann, J. J. L., Eriksen, B. V., Rabbel, W., Karlsen, H.-J., Krastel, S., Brandt, D., Heuskin, D., & Lübke, H. (2024). A submerged Stone Age hunting architecture from the Western Baltic Sea. Proceedings of the National Academy of Sciences of the United States of America, 121(8), e2312008121. https://doi.org/10.1073/pnas.2312008121

52. Marx, D., Feldens, A., Papenmeier, S., Feldens, P., Darr, A., Zettler, M.L., Heinicke, K. 2024: Habitats and biotopes in the German Baltic Sea. Biology 13: 6 https://doi.org/10.3390/biology13010006

51. Rooze J, Zeller MA, Gogina M, Roeser P, Kallmeyer J, Schönke M, Radtke H, Böttcher ME (2024). Bottom-trawling signals lost in sediment: A combined biogeochemical and modeling approach to early diagenesis in a perturbed coastal area of the southern Baltic Sea. Sci. total environ. 906: 167551

50. Moros, M., Kotilainen, A.T., Snowball, I., Neumann, T., Perner, K., Meier, H.E.M., Papenmeier, S., Kolling, H., Leipe, T., Sinninghe Damsté, J.S. and Schneider, R. (2024), Giant saltwater inflow in AD 1951 triggered Baltic Sea hypoxia. Boreas. https://doi.org/10.1111/bor.12643

49. Schneider von Deimling, J., Hoffmann, J., Geersen, J., Koschinski, S., Lohrberg, A., Gilles, A., Belkin, C., Papenmeier, S., Krastel, S. Millions of seafloor pits, not pockmarks, induced by vertebrates in the North Sea. Commun Earth Environ 4, 478 (2023). https://doi.org/10.1038/s43247-023-01102-y

48. Reineccius, J., M. Schönke and J. J. Waniek (2023). Abiotic long-term simulation of microplastic weathering pathways under different aqueous conditions. Environ. Sci. Technol. 57: 963-975, doi: 10.1021/acs.est.2c05746

47. Dellwig, O., A. Köhler, F. Kurzweil, M. Schönke, A. Wegwerth, S. Krüger, R. Mars, S. Plewe, I. Schuffenhauer, R. Zhang, H. C. Frazão, J. J. Waniek and H. W. Arz (2023). Behaviors of redox-sensitive tungsten and molybdenum in the northern South China Sea: From the Pearl River to the continental slope. Estuar. Coast. Shelf Sci. 292: 108485, doi: 10.1016/j.ecss.2023.108485

46. Feldens A., Marx D., Herbst A., Darr A., Papenmeier S., Hinz M., Zettler M.L. and Feldens P. (2023): Distribution of boulders in coastal waters of Western Pomerania, German Baltic Sea. Front. Earth Sci. 11:1155765. DOI: 10.3389/feart.2023.1155765

45. Romoth, K., Darr, A., Papenmeier, S., Zettler, M.L., Gogina, M. (2023): Substrate Heterogeneity as a Trigger for Species Diversity in Marine Benthic Assemblages. Biology 2023, 12, 825. DOI:10.3390/biology12060825

44. Papenmeier, S., Arz, H.W. (2023): Geological and Sedimentary Conditions, in: Schubert, H., Müller, F. (eds) Southern Baltic Coastal Systems Analysis. Ecological Studies, vol 246. Springer, Cham. DOI: 10.1007/978-3-031-13682-5_4

43. Feldens, P.; Held, P.; Otero-Ferrer, F.; Bramanti, L.; Espino, F.; Schneider Von Deimling, J. Can black coral forests be detected using multibeam echosounder “multi-detect” data. Frontiers in Remote Sensing, 2023, 4,; DOI:10.3389/frsen.2023.988366

42. Czymzik, M.; Tjallingii, R.; Plessen, B.; Feldens, P.; Theuerkauf, M.; Moros, M.; Schwab, J. M.; Nantke, C. K. M.; Pinkerneil, S.; Brauer, A.; Arz, H. W. Mid-Holocene reinforcement of North Atlantic atmospheric circulation variability from a western Baltic lake sediment record. Climate of the Past, 2023, 19, 233-248;

41. Galvez, D. S., S. Papenmeier, L. Sander, A. Bartholomä and K. H. Wiltshire (2022). Ensemble mapping as an alternative to baseline seafloor sediment mapping and monitoring. Geo-Mar. Lett. 42: 11, doi: 10.1007/s00367-022-00734-x

40. Reineccius, J., M. Schönke and J. J. Waniek (2022). Abiotic long-term simulation of microplastic weathering pathways under different aqueous conditions. Environ. Sci. Technol.: online, doi: 10.1021/acs.est.2c05746

39. Schulze, I., Gogina, M., Schönke, M., Zettler, M.L., and Feldens, P., 2022. Seasonal change of multifrequency backscatter in three Baltic Sea habitats. Frontiers in Remote Sensing 3:956994

38. Schönke, M.; Clemens, D., Feldens, P. Quantifying the Physical Impact of Bottom Trawling Based on High-Resolution Bathymetric Data. Remote Sens. 2022, 14, 2782. https://doi.org/10.3390/rs14122782

37. Papenmeier, S., Darr, A., Feldens, P. (2022): Geomorphological Data from Detonation Craters in the Fehmarn Belt, German Baltic Sea. Data, 7, 63. DOI: 10.3390/data7050063

36. Feldens, P., Schwarzer, K., Sakuna-Schwartz, D., Khokiattiwong, S., (2022) Geomorphological Evolution of the Andaman Sea Offshore Phang Nga Province (Thailand) during the Holocene: An Example for a Sediment Starving Shelf. Coasts 2(1) 1-16

35. von Ahn, C. M., Scholten, J., Malik, C., Feldens, P., Liu, B., Dellwig, O., Jenner, A.-K., Papenmeier, S., Schmiedinger, I., Zeller, M.A., Böttcher, M.E. (2021): A Multi-Tracer Study of Fresh Water Sources for a Temperate Urbanized Coastal Bay (Southern Baltic Sea). Fron. Environ. Sc. 9:642346. DOI:10.3389/fenvs.2021.642346

34. Galvez, D. S., Papenmeier, S., Sander, L., Hass, H. C., Fofonova, V., Bartholomä, A., Wiltshire, K. H. (2021): Ensemble Mapping and Change Analysis of the Seafloor Sediment Distribution in the Sylt Outer Reef, German North Sea from 2016 to 2018. Water, 13 (16). DOI: 10.3390/w13162254

33. Feldens, P., Westfeld, P., Valerius, J., Feldens, A., Papenmeier, S. (2021) Automatic detection of boulders by neural networks: A comparison of multibeam echo sounder and side-scan sonar performance. Journal of Applied Hydrography 119, 6-17. 10.23784/HN119-01

32. Wetzel, A., Feldens, A., Unverricht, D., Stattegger, K., Tjallingii, R. (2021). Late Pleistocene sea-level changes and the formation and fill of bent valleys incised into the shelf of the western South China Sea. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2020.104626

31. Miluch, J., Osadczuk, A., Feldens, P., Harff, J., Maciag, L., Chen, H. (2021). Seismic profiling-based modeling of geometry and sedimentary architecture of the Late Pleistocene delta in the Beibu Gulf, SW of Hainan Island (South China Sea), Journal of Asian Earth Sciences, 104611  10.1016/j.jseaes.2020.104611

30. Schulze, I., Wilken, D., Zettler, M.L., Gogina, M., Schönke, M., Feldens, P. (2021) Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11, 508

29. Theuerkauf, M., Blume, T., Brauer, A., Dräger, N., Feldens, P., Kaiser, K., Kappler, C., Kästner, F., Lorenz, S., Schmidt, J-P., Schult, M. (2021) Holocene lake level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. BOREAS doi: 10.3389/fenvs.2021.642346

28. Papenmeier, S. and Hass, H.C. (2020): Revisiting the Paleo Elbe Valley: Reconstruction of the Holocene, Sedimentary Development on Basis of High-Resolution Grain Size Data and Shallow Seismics. Geosciences, 10 (12), 505. DOI: 10.3390/geosciences10120505

27. Bruns, I., Holler, P., Capperucci, R.M., Papenmeier, S., Bartholomä, A. (2020): Identifying Trawl Marks in North Sea Sediments. Geosciences, 10, 422. DOI: 10.3390/geosciences10110422

26. Galvez, D.S., Papenmeier, S., Hass, H.C., Bartholomä, A., Fofonova, V., Wiltshire, K.H. (2020): Detecting shifts of submarine sediment boundaries using side-scan mosaics and GIS analyses. Marine Geology, 430. DOI: 10.1016/j.margeo.2020.106343

25. Czechowska,  K., Feldens, P.,  Tuya, F. , Cosme de Esteban,M.,  Espino, F.,  Haroun, R.,   Schönke, M. and  Otero-Ferrer, F. (2020) Testing Side-Scan Sonar and Multibeam Echosounder to Study Black Coral Gardens: A Case Stud from Macaronesia. Remote Sensing 12, 3244. 

24. Xiong, P., Dudzińska-Nowak, J., Harff, J., Xie, X., Zhang, W., Chen, H., Tao, J., Chen, H., Miluch, J., Feldens, P., Maciąg, L., Osadczuk, A., Meng, Q., Zorita, E., Modeling paleogeographic scenarios of the Last Glacial Cycle as a base for source-to-sink studies: an example from the northwestern shelf of the South China Sea, Journal of Asian Earth Sciences (2020), doi: https://doi.org/10.1016/j.jseaes.2020.104542

23. Feldens, P. (2020)  Super Resolution by Deep Learning Improves Boulder Detection in Side Scan Sonar Backscatter Mosaics. Remote Sensing 12(14), 2284. https://www.mdpi.com/2072-4292/12/14/2284

22. Papenmeier, S., Darr, A., Feldens, P., Michaelis, R. (2020): Hydroacoustic Mapping of Geogenic Hard Substrates: Challenges and Review of German Approaches. Geosciences, 10, 100. DOI: 10.3390/geosciences10030100.

21. Papenmeier, S., Galvez, D., Günther, C.-P., Pesch, R., Propp, C., Hass, H. Ch., Schuchardt, B., Zeiler, M. (2020): Winnowed gravel lag deposits between sandbanks in the German North Sea. In: Peter T. Harris and Elaine Baker: Seafloor geomorphology as benthic habitat. GeoHab Atlas of seafloor geomorphic features and benthic habitats. 2nd Edition. Elsevier. p.451-460. DOI: 10.1016/B978-0-12-814960-7.00025-7.

20. Enders, K., Käppler, A., Biniasch, O., Feldens, P., Stollberg, N., Lange, X., Fischer, D., Eichhorn, K.-J., Pollehne, F., Oberbeckmann, S., and Labrenz, M., 2019, Tracing Microplastics in Aquatic Environments Based on Sediment Analogies: Scientific Reports v. 9

19. Schönke, M., Wiesenberg, L., Schulze, I., Wilken, D., Darr, A., Papenmeier, S., Feldens, P. (2019) Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences 9(10), 454

18. Wilken, D., Wunderlich, T., Feldens, P., Coolen, J., Preston, J., Mehler, N. (2019) Investigating the Norse Harbour of Igaliku (Southern Greenland) Using an Integrated System of Side-Scan Sonar and High-Resolution Reflection Seismics Remote Sensing 11(16), 1889

17. Michaelis, R., Hass, HC., Papenmeier, S., Wiltshire, KH. (2019) Automated Stone Detection on Side-Scan Sonar Mosaics Using Haar-Like Features. Geosciences 9(5), 216 https://www.mdpi.com/2076-3263/9/5/216/htm

16. Feldens, P., Darr, A., Feldens, A., Tauber, F. (2019) Detection of Boulders in Side Scan Sonar Mosaics by a Neural Network. Geosciences 9(4) 159.  https://www.mdpi.com/2076-3263/9/4/159

15. Kreuzburg, M., Ibenthal, M., Janssen, M., Rehder, G., Voss, M.,  Naumann, M., Feldens, P. (2018) Submarine continuation of a coastal peatland in the southern Baltic Sea and its Holocene development. Frontiers in Earth Science 

14. Li, W., Krastel, S., Alves, T.M., Urlaub, M., Mehringer, L., Schürer, A., Feldens, P., Gross, F., Stevenson, C.J., Wynn, R.B. (2018). The Agadir Slide offshore NW Africa: Morphology, emplacement dynamics, and potential contribution to the Moroccan Turbidite System. Earth and Planetary Science Letters. 

13. Stevenson, C., Feldens, P., Georgiopoulou, A., Schönke, M., Krastel, S., Piper, DJW, Lindhorst, K., Mosher, D. (2018) Reconstructing the sediment concentration of a giant submarine gravity flow. Nature Communications 9, 2616. 

12. Feldens, P., Schulze, I., Papenmeier, S., Schönke, M., Schneider von Deimling, J. (2018). Improved Interpretation of Marine Sedimentary Environments using Multi-Frequency Multibeam Backscatter Data. Geosciences. 

11. Krastel, S., Li, W., Urlaub, M., Georgiopoulou, A., Wynn, RB, Schwenk, T., Stevenson, C., Feldens, P. (2018). Mass wasting along the NW African continental margin. Geological Society, London, Special Publications 477
 
10. Häusler, K., Dellwig, O., Schnetger, B., Feldens, P.,  Leipe, T.,  Moros, M., Pollehne,  F., Schönke, M., Wegwerth, A., Arz ; HW. (in press) Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): Hydrographic conditions, temporal succession, and Mn budget calculations. Marine Geology DOI::10.1016/j.margeo.2017.10.010

9. Feldens, P. (2017) Sensitivity of texture parameters to acoustic incidence angles in multibeam backscatter. IEEE Geoscience and Remote Sensing Letters.  DOI: 10.1109/LGRS.2017.2756258 

8. Schönke, M., Feldens, P., Wilken, D., Papenmeier, S., Heinrich, C., Schneider von Deimling, J., Held, P., Krastel, S. (2017) Impact of Lanice conchilega on seafloor microtopography off the island of Sylt (German Bight, SE North Sea).Geo-Marine Letters 37(3) 305-318  doi:10.1007/s00367-016-0491-1

7. Mitchell, N.C., Ligi, M., Feldens, P., Hübscher, C (2017) Deformation of a young salt giant:  Regional topography of the Red Sea Miocene evaporites: effects of salt tectonic and isostasy. Basin Research 29(S1) 352-369 DOI: 10.1111/bre.12153

6. Heinrich, C., Feldens, P., Schwarzer, L., (2017) Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight). Geomarine Letters 37(3) 289-303. DOI: 10.1007/s00367-016-0477-z

5. Augustin A., van der Zwan FM, Devey CW, Ligi M, Kwasnitschka T, Feldens P, Bantan RA, Basaham AS (2016) Geomorphology of the central Red Sea Rift: Determining spreading processes. Geomorphology http://dx.doi.org/10.1016/j.geomorph.2016.08.028

4. Wölfl, A-C., Wittenberg, N., Feldens, P., Hass, HC., Betzler, C., Kuhn, G. (2016) Submarine landforms related to glacier retreat in a shallow Antarctic fjord. Antarctic Science

3. Feldens, P., Schmidt, M., Mücke, I., Augustin, N., Al-Farawati, R., Orif, M., Faber, E. (2016). Expelled subsalt fluids form a pockmark field in the eastern Red Sea. Geo Marine Letters, doi: 10.1007/s00367-016-0451-9

2. Albarakati, A.McGinnis, D. F.Ahmad, F.Linke, P.Dengler, M.Feldens, P.Schmidt, M. und Al-Farawati, R. (2016) Thermal small-steps staircase and layer migration in the Atlantis II Deep, Red Sea. Arabian Journal of Geosciences 9:392 DOI 10.1007/s12517-016-2399-5.

1. Schneider von Deimling, J., Held, P., Feldens, P., Wilken, D. (2016) Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection. Geomarine Letters DOI: 10.1007/s00367-015-0433-3

Focus
The Marine Geophysics group within the Marine Geology section of the IOW is concerned with imaging the seafloor and the upper 50 m of the subsurface using a combination of geophysical and sedimentological methods.

A key theme of our research is the improvement of remote sensing techniques used to identify and monitor geological and biological parameters of shallow water seafloor habitats.  Other research topics include the reconstruction of Pleistocene and Holocene evolution of sedimentary systems in marginal seas in response to climate change and sea-level fluctuations, and the identification of sites of archaeological interest. Our research is mainly carried out in the Baltic Sea, but also in the North Sea, the North Atlantic and the Red Sea.